Introdução à Mecânica dos Fluidos

Tamanho: px
Começar a partir da página:

Download "Introdução à Mecânica dos Fluidos"

Transcrição

1 Sólido Líquido Gás Mantém sua forma, independente do recipiente. Moléculas presas em uma estrutura por grandes forças intermoleculares. Assume a forma do recipiente, mantendo uma superfície livre. Embora apresente grandes forças intermoleculares, estas apresentam boa mobilidade. Expande-se ocupando todo o recipiente fechado. Pequenas forças de interação entre as moléculas, exceto nas colisões. Altas densidades. ρ Fe = 7700 kg/m 3. Médias densidades ρ água = 1000 kg/m 3. Baixas densidades ρ ar = 1,2 kg/m 3 (nível do mar). Fluido

2 Similaridades: Ar e água são fluidos Diferenças: Fluido

3 Similaridades: Ar e água são fluidos Diferenças: Ar e água são compostos por moléculas Fluido

4 Similaridades: Ar e água são fluidos Diferenças: Ar e água são compostos por moléculas As moléculas em cada fluido estão em movimento contínuo e aleatório Fluido

5 Similaridades: Ar e água são fluidos Ar e água são compostos por moléculas Diferenças: Na fase líquida há fortes forças de coesão e de repulsão entre as moléculas As moléculas em cada fluido estão em movimento contínuo e aleatório Fluido

6 Similaridades: Ar e água são fluidos Ar e água são compostos por moléculas As moléculas em cada fluido estão em movimento contínuo e aleatório Diferenças: Na fase líquida há fortes forças de coesão e de repulsão entre as moléculas O líquido apresenta uma superfície livre enquanto que o gás se expande para ocupar todo o recipiente que o contém Fluido

7 Similaridades: Ar e água são fluidos Ar e água são compostos por moléculas As moléculas em cada fluido estão em movimento contínuo e aleatório Diferenças: Na fase líquida há fortes forças de coesão e de repulsão entre as moléculas O líquido apresenta uma superfície livre enquanto que o gás se expande para ocupar todo o recipiente que o contém Líquidos são muito difíceis de comprimir enquanto que gases são facilmente comprimidos Fluido

8 Fluido: Substância que se deforma continuamente sob esforço tangencial, não importando o quanto pequeno seja este esforço. Não apresenta forma própria e é incapaz de permanecer em repouso quando sujeito a esforços de cisalhamento. O bloco sólido acima deforma-se em função da aplicação da força F. Desde que o limite elástico do material não seja excedido, a deformação será proporcional ao esforço tangencial, e o sólido retornará à forma anterior após retirada esta tensão. Quando o meio entre as duas placas infinitas e paralelas acima é um fluido, este deforma-se continuamente enquanto a força estiver atuando (por menor que esta seja). O fluido em contato com a placa tem a mesma velocidade desta. Não ocorre deslizamento na zona de contato. Este fato é conhecido como a condição de não deslizamento, observada e confirmada por várias experiências.

9 A Mecânica dos Fluidos estuda o comportamento dos fluidos em repouso e em movimento. Sistema: Certa quantidade definida de massa fluida. Os limites do sistema isolamno do meio que o circunda (no que diz respeito à massa). Os limites do sistema podem ser fixos ou móveis, mas não se verifica transporte de massa através destes limites. Volume de Controle: Para estudar o escoamento dos fluidos é muito difícil focar a atenção em certa quantidade de massa fluida identificável. É muito mais conveniente focalizar a atenção em certo volume do espaço através do qual escoa o fluido. Volume de controle é um volume arbitrário no espaço, através do qual um fluido escoa. O seu contorno geométrico é chamado de superfície de controle.

10 Métodos descritivos: Quando é fácil seguir elementos identificáveis de massa, empregamos o método descritivo que acompanha partículas. Este procedimento é chamado de método Lagrangiano. Por outro lado, principalmente quando lidamos com volumes de controle adotamos o método descritivo de campo ou Euleriano, que orienta a atenção para as propriedades de escoamento em dado ponto do espaço em função do tempo.

11 O fluido como contínuo: Trataremos qualquer fluido como substância que pode ser dividida ao infinito, um contínuo, sempre mantendo suas propriedades, sem nos preocuparmos com o comportamento individual de suas moléculas. Como conseqüência, qualquer propriedade de um fluido tem valor definido em cada ponto do espaço. Densidade, Temperatura, Velocidade e outras propriedades são funções contínuas do espaço e do tempo. A hipótese do contínuo falha quando o livre caminho médio de colisão entre as moléculas torna-se da mesma ordem de grandeza da menor dimensão característica do problema estudado. Por exemplo no escoamento dos gases rarefeitos (vôos em altas camadas da atmosfera).

12 Determinação da densidade em um ponto: Densidade: Quantidade de massa contida na unidade de volume [ ]. A densidade média em todo o volumev é dada por V Em geral, este valor não é o mesmo em todos os pontos de V. m A densidade em torno do ponto C na figura é dada por C V Mas, de que tamanho deve ser V? Resposta: Existe um valor limite inferior V que quando V torna-se menor que ele e contém um pequeno número de moléculas não é mais possível definir m/ V. Portanto: c m lim V V m V

13 O fluido como contínuo: Os fluidos são compostos de moléculas em movimento constante, onde ocorrem colisões freqüentes. Para se analisar com exatidão, deve-se considerar a ação de cada molécula ou grupo de moléculas em um escoamento. Tais considerações são pouco práticas na maioria dos problemas. Interessam as manifestações médias mensuráveis de várias moléculas (por exemplo: densidade, pressão, temperatura...). Pode-se considerar que surjam de uma distribuição conveniente da matéria, que denominamos de contínuo, ao invés de um aglomerado de moléculas discretas. Ou seja, no estudo dos fluidos desprezam-se o espaçamento e atividade moleculares, considerando-o como um meio contínuo que pode ser dividido infinitas vezes em partículas fluidas entre as quais se supõe não haver vazios. (FONTE: Apostila CEFET-SP)

14 O fluido como contínuo: Todos nós estamos familiarizados com os fluidos, sendo os mais comuns a água e o ar, e os tratamos como lisos e suaves, isto é, como sendo meios contínuos. Não podemos estar seguros da natureza molecular dos fluidos, a menos que utilizemos equipamentos especializados para identificá-la. Essa estrutura molecular é tal que a massa não está distribuída de forma contínua no espaço, mas está concentrada em moléculas que, por sua vez, estão separadas por regiões relativamente grandes de espaço vazio. Nesta seção, discutiremos sob quais circunstâncias um fluido pode ser tratado como um contínuo, para o qual, por definição, as propriedades variam muito pouco de ponto a ponto. A hipótese do contínuo é válida no tratamento do comportamento dos fluidos sob condições normais. Ela falha, no entanto, quando a trajetória média livre das moléculas*, o livre caminho médio, torna-se da mesma ordem de grandeza da menor dimensão característica significativa do problema. Isto ocorre em casos específicos como no escoamento de um gás rarefeito. Nestes problemas especiais (não tratados neste curso), devemos abandonar o conceito de contínuo em favor dos pontos de vista microscópico e estatístico. Como conseqüência da hipótese do contínuo, cada propriedade do fluido é considerada como tendo um valor definido em cada ponto do espaço. Desta forma as propriedades dos fluidos (massa específica, temperatura, velocidade,...) são consideradas funções contínuas do espaço e do tempo. *Aproximadamente 6 x 10-8 m para moléculas de gás que se comporta como um gás perfeito nas STP (Standard Temperature and Pressure) ou CPPT (Condição Padrão de Pressão e Temperatura) STP = CPPT = CNTP (FONTE: Livro McDonald-Fox) 15ºC e 101,3 kpa.

15 Lei dos gases ideais: PV nrt onde P é a pressão absoluta; V é o volume; n é o número de moles, R temperatura absoluta. A constante universal dos gases é 8,314 kj/kmol-k. A equação acima pode ser escrita como: é a constante universal dos gases, e T é a P nm V R M T Onde M é o peso molecular do gás. O produto entre o número de moles e o peso molecular é a massa do gás. O quociente entre a constante universal e o peso molecular é a constante do gás R. Então: P RT massa volume

16 Se determinarmos a densidade em um grande número de pontos no Volume, V, ao longo do tempo obteremos = f(x,y,z,t) que chamamos de Campo de Densidades. Uma partícula fluida é uma pequena massa de fluido, com identidade fixa, com volume V. A velocidade no ponto C é a velocidade instantânea da partícula fluida que, em dado instante, passa por C. Novamente, se definirmos a velocidade em um grande número de pontos, teremos a completa representação das velocidades (Campo de velocidades). V f x, y, z, t O vetor velocidade pode ser expresso em termos de suas três componentes escalares: V Se as propriedades do fluido, em cada ponto do escoamento, não variam com o tempo, o escoamento é dito PERMANENTE. Ou seja, qualquer propriedade pode variar de um ponto a outro, mas todas permanecem constantes em cada ponto com o tempo: ui vj wk 0 t Onde é uma propriedade qualquer do escoamento.

17 Se V = f(x,y,z,t) dizemos que o escoamento é tridimensional e não-permanente. O escoamento mostrado na figura abaixo, cuja velocidade é obtida pela equação ao lado é uni, bi ou tridimensional? u u max 1 r R 2 Linhas de Corrente são linhas tangentes à direção do escoamento em todos os pontos do campo. Desta forma, não há escoamento através (cortando) das linhas de corrente. Para este sistema de coordenadas (cilíndricas, V=f(x, r, )) a velocidade é definida em função de apenas uma ordenada, r, portanto o escoamento é unidimensional.

18 Consideremos o elemento de fluido entre as duas placas paralelas. A placa superior move-se com velocidade constante u, sob ação da força constante F x. Durante um intervalo de tempo t o elemento deforma-se conforme mostrado na figura. A taxa de deformação é dada pela relação abaixo: Taxa de deformação = lim0 t t d dt

19 A distância L entre M e M é obtida por: l ut Para pequenos ângulos: l y Então: u t y Tomando-se os limites dos dois lados: d dt du dy Taxa de deformação = d dt du dy

20 A tensão tangencial (ou de cisalhamento) é definida por: lim0 A FX A dfx da Para a maioria dos fluidos, as tensões tangenciais são proporcionais à taxa de deformação. Quando isto ocorre, os fluidos são denominados FLUIDOS NEWTONIANOS. du dy du dy A constante de proporcionalidade é a VISCOSIDADE, também denominada VISCOSIDADE ABSOLUTA ou DINÂMICA. Se dividimos a viscosidade absoluta pela massa específica, obtemos a VISCOSIDADE CINEMÁTICA:

21 A viscosidade retrata a resistência que o fluido impõe ao cisalhamento. Os fluidos de maior viscosidade apresentam uma maior resistência à deformação. Os fluidos nos quais a tensão de cisalhamento não é diretamente proporcional à taxa de deformação são os FLUIDOS NÃO NEWTONIANOS.

22 DESCRIÇÃO E CLASSIFICAÇÃO DOS MOVIMENTOS DE FLUIDOS Mecânica dos Fluidos Não viscoso = 0 Viscoso Laminar Turbulento Compressível Incompressível Interno Externo No escoamento de fluidos não viscosos a viscosidade é supostamente nula. Este fluido não existe, mas, em alguns casos, a hipótese = 0 simplifica a análise e conduz a resultados satisfatórios.

23 DESCRIÇÃO E CLASSIFICAÇÃO DOS MOVIMENTOS DE FLUIDOS Laminar Turbulento Um escoamento laminar é aquele em que as partículas fluidas movem-se em camadas, ou lâminas. No escoamento turbulento as partículas fluidas rapidamente se misturam, enquanto se movimentam ao longo do escoamento, devido às flutuações aleatórias no campo tridimensional de velocidades. No caso de escoamento de fluido incompressível em duto, sua natureza é determinada pelo valor do número de Reynolds. VD VD Re V D Massa específica do fluido Velocidade do fluido Diâmetro do tubo Viscosidade dinâmica do fluido Viscosidade cinemática do fluido O escoamento em dutos é laminar quando Re 2300

24 A CAMADA LIMITE: Escoamento de fluido viscoso sobre placa semi-infinita: As tensões de cisalhamento afetam o escoamento. U A = U A = 0 Condição de não deslizamento A placa parada dá origem a esforços de retardamento do fluxo (desacelera o fluido nas proximidades). Para 0 y y B teremos 0 u U Na região 0 y y B as tensões tangenciais estão presentes. Para y > y B o gradiente de velocidades é nulo e, portanto, não estão presentes as tensões tangenciais. A placa influencia regiões maiores do campo de escoamento à medida em que caminhamos no sentido do fluxo. y B > y B e u C < u C A região próxima da placa onde se faz sentir a ação das tensões tangenciais é a camada limite. A camada limite na figura acima está BEM exagerada!

25 Escoamento Permanente de fluido incompressível ao redor de um cilindro: O ponto A divide o escoamento e chama-se ponto de estagnação. A distribuição das velocidades fora da camada limite pode ser determinada pelo espaçamento entre as linhas de corrente (a velocidade aumenta quando o espaçamento diminui). Escoamento de fluido não viscoso: Linhas de corrente simétricas em relação aos eixos x e y. A velocidade obtém um valor máximo na altura do ponto D. Se cresce a velocidade, decresce a pressão e vice-versa. A pressão atinge um valor mínimo na altura do ponto D. Devido à simetria a distribuição de pressões também é simétrica em relação a x e y. A resultante de forças nos eixos x e y é nula (F X = F arrasto = 0) o que contraria a experiência. Neste caso despreza-se a presença da camada limite.

26 Escoamento Permanente de fluido incompressível ao redor de um cilindro: Escoamento de fluido viscoso: Como a pressão decresce continuamente entre os pontos A e B, um elemento de fluido no interior da camada limite sofre certa força de pressão no sentido do escoamento, suficiente para vencer a resistência da tensão tangencial, e o elemento de fluido se move no sentido do escoamento. Além do ponto B, atrás do cilindro, a pressão aumenta no sentido do escoamento, o elemento de fluido irá sofrer certa força de pressão em sentido oposto ao escoamento. A quantidade de movimento do fluido no interior da camada limite é insuficiente para transportar o elemento de fluido para regiões de maior pressão. As camadas de fluido adjacentes à superfície sólida serão levadas ao repouso e o fluido se descolará da superfície. O ponto em que isto ocorre chama-se ponto de descolamento. O descolamento da camada limite tem como conseqüência a formação de uma região de relativamente baixa pressão atrás do corpo. Essa região, deficiente em quantidade de movimento, chama-se esteira. Desta forma, existe um desequilíbrio de forças de pressões no sentido do escoamento, resultando no arrasto que atua no corpo. Quanto maior a esteira, maior será o arrasto.

27 Escoamento Permanente de fluido incompressível ao redor de um cilindro: Como reduzir o arrasto? Como a esteira resulta do descolamento da camada limite, que, por sua vez, está relacionado com gradientes adversos de pressão (aumento da pressão no sentido do escoamento), reduzir os gradientes significa reduzir a possibilidade de descolamentos e, conseqüentemente, reduzir os arrastos. O corpo convenientemente perfilado reduz o gradiente adverso de pressão em virtude da difusão do acréscimo de pressão em distância maior. Desta forma, a possibilidade de descolamento diminui e o arrasto fica significativamente reduzido.

28 Escoamentos compressíveis e Incompressíveis: Os escoamentos onde as variações de densidade do fluido são desprezíveis denominam-se incompressíveis. Quando estas variações não podem ser desprezadas os escoamentos são ditos compressíveis. Para a maioria dos casos práticos os escoamentos de líquidos são incompressíveis. Os gases também podem se comportar como fluidos incompressíveis desde que a velocidade do escoamento seja pequena em relação à velocidade do som. V M c M = número de Mach, V = velocidade do fluido, c = velocidade do som Quando M < 0,3 os gases podem ser tratados como fluidos incompressíveis (variações de densidade inferiores a 5%) O golpe de aríete, ou martelo hidráulico, é causado pela propagação e reflexão de ondas acústicas em um líquido confinado, (por exemplo, quando uma válvula é bruscamente fechada numa tubulação). A cavitação ocorre quando bolhas ou bolsas de vapor se formam em um escoamento líquido como conseqüência de reduções locais na pressão (por exemplo, nas extremidades das pás da hélice de um barco a motor). O crescimento e o colapso ou implosão de bolhas de vapor em regiões adjacentes a superfícies sólidas podem causar sérios danos por erosão a estas superfícies. O golpe de aríete e a cavitação são exemplos da importância dos efeitos de compressibilidade nos escoamentos de líquidos. Escoamentos compressíveis aparecem em : sistemas de ar comprimido; gases em tubulações a altas pressões; controles pneumáticos e hidráulicos; projeto de aeronaves modernas; ventiladores; compressores, etc.

29 MÓDULO DE ELASTICIDADE, E V : E V dp dv V É a propriedade que relaciona variações de pressão na mudança de volume (expansão ou contração). Expressa a razão entre variação de pressão e a fração de variação em volume. Como a fração de variação em volume (dv/v) é negativa para um dp positivo, o sinal negativo é usado na definição para fornecer um valor positivo de E V. A elasticidade é frequentemente chamada de compressibilidade do fluido. A fração de variação em volume é relacionada com a variação da densidade do material: m V m cte dm dv Vd 0 Vd dv d dv V E o módulo de elasticidade pode ser escrito: dp E V d E V da água é aproximadamente 2,2 GPa, o que corresponde a uma variação de 0,05% no volume para um aumento de 1MPa na pressão. O que justifica a consideração da água como incompressível ( apresenta uma pequena variação em volume para uma elevada alteração na pressão). O módulo de elasticidade também pode ser chamado de módulo de compressibilidade ou coeficiente de compressibilidade.

FENÔMENOS DE TRANSPORTES

FENÔMENOS DE TRANSPORTES FENÔMENOS DE TRANSPORTES AULA 3 CLASSIFICAÇÃO DE ESCOAMENTOS PROF.: KAIO DUTRA Descrição e Classificação dos Movimentos de Fluido A mecânica dos fluidos é uma disciplina muito vasta: cobre desde a aerodinâmica

Leia mais

Fenômeno de Transportes A PROFª. PRISCILA ALVES

Fenômeno de Transportes A PROFª. PRISCILA ALVES Fenômeno de Transportes A PROFª. PRISCILA ALVES [email protected] Proposta do Curso Critérios de Avaliação e Recuperação Outras atividades avaliativas Atividades experimentais: Será desenvolvida

Leia mais

Capítulo 6: Escoamento Externo Hidrodinâmica

Capítulo 6: Escoamento Externo Hidrodinâmica Capítulo 6: Escoamento Externo Hidrodinâmica Conceitos fundamentais Fluido É qualquer substância que se deforma continuamente quando submetido a uma tensão de cisalhamento, ou seja, ele escoa. Fluidos

Leia mais

FENÔMENOS DOS TRANSPORTES. Definição e Conceitos Fundamentais dos Fluidos

FENÔMENOS DOS TRANSPORTES. Definição e Conceitos Fundamentais dos Fluidos Definição e Conceitos Fundamentais dos Fluidos Matéria Sólidos Fluidos possuem forma própria (rigidez) não possuem forma própria; tomam a forma do recipiente que os contém Fluidos Líquidos Gases fluidos

Leia mais

Disciplina : Mecânica dos fluidos. Aula 3: Conceitos fundamentais

Disciplina : Mecânica dos fluidos. Aula 3: Conceitos fundamentais Curso: Engenharia Mecânica Disciplina : Mecânica dos fluidos Aula 3: Conceitos fundamentais Prof. Evandro Rodrigo Dário, Dr. Eng. Campo de Tensão Cada partícula fluida pode sofrer a ação de dois tipos

Leia mais

FENÔMENOS DE TRANSPORTES AULA 2 FLUIDOS PARTE 2

FENÔMENOS DE TRANSPORTES AULA 2 FLUIDOS PARTE 2 FENÔMENOS DE TRANSPORTES AULA 2 FLUIDOS PARTE 2 PROF.: KAIO DUTRA Fluido Como um Contínuo Se isolarmos um volume no espaço de ar de 0,001 mm³ (em torno do tamanho de um grão de areia), existirão em média

Leia mais

1. BASES CONCEITUAIS PARA O ESTUDO DOS FENÔMENOS DE TRANSPORTE

1. BASES CONCEITUAIS PARA O ESTUDO DOS FENÔMENOS DE TRANSPORTE 1. BASES CONCEITUAIS PARA O ESTUDO DOS FENÔMENOS DE TRANSPORTE Duas placas paralelas Substância entre as placas (placa inferior fixa) Força aplicada na placa superior Tensão de cisalhamento F/A (A... área

Leia mais

LOQ Fenômenos de Transporte I. FT I 03 Tensão e viscosidade. Prof. Lucrécio Fábio dos Santos. Departamento de Engenharia Química LOQ/EEL

LOQ Fenômenos de Transporte I. FT I 03 Tensão e viscosidade. Prof. Lucrécio Fábio dos Santos. Departamento de Engenharia Química LOQ/EEL LOQ 4083 - Fenômenos de Transporte I FT I 03 Tensão e viscosidade Prof. Lucrécio Fábio dos Santos Departamento de Engenharia Química LOQ/EEL Atenção: Estas notas destinam-se exclusivamente a servir como

Leia mais

Introdução e Conceitos Básicos

Introdução e Conceitos Básicos Introdução e Conceitos Básicos Definição de Fluido Fluido é uma substância que não tem forma própria, assume o formato do recipiente. São, portanto, os líquidos e gases (em altas temperaturas o plasma)

Leia mais

Escoamento completamente desenvolvido

Escoamento completamente desenvolvido Escoamento completamente desenvolvido A figura mostra um escoamento laminar na região de entrada de um tubo circular. Uma camada limite desenvolve-se ao longo das paredes do duto. A superfície do tubo

Leia mais

FENÔMENOS DE TRANSPORTE Definições e Conceitos Fundamentais

FENÔMENOS DE TRANSPORTE Definições e Conceitos Fundamentais FENÔMENOS DE TRANSPORTE Definições e Conceitos Fundamentais CAPÍTULO 1. DEFINIÇÕES E CONCEITOS FUNDAMENTAIS 1 FENÔMENOS DE TRANSPORTE A expressão Fenômenos de transporte refere-se ao estudo sistemático

Leia mais

Mecânica dos Fluidos (MFL0001) Curso de Engenharia Civil 4ª fase Prof. Dr. Doalcey Antunes Ramos CAPÍTULO 3: FLUIDOS EM MOVIMENTO

Mecânica dos Fluidos (MFL0001) Curso de Engenharia Civil 4ª fase Prof. Dr. Doalcey Antunes Ramos CAPÍTULO 3: FLUIDOS EM MOVIMENTO Mecânica dos Fluidos (MFL0001) Curso de Engenharia Civil 4ª fase Prof. Dr. Doalcey Antunes Ramos CAPÍTULO 3: FLUIDOS EM MOVIMENTO 3.1 Descrição do Movimento dos Fluidos O método de Lagrange descreve o

Leia mais

TÍTULO: DESENVOLVIMENTO DE UM KIT DIDÁTICO DE PERDA DE CARGA CATEGORIA: EM ANDAMENTO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS

TÍTULO: DESENVOLVIMENTO DE UM KIT DIDÁTICO DE PERDA DE CARGA CATEGORIA: EM ANDAMENTO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS TÍTULO: DESENVOLVIMENTO DE UM KIT DIDÁTICO DE PERDA DE CARGA CATEGORIA: EM ANDAMENTO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS INSTITUIÇÃO: FACULDADE DE ENGENHARIA DE SOROCABA AUTOR(ES): RAPHAEL

Leia mais

Por isso, quem mata o tempo é suicida! Aula 3 de FT

Por isso, quem mata o tempo é suicida! Aula 3 de FT Por isso, quem mata o tempo é suicida! Aula 3 de FT Quais são os tipos de tensões? O quociente força pela área da superfície onde ela é exercida é denominado de tensão. Consequências! Na mecânica as principais

Leia mais

Fundamentos da Mecânica dos Fluidos

Fundamentos da Mecânica dos Fluidos Fundamentos da Mecânica dos Fluidos 1 - Introdução 1.1. Algumas Características dos Fluidos 1.2. Dimensões, Homogeneidade Dimensional e Unidades 1.2.1. Sistemas de Unidades 1.3. Análise do Comportamentos

Leia mais

Disciplina: Sistemas Fluidomecânicos

Disciplina: Sistemas Fluidomecânicos Disciplina: Sistemas Fluidomecânicos Mecânica dos Fluidos: Revisão Definições, Propriedades dos Fluidos, Estática dos Fluidos, Cinemática dos Fluidos, Equação da Energia para Regime Permanente. Definição

Leia mais

Introdução a Cinemática Escoamento Laminar e Turbulento Número de Reinalds

Introdução a Cinemática Escoamento Laminar e Turbulento Número de Reinalds Disciplina: Fenômeno de AULA 01 unidade 2 Transporte Introdução a Cinemática Escoamento Laminar e Turbulento Número de Reinalds Prof. Ednei Pires Definição: Cinemática dos fluidos É a ramificação da mecânica

Leia mais

+ MECÂNICA DOS FLUIDOS. n DEFINIÇÃO. n Estudo do escoamento de li quidos e gases (tanques e tubulações) n Pneuma tica e hidraúlica industrial

+ MECÂNICA DOS FLUIDOS. n DEFINIÇÃO. n Estudo do escoamento de li quidos e gases (tanques e tubulações) n Pneuma tica e hidraúlica industrial Mecânica Sólidos INTRODUÇÃO MECÂNICA DOS FLUIDOS FBT0530 - FÍSICA INDUSTRIAL PROFA. JULIANA RACT PROFA. MARINA ISHII 2018 Fluidos O que é um fluido? MECÂNICA DOS FLUIDOS PROPRIEDADE SÓLIDOS LÍQUIDOS GASES

Leia mais

Introdução aos Fenômenos de Transporte

Introdução aos Fenômenos de Transporte aos Fenômenos de Transporte Aula 2 - Mecânica dos fluidos Engenharia de Produção 2012/1 aos Fenômenos de Transporte O conceito de fluido Dois pontos de vista: Macroscópico: observação da matéria do ponto

Leia mais

Conceitos Fundamentais. Viscosidade e Escoamentos

Conceitos Fundamentais. Viscosidade e Escoamentos Conceitos Fundamentais Viscosidade e Escoamentos Multiplicação de pressão Multiplicação de pressão Vazão X Velocidade Vazão X Velocidade VISCOSIDADE DE LÍQUIDOS Fluido perfeito Considere-se um volume

Leia mais

Mecânica dos Fluidos. Prof. Dr. Gilberto Garcia Cortez

Mecânica dos Fluidos. Prof. Dr. Gilberto Garcia Cortez Mecânica dos Fluidos Aula 01 Prof. Dr. Gilberto Garcia Cortez Bibliografia utilizada 1- Introdução Mecânica dos fluidos é a ciência que tem por objetivo o estudo do comportamento físico dos fluidos e das

Leia mais

Introdução aos Fluidos em Movimento Tipos de Escoamentos

Introdução aos Fluidos em Movimento Tipos de Escoamentos Introdução aos Fluidos em Movimento Tipos de Escoamentos Aula 3 de PME3230 Descrição Euleriana e Lagrangeana Linhas de Corrente e de Trajetória Aceleração Prof. Marcos Tadeu Pereira Classificações possíveis

Leia mais

MÁQUINAS HIDRÁULICAS AT-087

MÁQUINAS HIDRÁULICAS AT-087 Universidade Federal do Paraná Curso de Engenharia Industrial Madeireira MÁQUINAS HIDRÁULICAS AT-087 Dr. Alan Sulato de Andrade [email protected] DEFINIÇÃO: Um fluído consiste numa substância não sólida

Leia mais

HIDRÁULICA : CONCEITOS FUNDAMENTAIS. hydor água + aulos tubo, condução. 1 - Introdução:

HIDRÁULICA : CONCEITOS FUNDAMENTAIS. hydor água + aulos tubo, condução. 1 - Introdução: HIDRÁULICA : CONCEITOS FUNDAMENTAIS 1 - Introdução: Hidráulica significa etimologicamente condução da água que resulta do grego: hydor água + aulos tubo, condução. Divisão: A Hidráulica é o ramo da Ciência

Leia mais

LOQ Fenômenos de Transporte I. FT I 02 Conceitos básicos. Prof. Lucrécio Fábio dos Santos. Departamento de Engenharia Química LOQ/EEL

LOQ Fenômenos de Transporte I. FT I 02 Conceitos básicos. Prof. Lucrécio Fábio dos Santos. Departamento de Engenharia Química LOQ/EEL LOQ 4083 - Fenômenos de Transporte I FT I 02 Conceitos básicos Prof. Lucrécio Fábio dos Santos Departamento de Engenharia Química LOQ/EEL Atenção: Estas notas destinam-se exclusivamente a servir como roteiro

Leia mais

FUNDAMENTAÇÃO HIDROMECÂNICA Princípios Básicos

FUNDAMENTAÇÃO HIDROMECÂNICA Princípios Básicos FUNDAMENTAÇÃO HIDROMECÂNICA Princípios Básicos Sistemas Hidráulicos podem ser descritos por leis que regem o comportamento de fluidos confinados em: regime permanente (repouso) invariante no tempo; regime

Leia mais

Departamento de Engenharia Mecânica. ENG 1011: Fenômenos de Transporte I

Departamento de Engenharia Mecânica. ENG 1011: Fenômenos de Transporte I Departamento de Engenharia Mecânica ENG 1011: Fenômenos de Transporte I Aula 9: Formulação diferencial Exercícios 3 sobre instalações hidráulicas; Classificação dos escoamentos (Formulação integral e diferencial,

Leia mais

Capítulo 6: Escoamento Externo Hidrodinâmica

Capítulo 6: Escoamento Externo Hidrodinâmica Capítulo 6: Escoamento Externo Hidrodinâmica Arrasto viscoso e de pressão Arrasto total Campo de escoamento Linhas de corrente: definidas como a linha contínua que é tangente aos vetores velocidade ao

Leia mais

CONCEITOS BÁSICOS. Definição de Fluido - Os estados físicos da matéria - A hipótese do contínuo -Propriedades físicas

CONCEITOS BÁSICOS. Definição de Fluido - Os estados físicos da matéria - A hipótese do contínuo -Propriedades físicas CONCEITOS BÁSICOS Definição de Fluido - Os estados físicos da matéria - A hipótese do contínuo -Propriedades físicas Conceituação qualitativa da matéria -Sólidos -Líquidos fluidos -Gases Fluido é uma substância

Leia mais

RESUMO MECFLU P2. 1. EQUAÇÃO DE BERNOULLI Estudo das propriedades de um escoamento ao longo de uma linha de corrente.

RESUMO MECFLU P2. 1. EQUAÇÃO DE BERNOULLI Estudo das propriedades de um escoamento ao longo de uma linha de corrente. RESUMO MECFLU P2 1. EQUAÇÃO DE BERNOULLI Estudo das propriedades de um escoamento ao longo de uma linha de corrente. Hipóteses Fluido invíscido (viscosidade nula) não ocorre perda de energia. Fluido incompressível

Leia mais

As forças que atuam em um meio contínuo: Forças de massa ou de corpo: todo o corpo peso e centrífuga Forças de superfície: sobre certas superfícies

As forças que atuam em um meio contínuo: Forças de massa ou de corpo: todo o corpo peso e centrífuga Forças de superfície: sobre certas superfícies Hidráulica Revisão de alguns conceitos Propriedades Físicas dos Fluidos Forças, esforços e pressão (tensão) As forças que atuam em um meio contínuo: Forças de massa ou de corpo: distribuídas de maneira

Leia mais

Fenômenos de Transporte I Aula 01

Fenômenos de Transporte I Aula 01 Fenômenos de Transporte I Aula 01 O que são fluidos. Propriedades: tensão de cisalhamento, massa específica, peso específico, densidade relativa e viscosidade [1] BRUNETTI, F., Mecânica dos Fluidos, 2ª

Leia mais

ENGENHARIA FÍSICA. Fenômenos de Transporte A (Mecânica dos Fluidos)

ENGENHARIA FÍSICA. Fenômenos de Transporte A (Mecânica dos Fluidos) ENGENHARIA FÍSICA Fenômenos de Transporte A (Mecânica dos Fluidos) Prof. Dr. Sérgio R. Montoro [email protected] [email protected] Fenômenos de Transporte UNIVERSIDADE DE SÃO PAULO Os fenômenos

Leia mais

Mecânica dos Fluidos

Mecânica dos Fluidos Mecânica dos Fluidos Cinemática dos Fluidos: Escoamento e Balanços Prof. Universidade Federal do Pampa BA000200 Campus Bagé 27 e 28 de março de 2017 Cinemática dos Fluidos, Parte 1 1 / 35 Escoamento de

Leia mais

ALGUNS FUNDAMENTOS MICROFLUÍDICA

ALGUNS FUNDAMENTOS MICROFLUÍDICA ALGUNS FUNDAMENTOS DE MICROFLUÍDICA INTRODUÇÃO TRANSFERÊNCIA DE MOMENTUM Estudo do movimento dos fluidos e das forças que produzem esse movimento. Fluido Definição: Fluido é uma substância que se deforma

Leia mais

ENADE /08/2017 FENÔMENOS DE TRANSPORTE FENÔMENOS DE TRANSPORTE FENÔMENOS DE TRANSPORTE FENÔMENOS DE TRANSPORTE MASSA ESPECÍFICA ( )

ENADE /08/2017 FENÔMENOS DE TRANSPORTE FENÔMENOS DE TRANSPORTE FENÔMENOS DE TRANSPORTE FENÔMENOS DE TRANSPORTE MASSA ESPECÍFICA ( ) ENADE 2017.2 MASSA ESPECÍFICA ( ) DENSIDADE (d) É definida como a razão entre a massa dividida por unidade de volume de um material contínuo e homogêneo. É definida como a razão entre a massa dividida

Leia mais

Física. Física Módulo 2 Flúidos

Física. Física Módulo 2 Flúidos Física Módulo 2 Flúidos Introdução O que é a Mecânica dos Fluidos? É a parte da mecânica aplicada que se dedica análise do comportamento dos líquidos e dos gases, tanto em equilíbrio quanto em movimento.

Leia mais

ENGENHARIA FÍSICA. Fenômenos de Transporte A (Mecânica dos Fluidos)

ENGENHARIA FÍSICA. Fenômenos de Transporte A (Mecânica dos Fluidos) ENGENHARIA FÍSICA Fenômenos de Transporte A (Mecânica dos Fluidos) Prof. Dr. Sérgio R. Montoro [email protected] [email protected] MECÂNICA DOS FLUIDOS ENGENHARIA FÍSICA AULA 2...CONTINUAÇÃO...

Leia mais

Ponto de Separação e Esteira

Ponto de Separação e Esteira Ponto de Separação e Esteira p/ x=0 p/ x0 Escoamento separado O fluido é desacelerado devido aos efeitos viscosos. Se o gradiente de pressão é nulo, p/x=0, não há influência no escoamento. Na região

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes Fluido Newtoniano Viscosidade dos fluidos: Definimos fluido como uma substância que se deforma continuamente sob a ação de um esforço cisalante. Na ausência deste esforço, ele não se deformará. Os fluidos

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Escoamento Cruzado Sobre Cilindros e Esferas Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade

Leia mais

Fundamentos da Lubrificação e Lubrificantes Aula 4 PROF. DENILSON J. VIANA

Fundamentos da Lubrificação e Lubrificantes Aula 4 PROF. DENILSON J. VIANA Fundamentos da Lubrificação e Lubrificantes Aula 4 PROF. DENILSON J. VIANA Introdução à Lubrificação Lubrificação É o fenômeno de redução do atrito entre duas superfícies em movimento relativo por meio

Leia mais

ESTUDO DA TRANSIÇÃO ENTRE ESCOAMENTO LAMINAR E TURBULENTO EM TUBO CAPILAR

ESTUDO DA TRANSIÇÃO ENTRE ESCOAMENTO LAMINAR E TURBULENTO EM TUBO CAPILAR ESTUDO DA TRANSIÇÃO ENTRE ESCOAMENTO LAMINAR E TURBULENTO EM TUBO CAPILAR M. H. MARTINS 1, A. KNESEBECK 1 1 Universidade Federal do Paraná, Departamento de Engenharia Química E-mail para contato: [email protected]

Leia mais

EM-524 Fenômenos de Transporte

EM-524 Fenômenos de Transporte EM-524 Fenômenos de Transporte Livro : Introdução às Ciências Térmicas F.W. Schmidt, R.E. Henderson e C.H. Wolgemuth Editora Edgard Blücher Denilson Boschiero do Espirito Santo DE FEM sala : ID301 [email protected]

Leia mais

onde v m é a velocidade média do escoamento. O 2

onde v m é a velocidade média do escoamento. O 2 Exercício 41: São dadas duas placas planas paralelas à distância de 1 mm. A placa superior move-se com velocidade de m/s, enquanto a inferior é fixa. Se o espaço entre a placas é preenchido com óleo de

Leia mais

h coeficiente local de transferência de calor por convecção h coeficiente médio de transferência de calor por convecção para toda a superfície

h coeficiente local de transferência de calor por convecção h coeficiente médio de transferência de calor por convecção para toda a superfície \CONVECÇÃO FORÇADA EXTERNA " Fluxo térmico: q h(tsup T ) h coeficiente local de transferência de calor por convecção Taxa de transferência de calor q ha sup (T sup T ) h coeficiente médio de transferência

Leia mais

onde v m é a velocidade média do escoamento. O 2

onde v m é a velocidade média do escoamento. O 2 Exercício 24: São dadas duas placas planas paralelas à distância de 1 mm. A placa superior move-se com velocidade de 2 m/s, enquanto a inferior é fixa. Se o espaço entre a placas é preenchido com óleo

Leia mais

O volume e, portanto, a massa específica ( = massa/volume) dos gases são sensíveis às variações da pressão e Temperatura.

O volume e, portanto, a massa específica ( = massa/volume) dos gases são sensíveis às variações da pressão e Temperatura. 1.5 Lei dos Gases Ideais O volume e, portanto, a massa específica ( = massa/volume) dos gases são sensíveis às variações da pressão e Temperatura. Buscando nos cursos de física básico de pressão e temperatura.

Leia mais

Halliday Fundamentos de Física Volume 2

Halliday Fundamentos de Física Volume 2 Halliday Fundamentos de Física Volume 2 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,

Leia mais

FENÔMENOS DE TRANSPORTES AULA 1 FLUIDOS PARTE 1

FENÔMENOS DE TRANSPORTES AULA 1 FLUIDOS PARTE 1 FENÔMENOS DE TRANSPORTES AULA 1 FLUIDOS PARTE 1 PROF.: KAIO DUTRA Definição de Um Fluido Definição elementar: Fluido é uma substância que não tem uma forma própria, assume o formato do meio. Definição

Leia mais

EM34B Mecânica dos Fluidos 1

EM34B Mecânica dos Fluidos 1 EM34B Mecânica dos Fluidos 1 Prof. Dr. André Damiani Rocha [email protected] : Conceitos Fundamentais 2 Conceitos fundamentais O Fluido como um contínuo Os fluidos são compostos de moléculas em constante

Leia mais

Física I 2010/2011. Aula 19. Mecânica de Fluidos II

Física I 2010/2011. Aula 19. Mecânica de Fluidos II Física I 2010/2011 Aula 19 Mecânica de Fluidos II Fluidos Capítulo 14: Fluidos 14-7 Fluidos Ideais em Movimento 14-8 A Equação da Continuidade 14-9 O Princípio de Bernoulli 2 Tipos de Fluxo ou Caudal de

Leia mais

Sempre que há movimento relativo entre um corpo sólido e fluido, o sólido sofre a ação de uma força devido a ação do fluido.

Sempre que há movimento relativo entre um corpo sólido e fluido, o sólido sofre a ação de uma força devido a ação do fluido. V ESCOAMENTO F AO REOR E CORPOS SUBMERSOS F F F S F Sempre que há movimento relativo entre um corpo sólido e fluido, o sólido sofre a ação de uma força devido a ação do fluido. é a força total que possui

Leia mais

Introdução à Mecânica dos Fluidos. Capítulo 2 Conceitos Fundamentais. John Wiley and Sons, Inc.

Introdução à Mecânica dos Fluidos. Capítulo 2 Conceitos Fundamentais. John Wiley and Sons, Inc. Introdução à Mecânica dos Fluidos Capítulo 2 Conceitos Fundamentais Tópicos principais Fluido como um Continuum Campo de velocidades Campo de tensões Viscosidade Descrição e classificação dos movimentos

Leia mais

Fenômenos de Transporte I Mecânica dos Fluidos

Fenômenos de Transporte I Mecânica dos Fluidos Fenômenos de Transporte I Mecânica dos Fluidos Propriedades Básicas dos Fluidos 1 Quais as diferenças fundamentais entre fluido e sólido? Fluido é mole e deformável Sólido é duro e muito pouco deformável

Leia mais

Fenômenos do Transporte - 1 Semestre de 2010

Fenômenos do Transporte - 1 Semestre de 2010 Fenômenos do Transporte - Semestre de 200 O assunto fenômenos de transporte inclui três tópicos intimamente relacionados: Dinâmica dos fluidos: envolve o transporte do momento; Transferência de Calor:

Leia mais

Fenômeno dos Transportes I

Fenômeno dos Transportes I Fenômeno dos Transportes I Prof. Daniel Lucas 1 Semestre 2017 1 Ementa do Curso: Mecânica dos Fluidos: Conteúdo Programático Definições e Propriedades Físicas dos Fluidos; Estudo da viscosidade Lei de

Leia mais

BIK0102: ESTRUTURA DA MATÉRIA. Crédito: Sprace GASES. Professor Hugo B. Suffredini Site:

BIK0102: ESTRUTURA DA MATÉRIA. Crédito: Sprace GASES. Professor Hugo B. Suffredini Site: BIK0102: ESTRUTURA DA MATÉRIA Crédito: Sprace GASES Professor Hugo B. Suffredini [email protected] Site: www.suffredini.com.br Pressão Atmosférica A pressão é a força atuando em um objeto por

Leia mais

Introdução à Mecânica dos Fluidos

Introdução à Mecânica dos Fluidos Introdução à Mecânica dos Fluidos Definição de Fluido A mecânica dos fluidos lida com o comportamento dos fluidos em repouso e em movimento. Um fluido é uma substância que se deforma continuamente sob

Leia mais

Fenômenos de Transporte I Mecânica dos Fluidos

Fenômenos de Transporte I Mecânica dos Fluidos Fenômenos de Transporte I Mecânica dos Fluidos Escoamentos 1 O que é escoamento? Mudança de forma do fluido sob a ação de um esforço tangencial; Fluidez: capacidade de escoar, característica dos fluidos;

Leia mais

Capítulo 5: Análise através de volume de controle

Capítulo 5: Análise através de volume de controle Capítulo 5: Análise através de volume de controle Conservação da quantidade de movimento EM-54 enômenos de Transporte Estudo de um volume de controle No estudo termodinâmico de um sistema o interesse se

Leia mais

Escoamentos Externos

Escoamentos Externos Escoamentos Externos O estudo de escoamentos externos é de particular importância para a engenharia aeronáutica, na análise do escoamento do ar em torno dos vários componentes de uma aeronave Entretanto,

Leia mais

1 PROPRIEDADES FÍSICAS DA ÁGUA

1 PROPRIEDADES FÍSICAS DA ÁGUA 1 PROPRIEDADES FÍSICAS DA ÁGUA 1.1 FLUIDOS GASES E LÍQUIDOS Os fluidos são corpos sem forma própria que podem escoar-se, sofrendo grandes variações de forma, sob a acção de forças tanto mais fracas quanto

Leia mais

AULA PRÁTICA 2 PROPRIEDADES FUNDAMENTAIS DOS FLUIDOS

AULA PRÁTICA 2 PROPRIEDADES FUNDAMENTAIS DOS FLUIDOS ! AULA PRÁTICA 2 PROPRIEDADES FUNDAMENTAIS DOS FLUIDOS 1) - M A S S A E S P E C Í F I C A ( ρ ) OU DENSIDADE ABSOLUTA (ρ ). - É o quociente entre a Massa do fluido e o Volume que contém essa massa. m ρ

Leia mais

ESTE Aula 1- Introdução à convecção. A camada limite da convecção

ESTE Aula 1- Introdução à convecção. A camada limite da convecção Universidade Federal do ABC ESTE013-13 Aula 1- Introdução à convecção. A camada limite da convecção Convecção Definição: Processo de transferência de calor entre uma superfície e um fluido adjacente, quando

Leia mais

Fenômenos de Transporte

Fenômenos de Transporte Fenômenos de Transporte Introdução a Fenômenos de Transporte Prof. Dr. Felipe Corrêa Introdução a Fenômenos de Transporte Fenômenos de Transporte Refere-se ao estudo sistemático e unificado da transferência

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II FLUIDOS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II FLUIDOS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II FLUIDOS Prof. Bruno Farias Fluidos Os fluidos desempenham um papel vital em muitos aspectos

Leia mais

FENÔMENOS DE TRANSPORTES

FENÔMENOS DE TRANSPORTES FENÔMENOS DE TRANSPORTES AULA 10 ESCOAMENTO INTERNO INCOMPRESSÍVEL PROF.: KAIO DUTRA Escoamento Interno e Externo Escoamentos internos ou em dutos: São escoamentos completamente envoltos por superfícies

Leia mais

Unidade Curricular: Física Aplicada

Unidade Curricular: Física Aplicada Mestrado Integrado em Ciências Farmacêuticas Unidade Curricular: Física Aplicada Aulas Laboratoriais Trabalho laboratorial n.º 3 (1.ª parte) Viscosidade de Líquidos DETERMINAÇÃO DO COEFICIENTE DE VISCOSIDADE

Leia mais

RESUMO MECFLU P3. REVER A MATÉRIA DA P2!!!!! Equação da continuidade Equação da energia 1. TEOREMA DO TRANSPORTE DE REYNOLDS

RESUMO MECFLU P3. REVER A MATÉRIA DA P2!!!!! Equação da continuidade Equação da energia 1. TEOREMA DO TRANSPORTE DE REYNOLDS RESUMO MECFLU P3 REVER A MATÉRIA DA P2!!!!! Equação da continuidade Equação da energia 1. TEOREMA DO TRANSPORTE DE REYNOLDS Equação do Teorema do Transporte de Reynolds: : variação temporal da propriedade

Leia mais

Conceitos fundamentais (cont)

Conceitos fundamentais (cont) Conceitos fundamentais (cont) Paulo R. de Souza Mendes Grupo de Reologia Departamento de Engenharia Mecânica Pontifícia Universidade Católica - RJ agosto de 2010 comportamento mecânico decomposição da

Leia mais

Mecânica dos Fluidos (MFL0001) Curso de Engenharia Civil 4ª fase Prof. Dr. Doalcey Antunes Ramos

Mecânica dos Fluidos (MFL0001) Curso de Engenharia Civil 4ª fase Prof. Dr. Doalcey Antunes Ramos Mecânica dos Fluidos (MFL0001) Curso de Engenharia Civil 4ª fase Prof. Dr. Doalcey Antunes Ramos 1.1 Dimensões, Homogeneidade Dimensional e Unidades Aspectos qualitativos >>> GRANDEZA Natureza, Tipo, Características.

Leia mais

Cinemática da partícula fluida

Cinemática da partícula fluida Cinemática da partícula fluida J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Cinemática da partícula fluida 1 / 16 Sumário 1 Descrição do movimento 2 Cinemática

Leia mais

CAA 346 Hidráulica UNIVERSIDADE ESTADUAL DE SANTA CRUZ Departamento de Ciências Agrárias e Ambientais

CAA 346 Hidráulica UNIVERSIDADE ESTADUAL DE SANTA CRUZ Departamento de Ciências Agrárias e Ambientais CAA 346 Hidráulica UNIVERSIDADE ESTADUAL DE SANTA CRUZ Departamento de Ciências Agrárias e Ambientais HISTÓRIA Leitura dos itens 1 e 2 do Cap. 01: Princípios Básicos (Manual de Hidráulica Azevedo Neto,

Leia mais

Enquanto o sólido deforma limitadamente, os fluidos (líquidos e gases) se deformam continuamente.

Enquanto o sólido deforma limitadamente, os fluidos (líquidos e gases) se deformam continuamente. MECÂNICA DO FLUIDOS CAPÍTULO 1 INTRODUÇÃO, DEFINIÇÃO E CONCEITOS. É a ciência que estuda o comportamento físico dos fluidos e as leis que regem este comportamento. Utilizado em diversos sistemas como:

Leia mais

Departamento de Engenharia Mecânica. ENG Fenômenos de Transporte I

Departamento de Engenharia Mecânica. ENG Fenômenos de Transporte I Departamento de Engenharia Mecânica ENG1011 - Fenômenos de Transporte I Aula 1: Introdução e Manometria O que é um fluido? Área de aplicação da Mecânica de Fluidos Formulação (leis de conservação; leis

Leia mais

Décima aula de FT. Segundo semestre de 2013

Décima aula de FT. Segundo semestre de 2013 Décima aula de FT Segundo semestre de 2013 Vamos eliminar a hipótese do fluido ideal! Por que? Simplesmente porque não existem fluidos sem viscosidade e para mostrar que isto elimina uma situação impossível,

Leia mais

Quarta aula. Segundo semestre de 2015

Quarta aula. Segundo semestre de 2015 Quarta aula Segundo semestre de 2015 Exercícios Ex 2 Se a pressão em A é 36500 Pa, especifique a pressão em B na escala absoluta. Dado: pressão atmosférica igual a 95200 Pa. Exercícios (cont.) Ex 4 Se

Leia mais

PME/EP/USP. Prof. Antonio Luiz Pacífico

PME/EP/USP. Prof. Antonio Luiz Pacífico Introdução à Cinemática dos Fluidos PME 3230 - Mecânica dos Fluidos I PME/EP/USP Prof. Antonio Luiz Pacífico 2 Semestre de 2016 PME 3230 - Mecânica dos Fluidos I (EP-PME) Cinemática 2 Semestre de 2016

Leia mais

ESTÁTICA DOS FLUIDOS FENÔMENOS DE TRANSPORTE I

ESTÁTICA DOS FLUIDOS FENÔMENOS DE TRANSPORTE I ESTÁTICA DOS FLUIDOS FENÔMENOS DE TRANSPORTE I Prof. Marcelo Henrique 1 DEFINIÇÃO DE FLUIDO Fluido é um material que se deforma continuamente quando submetido à ação de uma força tangencial (tensão de

Leia mais

Tubo de Pitot. Usado para medir a vazão; Vantagem: Menor interferência no fluxo; Empregados sem a necessidade de parada;

Tubo de Pitot. Usado para medir a vazão; Vantagem: Menor interferência no fluxo; Empregados sem a necessidade de parada; Tubo de Pitot Usado para medir a vazão; Vantagem: Menor interferência no fluxo; Empregados sem a necessidade de parada; Desvantagem: Diversas tecnologias, o que dificulta a calibração do equipamento (de

Leia mais

Unidade Curricular: Física Aplicada

Unidade Curricular: Física Aplicada Mestrado Integrado em Ciências Farmacêuticas Unidade Curricular: Física Aplicada Aulas Laboratoriais Trabalho laboratorial nº. 3 (1ª. parte) Viscosidade de Líquidos DETERMINAÇÃO DO COEFICIENTE DE VISCOSIDADE

Leia mais

ESTÁTICA DOS FLUIDOS

ESTÁTICA DOS FLUIDOS ESTÁTICA DOS FLUIDOS FENÔMENOS DE TRANSPORTE I Prof. Marcelo Henrique 1 DEFINIÇÃO DE FLUIDO Fluido é um material que se deforma continuamente quando submetido à ação de uma força tangencial (tensão de

Leia mais

Propriedades de uma substância pura

Propriedades de uma substância pura Propriedades de uma substância pura Substância pura possui composição química invariável e homogênea, independentemente da fase em que está. Ex.: água Equilíbrio de fases em uma substância pura, as fases

Leia mais

Noção de fluido. Fluido é toda a substância que macroscopicamente apresenta a propriedade de escoar.

Noção de fluido. Fluido é toda a substância que macroscopicamente apresenta a propriedade de escoar. Sumário Unidade I MECÂNICA 3- de fluidos Hidrostática - Noção de fluido, massa volúmica, peso volúmico ou peso específico e densidade relativa. - Noção de pressão e força de pressão. Unidade SI de pressão.

Leia mais

CONSTRUÇÃO DE MÓDULO DE REYNOLDS PARA VISUALIZAÇÃO DOS REGIMES DE ESCOAMENTO APLICADO AO ENSINO DE MECÂNICA DOS FLUIDOS

CONSTRUÇÃO DE MÓDULO DE REYNOLDS PARA VISUALIZAÇÃO DOS REGIMES DE ESCOAMENTO APLICADO AO ENSINO DE MECÂNICA DOS FLUIDOS CONSTRUÇÃO DE MÓDULO DE REYNOLDS PARA VISUALIZAÇÃO DOS REGIMES DE ESCOAMENTO APLICADO AO ENSINO DE MECÂNICA DOS FLUIDOS Caroline Klinger 1, Nataly Leidens 2, Isaac dos Santos Nunes 3 1 URI Campus Santo

Leia mais

3.1- Escoamento É a mudança de forma do fluido sob a ação de um esforço tangencial.

3.1- Escoamento É a mudança de forma do fluido sob a ação de um esforço tangencial. UNIVERSIDADE FEDERAL DO PAMPA Campus Bagé SEMESTRE: 2013/2 CURSOS: ENGENHARIA DE COMPUTAÇÃO/ ENGENHARIA DE PRODUÇÃO COMPONENTE CURRICULAR: FENÔMENOS DE TRANSPORTE (BA000200) PROFESSOR: Marcilio Machado

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Estadual do Sudoeste da Bahia Departamento de Estudos Básicos e Instrumentais Mecânica dos Fluidos Física II Prof. Roberto Claudino Ferreira ÍNDICE ) - Introdução; ) - Densidade; 3) - Pressão;

Leia mais

Lista de Exercícios Perda de Carga Localizada e Perda de Carga Singular

Lista de Exercícios Perda de Carga Localizada e Perda de Carga Singular Lista de Exercícios Perda de Carga Localizada e Perda de Carga Singular 1. (Petrobrás/2010) Um oleoduto com 6 km de comprimento e diâmetro uniforme opera com um gradiente de pressão de 40 Pa/m transportando

Leia mais

Laboratório de Engenharia Química I. Aula Prática 02

Laboratório de Engenharia Química I. Aula Prática 02 Laboratório de Engenharia Química I Aula Prática 02 Determinação do coeficiente de viscosidade em líquidos Método de Stokes Prof. Dr. Gilberto Garcia Cortez 1 Introdução A viscosidade dinâmica (ou absoluta)

Leia mais

GASES. https://www.youtube.com/watch?v=wtmmvs3uiv0. David P. White. QUÍMICA: A Ciência Central 9ª Edição Capítulo by Pearson Education

GASES. https://www.youtube.com/watch?v=wtmmvs3uiv0. David P. White. QUÍMICA: A Ciência Central 9ª Edição Capítulo by Pearson Education GASES PV nrt https://www.youtube.com/watch?v=wtmmvs3uiv0 David P. White QUÍMICA: A Ciência Central 9ª Edição volume, pressão e temperatura Um gás consiste em átomos (individualmente ou ligados formando

Leia mais

Mecânica dos Fluidos. Prof. Giovani Zabot

Mecânica dos Fluidos. Prof. Giovani Zabot Mecânica dos Fluidos Prof. Giovani Zabot Sumário Fundamentos de Mecânica dos Fluidos Definição de Fluido Fluidos Compressíveis e Incompressíveis Campo de Velocidades Linha de corrente e campo Classificação

Leia mais