Pitágoras e os pitagóricos
|
|
|
- Arthur Aveiro Benevides
- 10 Há anos
- Visualizações:
Transcrição
1 Pitágoras e os pitagóricos ΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣ Mais do que um estudioso, Pitágoras foi um profeta, um místico, nascido na ilha de Samos (570 a.c). Assim como Tales de Mileto, Pitágoras também viajou pelo Egito, Babilônia e, muito provavelmente, pela Índia, absorvendo todos os conhecimentos matemáticos e astronômicos dessas civilizações; fato é que o próprio Teorema de Pitágoras já era utilizado por alguns desses povos antes da época de Pitágoras. Acreditase que nessas peregrinações, Pitágoras aprendeu grandes conceitos religiosos que o influenciaram posteriormente e fundamentaram toda a mística que envolve os pitagóricos; além disso, ele foi contemporâneo de Buda, Confúcio e Lao-tsé, fazendo daquele período uma fase crítica para o desenvolvimento das religiões. Quando voltou para a Grécia, Pitágoras se estabeleceu em Crotona, hoje costa sudeste da Itália e fundou sua sociedade secreta com bases filosóficas e matemáticas. Nessa sociedade, o conhecimento descoberto e construído era de propriedade comunitária, contrariando a práxis da época, que atribuíam os créditos de qualquer descoberta ao mestre das comunidades de estudo e pesquisa. A escola pitagórica era politicamente conservadora e tinha um código de conduta muito rígido; adotavam o vegetarianismo com base na idéia da transmigração das almas: não se pode matar um animal cujo corpo seria a nova morada de outra alma. Mas a mais notável característica da sociedade dos pitagóricos foi a confiança que mantinha nos estudos de Filosofia e Matemática. Outra preocupação dos pitagóricos era socializar o conhecimento através de conferências com a comunidade. Os pitagóricos quebraram um paradigma efetivo da época que era o utilitarismo da aritmética; os processos eram estritamente vinculados a problemas específicos ligados ao comércio e à agricultura. Os pitagóricos pregavam que o conhecimento matemático deveria ser estudado apenas pelo amor à sabedoria. Dentro dessa idéia, muito se descobriu posteriormente no campo da matemática conceitual, sem a utilização de qualquer questão prática como modelo; aliás o trânsito entre o concreto e o abstrato se
2 inverteu: dali em diante, a matemática forneceria os modelos para a prática e não o contrário. É muito difícil separar o que é história do que é lenda no que se refere a Pitágoras, pois para muitos ele foi filósofo, astrônomo, matemático, profeta, milagreiro, mágico e até charlatão. Alguns estudiosos até duvidam da existência do próprio Pitágoras, mas seja como for, seus seguidores espalharam suas crenças por todo o mundo grego e, consequentemente, por todo o ocidente. A sociedade pitagórica adotava rituais de purificação das almas, lembrando os rituais pagãos consagrados a Orfeu e Dionísio, mas as harmonias e mistérios da filosofia e da matemática eram partes essenciais nesses ritos.nunca, em toda a história da humanidades, a matemática teve tamanha importância religiosa; diz-se que o lema da escola pitagórica é Tudo é número. Os pitagóricos interessavam-se pelo estudo das propriedades dos números. Para eles, o número, sinônimo de harmonia, constituído da soma de pares e ímpares - os números pares e ímpares expressando as relações que se encontram em permanente processo de mutação -, era considerado como a essência das coisas, criando noções opostas (limitado e ilimitado) e sendo a base da teoria da harmonia das esferas. Segundo os pitagóricos, o cosmo é regido por relações matemáticas. A observação dos astros sugeriu-lhes que uma ordem domina o universo. Evidências disso estariam no dia e noite, no alterar-se das estações e no movimento circular e perfeito das estrelas. Por isso o mundo poderia ser chamado de cosmos, termo que contém as idéias de ordem, de correspondência e de beleza. Nessa cosmovisão também concluíram que a Terra é esférica, estrela entre as estrelas que se movem ao redor de um fogo central. Alguns pitagóricos chegaram até a falar da rotação da Terra sobre o eixo, mas a maior descoberta de Pitágoras ou dos seus discípulos (já que há obscuridades em torno do pitagorismo, devido ao caráter esotérico e secreto da escola) deu-se no domínio da geometria e se refere às relações entre os lados do triângulo retângulo. A descoberta foi enunciada no teorema de Pitágoras.
3 Acredita-se que o Teorema de Pitágoras ficou com esse nome pelo fato de ter sido demonstrado genericamente pela primeira vez pelos pitagóricos; diz-se que quando Pitágoras descobriu esse teorema, ele matou um boi em sacrifício, mas isso é implausível, uma vez que a sociedade pitagórica era vegetariana. O primeiro número irracional a ser descoberto foi a raiz quadrada do número 2, que surgiu exatamente da aplicação do teorema de Pitágoras em um triângulo de catetos valendo 1: Os gregos não conheciam o símbolo da raiz quadrada e diziam simplesmente: "o número que multiplicado por si mesmo é 2". A partir da descoberta da raiz de 2 foram descobertos muitos outros números irracionais. Segundo o pitagorismo, a essência, que é o princípio fundamental que forma todas as coisas é o número. Os pitagóricos não distinguem forma, lei, e substância, considerando o número o elo entre estes elementos. Para esta escola existiam quatro elementos: terra, água, ar e fogo. Assim, Pitágoras e os pitagóricos investigaram as relações matemáticas e descobriram vários fundamentos da física e da matemática. O símbolo utilizado pela escola era o pentagrama, que, como descobriu Pitágoras, possui algumas propriedades interessantes. Um pentagrama é obtido traçando-se as diagonais de um pentágono regular; pelas intersecções dos segmentos desta diagonal, é obtido um novo pentágono regular, que é proporcional ao original exatamente pela razão áurea. Pitágoras descobriu em que proporções uma corda deve ser dividida para a obtenção das notas musicais no início, sem altura definida, sendo uma tomada como fundamental (pensemos numa longa corda presa a duas extremidades que, quando tangida, nos dará o
4 som mais grave - e a partir dela, gerar-se-á a quinta e terça através da reverberação harmônica. Os sons harmônicos. Prendendo-se a metade da corda, depois a terça parte e depois a quinta parte conseguiremos os intervalos de quinta e terça em relação à fundamental. A chamada SÉRIE HARMÔNICA. À medida que subdividimos a corda obtemos sons mais altos e os intervalos serão diferentes. E assim sucessivamente. Descobriu ainda que frações simples das notas, tocadas juntamente com a nota original, produzem sons agradáveis. Já as frações mais complicadas, tocadas com a nota original, produzem sons desagradáveis. (Pitágoras, de Raffaello Sanzio-1509) prática de rituais de purificação e crença na doutrina da metempsicose, isto é, na transmigração da alma após a morte, de um corpo para outro. Portanto, advogavam a reencarnação e a imortalidade da alma; lealdade entre os membros e distribuição comunitária dos bens materiais; austeridade, ascetismo e obediência à hierarquia da Escola; proibição de beber vinho e comer carne (portanto é falsa a informação que os discípulos tivessem mandado matar 100 bois quando da demonstração do denominado Teorema de Pitágoras); purificação da mente pelo estudo de Geometria, Aritmética, Música e Astronomia; classificação aritmética dos números em pares, ímpares, primos e fatoráveis; "criação de um modelo de definições, axiomas, teoremas e provas, segundo o qual a estrutura intrincada da Geometria é obtida de um pequeno número de afirmações explicitamente feitas e da ação de um raciocínio dedutivo rigoroso" (George Simmons); grande celeuma instalou-se entre os discípulos de Pitágoras a respeito da irracionalidade do 'raiz de 2'. Utilizando notação algébrica, os pitagóricos não aceitavam qualquer solução numérica para x² = 2, pois só admitiam números racionais. Dada a conotação mística atribuída aos números, comenta-se que,
5 quando o infeliz Hipasus de Metapontum propôs uma solução para o impasse, os outros discípulos o expulsaram da Escola e o afogaram no mar; na Astronomia, idéias inovadoras, embora nem sempre verdadeiras: a Terra é esférica, os planetas movem-se em diferentes velocidades nas várias órbitas ao redor da Terra. Pela cuidadosa observação dos astros, cristalizou-se a idéia de que há uma ordem que domina o Universo; aos pitagóricos deve-se provavelmente a construção do cubo, tetraedro, octaedro, dodecaedro e a bem conhecida "seção áurea"; na Música, uma descoberta notável de que os intervalos musicais se colocam de modo que admitem expressões através de proporções aritméticas. Pitágoras - assim como outros filósofos gregos pré-socráticos - também descreveu o poder do som e seus efeitos sobre a psique humana. Essa experiência musicoterápica possivelmente foi utilizada mais tarde por Aristóteles como base teórica para sua definição de música, que, segundo ele, era uma "arte medicinal". Pitágoras foi expulso de Crotona e passou a morar em Metaponto, onde morreu, provavelmente em 496 a.c. ou 497 a.c.. (FONTES: Boyer, Carl Benjamin, História da Matemática; tradução: Elza F. Gomide. São Paulo, Ed. Edgard Blücher, 1974 e WIKIPÉDIA)
Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1
Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1 Aula 14: A Matemática Grega: Pitágoras e os Pitagóricos 17/04/2015 2 Pitágoras de Samos Aproximadamente 572 a.c. Discípulo de Tales de Mileto,
PITÁGORAS DE SAMOS: SEU MITO E SUA HERANÇA CIENTÍFICO CULTURAL
PITÁGORAS DE SAMOS: SEU MITO E SUA HERANÇA CIENTÍFICO CULTURAL Carla Regina Gomes Universidade Federal Rural do Rio de Janeiro - Campus Nova Iguaçu [email protected] 1. Introdução Admite-se que os
Prof. Dra. Vera Clotilde Garcia, Acad. Fabiana Fattore Serres, Acad. Juliana Zys Magro e Acad. Taís Aline Bruno de Azevedo.
1 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA SECRETARIA DE ENSINO À DISTÂNCIA O NÚMERO DE OURO Prof. Dra. Vera Clotilde Garcia, Acad. Fabiana Fattore Serres, Acad. Juliana Zys Magro
PARA A CIÊNCIA PARA A TECNOLOGIA PARA A SOCIEDADE
PARA A CIÊNCIA PARA A TECNOLOGIA PARA A SOCIEDADE Essas são atividades de grande influência no desenvolvimento humano. Procura entender os fenômenos e criar teorias adequadas que possam explicar os acontecimentos.
A Escola de Pitágoras
Quem foi Pitágoras? Pitágoras, um dos maiores filósofos da Europa antiga, era filho de um gravador, Mnesarco. Nasceu cerca de 580 anos a.c., em Samos, uma ilha do mar Egeu, ou, segundo alguns, em Sidon,
Como surgiu o universo
Como surgiu o universo Modelos para o universo Desde os tempos remotos o ser humano observa o céu, buscando nele pistas para compreender o mundo em que vive. Nessa busca incansável, percebeu fenômenos
A origem dos filósofos e suas filosofias
A Grécia e o nascimento da filosofia A origem dos filósofos e suas filosofias Você certamente já ouviu falar de algo chamado Filosofia. Talvez conheça alguém com fama de filósofo, ou quem sabe a expressão
NOTAÇÃO MUSICAL: Como se escreve música?
NOTAÇÃO MUSICAL: Como se escreve música? A música é uma linguagem sonora como a fala. Assim como representamos a fala por meio de símbolos do alfabeto, podemos representar graficamente a música por meio
O NÚMERO DE OURO E SUA RELAÇÃO COM A BELEZA E HARMONIA DOS OBJETOS. GT 10 - Docência em Matemática: desafios, contextos e possibilidades
O NÚMERO DE OURO E SUA RELAÇÃO COM A BELEZA E HARMONIA DOS OBJETOS GT 10 - Docência em Matemática: desafios, contextos e possibilidades Marília Lidiane Chaves da Costa [email protected] Izamara
Os Sólidos de Platão. Colégio Santa Maria Matemática III Geometria Espacial Sólidos Geométricos Prof.º Wladimir
Sólidos Geométricos As figuras geométricas espaciais também recebem o nome de sólidos geométricos, que são divididos em: poliedros e corpos redondos. Vamos abordar as definições e propriedades dos poliedros.
chamados de números racionais.
O Período Pré-Industrial e a Geometria Euclidiana Os números racionais Com o sistema de numeração hindu ficou fácil escrever qualquer número, por maior que ele fosse. 0, 13, 35, 98, 1.024, 3.645.872. Como
Qual o Teorema que você conhece?
Qual o Teorema que você conhece? Jaqueline Aparecida Campos Especialista em Matemática UFMG Professora do Curso de Matemática- ISED [email protected] Resumo: Atualmente, é grande o número de pessoas
Aplicações de Combinatória e Geometria na Teoria dos Números
Aplicações de Combinatória e Geometria na Teoria dos Números Nesse artigo vamos discutir algumas abordagens diferentes na Teoria dos Números, no sentido de envolverem também outras grandes áreas, como
A razão dos irracionais. Série Matemática na Escola. Objetivos 1. Apresentar os numeros irracionais. 2. Demonstrar que 2 não é racional com o
A razão dos irracionais. Série Matemática na Escola Objetivos 1. Apresentar os numeros irracionais. 2. Demonstrar que 2 não é racional com o argumento do absurdo. A razão dos irracionais Série Matemática
Bases Matemáticas. Aula 2 Métodos de Demonstração. Rodrigo Hausen. v. 2013-7-31 1/15
Bases Matemáticas Aula 2 Métodos de Demonstração Rodrigo Hausen v. 2013-7-31 1/15 Como o Conhecimento Matemático é Organizado Definições Definição: um enunciado que descreve o significado de um termo.
5 Equacionando os problemas
A UA UL LA Equacionando os problemas Introdução Nossa aula começará com um quebra- cabeça de mesa de bar - para você tentar resolver agora. Observe esta figura feita com palitos de fósforo. Mova de lugar
1 O número concreto. Como surgiu o número? Contando objetos com outros objetos Construindo o conceito de número
Página 1 de 5 1 O número concreto Como surgiu o número? Contando objetos com outros objetos Construindo o conceito de número Como surgiu o número? Alguma vez você parou para pensar nisso? Certamente você
Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano
Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano A Geometria espacial (euclidiana) funciona como uma ampliação da Geometria plana (euclidiana) e trata dos métodos apropriados para o estudo
FAZENDO DIFERENTE: ENSINO FUNDAMENTAL COM MATERIAIS MANIPULÁVEIS
FAZENDO DIFERENTE: ENSINO FUNDAMENTAL COM MATERIAIS MANIPULÁVEIS Jamille Vilas Boas de Souza 1 Universidade Federal da Bahia [email protected] Elaine Santos Anunciação 2 Universidade Federal da
Leucipo de Mileto e Demócrito de Abdera. Pércio Augusto Mardini Farias
Pércio Augusto Mardini Farias Este documento tem nível de compartilhamento de acordo com a licença 2.5 do Creative Commons. http://creativecommons.org.br http://creativecommons.org/licenses/by/2.5/br/
Equações do segundo grau
Módulo 1 Unidade 4 Equações do segundo grau Para início de conversa... Nesta unidade, vamos avançar um pouco mais nas resoluções de equações. Na unidade anterior, você estudou sobre as equações de primeiro
NOTAÇÃO MUSICAL TRADICIONAL: Como se escrever música?
NOTAÇÃO MUSICAL TRADICIONAL: Como se escrever música? A música é uma linguagem sonora como a fala. Assim como representamos a fala por meio de símbolos do alfabeto, podemos representar graficamente a música
8º ANO TEOREMA DE PITÁGORAS. Nuno Marreiros. O que é um Teorema? Quem foi Pitágoras?
TEOREMA DE PITÁGORAS 8º ANO Nuno Marreiros O que é um Teorema? Quem foi Pitágoras? 1 O que é um Teorema? Os Gregos trouxeram até nós o conceito de teorema. Um teorema é uma afirmação matemática cuja demonstração
Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...
Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª
TANGRAM COM INTERDISCIPLINARIDADE
TANGRAM COM INTERDISCIPLINARIDADE Josivaldo de Souza Brito UFRPE/LACAPE [email protected] Josinalva Estacio Menezes UFRPE/UFRN [email protected] 1. Introdução Breve histórico Este jogo foi trazido da China
John Locke (1632-1704) Colégio Anglo de Sete Lagoas - Professor: Ronaldo - (31) 2106-1750
John Locke (1632-1704) Biografia Estudou na Westminster School; Na Universidade de Oxford obteve o diploma de médico; Entre 1675 e 1679 esteve na França onde estudou Descartes (1596-1650); Na Holanda escreveu
Teorema de Pitágoras. Módulo 1 Unidade 10. Para início de conversa... Matemática e Suas Tecnologias Matemática 1
Módulo 1 Unidade 10 Teorema de Pitágoras Para início de conversa... Certamente, você já deve ter ouvido falar no Teorema de Pitágoras. Pois bem, nesta unidade, ele será o centro das atenções, mas vamos
Introdução À Astronomia e Astrofísica 2010
CAPÍTULO 7 ÓRBITA DOS PLANETAS. LEIS DE KEPLER E DE NEWTON. Movimento dos Planetas. O Modelo Geocêntrico. O Modelo Heliocêntrico. Leis de Kepler. Isaac Newton e Suas Leis. Recapitulando as aulas anteriores:
EQUAÇÕES E INEQUAÇÕES DE 1º GRAU
1 EQUAÇÕES E INEQUAÇÕES DE 1º GRAU Equação do 1º grau Chamamos de equação do 1º grau em uma incógnita x, a qualquer expressão matemática que pode ser escrita sob a forma: em que a e b são números reais,
¹CPTL/UFMS, Três Lagoas, MS,Brasil, [email protected]. ²CPTL/UFMS, Três Lagoas, MS, Brasil.
Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 36 INTRODUÇÃO A CRIPTOGRAFIA RSA Rafael Lima Oliveira¹, Prof. Dr. Fernando Pereira de Souza². ¹CPTL/UFMS, Três Lagoas,
TEOREMA DE PITÁGORAS: O USO DA HISTÓRIA NO ENSINO DA MATEMÁTICA
TEOREMA DE PITÁGORAS: O USO DA HISTÓRIA NO ENSINO DA MATEMÁTICA Patrícia Rodrigues, bolsista PIBID, [email protected] Curso de Licenciatura em Matemática da UTFPR Campus Pato Branco Andressa Nichetti,
3ª Filosofia Antiga (Pensadores antigos)
3ª Filosofia Antiga (Pensadores antigos) Questão (1) - A filosofia se constitui, a partir das concepções de Sócrates, Platão e Aristóteles, como o pensamento que investiga: a) A questão da dívida externa.
Teoria dos Números. A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto
Teoria dos Números 1 Noções Básicas A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto Z = {..., 4, 3, 2, 1, 0, 1, 2, 3, 4...}. Ela permite resolver de
O céu. Aquela semana tinha sido uma trabalheira! www.interaulaclube.com.br
A U A UL LA O céu Atenção Aquela semana tinha sido uma trabalheira! Na gráfica em que Júlio ganhava a vida como encadernador, as coisas iam bem e nunca faltava serviço. Ele gostava do trabalho, mas ficava
Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:
Rumo ao ITA Física Análise Dimensional Ivan Guilhon Mitoso Rocha A análise dimensional é um assunto básico que estuda as grandezas físicas em geral, com respeito a suas unidades de medida. Como as grandezas
As Fases da Lua iluminado pela luz do Sol A fase da lua representa o quanto dessa face iluminada pelo Sol está voltada também para a Terra
As Fases da Lua À medida que a Lua viaja ao redor da Terra ao longo do mês, ela passa por um ciclo de fases, durante o qual sua forma parece variar gradualmente. O ciclo completo dura aproximadamente 29,5
A integral também é conhecida como antiderivada. Uma definição também conhecida para integral indefinida é:
Integral Origem: Wikipédia, a enciclopédia livre. No cálculo, a integral de uma função foi criada para originalmente determinar a área sob uma curva no plano cartesiano e também surge naturalmente em dezenas
Simetria Externa. Universidade de São Paulo. Instituto de Química de São Carlos. Departamento de Química e Física Molecular. SQM 409 - Cristalografia
Universidade de São Paulo Instituto de Química de São Carlos Departamento de Química e Física Molecular Simetria Externa SQM 09 - Cristalografia Prof. Dr. Maria Teresa do Prado Gambardella . Simetria Externa
Johannes Kepler (1571 1630)
Johannes Kepler (1571 1630) Prometi a Deus que tornaria público este maravilhoso exemplo da Sua sabedoria. Johannes Kepler Misterium Cosmographicum (1597) ASTRÓNOMO ALEMÃO JOHANNES KEPLER FOI A PRIMEIRA
MATEMÁTICA 3 A SÉRIE - E. MÉDIO
1 MTEMÁTI 3 SÉRIE - E. MÉDIO Prof. Rogério Rodrigues O TEOREM DE TLES NOME :... NÚMERO :... TURM :... 2 VI - O TEOREM DE TLES VI. 1) Tudo é água Do último terço do séc. VII à primeira metade do séc. VI
[email protected] Aula 03 Filosofia 3 Colegial
Aula 03 Filosofia 3 Colegial Os Primeiros Filósofos Busca por uma explicação racional do mundo Filósofos Físicos Explicação na própria natureza Substância básica que formariam todas as coisas: Arkhé A
Faculdades Pitágoras de Uberlândia. Matemática Básica 1
Faculdades Pitágoras de Uberlândia Sistemas de Informação Disciplina: Matemática Básica 1 Prof. Walteno Martins Parreira Júnior www.waltenomartins.com.br [email protected] 2010 Professor Walteno
Astronomia/Kepler. As hipóteses de Kepler [editar] Colaborações com Tycho Brahe [editar]
Astronomia/Kepler < Astronomia Astronomia Uma das importantes personagens da Astronomia foi Johannes Kepler.. Como muitos astrônomos de sua época, Kepler era também um astrólogo e uma de suas crenças fundamentais
Simulado OBM Nível 2
Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é
MÉTODO CIENTÍFICO. BENEFÍCIOS DO MÉTODO: execução de atividade de forma mais segura, mais econômica e mais perfeita;
MÉTODO CIENTÍFICO CONCEITO: palavra de origem grega, significa o conjunto de etapas e processos a serem vencidos ordenadamente na investigação da verdade; IMPORTÃNCIA DO MÉTODO: pode validar ou invalidar
Avaliação em filosofia: conteúdos e competências
Avaliação em filosofia: conteúdos e competências Desidério Murcho Universidade Federal de Ouro Preto [email protected] 1 Immanuel Kant O jovem que completou a sua instrução escolar habituou- se a
O TRIÂNGULO E A NATUREZA: UMA RELAÇÃO ABSTRATA OU CONCRETA
O TRIÂNGULO E A NATUREZA: UMA RELAÇÃO ABSTRATA OU CONCRETA MOURA, William da Silva GALDINO, Luiz da Silva RESUMO Este estudo trata de uma pesquisa bibliográfica que tem como objetivo investigar a existência
CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES
CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES 3.1 - IDENTIFICADORES Os objetos que usamos no nosso algoritmo são uma representação simbólica de um valor de dado. Assim, quando executamos a seguinte instrução:
APLICAÇÕES DA DERIVADA
Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,
Qual é Mesmo a Definição de Polígono Convexo?
Qual é Mesmo a Definição de Polígono Convexo? Elon Lages Lima IMPA, Rio de Janeiro Quando pensamos num polígono convexo, imaginamos seus vértices todos apontando para fora, ou seja, que ele não possui
INTRODUÇÃO AO ESTUDO DO DIREITO - IED AULAS ABRIL E MAIO
INTRODUÇÃO AO ESTUDO DO DIREITO - IED AULAS ABRIL E MAIO Docente: TIAGO CLEMENTE SOUZA E-mail: [email protected] 2. Direito como objeto de conhecimento. Conforme pudemos observar nas aulas iniciais
Explorando Poliedros
Reforço escolar M ate mática Explorando Poliedros Dinâmica 6 2ª Série 1º Bimestre Matemática Ensino Médio 2ª Geométrico Introdução à geometria espacial Aluno PRIMEIRA ETAPA COMPARTILHAR IDEIAS ATIVIDADE
INTRODUÇÃO ÀS LINGUAGENS DE PROGRAMAÇÃO
Capítulo 1 INTRODUÇÃO ÀS LINGUAGENS DE PROGRAMAÇÃO 1.1 Histórico de Linguagens de Programação Para um computador executar uma dada tarefa é necessário que se informe a ele, de uma maneira clara, como ele
ENSINO RELIGIOSO. Símbolos Religiosos
SÍMBOLOS RELIGIOSOS Símbolos são imagens que identificam ou representam algo, como também comunicam de maneira resumida e única, ideias, conceitos, mensagens, avisos, e muito mais. Se analisarmos o nosso
THEREZINHA OLIVEIRA REENCARNAÇÃO É ASSIM. 3 a ed.
THEREZINHA OLIVEIRA REENCARNAÇÃO É ASSIM 3 a ed. Campinas SP 2006 APRESENTAÇÃO A doutrina das vidas sucessivas ou reencarnação é também chamada palingenesia, de duas palavras gregas palin, de novo; genesis,
A arte na Grécia. Capítulo 3
A arte na Grécia Capítulo 3 Por volta do século X a. C, os habitantes da Grécia continental e das ilhas do mar Egeu formavam pequenas comunidades, distantes umas das outras, e falavam diversos dialetos.
Abordagem de geometria no ensino médio partindo de poliedros
Abordagem de geometria no ensino médio partindo de poliedros José Luiz Magalhães de Freitas INMA/UFMS e-mail: [email protected] Marilena Bittar INMA/UFMS e-mail: [email protected] O objetivo
FEUSP- SEMINÁRIOS DE ENSINO DE MATEMÁTICA-1º semestre/2008 CÁLCULO DIFERENCIAL E INTEGRAL NA ESCOLA BÁSICA: POSSÍVEL E NECESSÁRIO
1 FEUSP- SEMINÁRIOS DE ENSINO DE MATEMÁTICA-1º semestre/008 CÁLCULO DIFERENCIAL E INTEGRAL NA ESCOLA BÁSICA: POSSÍVEL E NECESSÁRIO Nílson José Machado [email protected] Sempre que pensamos em grandezas que
Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 *
Objetivas 01 1 Qual dos números abaixo é o mais próximo de 0,7? A) 1/ B) /3 C) 3/4 D) 4/5 E) 5/7 * Considere três números, a, b e c. A média aritmética entre a e b é 17 e a média aritmética entre a, b
Uma leitura apressada dos Atos dos Apóstolos poderia nos dar a impressão de que todos os seguidores de Jesus o acompanharam da Galileia a Jerusalém,
Uma leitura apressada dos Atos dos Apóstolos poderia nos dar a impressão de que todos os seguidores de Jesus o acompanharam da Galileia a Jerusalém, lá permanecendo até, pelo menos, pouco depois de Pentecostes.
Princípio da Casa dos Pombos I
Programa Olímpico de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 7 Princípio da Casa dos Pombos I O princípio da casa dos pombos também é conhecido em alguns países (na Rússia,
Entrevista a Galileu Galilei
Escola Secundária Emidio Navarro 2009/2010 Disciplina: Físico-Quimica Entrevista a Galileu Galilei Trabalho realizado por: Cristiana Monteiro nº5 Francisco Pinto nº9 11ºCT2 Entrevista a Galileu Galilei
O Surgimento da filosofia
O Surgimento da filosofia Prof. Victor Creti Bruzadelli Prof. Deivid O surgimento da filosofia Conceitos de Mito: O mito conta uma história sagrada; ele relata um acontecimento ocorrido no tempo primordial,
A FILOSOFIA HELENÍSTICA A FILOSOFIA APÓS A CONQUISTA DA GRÉCIA PELA MACEDÔNIA
A FILOSOFIA HELENÍSTICA A FILOSOFIA APÓS A CONQUISTA DA GRÉCIA PELA MACEDÔNIA O IMPÉRIO ALEXANDRINO A FILOSOFIA ESTOICA PARTE DA SEGUINTE PERGUNTA: COMO DEVO AGIR PARA VIVER BEM? COMO POSSO VIVER BEM E,
24 Acorde Maior X Acorde Menor - Conteúdo
Introdução Formação de Escalas e de Acordes Encadeamentos e Harmonia Acordes Maiores e Menores Tons Homônimos Encadeamento V7 i em Fá Menor (Fm) Cadência de Picardia próxima 2 Introdução Nas Unidades de
Prova da segunda fase - Nível 1
Caro Aluno, Parabéns pela sua participação na nona edição da Olimpíada de Matemática de São José do Rio Preto! Lembre-se de que uma Olimpíada é diferente de uma prova escolar. Muitas vezes, as questões
Matriz Curricular de Matemática 6º ao 9º ano 6º ano 6º Ano Conteúdo Sistemas de Numeração Sistema de numeração Egípcio Sistema de numeração Romano Sistema de numeração Indo-arábico 1º Trimestre Conjunto
CONCEPÇÕES DOS PROFESSORES DE MÁTEMÁTICA SOBRE PITÁGORAS E AS DEMONSTRAÇÕES DE SEU TEOREMA REFLETIDO NA APRENDIZAGEM DOS ALUNOS DO ENSINO MÉDIO
CONCEPÇÕES DOS PROFESSORES DE MÁTEMÁTICA SOBRE PITÁGORAS E AS DEMONSTRAÇÕES DE SEU TEOREMA REFLETIDO NA APRENDIZAGEM DOS ALUNOS DO ENSINO MÉDIO Marconi Coelho dos SANTOS - Abigail Fregni LINS [email protected]
Conceitos e fórmulas
1 Conceitos e fórmulas 1).- Triângulo: definição e elementos principais Definição - Denominamos triângulo (ou trilátero) a toda figura do plano euclidiano formada por três segmentos AB, BC e CA, tais que
E quem garante que a História é uma carroça abandonada numa beira de estrada? (Hollanda, C. B; Milanes, P. Canción por la unidad latinoamericana.
E quem garante que a História é uma carroça abandonada numa beira de estrada? (Hollanda, C. B; Milanes, P. Canción por la unidad latinoamericana.) O termo História foi utilizado pelos gregos antigos.
A lógica de programação ajuda a facilitar o desenvolvimento dos futuros programas que você desenvolverá.
INTRODUÇÃO A lógica de programação é extremamente necessária para as pessoas que queiram trabalhar na área de programação, seja em qualquer linguagem de programação, como por exemplo: Pascal, Visual Basic,
Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental
a e 6 a séries (6º e 7º anos) do Ensino Fundamental 1. (alternativa C) Os números 0,01 e 0,119 são menores que 0,12. Por outro lado, 0,1 e 0,7 são maiores que 0,. Finalmente, 0,29 é maior que 0,12 e menor
Microsoft Access: Criar consultas para um novo banco de dados. Vitor Valerio de Souza Campos
Microsoft Access: Criar consultas para um novo banco de Vitor Valerio de Souza Campos Conteúdo do curso Visão geral: consultas são essenciais Lição: inclui sete seções Tarefas práticas sugeridas Teste.
Uma volta no tempo de Atlântida
Cristais mestres Esse curso, tratar-se de conhecimentos sagrados deixados por mestres antigos e passados adiante por aqueles que acreditavam que os que descobrissem zelariam por ele. Há muitos anos atrás,
LINGUAGEM, LÍNGUA, LINGÜÍSTICA MARGARIDA PETTER
LINGUAGEM, LÍNGUA, LINGÜÍSTICA MARGARIDA PETTER Duas explicações da Origem do mundo palavra (a linguagem verbal) associada ao poder mágico de criar. Atributo reservado a Deus. Através dela ele criou as
Plutão era um planeta, mas...
Sistema Solar Plutão era um planeta, mas... Em termos científicos, não existe uma verdade absoluta. Como demonstrou o filósofo Karl Popper (1902-1994), a ciência só produz teorias falseáveis ou refutáveis,
O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem.
TRIDIMENSIONALIDADE O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem. As formas tridimensionais são aquelas que têm
Podemos até dizer que a hipótese é bem convincente, isto é...
Podemos até dizer que a hipótese é bem convincente, isto é... Os números romanos são fáceis de compreender mas Qual é a lógica que há por detrás dos números arábicos ou fenícios? Muito simples: Trata-se
Prof. Dr. Ronaldo Rodrigues Pelá. 4 de junho de 2013
GRAVITAÇÃO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 4 de junho de 2013 Roteiro 1 Lei da Universal Roteiro Lei da Universal 1 Lei da Universal Motivação Lei da Universal Movimento
Solução da prova da 1 a fase OBMEP 2015 Nível 1. QUESTÃO 1 ALTERNATIVA E Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20.
1 QUESTÃO 1 Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20. QUESTÃO 2 Como 4580247 = 4580254 7, concluímos que 4580247 é múltiplo de 7. Este fato também pode ser verificado diretamente,
O SOM E SEUS PARÂMETROS
O SOM E SEUS PARÂMETROS Você já percebeu como o mundo está cheio de sons? Mas você já parou para pensar o que é o SOM? Pois bem, som é tudo o que nossos ouvidos podem ouvir, sejam barulhos, pessoas falando
Colégio Cenecista Dr. José Ferreira
Colégio Cenecista Dr. José Ferreira MATEMÁTICA E MÚSICA ESTRUTURA MUSICAL EM ESCALA MATEMÁTICA Área de Concentração: Matemática, Ciências Naturais e Teoria Musical Disciplina de Concentração: Matemática
PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA
RESOLUÇÃO DA PROVA DE MATEMÁTICA 0) O tanque de combustível do carro de João tem capacidade de 40 litros. Sabemos que o consumo do carro é de litro para cada 0 quilômetros rodados, se João dirigir a uma
16 Comprimento e área do círculo
A UA UL LA Comprimento e área do círculo Introdução Nesta aula vamos aprender um pouco mais sobre o círculo, que começou a ser estudado há aproximadamente 4000 anos. Os círculos fazem parte do seu dia-a-dia.
36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio
36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio Esta prova também corresponde à prova da Primeira Fase da Olimpíada Regional nos Estados de: AL BA ES MG PA RS RN SC Terça-feira,
15 O sistema solar e seus planetas
A U A UL LA Atenção O sistema solar e seus planetas Leia com atenção as notícias abaixo, que apareceram em jornais de diferentes épocas. ANO DE 1781 CIENTISTAS DESCOBREM NOVO PLANETA De há quase 2.000
Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos
Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Geometria Plana: Áreas de regiões poligonais Triângulo e região triangular O conceito de região poligonal
Análise e Desenvolvimento de Sistemas ADS Programação Orientada a Obejeto POO 3º Semestre AULA 03 - INTRODUÇÃO À PROGRAMAÇÃO ORIENTADA A OBJETO (POO)
Análise e Desenvolvimento de Sistemas ADS Programação Orientada a Obejeto POO 3º Semestre AULA 03 - INTRODUÇÃO À PROGRAMAÇÃO ORIENTADA A OBJETO (POO) Parte: 1 Prof. Cristóvão Cunha Objetivos de aprendizagem
grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?
Física 01. Um fio metálico e cilíndrico é percorrido por uma corrente elétrica constante de. Considere o módulo da carga do elétron igual a. Expressando a ordem de grandeza do número de elétrons de condução
O DESPACHANTE, O AJUDANTE E A RFB. Domingos de Torre 13.11.2014
O DESPACHANTE, O AJUDANTE E A RFB. Domingos de Torre 13.11.2014 O artigo 5º, 3º do Decreto-lei nº 2.472/1988 dispõe que Para execução das atividades de que trata este artigo, o Poder Executivo disporá
Para onde vou Senhor?
Para onde vou Senhor? Ex 40:33-38 "Levantou também o pátio ao redor do tabernáculo e do altar e pendurou a coberta da porta do pátio. Assim, Moisés acabou a obra. Então a nuvem cobriu a tenda da congregação,
FACULDADE DE ENSINO SUPERIOR DE LINHARES EDIMIR DOS SANTOS LUCAS GIUBERTI FORNACIARI SARAH NADIA OLIVEIRA
FACULDADE DE ENSINO SUPERIOR DE LINHARES EDIMIR DOS SANTOS LUCAS GIUBERTI FORNACIARI SARAH NADIA OLIVEIRA LIBERDADE ANTIGA E LIBERADE MODERNA LINHARES 2011 EDIMIR DOS SANTOS LUCAS GIUBERTI FORNACIARI SARAH
CONTEÚDOS DE GEOMETRIA NAS AVALIAÇÕES DA APRENDIZAGEM NO COLÉGIO ESTADUAL DO PARANÁ, NAS DÉCADAS DE 60 E 70.
CONTEÚDOS DE GEOMETRIA NAS AVALIAÇÕES DA APRENDIZAGEM NO COLÉGIO ESTADUAL DO PARANÁ, NAS DÉCADAS DE 60 E 70. Ana Célia da Costa Ferreira Resumo: A cada ano, educadores matemáticos tentam encontrar soluções
Nº 8 - Mar/15. PRESTA atenção RELIGIÃO BÍBLIA SAGRADA
SAGRADA Nº 8 - Mar/15 PRESTA atenção RELIGIÃO! BÍBLIA Apresentação Esta nova edição da Coleção Presta Atenção! vai tratar de um assunto muito importante: Religião. A fé é uma questão muito pessoal e cada
Tales de Mileto. Tudo é água. Tales
precisa. Afinal, nunca houve, na Antigüidade, um Estado grego unificado. O que chamamos de Grécia nada mais é que o conjunto de muitas cidades-estado gregas (pólis), independentes umas das outras, e muitas
A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y
5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas
Projeção ortográfica da figura plana
A U L A Projeção ortográfica da figura plana Introdução As formas de um objeto representado em perspectiva isométrica apresentam certa deformação, isto é, não são mostradas em verdadeira grandeza, apesar
A Geometria e as distâncias astronômicas na Grécia Antiga
A Geometria e as distâncias astronômicas na Grécia Antiga Geraldo Ávila Qual é o mais distante: o Sol ou a Lua? Quais os tamanhos da Terra, Sol e Lua? A busca das respostas à essas perguntas intrigantes
IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =
Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo
