EN 2602 Fundamentos de Eletrônica
|
|
|
- Bernardo de Lacerda Ximenes
- 7 Há anos
- Visualizações:
Transcrição
1 EN 2602 Fundamentos de Eletrônica NBESTA00713SA Eletrônica Analógica Aplicada AULA 03 esposta em Frequência de Amplificadores Prof. odrigo eina Muñoz T2 de
2 Conteúdo Definição Efeitos das capacitâncias de acoplamento Efeito das capacitâncias do transistor Considerações de baixa e alta frequência Teorema de Miller 2 2
3 esposta em frequência de amplificadores Definição: A resposta em frequência de um amplificador é o cambio no ganho ou deslocamento de fase em uma determinada faixa de frequências do sinal de entrada. - eatância capacitiva = 1/(2πfC) A reatância capacitiva reduz-se com o aumento da frequência e aumenta com a diminuição da frequência. Em baixa frequência (DC), os capacitores de acoplamento e desvio (bypass) são considerados circuito aberto. Em altas frequências, a reatância capacitiva torna-se baixa e os capacitores internos dos transistores passam a ter um efeito significativo na operação do amplificador. 3
4 É necessário observar o intervalo completo de frequências dentro do qual o amplificador pode operar. Em baixas frequências (frequências de áudio abaixo de 10 Hz), amplificadores com acoplamento capacitivo, como os da figura, apresentam menor ganho em tensão. V in V in BJT FET 4
5 A razão para isso está no fato de que em baixas frequências as reatâncias são maiores, ocasionando maiores quedas de tensão em C 1 e C 3. A queda de tensão maior nessas reatâncias diminui o ganho em tensão. Em baixas frequências, o capacitor C 2 (capacitor de desvio) pode ser considerado um circuito aberto, e o esistor E ou s (na configuração com FET), não sofre desvio a terra. Dessa forma, a reatância paralela formada por C 2 e E criam uma impedância que reduz o ganho (ver figura abaixo). 5
6 edução do ganho através de E e C 2. Por exemplo, para frequências suficientemente altas, XC 0 Ω, e o V in ganho do amplificador é: A v = r c e Em baixas frequências, XC >> 0 Ω, e o ganho do amplificador é: A v = r e c + Z E 6
7 Efeito das capacitâncias do transistor Em altas frecuencias, os capacitores de acoplamento e desvio podem ser considerados como curto-circuito de ca e não afetam a resposta do amplificador. Já as capacitâncias internas do transistor devem ser consideradas pois afetam o ganho e introduzem desfaçamento. As capacitâncias internas são indicadas na figura abaixo: BJT FET 7
8 Em baixas frequências essas capacitâncias podem ser consideradas como circuito aberto e assim não afetam a resposta do amplificador. Com o aumento da frequência, as reatâncias capacitivas desses capacitores se reduzem e começam a afetar o ganho do amplificador. Quando a reatância de C be ou C gs se torna suficientemente pequena, perde-se uma quantidade significativa de tensão de sinal por causa do divisor de tensão entre a resistência da fonte de sinal e a reatância de C be (ver figura abaixo). 8
9 V in Tensão reduzida na base do transistor devido ao divisor de tensão entre s e C be. 9
10 Quando a reatância de C bc ou C gd é suficientemente pequena, Uma quantidade significativa do sinal de saída é realimentada para a entrada, defasada do sinal de entrada (realimentação negativa), reduzindo portanto, o ganho em tensão (ver figura). V out edução do ganho devido à realimentação de parte da V in V in tensão de saída fora de fase 180º. 10
11 Teorema de Miller Basicamente consiste em um efeito (efeito Miller), que faz com que a capacitância C bc ou C gd (FET), apareçam conectadas entre a base (porta) e terra do transistor. V in V out Assim, a capacitância vista na entrada do amplificador aparece multiplicada pelo ganho do amplificador tal como mostrado na figura. (ver livro de Sedra Smith para detalhes). 11
12 Por exemplo, um amplificador fonte comum com ganho de -100 V/V, com uma capacitância C gd de 1 pf, dá lugar a uma capacitância de entrada de 1pF( ) = 101 pf. Certamente uma capacitância muito maior!! o efeito de multiplicação experimentado por C bc ou C gd é conhecido como efeito Miller. A figura a seguir mostra essa capacitância na entrada do amplificador. Também, a figura ilustra a capacitância vista na saída do amplificador devido ao efeito Miller. Contudo, observe que o efeito dessa capacitância é desprezível. 12
13 V in V in BJT FET 13
14 Decibel Usualmente o ganho de um amplificador é expresso em db. É uma medida logarítmica de uma potência em relação a outra ou de uma tensão em relação a outra. Assim, Ganho de potência: A p (db) = 10 loga p Com A p sendo o ganho de potência; A p = A out /A in O ganho de tensão em decibeles: A v (db) = 20 loga v A v > 1, representa ganho A v < 1, representa atenuação 14
15 Exemplo: Expresse em db: P out /P in = 250 A p (db) = 10 log(250) = 24 db V out /V in = 0,707 A v (db) = 20 log(0.707) = -3 db OBS: No caso do ganho em tensão, o fator multiplicativo 20 deve-se ao fato da potência ser proporcional ao quadrado da tensão. 15
16 Usualmente o ganho do amplificador é referido a 0 db. Isto é útil para comparar com outros valores de ganho. Amplificadores exibem um ganho máximo entre dois valores de frequências críticas denominadas frequências de corte. Essa faixa de frequências é conhecido como frequências médias e o ganho correspondente é o ganho em frequências médias (ganho de 0 db). Qualquer valor de ganho abaixo do valor do ganho em frequências médias pode ser referido a 0 db e terá um valor negativo em db. 16
17 Exemplo: um amplificador tem ganho de frequências médias de 100, e tem um ganho em uma frequência abaixo do intervalo de frequências médias de 50. O ganho pode ser expresso como: Av(dB) = 20 log(50/100) = 20 log(0.5) = -6 db. Ou seja, esse ganho encontra-se 6 db abaixo do valor de 0 db. OBS: Dividir ou multiplicar o ganho em tensão por um fator de 2 corresponde a uma redução ou a um incremento por 6 db. 17
18 Curva normalizada de ganho de tensão VS frequência 18
19 Ganho de tensão Av Valor em db log(32) = 30 db log(16) = 24 db 8 20 log(8) = 18 db 4 20 log(4) = 12 db 2 20 log(2) = 6 db 1 20 log(1) = 0 db log(0.707) = -3 db log(0.5) = -6dB log(0.25) = -12 db log(0.125) = -18 db log(0.0625) = -24 db log( ) = -30 db Valores em db em relação a 0 db 19
20 Frequência crítica (frequência de corte) A frequência de corte é a frequência na qual a potência de saída é reduzida à metade do valor em frequências médias. Isto corresponde a uma redução de 3 db A p (db) = 10 log(0.5) = -3 db Observa-se também que nas frequências de corte o ganho em tensão corresponde ao 70.7% do valor em frequências médias. A v (db) = 20 log(0.707) = -3 db 20
21 Exemplo: Um amplificador tem tensão de saída rms em frequências médias de 10 V. Qual é a tensão de saída rms com as seguintes reduções de ganho em db, considerando a tensão de entrada constante: -3 db, -6 db e -12 db /. Multiplique o ganho em frequências médias pelo respectivo valor da tensão de acordo com a tabela anterior. - Com -3 db, 0.707(10 V) = 7.07 V - Com -6 db, 0.5(10V) = 5 V - Com -12 db, 0.25(10V) = 2.5 V 21
22 Potência em dbm O dbm é uma unidade para medir níveis de potência referidos a 1 mw. À diferencia da medida realizada em db, o dbm representa uma forma conveniente de expressar saída de potência real de um amplificador. Cada incremento de 3 dbm corresponde a duplicar a potência, e uma redução de 3 dbm corresponde a reduzir a potência à metade. A tabela a seguir mostra a relação direta entre potência real e dbm. 22
23 Potência 32 mw 15 dbm 16 mw 12 dbm 8 mw 9 dbm 4 mw 6 dbm 2 mw 3 dbm 1 mw 0 dbm 0.5 mw -3 dbm 0.25 mw -6 dbm mw -9 dbm mw -12 dbm mw -15 dbm dbm elação entre potência real e dbm 23
24 esposta do amplificador em baixa frequência Em baixa frequência, a reatância capacitiva de acoplamento torna-se significativa, reduzindo o ganho em tensão. Amplificador com TBJ Amplificador emissor comum com V out ganho: A v = r L e V in O amplificador tem três constantes de tempo que determinam a resposta em frequência (passa altas). 24
25 out V out in V in in(emissor) Ilustração das constantes de tempo - C 1 e a resistência de entrada formam uma constante de tempo - C 3 e resistência de saída (resistência olhando para o coletor) formam uma constante de tempo - C 2 (capacitor de desvio de emissor) e a resistência olhando para o emissor. 25
26 Circuito C de entrada Base do transistor V in in = A tensão na base é: in V B = ( ) 2 2 in+ X C1 V A tensão cai ao 70.7% do valor in da tensão em frequências médias quando X C1 = in. Portanto, in in 1 VB = ( ) Vin = ( ) Vin = Vin = in in in + 2 V in 26
27 Em db: 20 log(v B /V in ) = 20 log(0.707) = -3 db A frequência de corte inferior, f cl, é a frequência na qual o ganho cai 3 db abaixo do valor em frequências médias. Pode ser obtida assim: 1 2πf C X C1 = = cl 1 E, portanto, in f cl = 1 2π in C 1 27
28 Exemplo: Para o circuito da figura a seguir, determine a frequência de corte inferior devido à constante de tempo de entrada. Considere r e = 9.6 Ω e β =
29 / A resistência de entrada é: 1 2 β ( ( r ) e + E1 = 68KΩ 22KΩ 200(9.6Ω + 33Ω) = 5. 63KΩ Portanto, 1 1 fcl = = = 282Hz 2πinC 1 2π (5.63KΩ)(0.1µ F) 29
30 Velocidade do ganho em baixas frequências A variação da queda do ganho em tensão abaixo do valor de frequências intermediarias é conhecida como a pendente de queda ou roll-off. Usualmente toma-se o valor de 0.1f c (uma década) para calcular o valor da tensão nesse ponto. Nesse valor de frequência, X C1 = (10)( in ), devido à relação inversa. Portanto, V V B in = ( + in X ) = ( in C1 in in in + (10 ) ) = ( 2 in in in ) V V B in in 1 = ( ) = 0.1 in Em db: 20 log(v B /V in ) = 20 log(0.1)= -20 db 30
NBESTA00713SA Eletrônica Analógica Aplicada AULA 18. Osciladores. Prof. Rodrigo Reina Muñoz T2 de 2018
AULA 8 Osciladores Prof. odrigo eina Muñoz [email protected] T2 de 208 Conteúdo Estabilidade Critério de Barkhausen Diferentes tipos de oscildores 2 Osciladores São circuitos que produzem um sinal
CIRCUITO AUTOPOLARIZAÇÃO Análise do modelo equivalente para o circuito amplificador em autopolarização a JFET.
MÓDULO 6: RESPOSTA EM FREQÜÊNCIA DO AMPLIFICADOR DE PEQUENOS SINAIS A JFET. 1. Introdução: O circuito amplificador de sinal a JFET possui ganho alto, uma impedância alta de entrada e ampla faixa de resposta
Eletrônica II. Germano Maioli Penello. II _ html.
Eletrônica II Germano Maioli Penello [email protected] http://www.lee.eng.uerj.br/~germano/eletronica II _ 2015-1.html Aula 18 1 Vimos que: Amplificador cascode Base comum Bom por ter largura de banda
APLICAÇÕES DOS AMPLIFICADORES OPERACIONAIS
APLICAÇÕES DOS AMPLIFICADORES OPERACIONAIS Neste capítulo, o objetivo é o estudo das aplicações com os Amplificadores Operacionais realizando funções matemáticas. Como integração, diferenciação, logaritmo
1/6/2010 IFBA. CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE. Vitória da Conquista, 2010 IFBA.
IFBA TBJ - Análise CA para pequenos sinais CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE Vitória da Conquista, 2010 IFBA 1 a Parte Amplificador EC Introdução 1 Capacitor
MÓDULO 5: RESPOSTA EM FREQÜÊNCIA DO AMPLIFICADOR DE PEQUENOS SINAIS A JFET.
DISCIPLINA: CIRCUITOS ELETRÔNICOS MÓDULO 5: RESPOSTA EM FREQÜÊNCIA DO AMPLIFICADOR DE PEQUENOS SINAIS A JFET. 1. Introdução: O circuito amplificador de sinal a JFET possui ganho alto, uma impedância alta
Assunto : Amplificadores com configuração base comum e coletor comum.
Quarta Lista-Aula - Disciplina : Eletrônica - PSI 2306 Assunto : Amplificadores com configuração base comum e coletor comum. Amplificadores base-comum Os amplificadores com configuração base comum têm
Terceira Lista-Aula - Disciplina : Eletrônica - PSI 2306
Terceira Lista-Aula - Disciplina : Eletrônica - PSI 2306 Assunto : Amplificadores com configuração emissor comum sem e com a resistência no emissor. Determinação dos parâmetros destes circuitos. Obs: embora
Eletrônica Aula 06 CIN-UPPE
Eletrônica Aula 06 CIN-UPPE Amplificador básico (classe A)! Amplificador básico É um circuito eletrônico, baseado em um componente ativo, como o transistor ou a válvula, que tem como função amplificar
Amplificador realimentado Série-Paralelo
p. 1/2 Resumo Amplificador realimentado Série-Paralelo Amplificador realimentado Série-Série Amplificador realimentado Paralelo-Paralelo Amplificador realimentado Paralelo-Série Amplificador realimentado
Tutorial Projeto de amplificadores Classe- A
Tutorial Projeto de amplificadores Classe- A Considere amplificador hipotético, classe- A, com as seguintes características: Z In Z Fonte Z Out Z Carga V in = V Fonte V Out = V Carga F Min Freq.Trab F
Eletrônica (Introdução à filtros ativos) Prof. Manoel Eusebio de Lima
Eletrônica (Introdução à filtros ativos) Prof. Manoel Eusebio de Lima Filtros Filtros são circuitos eletrônicos desenvolvidos para permitir, ou não, a passagem de um sinal eltrônico dentro de um espectro
CAPÍTULO V I APLICAÇÕES DOS AMPLIFICADORES OPERACIONAIS
CAPÍTULO V I APLICAÇÕES DOS AMPLIFICADORES OPERACIONAIS Neste capítulo, o objetivo é o estudo das aplicações com os Amplificadores Operacionais realizando funções matemáticas. Como integração, diferenciação,
EXERCÍCIOS DE PREPARAÇÃO DE EL - III B2
EXERCÍCIOS DE PREPARAÇÃO DE EL - III B2 Exercício Resolvido : Determinar a resposta em freqüência do amplificador de pequeno sinal a JFET e a impedância de entrada e de saída, sabendo-se que : V DD 5V,
Amplificadores Operacionais Aplicações Parte II
EN 60 Fundamentos de Eletrônica AULA 07 Amplificadores Operacionais Aplicações Parte II odrigo eina Muñoz [email protected] o Trimestre de 08 EN 60 Fundamentos de Eletrônica Conteúdo Somador/Subtrator
AMPLIFICADOR EMISSOR COMUM
AMPLIFICADOR EMISSOR COMUM OBJETIVOS: a) analisar o funcionamento de um amplificador na configuração emissor comum; b) analisar a relação de fase entre a entrada e a saída de um sinal. INTRODUÇÃO TEÓRICA
ELETRÔNICA II. Aula 09 CONFIGURAÇÕES COMPOSTAS PAR DIFERENCIAL. Claretiano 2015 Mecatrônica Prof. Dra. Giovana Tripoloni Tangerino
ELETRÔNICA II Aula 09 CONFIGURAÇÕES COMPOSTAS PAR DIFERENCIAL Claretiano 2015 Mecatrônica Prof. Dra. Giovana Tripoloni Tangerino CONFIGURAÇÕES COMPOSTAS Conexão em cascata Conexão cascode Conexão Darlington
FILTRO PASSA ALTAS (FPA) FILTRO PASSA BAIXAS (FPB)
FILTRO PASSA ALTAS (FPA) FILTRO PASSA BAIXAS (FPB) A figura a seguir mostra dois circuitos RC que formam respectivamente um filtro passa altas (FPA) e um filtro passa baixas (FPB). Observa-se que a caracterização
Aula 2 Amplificadores de Pequenos Sinais Capacitores de Acoplamento e de Desvio
Aula 2 Amplificadores de Pequenos Sinais Capacitores de Acoplamento e de Desvio Prof. Dr. Hugo Valadares Siqueira Princípio da Superposição O Princípio da Superposição para circuitos elétricos contendo
AMPLIFICADOR BASE COMUM
AMPLIFICADOR BASE COMUM OBJETIVOS: Analisar as características e o funcionamento de um amplificador na configuração base comum. INTRODUÇÃO TEÓRICA O amplificador base comum (B.C.) caracteriza-se por possuir
Análise CA para o TBJ. Prof. Dr. Ulisses Chemin Netto ET74C Eletrônica 1
Análise CA para o TBJ Prof. Dr. Ulisses Chemin Netto ([email protected]) 09 de Novembro de 2015 Objetivo da Aula Conhecer o modelo r e aplicado na representação do TBJ à análise CA. 2 Conteúdo Programático
Utilizando-se da curva de transferência podemos resolver o problema graficamente e assim temos :
ELETRÔNICA III EXERCÍCIO REFERENTE À AULA - 6 2003 AMPLIFICADORES DE PEQUENOS SINAIS RESPOSTA EM FREQÜÊNCIA. Exercício Resolvido : Determinar a resposta em freqüência do amplificador de pequeno sinal a
V in (+) V in (-) V O
CAPÍTULO III INTRODUÇÃO AOS AMPLIFICADORES OPERACIONAIS Introdução aos OPAMPS I - Introdução : Os amplificadores operacionais são dispositivos aplicados à eletrônica analógica. É o dispositivo de maior
Amplificadores de pequenos sinais ( emissor comum )
Amplificadores de pequenos sinais ( emissor comum ) Agora que sabemos polarizar um transistor para operar na região linear podemos aplicar um pequeno sinal AC na entrada. Para darmos inicio a nosso analise
1 a AULA PRÁTICA - ESTUDO DE BJT (NPN)
a AULA PÁTICA - ESTUDO DE BJT (NPN) ) Objetio: * Obter características de CC de um transistor bipolar de junção NPN. * Fazer um projeto de polarização. ) Trabalho Preparatório: A) Descrea sucintamente
A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse:
A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br ELETRÔNICA, princípios e aplicações 2 Capítulo 8 Amplificador de Sinais Sumário do capítulo: 8.1
Capítulo. Meta deste capítulo Entender o princípio de funcionamento de osciladores em duplo-t.
4 Oscilador Capítulo em Duplo-T Meta deste capítulo Entender o princípio de funcionamento de osciladores em duplo-t. objetivos Entender o princípio de funcionamento de um oscilador em duplo-t; Analisar
AMPLIFICADORES DE POTÊNCIA
INSTITUTO FDRAL D DUCAÇÃO, CIÊNCIA TCNOLOGIA D SANTA CATARINA - CAMPUS FLORIANÓPOLIS DPARTAMNTO ACADÊMICO D LTRÔNICA AMPLIFICADORS D POTÊNCIA 1. Introdução Uma das principais aplicações dos amplificadores
O DECIBEL INTRODUÇÃO TEÓRICA
O DECIBEL OBJETIVOS: a) conhecer o decibel como unidade de relação entre potências ou tensões elétricas; b) conhecer níveis de referência de tensão e potência elétricas através da unidade de medida decibel;
Ressonância Série Prof. Luis S. B. Marques
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO
SOMENTE PARA QUEM PERDEU A B1
SOMENTE PARA QUEM PERDEU A B1 UNIP 3.a Prova EE7W01 EN7W01 ET7W01 - Eletrônica III 06/06/2005 - Duração 80 min Permitido Consulta à folha única de formulários. Nota Nome... N.o - 1.a Questão : (Valor 3.0)
AMPLIFICADORES OPERACIONAIS
AMPLIFICADORES OPERACIONAIS OBJETIVOS: Analisar o funcionamento de um amplificador operacional e seus principais parâmetros. INTRODUÇÃO TEÓRICA O nome amplificador operacional (também denominado op-amp)
Transistor. Este dispositivo de controle de corrente recebeu o nome de transistor.
Transistor Em 1947, John Bardeen e Walter Brattain, sob a supervisão de William Shockley no AT&T Bell Labs, demonstraram que uma corrente fluindo no sentido de polaridade direta sobre uma junção semicondutora
V in (+) V in (-) V O
CAPÍTULO III INTRODUÇÃO AOS AMPLIFICADORES OPERACIONAIS Introdução aos OPAMPS I - Introdução : Os amplificadores operacionais são dispositivos aplicados à eletrônica analógica. É o dispositivo de maior
ENCONTRO 1 TESTE DA ONDA QUADRADA E RESPOSTA EM FREQUÊNCIA
CURSO DE ENGENHARIA ELÉTRICA DISCIPLINA: ELETRÔNICA II PROFESSOR: VLADEMIR DE J. S. OLIVEIRA ENCONTRO 1 TESTE DA ONDA QUADRADA E RESPOSTA EM FREQUÊNCIA 1. COMPONENTES DA EQUIPE Alunos Nota: Data: 2. OBJETIVOS
Aula 6 Análise de circuitos capacitivos em CA circuitos RC
Aula 6 Análise de circuitos capacitivos em CA circuitos RC Objetivos Aprender analisar circuitos RC em série e em paralelo em corrente alternada, utilizando as diversas formas de representação: números
Capítulo. Meta deste capítulo Entender o princípio de funcionamento de osciladores Hartley.
0 Oscilador Capítulo Hartley Meta deste capítulo Entender o princípio de funcionamento de osciladores Hartley. objetivos Entender o princípio de funcionamento de um oscilador Hartley Analisar osciladores
Capítulo. Meta deste capítulo Entender o princípio de funcionamento de osciladores com ponte de Wien.
6 Oscilador Capítulo com Ponte de Wien Meta deste capítulo Entender o princípio de funcionamento de osciladores com ponte de Wien. objetivos Entender o princípio de funcionamento de um oscilador com ponte
Universidade Federal de São João del-rei. Material Teórico de Suporte para as Práticas
Universidade Federal de São João del-rei Material Teórico de Suporte para as Práticas 1 Amplificador Operacional Um Amplificador Operacional, ou Amp Op, é um amplificador diferencial de ganho muito alto,
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA III EXERCÍCIO ESCOLAR (1) (A) Como se chama o fenômeno que ocorre quando
2) Em qual frequência, uma bobina de indutância 20mH terá uma reatância com módulo de 100Ω? E com módulo de 0Ω?
Professor: Caio Marcelo de Miranda Turma: T11 Nome: Data: 05/10/2016 COMPONENTES PASSIVOS E CIRCUITOS RL, RC E RLC EM CORRENTE ALTERNADA graus. Observação: Quando não informado, considere o ângulo inicial
UNIVERSIDADE PAULISTA. Circuitos Eletrônicos Relatório de Laboratório de Eletrônica. Realizada : / / 2011 Entrega : / / 2011
UNIVERSIDADE PAULISTA Circuitos Eletrônicos Relatório de Laboratório de Eletrônica Prof. Realizada : / / 2011 Entrega : / / 2011 Relatório : Aceito Recusado Corrigir (Visto) EXPERIÊNCIA 06 MEDIDA DA RESPOSTA
Eletrônica (Introdução à filtros ativos) Prof. Manoel Eusebio de Lima
Eletrônica (Introdução à filtros ativos) Prof. Manoel Eusebio de Lima O Mundo real não é digital 19/06/19 Soluções GrecO 2 Analog Devices: www.analog.com Sinais de pequena intensidade sujeitos à interferências
O Amplificador Operacional 741. p. 2/2
p. 1/2 Resumo O Amplificador Operacional 741 Circuito de Polarização e circuito de protecção contra curto-circuito O andar de Entrada O Segundo andar e andar de Saída Polarização do 741 Análise de pequeno
ELETRÔNICA II CAPÍTULO 3
ELETRÔNICA II CAPÍTULO 3 SUPERPOSIÇÃO DE AMPLIFICADORES O fato do sinal de áudio apresentar-se em corrente alternada (c.a.), a qual difere daquela que polariza o transistor (que é c.c., neste caso), nos
Capítulo. Meta deste capítulo Entender o princípio de funcionamento de osciladores Armstrong.
11 Oscilador Capítulo Armstrong Meta deste capítulo Entender o princípio de funcionamento de osciladores Armstrong objetivos Entender o princípio de funcionamento de um oscilador Armstrong; Analisar osciladores
AMPLIFICADOR DE PEQUENOS
P U C E N G E N H A R I A LABORATÓRIO DE DCE 2 EXPERIÊNCIA 6: AMPLIFICADOR DE PEQUENOS SINAIS COM TBJ Identificação dos alunos: Data: 1. Turma: 2. 3. Professor: 4. Conceito: I. Objetivos Familiarização
Plano de Aula. 1 Diodos. 2 Transistores Bipolares de Junção - TBJ. 3 Transistores de Efeito de campo - FETs. 4 Resposta em Frequência
Plano de Aula 1 Diodos 2 Transistores Bipolares de Junção - TBJ 3 Transistores de Efeito de campo - FETs 4 Resposta em Frequência 5 Projeto - Fonte automática de tensão regulável Prof. Dr. Baldo Luque
b. Período, freqüência e freqüência angular;
Nome: Matrícula: Data da entrega: Exercícios(Análise de Sinais e Decibel) 1. Dados os gráficos das tensões senoidais a seguir, pedem-se para ambos sinais: a. Valor da amplitude; b. Período, freqüência
Experimento 8 Circuitos RC e filtros de freqüência
Experimento 8 Circuitos C e filtros de freqüência OBJETIO O objetivo desta aula é ver como filtros de freqüência utilizados em eletrônica podem ser construídos a partir de um circuito C Os filtros elétricos
III. Análise de Pequenos Sinais do BJT. Anexo
III Anexo Análise de Pequenos Sinais do BJT Meta deste capítulo Relembrar os principais conceitos e técnicas envolvidos na análise de pequenos sinais de transistores bipolares objetivos Apresentar a importância
Análise CA de Amplificadores
I Anexo Análise CA de Amplificadores Meta deste capítulo Entender como realizar a análise de pequenos sinais (CA) de amplificadores. objetivos Entender o princípio de funcionamento de um amplificador Analisar
Aula VII Circuito puramente capacitivo. Prof. Paulo Vitor de Morais
Aula VII Circuito puramente capacitivo Prof. Paulo Vitor de Morais 1. Capacitância Um capacitor é utilizado, principalmente, para o armazenamento de cargas; Essa capacidade de armazenamento de cargas é
Curso Técnico em Eletroeletrônica Eletrônica Analógica II
Curso Técnico em Eletroeletrônica Eletrônica Analógica II Aula 05 Transistores BJT: Polarização Prof. Dra. Giovana Tripoloni Tangerino 2016 BJT POLARIZAÇÃO CC Transistor saturado: chave fechada (curto)
( ) ELT413 ELETRÔNICA ANALÓGICA II ENGENHARIA ELÉTRICA LABORATÓRIO N O 3: AMPLIFICADOR EC E CC EM CASCATA, RIN, ROUT. V o1... sem R V o2...
ELT413 ELETÔNICA ANALÓGICA II ENGENHAIA ELÉTICA LABOATÓIO N O 3: AMPLIFICADO EC E EM CASCATA, IN, OUT OBJETIOS 1. Medir esistência de Entrada e esistência de Saída de um amplificador. 2. Melhorar estas
Polarização do BJT FABRÍCIO RONALDO - DORIVAL
FABRÍCIO RONALDO - DORIVAL Basicamente precisaremos lembrar que: v BE = 0.7 V (fornecido) i E = (β + 1) i B i C i C = β i B Iniciamos as análises determinado i B e posteriormente usamos as relações acima
3 e I x = 0,2I E (considere inicialmente = ). (b) Recalcule I E (somente) para o caso do transistor apresentar = 100.
1) (271099) Para o circuito mostrado na figura abaixo, encontre as tensões indicadas no circuito para (a) = + (b) = 100 (c) = 10. 2) (271099) (a) Projete R C e R B para o circuito mostrado na figura abaixo
Amplificadores de Múltiplos Estágios
Universidade do Estado de Santa Catarina CCT Centro de Ciências Tecnológicas Amplificadores de Múltiplos Estágios Acadêmicos: Chrystian Lenon Remes Fernando Raul Esteche Pedrozo Gilmar Nieckarz Hallan
Eletrônica Aula 06 CIN-UPPE
Eletrônica Aula 06 CIN-UPPE Amplificador básico Amplificador com transistor Exemplo: Análise Modelo CC Modelo CA V CC C 2 R L R G C 1 C E Análise CA Para se fazer a análise CA é necessário: Eliminar as
Exercícios Sedra Ed. 3
Exercícios Sedra Ed. 3 D.8.66 Um amplificador com múltiplos pólos, sendo o primeiro em 2 MHz, e ganho em malha aberta, em DC, de 80 db deve ser compensado para em ganho unitário em malha fechada, pela
VCC M4. V sa VEE. circuito 2 circuito 3
ES238 Eletrônica Geral I ř semestre de 2006 09/out/2006 SEGUNDA CHAMADA Para os transistores bipolares presentes, considere que I sat = 0 2 A, V T = 25mV e β = 00.. Obtenha o ganho de tensão M7 v en v
ELETRÔNICA I. Apostila de Laboratório. Prof. Francisco Rubens M. Ribeiro
ELETRÔNICA I Apostila de Laboratório Prof. Francisco Rubens M. Ribeiro L E E UERJ 1996 Prática 01 - Diodo de Silício 1 - Objetivo: Levantamento da característica estática VxI do diodo de Si, com o auxílio
AMPLIFICADOR COLETOR COMUM OU SEGUIDOR DE EMISSOR
AMPLIFICADOR COLETOR COMUM OU SEGUIDOR DE EMISSOR OBJETIVOS: Estudar o funcionamento de um transistor na configuração coletor comum ou seguidor de emissor; analisar a defasagem entre os sinais de entrada
Circuitos RC e filtros de frequência. 6.1 Material. resistor de 1 kω; capacitor de 100 nf.
Circuitos RC e filtros de frequência 6 6. Material resistor de kω; capacitor de 00 nf. 6.2 Introdução Vimos que a reatância capacitiva depende da frequência: quanto maior a frequência do sinal que alimenta
AMPLIFICADOR DIFERENCIAL
AMPLIFICADOR DIFERENCIAL Introdução : O amplificador diferencial é um bloco pertencente aos circuitos analógicos ou lineares com o qual é construído o amplificador operacional. Sendo o seu estágio de entrada
Eletrônica Aula 04 - transistor CIN-UPPE
Eletrônica Aula 04 - transistor CIN-UPPE Transistor O transistor é um dispositivo semicondutor que tem como função principal amplificar um sinal elétrico, principalmente pequenos sinais, tais como: Sinal
10 10 Resposta em emfrequência dos Amplificadores
0 0 Resposta em emfrequência dos Amplificadores 0. 0. As As Três TrêsBandas de de Frequência n Nesta disciplina o estudo da resposta em frequência dos amplificadores, incide nos amplificadores de acoplamento
GUIA DE LABORATÓRIO PARA AS AULAS PRÁTICAS DE ELETRÔNICA II
GUIA DE LABORATÓRIO PARA AS AULAS PRÁTICAS DE ELETRÔNICA II DEPARTAMENTO DE ENGENHARIA ELETRÔNICA E DE COMPUTAÇÃO ESCOLA POLITÉCNICA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Guia de Laboratório - Eletrônica
Circuitos RC e filtros de frequência. 7.1 Material
Circuitos RC e filtros de frequência 7 7. Material Gerador de funções; osciloscópio; multímetros digitais (de mão e de bancada); resistor de kω; capacitor de 00 nf. 7.2 Introdução Vimos que a reatância
CAPÍTULO 8 AMPLIFICADORES TRANSISTORIZADOS
CAPÍTULO 8 AMPLIFICADORES TRANSISTORIZADOS CLASSIFICAÇÃO GERAL DOS AMPLIFI- CADORES Os amplificadores podem ser classificados de acordo com: A frequência de operação: Amplificadores de áudiofrequência(af)
Circuitos Eletrónicos Básicos
Circuitos Eletrónicos Básicos Licenciatura em Engenharia Eletrónica Transparências de apoio às aulas Cap. 1: Circuitos com um transístor 1º semestre 2013/2014 João Costa Freire Instituto Superior Técnico
EXERCÍCIOS DE PREPARAÇÃO B1i EXERCÍCIO REFERENTE À AULA DE AMPLIFICADORES DIFERENCIAIS.
EXERCÍCIOS DE PREPARAÇÃO B1i Exercícios Preparação B1i EXERCÍCIO REFERENTE À AULA DE AMPLIFICADORES DIFERENCIAIS. Exercício Resolvido : Projetar a polarização de um amplificador diferencial, segundo os
Centro Federal de Educação Tecnológica de Pelotas CEFET-RS. Aula 04. Inversor CMOS. Prof. Sandro Vilela da Silva.
Centro Federal de Educação Tecnológica de Pelotas CEFET-RS Projeto Físico F Digital Aula 04 Inversor CMOS Prof. Sandro Vilela da Silva [email protected] Copyright Parte dos slides foram realizados
Eletrônica II. Germano Maioli Penello. Aula 13
Eletrônica II Germano Maioli Penello [email protected] Aula 13 1 BJT como amplificador BJT tem que estar na região ativa (fonte de corrente controlada por tensão) Corrente i c em função de v BE Claramente
Transistores Bipolares de Junção (TBJ) Parte II
AULA 08 Transistores Bipolares de Junção (TBJ) Parte Prof. Rodrigo Reina Muñoz [email protected] T1 2018 Conteúdo Aplicações do Transistor Polarização Ponto de Operação Análise por Reta de Carga
Experimento 8 Circuitos RC e filtros de freqüência
Experimento 8 Circuitos C e filtros de freqüência OBJETIO O objetivo desta aula é ver como filtros de freqüência utilizados em eletrônica podem ser construídos a partir de um circuito C Os filtros elétricos
Resposta em Frequência dos Circuitos
Instituto Federal de Santa Catarina Curso Técnico em Telecomunicações PRT- Princípios de Telecomunicações Resposta em Frequência dos Circuitos Prof. Deise Monquelate Arndt São José, abril de 2016 Resposta
Aula 23. Transistor de Junção Bipolar I
Aula 23 Transistor de Junção Bipolar I Transistores Transistor é um dispositivo semicondutor de 3 regiões semicondutoras, duas do tipo P e uma do tipo N ou duas do tipo N e uma do tipo P. O termo transistor
Tecnologia em Automação Industrial 2016 ELETRÔNICA II Aula 11 Amplificadores Operacionais Par diferencial e características elétricas
Tecnologia em Automação Industrial 2016 ELETRÔNICA II Aula 11 Amplificadores Operacionais Par diferencial e características elétricas Prof. Dra. Giovana Tripoloni Tangerino CONFIGURAÇÕES COMPOSTAS COM
INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE)
INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE) Concurso Público - NÍVEL SUPERIOR CARGO: Tecnologista da Carreira de Desenvolvimento Tecnológico Classe: Tecnologista Junior Padrão I TEMA: CADERNO DE PROVAS
Capítulo 3: Circuitos ressonantes
Capítulo 3: Prof. Alan Petrônio Pinheiro Universidade Federal de Uberlândia Faculdade de Engenharia Elétrica [email protected] Parte 1: circuitos ressonantes 2 O que é? Uso: Transmissores e receptores
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA SÉRIE DE EXERCÍCIO #1 (1) DIODOS EM SÉRIE No circuito da figura a seguir
IFBA. CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE. Vitória da Conquista
IFBA 1 a Parte CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE Vitória da Conquista - 2009 JFET s - estrutura e símbolo Transistor de junção por efeito de campo (Junction
Verificando a parte imaginária da impedância equivalente na forma complexa
Aula 7 Circuitos RLC Objetivos Aprender analisar circuitos RLC em série e em paralelo em corrente alternada, utilizando as diversas formas de representação: números complexos, forma matemática, forma de
AULA 12- Exercício Amplificador de Múltiplos Estágios e Multivibrador 555
0//06 UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRÔNICA ET74BC Prof.ª Elisabete Nakoneczny Moraes AULA - Exercício Amplificador de Múltiplos Estágios e Multivibrador
Segunda Lista-Aula - Disciplina : Eletrônica - PSI 2306
Segunda Lista-Aula - Disciplina : Eletrônica - PSI 2306 Assunto : Transcondutância e modelos -híbrido e T aplicados ao cálculo do ganho de tensão em amplificadores simples com TBJ s. Exercício 1 Sabendo-se
UNIVERSIDADE ESTADUAL PAULISTA. Campus de Guaratinguetá Colégio Técnico Industrial de Guaratinguetá Professor Carlos Augusto Patrício Amorim
unesp UNIVERSIDADE ESTADUAL PAULISTA Campus de Guaratinguetá Colégio Técnico Industrial de Guaratinguetá Professor Carlos Augusto Patrício Amorim 1 Atividades de Recuperação Final Eletrônica Básica II
Introdução 5. Amplificadores em cascata 6. Ganho total de um amplificador com estágios em cascata 6. Acoplamento entre estágios amplificadores 8
Sumário Introdução 5 Amplificadores em cascata 6 Ganho total de um amplificador com estágios em cascata 6 Acoplamento entre estágios amplificadores 8 Casamento de impedâncias 12 Ganho em decibel 13 Obtenção
Lista de Exercícios n o.3 +V CC = 5 V I C I E
Universidade Federal da Bahia - DEE Dispositivos Semicondutores ENG C41 Lista de Exercícios n o.3 1) Dimensione o resistor para que a porta inversora da Fig.1 funcione satisfatoriamente: + V I - I B =
Amplificadores Operacionais Aplicações Parte II
NBESTA00713SA NBESTA007-13SA EN 2602 Fundamentos Eletrônica Eletrônica Analógica Analógica de Aplicada Eletrônica Aplicada AULA 09 Amplificadores Operacionais Aplicações Parte II Prof. Rodrigo Reina Muñoz
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 2307 Laboratório de Eletrônica Exp. 5 Amplificadores de Pequenos Sinais e Exp. 6 Amplificadores de
Circuitos Ativos em Micro-Ondas
Circuitos Ativos em Micro-Ondas Unidade 3 Prof. Marcos V. T. Heckler 1 Conteúdo Introdução Classes de operação de amplificadores Topologias clássicas para polarização de transistores Considerações sobre
