ALGORITMOS PARA DESENHAR RETAS E CÍRCULOS

Tamanho: px
Começar a partir da página:

Download "ALGORITMOS PARA DESENHAR RETAS E CÍRCULOS"

Transcrição

1 ALGORITMOS PARA DESENHAR RETAS E CÍRCULOS Jann Claude Mousquer 1, Kenner Alan Kliemann 1, Miguel Diogenes Matrakas 1 1 Curso de Ciência da Computação Faculdades Anglo-Americano (FAA) Foz do Iguaçu, PR - Brasil {jannclaude,kenner.hp}@gmail.com, [email protected] Abstract. This article is a bibliography review about algorithms to draw lines and circles using graphic primatives. The algorithms currently used, are based on cartesian plane and are defined in the SRPG (Simple Raster Graphics Package). Will be discussed some of the algorithms that rasterize graphic objects. Resumo. Este artigo é uma revisão bibliográfica sobre algorítmos para desenhar retas e circulos utilizando primitivas gráficas. Os algorítmos atualmente utilizados se baseiam no plano cartesiano, e são definidos no SRGP (Simple Raster Graphics Package). Será abordado alguns dos algorítmos que fazem a rasterização de objetos gráficos. Palavras Chave: Primitivas Gráficas, Retas, Círculos; 1. Introdução É chamado de primitivas gráficas os comandos e funções que manipulam e alteram os elementos gráficos de uma imagem. Também entram na definição os elementos básicos de gráficos a partir dos quais são construídos outros, mais complexos.(hetem Annibal Jr.,2006). Com base nesta afirmação, será abordardado o estudo das primitivas gráficas responsáveis pelo desenho de retas e círculos. Computacionalmente, todos os objetos são representados por um conjunto de pontos. O ponto é a unidade gráfica fundamental e também pode ser chamada de pixel. As propriedades básicas de um pixel são: posição no plano gráfico (x,y) e cor. Para se obter um pixel é necessário informar o par ordenado (x,y), que possibilita as coordenadas de linha e coluna onde será pintada a grade do vídeo; de acordo com a resolução especificada no sistema operacional. Com isso, podemos unir pontos a fim de construir objetos mais complexos. Para se desenhar uma reta ou qualquer outro objeto, é necessário fazer uma rasterização. Rasterização é o processo que é utilizado para determinar quais são os pixels que melhor aproximam uma linha desejável na tela, isso se dá ao fato de que dispositivos gráficos não conseguem representar uma reta perfeita, como apresentado na Figura 1, apenas uma aproximação. O Simple Raster Graphics Package (SRGP) é um pacote gráfico, independente de dispositivo, que explora as habilidades de rasterização dos dispositivos gráficos. Ele implementa primitivas gráficas, fornecendo suporte à aplicações.

2 Figura 1. Rasterização. O SRGP trata a tela de saída como um plano cartesiano, considerando o ponto de origem (0,0), o canto inferior esquerdo. Partindo deste princípio, as entradas (x1,y1,x2,y2), são tratadas como coordenadas no plano, tendo como unidade o pixel. 2. Retas O SRGP fornece procedimentos para desenhos de retas, o procedimento para o desenho de uma reta é: 1 procedure SRGP_lineCoord (0,0,100,300); Neste exemplo uma linha do ponto (0,0) ao ponto (100,300) será desenhado na tela. Para que a reta seja representada em tela, a rasterização será efetuada pelo SRGP uma vez que o procedimento anterior seja invocado. Será abordardado alguns dos algoritmos de rasterização à seguir Algorítmo Iterativo Basico A ideia mais simples para rasterização de linhas é determinar a qual valor inteiro no eixo y, uma reta se aproxima. De modo geral, para cada valor x, calcula-se o arredondamento de y. Logo, temos que: Para i pontos em X = (Xi, Round(Yi)); Na Figura 2 podemos observar o resultado da rasterização com esse algoritmo e notamos ainda que, para retas verticais o algoritmo apresenta uma grande falha, isso se dá ao fato de não haver um cálculo dos pontos aproximados no eixo x. Esta falha é o principal motivo pelo qual não é implementado atualmente esse algoritmo, uma vez que se torna pouco versátil Bresenham Também conhecido como algorítmo do ponto médio, baseia-se no argumento de que um segmento de reta, ao ser plotado, deve ser contínuo, os pixels que compõem o segmento devem ser vizinhos; Isso fará com que os pontos das retas

3 Figura 2. Demonstração do Algorítmo Iterativo Básico. sejam próximos não havendo separação entre os pixels pintados, evitando o erro produzido pelo algorítmo demonstrado anteriormente. Um outro atrativo é que o algorítmo de Bresenham utiliza-se apena de aritmética inteira para cálculo dos pontos, evitando a função de arredondamento (Round), fornecendo uma economia de processamento. O procedimento em pseudo-código abaixo, apresenta a lógica da implementação do algorítmo. 1 procedure midpointline (x0, y0, x1, y1, value : Integer); 2 var 3 dx, dy, incre, incrne, d, x, y : Integer; 4 begin 5 dx := x1 - x0; 6 dy := y1 - y0; 7 d := 2*dy - dx; 8 incre := 2*dy; 9 incrne:= 2*(dy - dx); 10 x := x0; 11 y := y0; 12 writepixel(x, y, value); 13 while x < x1 DO 14 IF d <= 0 THEN 15 d:= d + incre; 16 x:= x + 1;

4 17 else 18 d:= d + incrne; 19 x:= x + 1; 20 y:= y + 1; 21 end; 22 writepixel(x, y, value); 23 end; 24 end midpointline; Na Figura 3 temos a demonstração de retas desenhadas pelo Algoritmo de Bresenham. Figura 3. Exemplo de retas desenhadas com Bresenham. 3. Círculos Para traçar círculos, o SRGP trata-os como um caso particular devido a sua simetria. Desta forma, para a rasterização o círculo deve ser transladado de forma que o círculo esteja centrado na origem (0,0). É calculado então os pontos do primeiro quadrante e os demais são então escritos por simetria. Para calcular os valores em y, é considerado que: y 2 = R 2 x 2 (1) No entanto, um cálculo neste formato para cada ponto é computacionalmente inviável, visto que haveria um alto número de cálculos de potência e raiz, que exigem considerável processamento Simetria de Ordem 8 Segundo [Foley et al. 1995], o Algoritmo de Simetria de Ordem 8 considera que, o traçado de uma circunferência pode tirar proveito de sua simetria. Considere

5 uma circunferência centrada na origem. Se o ponto ( x, y ) pertence à circunferência, pode-se calcular de maneira trivial sete outros pontos da circunferência Figura 4. Consequentemente, basta computar um arco de circunferência de 45 o para obter a circunferência toda. Para uma circunferência com centro na origem, os oito pontos simétricos podem ser traçados usando o procedimento Circle- Points. Este algorítmo não calcula os valores de entrada x e y, mas uma vez calculados nos dá outros sete pontos do círculo. Figura 4. Simetria de Ordem 8. 1 void CirclePoints(int x, int y, int color){ 2 write_pixel( x, y, color); 3 write_pixel( x, -y, color); 4 write_pixel(-x, y, color); 5 write_pixel(-x, -y, color); 6 write_pixel( y, x, color); 7 write_pixel( y, -x, color); 8 write_pixel(-y, x, color); 9 write_pixel(-y, -x, color); 10 }/* end CirclePoints */ É recomendável que x seja diferente de y, pois seria calculado 4 valores repetidos, subutilizando assim o algoritmo Algoritmo do Ponto Médio Bresenham desenvolveu em 1965 um algoritmo clássico que usa apenas variáveis inteiras e que permite que o cálculo de (xi + 1, yi + 1) seja feito incrementalmente, usando os cálculos já feitos para (xi, yi), uma variação do algorítmo de mesmo nome, para retas. Este algoritmo assume que a inclinação da linha está entre 0 e 1 (outras inclinações podem ser tratadas por simetria). O ponto (x1, y1) é o inferior esquerdo, e (x2, y2) é o superior direito.

6 Considere a curva na Figura 5. Assumindo que o pixel que acabou de ser selecionado é P, em (xp, yp), e o próximo deve ser escolhido entre o pixel à direita (pixel E) e o pixel abaixo à direita (SE). Seja M o ponto intermediário entre os pixels E e SE. O que se faz é observar de que lado da reta está o ponto M. E fácil verificar que se M está abaixo da curva, o pixel E está mais próximo da reta; se M está acima, SE está mais próximo da curva. A seguir é apresentado o algoritmo simples para conversao matricial de retas. 1 void MidpointCircle(int radius, int value) 2 { 3 int x = 0; 4 int y = radius; 5 int d = 1 - radius; 6 CirclePoints(x, y, value); 7 while(y > x) { 8 if (d < 0) 9 d += 2 * x + 3; 10 else { 11 d += 2 * (x - y) + 5; 12 y--; 13 } 14 x++; 15 CirclePoints(x, y, value); 16 } 17 } Figura 5. Algoritimo do Ponto Médio M e as escolhas E e SE. Como demonstrado por [Traina and de Oliveira 2006], o teste do pontomédio permite a escolha do pixel mais próximo da curva. Além disso, o erro (a distância vertical entre o pixel escolhido e a linha) é sempre inferior a 0.5. A aritmética necessária para calcular o próximo ponto a cada passo é adição simples, nenhuma multiplicação é necessária. Após o cálculo dos pontos no

7 primeiro quadrante, de 0 o à 45 o, utiliza-se o algoritmo de simetria de ordem 8 para calcular os restantes, acelerando o processo. 4. Conclusão A interação visual que hoje ocorre entre usuário e máquina pelos dispositivos gráficos, só é possível devido ao estudo da rasterização e abstração dos dados reais para o meio digital. Os algoritmos de rasterização nos auxiliam a fazer a abstração dos elementos gráficos mais básicos, possibilitando a construção de infinitos objetos. Para que fosse possível a velocidade e qualidade de exibição de objetos gráficos que possuímos hoje, não somente o hardware precisou evoluir, mas algoritmos eficientes e eficazes foram necessários. Referências Foley, J. D., van Dam, A., Feiner, S. K., and Hughes, J. F. (1995). graphics: Principles and practice. Computer Traina, A. J. M. and de Oliveira, M. C. F. (2006). Apostila de computação gráfica. Disponível em: thomas/graphics/ www/apostilas/gbdi2006.pdf. Acesso em Maio/2014.

Imagem Vetorial x Imagem Matricial. Conversão Matricial de Primitivas Gráficas. Sistema de Coordenadas do Dispositivo. Problema

Imagem Vetorial x Imagem Matricial. Conversão Matricial de Primitivas Gráficas. Sistema de Coordenadas do Dispositivo. Problema Conversão Matricial de Primitivas Gráficas Imagem Vetorial x Imagem Matricial Maria Cristina F. de Oliveira março 2009 2 Problema Traçar primitivas geométricas (segmentos de reta, polígonos, circunferências,

Leia mais

Rasterização de primitivas 2D

Rasterização de primitivas 2D Rasterização de primitivas 2D Computação Gráfica Inverno 2012/2013 Carlos Guedes @ 2012 ISEL/ADEETC Computação Gráfica 1 http://hof.povray.org/images/chado_big.jpg 2 Sumário Enquadramento Viewport vs window

Leia mais

Computação Gráfica Rasterização de Curvas

Computação Gráfica Rasterização de Curvas Computação Gráfica Rasterização de Curvas Professora Sheila Cáceres Podemos representar uma curva por aproximação a uma polilinea. Para isso, precisamos localizar alguns pontos no caminho da curva e conectar

Leia mais

Primitivos gráficos - algoritmos

Primitivos gráficos - algoritmos Primitivos gráficos - algoritmos Prof. Julio Arakaki 1 Algoritmos de reta Reta => infinitamente fina, ou seja, área = 0 Problemas para apresentação num monitor raster utilizando-se pixels: deve-se escolher

Leia mais

Primitivos gráficos - algoritmos

Primitivos gráficos - algoritmos Primitivos gráficos - algoritmos Prof. Julio Arakaki 1 Algoritmos de reta Reta => infinitamente fina, ou seja, área = 0 Problemas para apresentação num monitor raster utilizando-se pixels: deve-se escolher

Leia mais

Conversão por Varrimento

Conversão por Varrimento Conversão por Varrimento Conversão vectorial? matricial Representação Vectorial Representação Matricial 2 Rasterização de Primitivas? Rasterização - converter de uma definição geométrica para pixels (matricial)?

Leia mais

Desenho de Segmentos de Recta

Desenho de Segmentos de Recta Desenho de Segmentos de Recta Sistemas Gráficos/ Computação Gráfica e Interfaces 1 Alg. para desenho de Segmentos de Recta - Motivação A maior parte das primitivas 2D, desenhadas centenas ou mesmo milhares

Leia mais

Computação Gráfica. Rasterização. Aula 4. Engenharia de Computação. CEFET/RJ campus Petrópolis. Prof. Luis Retondaro

Computação Gráfica. Rasterização. Aula 4. Engenharia de Computação. CEFET/RJ campus Petrópolis. Prof. Luis Retondaro Computação Gráfica Engenharia de Computação CEFET/RJ campus Petrópolis Prof. Luis Retondaro Aula 4 Rasterização Representação Vetorial x Matricial Normalmente, gráficos são definidos através de primitivas

Leia mais

Sumário. Traçado de Retas. Antialiasing e OpenGL. 1 Introdução. 2 Conversão Segmento de Reta. 3 Algoritmo DDA. 4 Algoritmo de Bresenham

Sumário. Traçado de Retas. Antialiasing e OpenGL. 1 Introdução. 2 Conversão Segmento de Reta. 3 Algoritmo DDA. 4 Algoritmo de Bresenham Conversão Matricial SCC0250 - Computação Gráca Prof. Fernando V. Paulovich http://www.icmc.usp.br/~paulovic [email protected] Instituto de Ciências Matemáticas e de Computação (ICMC) Universidade de

Leia mais

Computação Gráfica. Prof. André Yoshimi Kusumoto

Computação Gráfica. Prof. André Yoshimi Kusumoto Computação Gráfica Prof. André Yoshimi Kusumoto [email protected] Curvas Curvas e superfícies desempenham um papel importante em diversas áreas tanto na criação de objetos sintéticos quanto

Leia mais

Rasterização de primitivas 2D e Pipeline 2D. Soraia Raupp Musse

Rasterização de primitivas 2D e Pipeline 2D. Soraia Raupp Musse Rasterização de primitivas 2D e Pipeline 2D Soraia Raupp Musse Algoritmos de rasterização para primitivas 2D Objetivo: Aproximar primitivas matemáticas descritas através de vértices por meio de um conjunto

Leia mais

Computação Gráfica. Prof. MSc André Yoshimi Kusumoto

Computação Gráfica. Prof. MSc André Yoshimi Kusumoto Computação Gráfica Prof. MSc André Yoshimi Kusumoto [email protected] Primitivas gráficas em duas dimensões Matrizes em Computação Gráfica Todas as transformações geométricas podem ser representadas

Leia mais

Prof. Dr. Leandro Alves Neves. Conceitos Fundamentais. Algoritmos de Conversão Matricial.

Prof. Dr. Leandro Alves Neves. Conceitos Fundamentais. Algoritmos de Conversão Matricial. Informática II Conteúdo 03 Prof. Dr. Leandro Alves Neves Sumário Rasterização Conceitos Fundamentais. Algoritmos de Conversão Matricial. Polígonos Construção e Preenchimento de polígonos com formas arbitrárias

Leia mais

Pipeline de Visualização 2D

Pipeline de Visualização 2D Pipeline de Visualização 2D André Tavares da Silva [email protected] Capítulo 2 do Foley Requisitos de matemática para CG Vetores e pontos Matrizes Transformações geométricas Pontos e espaços afim Representação

Leia mais

Primitivas Gráficas. Prof. Márcio Bueno {cgtarde,cgnoite}@marciobueno.com. Fonte: Material do Prof. Robson Pequeno de Sousa e do Prof.

Primitivas Gráficas. Prof. Márcio Bueno {cgtarde,cgnoite}@marciobueno.com. Fonte: Material do Prof. Robson Pequeno de Sousa e do Prof. Primitivas Gráficas Prof. Márcio Bueno {cgtarde,cgnoite}@marciobueno.com Fonte: Material do Prof. Robson Pequeno de Sousa e do Prof. Robson Lins Traçado de Primitivas em Dispositivos Matriciais Conversão

Leia mais

Introdução Geral a Computação Gráfica. Universidade Católica de Pelotas Curso de Engenharia da Computação Disciplina de Computação Gráfica

Introdução Geral a Computação Gráfica. Universidade Católica de Pelotas Curso de Engenharia da Computação Disciplina de Computação Gráfica Introdução Geral a Computação Gráfica Universidade Católica de Pelotas Curso de Engenharia da Computação Disciplina de 2 Introdução Geral a O que é CG? Áreas de Atuação Definição, Arte e Matemática Mercado

Leia mais

Problema. Conversão Matricial. Octantes do Sistema de Coordenadas Euclidiano. Sistema de Coordenadas do Dispositivo. Maria Cristina F.

Problema. Conversão Matricial. Octantes do Sistema de Coordenadas Euclidiano. Sistema de Coordenadas do Dispositivo. Maria Cristina F. Problema Conversão Matricial Maria Cristina F. de Oliveira Traçar primitivas geométricas (segmentos de reta, polígonos, circunferências, elipses, curvas,...) no dispositivo matricial rastering = conversão

Leia mais

Computação Gráfica. Prof. MSc. André Yoshimi Kusumoto

Computação Gráfica. Prof. MSc. André Yoshimi Kusumoto Prof. MSc. André Yoshimi Kusumoto [email protected] Prof. MSc. André Yoshimi Kusumoto Email: [email protected] Site: http://www.kusumoto.com.br CARGA HORÁRIA SEMANAL: 02 horas-aula

Leia mais

ALGORITMOS RASTER PARA DESENHO DE. Adair Santa Catarina Curso de Ciência da Computação Unioeste Campus de Cascavel PR

ALGORITMOS RASTER PARA DESENHO DE. Adair Santa Catarina Curso de Ciência da Computação Unioeste Campus de Cascavel PR ALGORITMOS RASTER PARA DESENHO DE PRIMITIVAS EM 2D Adair Santa Catarina Curso de Ciência da Computação Unioeste Campus de Cascavel PR Mar/2016 Algoritmos de conversão matricial Convertem um elemento gráfico

Leia mais

Introdução à Computação Gráfica. Claudio Esperança Paulo Roma Cavalcanti

Introdução à Computação Gráfica. Claudio Esperança Paulo Roma Cavalcanti Introdução à Computação Gráfica Claudio Esperança Paulo Roma Cavalcanti Estrutura do Curso Ênfase na parte prática Avaliação através de trabalhos de implementação C / C++ OpenGL c/ GLUT Grau (nota) baseado

Leia mais

Prof. Fernando V. Paulovich 3 de agosto de SCC Computação Gráca

Prof. Fernando V. Paulovich  3 de agosto de SCC Computação Gráca Dispositivos de Saída e SCC0250 - Computação Gráca Prof. Fernando V. Paulovich http://www.icmc.usp.br/~paulovic [email protected] Instituto de Ciências Matemáticas e de Computação (ICMC) Universidade

Leia mais

Figura Uso de coordenadas polares

Figura Uso de coordenadas polares INTRODUÇÃO AO AUTOCAD O CAD trabalha com dois sistemas de coordenadas. O sistema de coordenadas cartesianas (Figura) e o sistema de coordenadas polares (Figura). No sistema de coordenadas cartesianas,

Leia mais

3. Conhecimentos Básicos

3. Conhecimentos Básicos 3. Conhecimentos Básicos 3.1 Sistema de Coordenadas A área de trabalho do AutoCAD é baseada em um sistema cartesiano de coordenadas, onde serão posicionados os pontos que definirão as entidades do desenho.

Leia mais

Desenho de Segmentos de Recta

Desenho de Segmentos de Recta Desenho de Segmentos de Recta Sistemas Gráficos/ Computação Gráfica e Interfaces 1 Alg. para desenho de Segmentos de Recta - Motivação A maior parte das primitivas 2D, desenhadas centenas ou mesmo milhares

Leia mais

Pipeline de Visualização 3D

Pipeline de Visualização 3D Pipeline de Visualização 3D André Tavares da Silva [email protected] Capítulo 5 de Foley Capítulo 2 de Azevedo e Conci Processo de Visualização https://www.youtube.com/watch?v=ogqam2mykng Processo de

Leia mais

Objetos definidos no seu próprio sistema de coordenadas

Objetos definidos no seu próprio sistema de coordenadas Transformações Modelagem Iluminação (Shading) Transformação Câmera A história até aqui Recorte Projeção Rasterização Visibilidade Transformações Modelagem Iluminação (Shading) Transformação Câmera Recorte

Leia mais

Aula 3: Algoritmos: Formalização e Construção

Aula 3: Algoritmos: Formalização e Construção Aula 3: Algoritmos: Formalização e Construção Fernanda Passos Universidade Federal Fluminense Programação de Computadores IV Fernanda Passos (UFF) Algoritmos: Formalização e Pseudo-Código Programação de

Leia mais

Algoritmos de Rasterização e Recorte

Algoritmos de Rasterização e Recorte Algoritmos de Rasterização e Recorte 35T56 Sala 3E3 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227 1 Desenhando linhas Sequência de pixels deve estar o mais próximo possível da linha original Quais propriedades

Leia mais

Equações Paramétricas e Coordenadas Polares. Copyright Cengage Learning. Todos os direitos reservados.

Equações Paramétricas e Coordenadas Polares. Copyright Cengage Learning. Todos os direitos reservados. 10 Equações Paramétricas e Coordenadas Polares Copyright Cengage Learning. Todos os direitos reservados. 10.3 Coordenadas Polares Copyright Cengage Learning. Todos os direitos reservados. Coordenadas Polares

Leia mais

Visibilidade. Licenciatura em Engenharia Informática e de Computadores Computação Gráfica. Edward Angel, Cap. 7 Apontamentos CG

Visibilidade. Licenciatura em Engenharia Informática e de Computadores Computação Gráfica. Edward Angel, Cap. 7 Apontamentos CG Licenciatura em Engenharia Informática e de Computadores Computação Gráfica Visibilidade Edward Angel, Cap. 7 Apontamentos CG Pipeline de Visualização 3D Pipeline de Visualização 3D LEIC CG Sombreamento

Leia mais

Computação Gráfica. Primitivas Gráficas Professora Sheila Cáceres

Computação Gráfica. Primitivas Gráficas Professora Sheila Cáceres Computação Gráfica Primitivas Gráficas Professora Sheila Cáceres Primitivas Gráficas em 2D São elementos básicos dos gráficos/desenhos a partir dos quais são construídos outros objetos mais complexos.

Leia mais

Curso de AutoCAD 2D. Instrutor : Mauro Pio Dos Santos Junior Monitor : Thainá Souza

Curso de AutoCAD 2D. Instrutor : Mauro Pio Dos Santos Junior Monitor : Thainá Souza Curso de AutoCAD 2D Instrutor : Mauro Pio Dos Santos Junior Monitor : Thainá Souza Regras da Fundação Gorceix Controle de frequência: Primeira chamada após decorridos 10 minutos do início da aula; Segunda

Leia mais

7 a Lista de Exercícios Assunto: Funções e passagem por referência com vetor e matriz (Tópico 7)

7 a Lista de Exercícios Assunto: Funções e passagem por referência com vetor e matriz (Tópico 7) 7 a Lista de Exercícios Assunto: Funções e passagem por referência com vetor e matriz (Tópico 7) Essa lista de exercícios tem como objetivo principal desenvolver algoritmos a partir dos conteúdos abordados

Leia mais

Computaçã. Visão Geral. Sistema Gráfico. Computação Gráfica. Pixels. Sistema Gráfico e o Frame Buffer. Introdução à Computação Gráfica

Computaçã. Visão Geral. Sistema Gráfico. Computação Gráfica. Pixels. Sistema Gráfico e o Frame Buffer. Introdução à Computação Gráfica Visão Geral Computaçã ção o Gráfica Introduçã ção, conceitos básicosb sicos, áreas relacionadas Introdução à Computação Gráfica Como funciona um sistema gráfico Como imagens são representadas Áreas relacionadas,

Leia mais

Introdução ao Processamento e Síntese de imagens -Linhas e superfícies escondidas

Introdução ao Processamento e Síntese de imagens -Linhas e superfícies escondidas Introdução ao Processamento e Síntese de imagens -Linhas e superfícies escondidas Júlio Kiyoshi Hasegawa 26 Fontes: Rogers, D. F. Procedural Elements for Computer Graphics Introdução Linhas e superfícies

Leia mais

Cálculo Numérico Prof. Guilherme Amorim 24/10/2013. Aula 2 Erros e Aritmética de Ponto Flutuante

Cálculo Numérico Prof. Guilherme Amorim 24/10/2013. Aula 2 Erros e Aritmética de Ponto Flutuante Cálculo Numérico Prof. Guilherme Amorim 24/10/2013 Aula 2 Erros e Aritmética de Ponto Flutuante Noções de Aritmética de Máquina Representação de Números... P = 3.141592653589793238462643383279502884197169399375105820974944

Leia mais

Aula O Plano Cartesiano

Aula O Plano Cartesiano Aula 3 3. O Plano Cartesiano O plano cartesiano, em geral denotado por duas dimenções, é o conjunto dos pares P = (x,y) de reais, x e y, chamados respectivamente de abscissa (ou primeira coordenada) e

Leia mais

ALGORITMO DE BRESENHAM: O USO MICROCONTROLADORES PARA TRAÇAR RETAS EM LCDs

ALGORITMO DE BRESENHAM: O USO MICROCONTROLADORES PARA TRAÇAR RETAS EM LCDs ALGORITMO DE BRESENHAM: O USO MICROCONTROLADORES PARA TRAÇAR RETAS EM LCDs Jefferson Zortea Moro Seminário Departamento de Engenharia Elétrica - Universidade Federal do Espírito Santo Cx. Postal 01-9011

Leia mais

Resolução das Questões Discursivas

Resolução das Questões Discursivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO PISM III - TRIÊNIO 008-010 Prova de Matemática Resolução das Questões Discursivas São apresentadas abaixo possíveis soluções

Leia mais

1 Para expressar um ponto intermediário em função dos pontos extremos, precisamos

1 Para expressar um ponto intermediário em função dos pontos extremos, precisamos Resolução da Primeira Lista de Exercícios de Fundamentos de Computação Gráfica INF01047 Carlos Eduardo Ramisch Cartão 134657 Turma B Prof.ª Luciana Porcher Nedel Porto Alegre, 03 de abril de 2006. 1 Para

Leia mais

Elementos básicos das linguagens de programação

Elementos básicos das linguagens de programação Elementos básicos das linguagens de programação Objetivos: Apresentar os últimos elementos básicos das linguagens de programação Elementos básicos já estudados Entrada (read, readln) Saída (write, writeln)

Leia mais

BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Toffolo 2011/1

BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Toffolo 2011/1 BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Toffolo 2011/1 Na aula anterior Prova. 2 Na aula de hoje Geometria. 3 A geometria é inerentemente uma disciplina

Leia mais

Rotação e Interpolação

Rotação e Interpolação Rotação e Interpolação Resumo O objetivo desse artigo é mostrar como é feita a rotação em qualquer ângulo de imagens 2D, bem como apresentar dois métodos de interpolação de pontos vizinho mais próximo

Leia mais

Introdução à Programação uma Abordagem Funcional

Introdução à Programação uma Abordagem Funcional Universidade Federal do Espírito Santo Introdução à Programação uma Abordagem Funcional Programação I Prof.ª Claudia Boeres [email protected] CT VII - Sala 34 Departamento de Informática Centro Tecnológico

Leia mais

Comandos básicos do AutoCAD

Comandos básicos do AutoCAD Curso: Engenharia Ambiental Disciplina: Desenho técnico e Geometria Descritiva Professor: Luiz Antonio do Nascimento Aluno: Período: Manhã Aula: Data: RA: 1. Linhas Comandos básicos do AutoCAD Existem

Leia mais

Curso de AutoCAD Fundação Gorceix 30/05/2017. Curso de AutoCAD 2D. Instrutor : Mauro Pio Dos Santos Junior Monitor : Brenda Mara Marques

Curso de AutoCAD Fundação Gorceix 30/05/2017. Curso de AutoCAD 2D. Instrutor : Mauro Pio Dos Santos Junior Monitor : Brenda Mara Marques Curso de AutoCAD 2D Instrutor : Mauro Pio Dos Santos Junior Monitor : Brenda Mara Marques Regras da Fundação Gorceix Controle de frequência: Primeira chamada após decorridos 10 minutos do início da aula;

Leia mais

Fundamentos da Computação Gráfica Lista de Exercícios Marcelo Gattass TeCGraf/Departamento de Informática/PUC-Rio 19jun2003

Fundamentos da Computação Gráfica Lista de Exercícios Marcelo Gattass TeCGraf/Departamento de Informática/PUC-Rio 19jun2003 Fundamentos da Computação Gráfica Lista de Exercícios Marcelo Gattass TeCGraf/Departamento de Informática/PUC-Rio 19jun2003 I. Introdução 1) Qual a diferença entre Processamento de Imagens, Visão Computacional

Leia mais

Preliminares de Cálculo

Preliminares de Cálculo Preliminares de Cálculo Profs. Ulysses Sodré e Olivio Augusto Weber Londrina, 21 de Fevereiro de 2008, arquivo: precalc.tex... Conteúdo 1 Números reais 2 1.1 Algumas propriedades do corpo R dos números

Leia mais

RECONHECIMENTO FACIAL UTILIZANDO EIGENFACES

RECONHECIMENTO FACIAL UTILIZANDO EIGENFACES Universidade Federal do Rio de Janeiro Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Engenharia de Sistemas e Computação Rio de Janeiro, RJ Brasil RECONHECIMENTO

Leia mais

Prof. Dr. Lucas Barboza Sarno da Silva

Prof. Dr. Lucas Barboza Sarno da Silva Prof. Dr. Lucas Barboza Sarno da Silva Medidas de grandezas físicas Valor numérico e sua incerteza, unidades apropriadas Exemplos: - Velocidade (10,02 0,04) m/s - Tempo (2,003 0,001) µs - Temperatura (273,3

Leia mais

ALUNO Natália Blauth Vasques. TUTORIAL RHINOCEROS Embalagem Hidratante Alfazol, Granado

ALUNO Natália Blauth Vasques. TUTORIAL RHINOCEROS Embalagem Hidratante Alfazol, Granado UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL FACULDADE DE ARQUITETURA DESIGN DE PRODUTO E DESIGN VISUAL ARQ 03071 - COMPUTAÇÃO GRÁFICA 1 Prof. Sérgio L. dos Santos - Prof. José Luis Aymone ALUNO TUTORIAL

Leia mais

Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer ÍNDICE. Aula 1- Introdução. Representação de números. Conversão de números

Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer ÍNDICE. Aula 1- Introdução. Representação de números. Conversão de números Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer ÍNDICE Aula 1- Introdução Representação de números Conversão de números Aritmética de ponto flutuante Erros em máquinas digitais Aula 1 - Introdução

Leia mais

3D no OpenGL. Visualização e Transformações Perspectiva. Transformações do Modelview. Processo

3D no OpenGL. Visualização e Transformações Perspectiva. Transformações do Modelview. Processo Visualização e Transformações Perspectiva 3D no OpenGL Para gerar imagens de um objeto 3D, é necessário compreender transformações perspectiva Foley & van Dam - Cap. 6 Notas de aula do Prof. Mount: aulas

Leia mais

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4, Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano, as coordenadas são números

Leia mais

TÉCNICAS DE CAD PARA ENGENHARIA CIVIL AULA 3 2. SELEÇÃO DE PONTOS PRECISOS EM OBJETOS

TÉCNICAS DE CAD PARA ENGENHARIA CIVIL AULA 3 2. SELEÇÃO DE PONTOS PRECISOS EM OBJETOS TÉCNICAS DE CAD PARA ENGENHARIA CIVIL AULA 3 1. SISTEMA DE COORDENADAS 2. SELEÇÃO DE PONTOS PRECISOS EM OBJETOS 3. ALGUNS COMANDOS DE EDIÇÃO E CRIAÇÃO 1. SISTEMA DE COORDENADAS O universo de desenho do

Leia mais

Sumário COMPUTAÇÃO GRÁFICA E INTERFACES. Modelos e modelagem. Modelos e modelagem. Transformações Geométricas e Visualização 2D

Sumário COMPUTAÇÃO GRÁFICA E INTERFACES. Modelos e modelagem. Modelos e modelagem. Transformações Geométricas e Visualização 2D Sumário COMPUTAÇÃO GRÁFICA E INTERFACES Transformações Geométricas e Visualização D Transformações geométricas Pipeline de visualização D Transformação de coordenadas Window-Viewport Recorte (Clipping)

Leia mais

6.Elaboração de algoritmos...13

6.Elaboração de algoritmos...13 Índice de conteúdos Capítulo 1. Computação Científica...1 1.Definição...1 2.Modelo genérico...2 3.Modelo matemático...2 4.Tipos de modelos matemáticos...3 5.Modelação matemática...5 5.1.Definição (formulação)

Leia mais

Programação Introdução

Programação Introdução PROGRAMAÇÃO Programação Introdução Prof. Dr. Adriano Mauro Cansian 1 Introdução Para armazenar um algoritmo na memória de um computador e para que ele possa, em seguida, comandar as operações a serem executadas,

Leia mais

Cálculo Numérico Noções básicas sobre erros

Cálculo Numérico Noções básicas sobre erros Cálculo Numérico Noções básicas sobre erros Profa. Vanessa Rolnik 1º semestre 2015 Fases da resolução de problemas através de métodos numéricos Problema real Levantamento de Dados Construção do modelo

Leia mais

1º Teste Computação Gráfica

1º Teste Computação Gráfica 1º Teste Computação Gráfica LEIC-Alameda/LEIC-Tagus/LERCI Prof. Mário Rui Gomes Prof. João Brisson Lopes de Abril de 4 Nº Nome: Responda às questões seguintes justificando adequadamente todas as respostas.

Leia mais

Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica

Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica 1 Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica 1. Determine a distância entre os pontos A(-2, 7) e

Leia mais

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4, Cálculo II Profa. Adriana Cherri 1 Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano,

Leia mais

Desenho auxiliado por computador

Desenho auxiliado por computador Desenho auxiliado por computador Erase Finalidade O comando Erase apaga um objeto. Também corresponde à tecla Delete quando selecionado um objeto. Comandos de Construção Line (L) Finalidade O comando Line

Leia mais

Iteração e Pontos Fixos

Iteração e Pontos Fixos Iteração e Pontos Fixos Iteração é um dos pontos chave da programação numérica. Iterar consiste em repetir uma mesma operação diversas vezes levando a uma aproximação cada vez melhor da solução exata.

Leia mais

INTRODUÇÃO AO SCILAB

INTRODUÇÃO AO SCILAB INTRODUÇÃO AO SCILAB O programa SCILAB é um ambiente apropriado ao desenvolvimento de software para computação numérica. Esse programa foi concebido e é mantido pelo Institut de Recherche em Informatique

Leia mais

Primeiro Projeto de PG: Lista de Temas Selecionados

Primeiro Projeto de PG: Lista de Temas Selecionados Primeiro Projeto de PG: Lista de Temas Selecionados Observações O sistema não pode apresentar estouro de memória, ou excessiva lentidão na execução. Haverá desconto na nota para este caso. Nenhum dos projetos

Leia mais

Resumo. Computação Gráfica: Uma Proposta de Plano Pedagógico. Áreas Correlatas. Definição. Uma Visão Integrada da C.G.

Resumo. Computação Gráfica: Uma Proposta de Plano Pedagógico. Áreas Correlatas. Definição. Uma Visão Integrada da C.G. Computação Gráfica: Uma Proposta de Plano Pedagógico Luiz Velho Definições Metodologia Estrutura Avaliação Discussão Resumo IMPA - Instituto de Matemática Pura e Aplicada Definição Computação Gráfica:

Leia mais

Para mais exemplos veja o vídeo:

Para mais exemplos veja o vídeo: Resumo de matemática: Frente 1: Critério 01: Função: Função é uma relação do conjunto A para o conjunto B, em que os elementos do conjunto A sempre serão x e os elementos do conjunto B sempre serão y (ou

Leia mais

Algoritmos e Estrutura de Dados - II Estrutura de Dados Espaciais

Algoritmos e Estrutura de Dados - II Estrutura de Dados Espaciais Algoritmos e Estrutura de Dados - II Estrutura de Dados Espaciais Rodolfo Labiapari Mansur Guimarães [email protected] Lattes: http://goo.gl/mzv4dc Departamento de Computação Instituto de

Leia mais

Teoria da Computação e Algoritmos. Introdução à Linguagem Pascal. ALGORITMO <Nome do algoritmo>; <definições>; INÍCIO <Comandos>; FIM.

Teoria da Computação e Algoritmos. Introdução à Linguagem Pascal. ALGORITMO <Nome do algoritmo>; <definições>; INÍCIO <Comandos>; FIM. Teoria da Computação e Algoritmos Introdução à Linguagem Pascal 1 Estrutura de um programa INÍCIO FIM. PROGRAM END.

Leia mais

Processamento Digital de Imagens

Processamento Digital de Imagens Ciência da Computação Processamento Digital de Imagens Tópicos Detecção de Pontos Isolados Detecção de Linhas Prof. Sergio Ribeiro 2 Operações lógicas e aritméticas orientadas a vizinhança utilizam o conceito

Leia mais

Organização e Arquitetura de Computadores I

Organização e Arquitetura de Computadores I Organização e Arquitetura de Computadores I Aritmética Computacional Slide 1 Sumário Unidade Lógica e Aritmética Representação de Números Inteiros Representação de Números de Ponto Flutuante Aritmética

Leia mais