Introdução à Mecânica dos Fluidos
|
|
|
- Maria de Belem Palmeira Estrada
- 9 Há anos
- Visualizações:
Transcrição
1 Sólido Líquido Gás Mantém sua forma, independente do recipiente. Moléculas presas em uma estrutura por grandes forças intermoleculares. Assume a forma do recipiente, mantendo uma superfície livre. Embora apresente grandes forças intermoleculares, estas apresentam boa mobilidade. Expande-se ocupando todo o recipiente fechado. Pequenas forças de interação entre as moléculas, exceto nas colisões. Altas densidades. ρ Fe = 7700 kg/m 3. Médias densidades ρ água = 1000 kg/m 3. Baixas densidades ρ ar = 1,2 kg/m 3 (nível do mar). Fluido
2 Similaridades: Ar e água são fluidos Diferenças: Fluido
3 Similaridades: Ar e água são fluidos Diferenças: Ar e água são compostos por moléculas Fluido
4 Similaridades: Ar e água são fluidos Diferenças: Ar e água são compostos por moléculas As moléculas em cada fluido estão em movimento contínuo e aleatório Fluido
5 Similaridades: Ar e água são fluidos Ar e água são compostos por moléculas Diferenças: Na fase líquida há fortes forças de coesão e de repulsão entre as moléculas As moléculas em cada fluido estão em movimento contínuo e aleatório Fluido
6 Similaridades: Ar e água são fluidos Ar e água são compostos por moléculas As moléculas em cada fluido estão em movimento contínuo e aleatório Diferenças: Na fase líquida há fortes forças de coesão e de repulsão entre as moléculas O líquido apresenta uma superfície livre enquanto que o gás se expande para ocupar todo o recipiente que o contém Fluido
7 Similaridades: Ar e água são fluidos Ar e água são compostos por moléculas As moléculas em cada fluido estão em movimento contínuo e aleatório Diferenças: Na fase líquida há fortes forças de coesão e de repulsão entre as moléculas O líquido apresenta uma superfície livre enquanto que o gás se expande para ocupar todo o recipiente que o contém Líquidos são muito difíceis de comprimir enquanto que gases são facilmente comprimidos Fluido
8 Fluido: Substância que se deforma continuamente sob esforço tangencial, não importando o quanto pequeno seja este esforço. Não apresenta forma própria e é incapaz de permanecer em repouso quando sujeito a esforços de cisalhamento. O bloco sólido acima deforma-se em função da aplicação da força F. Desde que o limite elástico do material não seja excedido, a deformação será proporcional ao esforço tangencial, e o sólido retornará à forma anterior após retirada esta tensão. Quando o meio entre as duas placas infinitas e paralelas acima é um fluido, este deforma-se continuamente enquanto a força estiver atuando (por menor que esta seja). O fluido em contato com a placa tem a mesma velocidade desta. Não ocorre deslizamento na zona de contato. Este fato é conhecido como a condição de não deslizamento, observada e confirmada por várias experiências.
9 A Mecânica dos Fluidos estuda o comportamento dos fluidos em repouso e em movimento. Sistema: Certa quantidade definida de massa fluida. Os limites do sistema isolamno do meio que o circunda (no que diz respeito à massa). Os limites do sistema podem ser fixos ou móveis, mas não se verifica transporte de massa através destes limites. Volume de Controle: Para estudar o escoamento dos fluidos é muito difícil focar a atenção em certa quantidade de massa fluida identificável. É muito mais conveniente focalizar a atenção em certo volume do espaço através do qual escoa o fluido. Volume de controle é um volume arbitrário no espaço, através do qual um fluido escoa. O seu contorno geométrico é chamado de superfície de controle.
10 Métodos descritivos: Quando é fácil seguir elementos identificáveis de massa, empregamos o método descritivo que acompanha partículas. Este procedimento é chamado de método Lagrangiano. Por outro lado, principalmente quando lidamos com volumes de controle adotamos o método descritivo de campo ou Euleriano, que orienta a atenção para as propriedades de escoamento em dado ponto do espaço em função do tempo.
11 O fluido como contínuo: Trataremos qualquer fluido como substância que pode ser dividida ao infinito, um contínuo, sempre mantendo suas propriedades, sem nos preocuparmos com o comportamento individual de suas moléculas. Como conseqüência, qualquer propriedade de um fluido tem valor definido em cada ponto do espaço. Densidade, Temperatura, Velocidade e outras propriedades são funções contínuas do espaço e do tempo. A hipótese do contínuo falha quando o livre caminho médio de colisão entre as moléculas torna-se da mesma ordem de grandeza da menor dimensão característica do problema estudado. Por exemplo no escoamento dos gases rarefeitos (vôos em altas camadas da atmosfera).
12 Determinação da densidade em um ponto: Densidade: Quantidade de massa contida na unidade de volume [ ]. A densidade média em todo o volumev é dada por V Em geral, este valor não é o mesmo em todos os pontos de V. m A densidade em torno do ponto C na figura é dada por C V Mas, de que tamanho deve ser V? Resposta: Existe um valor limite inferior V que quando V torna-se menor que ele e contém um pequeno número de moléculas não é mais possível definir m/ V. Portanto: c m lim V V m V
13 O fluido como contínuo: Os fluidos são compostos de moléculas em movimento constante, onde ocorrem colisões freqüentes. Para se analisar com exatidão, deve-se considerar a ação de cada molécula ou grupo de moléculas em um escoamento. Tais considerações são pouco práticas na maioria dos problemas. Interessam as manifestações médias mensuráveis de várias moléculas (por exemplo: densidade, pressão, temperatura...). Pode-se considerar que surjam de uma distribuição conveniente da matéria, que denominamos de contínuo, ao invés de um aglomerado de moléculas discretas. Ou seja, no estudo dos fluidos desprezam-se o espaçamento e atividade moleculares, considerando-o como um meio contínuo que pode ser dividido infinitas vezes em partículas fluidas entre as quais se supõe não haver vazios. (FONTE: Apostila CEFET-SP)
14 O fluido como contínuo: Todos nós estamos familiarizados com os fluidos, sendo os mais comuns a água e o ar, e os tratamos como lisos e suaves, isto é, como sendo meios contínuos. Não podemos estar seguros da natureza molecular dos fluidos, a menos que utilizemos equipamentos especializados para identificá-la. Essa estrutura molecular é tal que a massa não está distribuída de forma contínua no espaço, mas está concentrada em moléculas que, por sua vez, estão separadas por regiões relativamente grandes de espaço vazio. Nesta seção, discutiremos sob quais circunstâncias um fluido pode ser tratado como um contínuo, para o qual, por definição, as propriedades variam muito pouco de ponto a ponto. A hipótese do contínuo é válida no tratamento do comportamento dos fluidos sob condições normais. Ela falha, no entanto, quando a trajetória média livre das moléculas*, o livre caminho médio, torna-se da mesma ordem de grandeza da menor dimensão característica significativa do problema. Isto ocorre em casos específicos como no escoamento de um gás rarefeito. Nestes problemas especiais (não tratados neste curso), devemos abandonar o conceito de contínuo em favor dos pontos de vista microscópico e estatístico. Como conseqüência da hipótese do contínuo, cada propriedade do fluido é considerada como tendo um valor definido em cada ponto do espaço. Desta forma as propriedades dos fluidos (massa específica, temperatura, velocidade,...) são consideradas funções contínuas do espaço e do tempo. *Aproximadamente 6 x 10-8 m para moléculas de gás que se comporta como um gás perfeito nas STP (Standard Temperature and Pressure) ou CPPT (Condição Padrão de Pressão e Temperatura) STP = CPPT = CNTP (FONTE: Livro McDonald-Fox) 15ºC e 101,3 kpa.
15 Lei dos gases ideais: PV nrt onde P é a pressão absoluta; V é o volume; n é o número de moles, R temperatura absoluta. A constante universal dos gases é 8,314 kj/kmol-k. A equação acima pode ser escrita como: é a constante universal dos gases, e T é a P nm V R M T Onde M é o peso molecular do gás. O produto entre o número de moles e o peso molecular é a massa do gás. O quociente entre a constante universal e o peso molecular é a constante do gás R. Então: P RT massa volume
16 Se determinarmos a densidade em um grande número de pontos no Volume, V, ao longo do tempo obteremos = f(x,y,z,t) que chamamos de Campo de Densidades. Uma partícula fluida é uma pequena massa de fluido, com identidade fixa, com volume V. A velocidade no ponto C é a velocidade instantânea da partícula fluida que, em dado instante, passa por C. Novamente, se definirmos a velocidade em um grande número de pontos, teremos a completa representação das velocidades (Campo de velocidades). V f x, y, z, t O vetor velocidade pode ser expresso em termos de suas três componentes escalares: V Se as propriedades do fluido, em cada ponto do escoamento, não variam com o tempo, o escoamento é dito PERMANENTE. Ou seja, qualquer propriedade pode variar de um ponto a outro, mas todas permanecem constantes em cada ponto com o tempo: ui vj wk 0 t Onde é uma propriedade qualquer do escoamento.
17 Se V = f(x,y,z,t) dizemos que o escoamento é tridimensional e não-permanente. O escoamento mostrado na figura abaixo, cuja velocidade é obtida pela equação ao lado é uni, bi ou tridimensional? u u max 1 r R 2 Linhas de Corrente são linhas tangentes à direção do escoamento em todos os pontos do campo. Desta forma, não há escoamento através (cortando) das linhas de corrente. Para este sistema de coordenadas (cilíndricas, V=f(x, r, )) a velocidade é definida em função de apenas uma ordenada, r, portanto o escoamento é unidimensional.
18 Consideremos o elemento de fluido entre as duas placas paralelas. A placa superior move-se com velocidade constante u, sob ação da força constante F x. Durante um intervalo de tempo t o elemento deforma-se conforme mostrado na figura. A taxa de deformação é dada pela relação abaixo: Taxa de deformação = lim0 t t d dt
19 A distância L entre M e M é obtida por: l ut Para pequenos ângulos: l y Então: u t y Tomando-se os limites dos dois lados: d dt du dy Taxa de deformação = d dt du dy
20 A tensão tangencial (ou de cisalhamento) é definida por: lim0 A FX A dfx da Para a maioria dos fluidos, as tensões tangenciais são proporcionais à taxa de deformação. Quando isto ocorre, os fluidos são denominados FLUIDOS NEWTONIANOS. du dy du dy A constante de proporcionalidade é a VISCOSIDADE, também denominada VISCOSIDADE ABSOLUTA ou DINÂMICA. Se dividimos a viscosidade absoluta pela massa específica, obtemos a VISCOSIDADE CINEMÁTICA:
21 A viscosidade retrata a resistência que o fluido impõe ao cisalhamento. Os fluidos de maior viscosidade apresentam uma maior resistência à deformação. Os fluidos nos quais a tensão de cisalhamento não é diretamente proporcional à taxa de deformação são os FLUIDOS NÃO NEWTONIANOS.
22 DESCRIÇÃO E CLASSIFICAÇÃO DOS MOVIMENTOS DE FLUIDOS Mecânica dos Fluidos Não viscoso = 0 Viscoso Laminar Turbulento Compressível Incompressível Interno Externo No escoamento de fluidos não viscosos a viscosidade é supostamente nula. Este fluido não existe, mas, em alguns casos, a hipótese = 0 simplifica a análise e conduz a resultados satisfatórios.
23 DESCRIÇÃO E CLASSIFICAÇÃO DOS MOVIMENTOS DE FLUIDOS Laminar Turbulento Um escoamento laminar é aquele em que as partículas fluidas movem-se em camadas, ou lâminas. No escoamento turbulento as partículas fluidas rapidamente se misturam, enquanto se movimentam ao longo do escoamento, devido às flutuações aleatórias no campo tridimensional de velocidades. No caso de escoamento de fluido incompressível em duto, sua natureza é determinada pelo valor do número de Reynolds. VD VD Re V D Massa específica do fluido Velocidade do fluido Diâmetro do tubo Viscosidade dinâmica do fluido Viscosidade cinemática do fluido O escoamento em dutos é laminar quando Re 2300
24 A CAMADA LIMITE: Escoamento de fluido viscoso sobre placa semi-infinita: As tensões de cisalhamento afetam o escoamento. U A = U A = 0 Condição de não deslizamento A placa parada dá origem a esforços de retardamento do fluxo (desacelera o fluido nas proximidades). Para 0 y y B teremos 0 u U Na região 0 y y B as tensões tangenciais estão presentes. Para y > y B o gradiente de velocidades é nulo e, portanto, não estão presentes as tensões tangenciais. A placa influencia regiões maiores do campo de escoamento à medida em que caminhamos no sentido do fluxo. y B > y B e u C < u C A região próxima da placa onde se faz sentir a ação das tensões tangenciais é a camada limite. A camada limite na figura acima está BEM exagerada!
25 Escoamento Permanente de fluido incompressível ao redor de um cilindro: O ponto A divide o escoamento e chama-se ponto de estagnação. A distribuição das velocidades fora da camada limite pode ser determinada pelo espaçamento entre as linhas de corrente (a velocidade aumenta quando o espaçamento diminui). Escoamento de fluido não viscoso: Linhas de corrente simétricas em relação aos eixos x e y. A velocidade obtém um valor máximo na altura do ponto D. Se cresce a velocidade, decresce a pressão e vice-versa. A pressão atinge um valor mínimo na altura do ponto D. Devido à simetria a distribuição de pressões também é simétrica em relação a x e y. A resultante de forças nos eixos x e y é nula (F X = F arrasto = 0) o que contraria a experiência. Neste caso despreza-se a presença da camada limite.
26 Escoamento Permanente de fluido incompressível ao redor de um cilindro: Escoamento de fluido viscoso: Como a pressão decresce continuamente entre os pontos A e B, um elemento de fluido no interior da camada limite sofre certa força de pressão no sentido do escoamento, suficiente para vencer a resistência da tensão tangencial, e o elemento de fluido se move no sentido do escoamento. Além do ponto B, atrás do cilindro, a pressão aumenta no sentido do escoamento, o elemento de fluido irá sofrer certa força de pressão em sentido oposto ao escoamento. A quantidade de movimento do fluido no interior da camada limite é insuficiente para transportar o elemento de fluido para regiões de maior pressão. As camadas de fluido adjacentes à superfície sólida serão levadas ao repouso e o fluido se descolará da superfície. O ponto em que isto ocorre chama-se ponto de descolamento. O descolamento da camada limite tem como conseqüência a formação de uma região de relativamente baixa pressão atrás do corpo. Essa região, deficiente em quantidade de movimento, chama-se esteira. Desta forma, existe um desequilíbrio de forças de pressões no sentido do escoamento, resultando no arrasto que atua no corpo. Quanto maior a esteira, maior será o arrasto.
27 Escoamento Permanente de fluido incompressível ao redor de um cilindro: Como reduzir o arrasto? Como a esteira resulta do descolamento da camada limite, que, por sua vez, está relacionado com gradientes adversos de pressão (aumento da pressão no sentido do escoamento), reduzir os gradientes significa reduzir a possibilidade de descolamentos e, conseqüentemente, reduzir os arrastos. O corpo convenientemente perfilado reduz o gradiente adverso de pressão em virtude da difusão do acréscimo de pressão em distância maior. Desta forma, a possibilidade de descolamento diminui e o arrasto fica significativamente reduzido.
28 Escoamentos compressíveis e Incompressíveis: Os escoamentos onde as variações de densidade do fluido são desprezíveis denominam-se incompressíveis. Quando estas variações não podem ser desprezadas os escoamentos são ditos compressíveis. Para a maioria dos casos práticos os escoamentos de líquidos são incompressíveis. Os gases também podem se comportar como fluidos incompressíveis desde que a velocidade do escoamento seja pequena em relação à velocidade do som. V M c M = número de Mach, V = velocidade do fluido, c = velocidade do som Quando M < 0,3 os gases podem ser tratados como fluidos incompressíveis (variações de densidade inferiores a 5%) O golpe de aríete, ou martelo hidráulico, é causado pela propagação e reflexão de ondas acústicas em um líquido confinado, (por exemplo, quando uma válvula é bruscamente fechada numa tubulação). A cavitação ocorre quando bolhas ou bolsas de vapor se formam em um escoamento líquido como conseqüência de reduções locais na pressão (por exemplo, nas extremidades das pás da hélice de um barco a motor). O crescimento e o colapso ou implosão de bolhas de vapor em regiões adjacentes a superfícies sólidas podem causar sérios danos por erosão a estas superfícies. O golpe de aríete e a cavitação são exemplos da importância dos efeitos de compressibilidade nos escoamentos de líquidos. Escoamentos compressíveis aparecem em : sistemas de ar comprimido; gases em tubulações a altas pressões; controles pneumáticos e hidráulicos; projeto de aeronaves modernas; ventiladores; compressores, etc.
29 MÓDULO DE ELASTICIDADE, E V : E V dp dv V É a propriedade que relaciona variações de pressão na mudança de volume (expansão ou contração). Expressa a razão entre variação de pressão e a fração de variação em volume. Como a fração de variação em volume (dv/v) é negativa para um dp positivo, o sinal negativo é usado na definição para fornecer um valor positivo de E V. A elasticidade é frequentemente chamada de compressibilidade do fluido. A fração de variação em volume é relacionada com a variação da densidade do material: m V m cte dm dv Vd 0 Vd dv d dv V E o módulo de elasticidade pode ser escrito: dp E V d E V da água é aproximadamente 2,2 GPa, o que corresponde a uma variação de 0,05% no volume para um aumento de 1MPa na pressão. O que justifica a consideração da água como incompressível ( apresenta uma pequena variação em volume para uma elevada alteração na pressão). O módulo de elasticidade também pode ser chamado de módulo de compressibilidade ou coeficiente de compressibilidade.
FENÔMENOS DE TRANSPORTES
FENÔMENOS DE TRANSPORTES AULA 3 CLASSIFICAÇÃO DE ESCOAMENTOS PROF.: KAIO DUTRA Descrição e Classificação dos Movimentos de Fluido A mecânica dos fluidos é uma disciplina muito vasta: cobre desde a aerodinâmica
Fenômeno de Transportes A PROFª. PRISCILA ALVES
Fenômeno de Transportes A PROFª. PRISCILA ALVES [email protected] Proposta do Curso Critérios de Avaliação e Recuperação Outras atividades avaliativas Atividades experimentais: Será desenvolvida
Capítulo 6: Escoamento Externo Hidrodinâmica
Capítulo 6: Escoamento Externo Hidrodinâmica Conceitos fundamentais Fluido É qualquer substância que se deforma continuamente quando submetido a uma tensão de cisalhamento, ou seja, ele escoa. Fluidos
FENÔMENOS DOS TRANSPORTES. Definição e Conceitos Fundamentais dos Fluidos
Definição e Conceitos Fundamentais dos Fluidos Matéria Sólidos Fluidos possuem forma própria (rigidez) não possuem forma própria; tomam a forma do recipiente que os contém Fluidos Líquidos Gases fluidos
Disciplina : Mecânica dos fluidos. Aula 3: Conceitos fundamentais
Curso: Engenharia Mecânica Disciplina : Mecânica dos fluidos Aula 3: Conceitos fundamentais Prof. Evandro Rodrigo Dário, Dr. Eng. Campo de Tensão Cada partícula fluida pode sofrer a ação de dois tipos
FENÔMENOS DE TRANSPORTES AULA 2 FLUIDOS PARTE 2
FENÔMENOS DE TRANSPORTES AULA 2 FLUIDOS PARTE 2 PROF.: KAIO DUTRA Fluido Como um Contínuo Se isolarmos um volume no espaço de ar de 0,001 mm³ (em torno do tamanho de um grão de areia), existirão em média
1. BASES CONCEITUAIS PARA O ESTUDO DOS FENÔMENOS DE TRANSPORTE
1. BASES CONCEITUAIS PARA O ESTUDO DOS FENÔMENOS DE TRANSPORTE Duas placas paralelas Substância entre as placas (placa inferior fixa) Força aplicada na placa superior Tensão de cisalhamento F/A (A... área
LOQ Fenômenos de Transporte I. FT I 03 Tensão e viscosidade. Prof. Lucrécio Fábio dos Santos. Departamento de Engenharia Química LOQ/EEL
LOQ 4083 - Fenômenos de Transporte I FT I 03 Tensão e viscosidade Prof. Lucrécio Fábio dos Santos Departamento de Engenharia Química LOQ/EEL Atenção: Estas notas destinam-se exclusivamente a servir como
Introdução e Conceitos Básicos
Introdução e Conceitos Básicos Definição de Fluido Fluido é uma substância que não tem forma própria, assume o formato do recipiente. São, portanto, os líquidos e gases (em altas temperaturas o plasma)
Escoamento completamente desenvolvido
Escoamento completamente desenvolvido A figura mostra um escoamento laminar na região de entrada de um tubo circular. Uma camada limite desenvolve-se ao longo das paredes do duto. A superfície do tubo
FENÔMENOS DE TRANSPORTE Definições e Conceitos Fundamentais
FENÔMENOS DE TRANSPORTE Definições e Conceitos Fundamentais CAPÍTULO 1. DEFINIÇÕES E CONCEITOS FUNDAMENTAIS 1 FENÔMENOS DE TRANSPORTE A expressão Fenômenos de transporte refere-se ao estudo sistemático
Mecânica dos Fluidos (MFL0001) Curso de Engenharia Civil 4ª fase Prof. Dr. Doalcey Antunes Ramos CAPÍTULO 3: FLUIDOS EM MOVIMENTO
Mecânica dos Fluidos (MFL0001) Curso de Engenharia Civil 4ª fase Prof. Dr. Doalcey Antunes Ramos CAPÍTULO 3: FLUIDOS EM MOVIMENTO 3.1 Descrição do Movimento dos Fluidos O método de Lagrange descreve o
TÍTULO: DESENVOLVIMENTO DE UM KIT DIDÁTICO DE PERDA DE CARGA CATEGORIA: EM ANDAMENTO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS
TÍTULO: DESENVOLVIMENTO DE UM KIT DIDÁTICO DE PERDA DE CARGA CATEGORIA: EM ANDAMENTO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS INSTITUIÇÃO: FACULDADE DE ENGENHARIA DE SOROCABA AUTOR(ES): RAPHAEL
Por isso, quem mata o tempo é suicida! Aula 3 de FT
Por isso, quem mata o tempo é suicida! Aula 3 de FT Quais são os tipos de tensões? O quociente força pela área da superfície onde ela é exercida é denominado de tensão. Consequências! Na mecânica as principais
Fundamentos da Mecânica dos Fluidos
Fundamentos da Mecânica dos Fluidos 1 - Introdução 1.1. Algumas Características dos Fluidos 1.2. Dimensões, Homogeneidade Dimensional e Unidades 1.2.1. Sistemas de Unidades 1.3. Análise do Comportamentos
Disciplina: Sistemas Fluidomecânicos
Disciplina: Sistemas Fluidomecânicos Mecânica dos Fluidos: Revisão Definições, Propriedades dos Fluidos, Estática dos Fluidos, Cinemática dos Fluidos, Equação da Energia para Regime Permanente. Definição
Introdução a Cinemática Escoamento Laminar e Turbulento Número de Reinalds
Disciplina: Fenômeno de AULA 01 unidade 2 Transporte Introdução a Cinemática Escoamento Laminar e Turbulento Número de Reinalds Prof. Ednei Pires Definição: Cinemática dos fluidos É a ramificação da mecânica
+ MECÂNICA DOS FLUIDOS. n DEFINIÇÃO. n Estudo do escoamento de li quidos e gases (tanques e tubulações) n Pneuma tica e hidraúlica industrial
Mecânica Sólidos INTRODUÇÃO MECÂNICA DOS FLUIDOS FBT0530 - FÍSICA INDUSTRIAL PROFA. JULIANA RACT PROFA. MARINA ISHII 2018 Fluidos O que é um fluido? MECÂNICA DOS FLUIDOS PROPRIEDADE SÓLIDOS LÍQUIDOS GASES
Introdução aos Fenômenos de Transporte
aos Fenômenos de Transporte Aula 2 - Mecânica dos fluidos Engenharia de Produção 2012/1 aos Fenômenos de Transporte O conceito de fluido Dois pontos de vista: Macroscópico: observação da matéria do ponto
Conceitos Fundamentais. Viscosidade e Escoamentos
Conceitos Fundamentais Viscosidade e Escoamentos Multiplicação de pressão Multiplicação de pressão Vazão X Velocidade Vazão X Velocidade VISCOSIDADE DE LÍQUIDOS Fluido perfeito Considere-se um volume
Mecânica dos Fluidos. Prof. Dr. Gilberto Garcia Cortez
Mecânica dos Fluidos Aula 01 Prof. Dr. Gilberto Garcia Cortez Bibliografia utilizada 1- Introdução Mecânica dos fluidos é a ciência que tem por objetivo o estudo do comportamento físico dos fluidos e das
Introdução aos Fluidos em Movimento Tipos de Escoamentos
Introdução aos Fluidos em Movimento Tipos de Escoamentos Aula 3 de PME3230 Descrição Euleriana e Lagrangeana Linhas de Corrente e de Trajetória Aceleração Prof. Marcos Tadeu Pereira Classificações possíveis
MÁQUINAS HIDRÁULICAS AT-087
Universidade Federal do Paraná Curso de Engenharia Industrial Madeireira MÁQUINAS HIDRÁULICAS AT-087 Dr. Alan Sulato de Andrade [email protected] DEFINIÇÃO: Um fluído consiste numa substância não sólida
HIDRÁULICA : CONCEITOS FUNDAMENTAIS. hydor água + aulos tubo, condução. 1 - Introdução:
HIDRÁULICA : CONCEITOS FUNDAMENTAIS 1 - Introdução: Hidráulica significa etimologicamente condução da água que resulta do grego: hydor água + aulos tubo, condução. Divisão: A Hidráulica é o ramo da Ciência
LOQ Fenômenos de Transporte I. FT I 02 Conceitos básicos. Prof. Lucrécio Fábio dos Santos. Departamento de Engenharia Química LOQ/EEL
LOQ 4083 - Fenômenos de Transporte I FT I 02 Conceitos básicos Prof. Lucrécio Fábio dos Santos Departamento de Engenharia Química LOQ/EEL Atenção: Estas notas destinam-se exclusivamente a servir como roteiro
FUNDAMENTAÇÃO HIDROMECÂNICA Princípios Básicos
FUNDAMENTAÇÃO HIDROMECÂNICA Princípios Básicos Sistemas Hidráulicos podem ser descritos por leis que regem o comportamento de fluidos confinados em: regime permanente (repouso) invariante no tempo; regime
Departamento de Engenharia Mecânica. ENG 1011: Fenômenos de Transporte I
Departamento de Engenharia Mecânica ENG 1011: Fenômenos de Transporte I Aula 9: Formulação diferencial Exercícios 3 sobre instalações hidráulicas; Classificação dos escoamentos (Formulação integral e diferencial,
Capítulo 6: Escoamento Externo Hidrodinâmica
Capítulo 6: Escoamento Externo Hidrodinâmica Arrasto viscoso e de pressão Arrasto total Campo de escoamento Linhas de corrente: definidas como a linha contínua que é tangente aos vetores velocidade ao
CONCEITOS BÁSICOS. Definição de Fluido - Os estados físicos da matéria - A hipótese do contínuo -Propriedades físicas
CONCEITOS BÁSICOS Definição de Fluido - Os estados físicos da matéria - A hipótese do contínuo -Propriedades físicas Conceituação qualitativa da matéria -Sólidos -Líquidos fluidos -Gases Fluido é uma substância
RESUMO MECFLU P2. 1. EQUAÇÃO DE BERNOULLI Estudo das propriedades de um escoamento ao longo de uma linha de corrente.
RESUMO MECFLU P2 1. EQUAÇÃO DE BERNOULLI Estudo das propriedades de um escoamento ao longo de uma linha de corrente. Hipóteses Fluido invíscido (viscosidade nula) não ocorre perda de energia. Fluido incompressível
As forças que atuam em um meio contínuo: Forças de massa ou de corpo: todo o corpo peso e centrífuga Forças de superfície: sobre certas superfícies
Hidráulica Revisão de alguns conceitos Propriedades Físicas dos Fluidos Forças, esforços e pressão (tensão) As forças que atuam em um meio contínuo: Forças de massa ou de corpo: distribuídas de maneira
Fenômenos de Transporte I Aula 01
Fenômenos de Transporte I Aula 01 O que são fluidos. Propriedades: tensão de cisalhamento, massa específica, peso específico, densidade relativa e viscosidade [1] BRUNETTI, F., Mecânica dos Fluidos, 2ª
ENGENHARIA FÍSICA. Fenômenos de Transporte A (Mecânica dos Fluidos)
ENGENHARIA FÍSICA Fenômenos de Transporte A (Mecânica dos Fluidos) Prof. Dr. Sérgio R. Montoro [email protected] [email protected] Fenômenos de Transporte UNIVERSIDADE DE SÃO PAULO Os fenômenos
Mecânica dos Fluidos
Mecânica dos Fluidos Cinemática dos Fluidos: Escoamento e Balanços Prof. Universidade Federal do Pampa BA000200 Campus Bagé 27 e 28 de março de 2017 Cinemática dos Fluidos, Parte 1 1 / 35 Escoamento de
ALGUNS FUNDAMENTOS MICROFLUÍDICA
ALGUNS FUNDAMENTOS DE MICROFLUÍDICA INTRODUÇÃO TRANSFERÊNCIA DE MOMENTUM Estudo do movimento dos fluidos e das forças que produzem esse movimento. Fluido Definição: Fluido é uma substância que se deforma
ENADE /08/2017 FENÔMENOS DE TRANSPORTE FENÔMENOS DE TRANSPORTE FENÔMENOS DE TRANSPORTE FENÔMENOS DE TRANSPORTE MASSA ESPECÍFICA ( )
ENADE 2017.2 MASSA ESPECÍFICA ( ) DENSIDADE (d) É definida como a razão entre a massa dividida por unidade de volume de um material contínuo e homogêneo. É definida como a razão entre a massa dividida
Física. Física Módulo 2 Flúidos
Física Módulo 2 Flúidos Introdução O que é a Mecânica dos Fluidos? É a parte da mecânica aplicada que se dedica análise do comportamento dos líquidos e dos gases, tanto em equilíbrio quanto em movimento.
ENGENHARIA FÍSICA. Fenômenos de Transporte A (Mecânica dos Fluidos)
ENGENHARIA FÍSICA Fenômenos de Transporte A (Mecânica dos Fluidos) Prof. Dr. Sérgio R. Montoro [email protected] [email protected] MECÂNICA DOS FLUIDOS ENGENHARIA FÍSICA AULA 2...CONTINUAÇÃO...
Ponto de Separação e Esteira
Ponto de Separação e Esteira p/ x=0 p/ x0 Escoamento separado O fluido é desacelerado devido aos efeitos viscosos. Se o gradiente de pressão é nulo, p/x=0, não há influência no escoamento. Na região
UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes
Fluido Newtoniano Viscosidade dos fluidos: Definimos fluido como uma substância que se deforma continuamente sob a ação de um esforço cisalante. Na ausência deste esforço, ele não se deformará. Os fluidos
Transferência de Calor
Transferência de Calor Escoamento Cruzado Sobre Cilindros e Esferas Filipe Fernandes de Paula [email protected] Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade
Fundamentos da Lubrificação e Lubrificantes Aula 4 PROF. DENILSON J. VIANA
Fundamentos da Lubrificação e Lubrificantes Aula 4 PROF. DENILSON J. VIANA Introdução à Lubrificação Lubrificação É o fenômeno de redução do atrito entre duas superfícies em movimento relativo por meio
ESTUDO DA TRANSIÇÃO ENTRE ESCOAMENTO LAMINAR E TURBULENTO EM TUBO CAPILAR
ESTUDO DA TRANSIÇÃO ENTRE ESCOAMENTO LAMINAR E TURBULENTO EM TUBO CAPILAR M. H. MARTINS 1, A. KNESEBECK 1 1 Universidade Federal do Paraná, Departamento de Engenharia Química E-mail para contato: [email protected]
EM-524 Fenômenos de Transporte
EM-524 Fenômenos de Transporte Livro : Introdução às Ciências Térmicas F.W. Schmidt, R.E. Henderson e C.H. Wolgemuth Editora Edgard Blücher Denilson Boschiero do Espirito Santo DE FEM sala : ID301 [email protected]
onde v m é a velocidade média do escoamento. O 2
Exercício 41: São dadas duas placas planas paralelas à distância de 1 mm. A placa superior move-se com velocidade de m/s, enquanto a inferior é fixa. Se o espaço entre a placas é preenchido com óleo de
h coeficiente local de transferência de calor por convecção h coeficiente médio de transferência de calor por convecção para toda a superfície
\CONVECÇÃO FORÇADA EXTERNA " Fluxo térmico: q h(tsup T ) h coeficiente local de transferência de calor por convecção Taxa de transferência de calor q ha sup (T sup T ) h coeficiente médio de transferência
onde v m é a velocidade média do escoamento. O 2
Exercício 24: São dadas duas placas planas paralelas à distância de 1 mm. A placa superior move-se com velocidade de 2 m/s, enquanto a inferior é fixa. Se o espaço entre a placas é preenchido com óleo
O volume e, portanto, a massa específica ( = massa/volume) dos gases são sensíveis às variações da pressão e Temperatura.
1.5 Lei dos Gases Ideais O volume e, portanto, a massa específica ( = massa/volume) dos gases são sensíveis às variações da pressão e Temperatura. Buscando nos cursos de física básico de pressão e temperatura.
Halliday Fundamentos de Física Volume 2
Halliday Fundamentos de Física Volume 2 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,
FENÔMENOS DE TRANSPORTES AULA 1 FLUIDOS PARTE 1
FENÔMENOS DE TRANSPORTES AULA 1 FLUIDOS PARTE 1 PROF.: KAIO DUTRA Definição de Um Fluido Definição elementar: Fluido é uma substância que não tem uma forma própria, assume o formato do meio. Definição
EM34B Mecânica dos Fluidos 1
EM34B Mecânica dos Fluidos 1 Prof. Dr. André Damiani Rocha [email protected] : Conceitos Fundamentais 2 Conceitos fundamentais O Fluido como um contínuo Os fluidos são compostos de moléculas em constante
Física I 2010/2011. Aula 19. Mecânica de Fluidos II
Física I 2010/2011 Aula 19 Mecânica de Fluidos II Fluidos Capítulo 14: Fluidos 14-7 Fluidos Ideais em Movimento 14-8 A Equação da Continuidade 14-9 O Princípio de Bernoulli 2 Tipos de Fluxo ou Caudal de
Sempre que há movimento relativo entre um corpo sólido e fluido, o sólido sofre a ação de uma força devido a ação do fluido.
V ESCOAMENTO F AO REOR E CORPOS SUBMERSOS F F F S F Sempre que há movimento relativo entre um corpo sólido e fluido, o sólido sofre a ação de uma força devido a ação do fluido. é a força total que possui
Introdução à Mecânica dos Fluidos. Capítulo 2 Conceitos Fundamentais. John Wiley and Sons, Inc.
Introdução à Mecânica dos Fluidos Capítulo 2 Conceitos Fundamentais Tópicos principais Fluido como um Continuum Campo de velocidades Campo de tensões Viscosidade Descrição e classificação dos movimentos
Fenômenos de Transporte I Mecânica dos Fluidos
Fenômenos de Transporte I Mecânica dos Fluidos Propriedades Básicas dos Fluidos 1 Quais as diferenças fundamentais entre fluido e sólido? Fluido é mole e deformável Sólido é duro e muito pouco deformável
Fenômenos do Transporte - 1 Semestre de 2010
Fenômenos do Transporte - Semestre de 200 O assunto fenômenos de transporte inclui três tópicos intimamente relacionados: Dinâmica dos fluidos: envolve o transporte do momento; Transferência de Calor:
Fenômeno dos Transportes I
Fenômeno dos Transportes I Prof. Daniel Lucas 1 Semestre 2017 1 Ementa do Curso: Mecânica dos Fluidos: Conteúdo Programático Definições e Propriedades Físicas dos Fluidos; Estudo da viscosidade Lei de
BIK0102: ESTRUTURA DA MATÉRIA. Crédito: Sprace GASES. Professor Hugo B. Suffredini Site:
BIK0102: ESTRUTURA DA MATÉRIA Crédito: Sprace GASES Professor Hugo B. Suffredini [email protected] Site: www.suffredini.com.br Pressão Atmosférica A pressão é a força atuando em um objeto por
Introdução à Mecânica dos Fluidos
Introdução à Mecânica dos Fluidos Definição de Fluido A mecânica dos fluidos lida com o comportamento dos fluidos em repouso e em movimento. Um fluido é uma substância que se deforma continuamente sob
Fenômenos de Transporte I Mecânica dos Fluidos
Fenômenos de Transporte I Mecânica dos Fluidos Escoamentos 1 O que é escoamento? Mudança de forma do fluido sob a ação de um esforço tangencial; Fluidez: capacidade de escoar, característica dos fluidos;
Capítulo 5: Análise através de volume de controle
Capítulo 5: Análise através de volume de controle Conservação da quantidade de movimento EM-54 enômenos de Transporte Estudo de um volume de controle No estudo termodinâmico de um sistema o interesse se
Escoamentos Externos
Escoamentos Externos O estudo de escoamentos externos é de particular importância para a engenharia aeronáutica, na análise do escoamento do ar em torno dos vários componentes de uma aeronave Entretanto,
1 PROPRIEDADES FÍSICAS DA ÁGUA
1 PROPRIEDADES FÍSICAS DA ÁGUA 1.1 FLUIDOS GASES E LÍQUIDOS Os fluidos são corpos sem forma própria que podem escoar-se, sofrendo grandes variações de forma, sob a acção de forças tanto mais fracas quanto
AULA PRÁTICA 2 PROPRIEDADES FUNDAMENTAIS DOS FLUIDOS
! AULA PRÁTICA 2 PROPRIEDADES FUNDAMENTAIS DOS FLUIDOS 1) - M A S S A E S P E C Í F I C A ( ρ ) OU DENSIDADE ABSOLUTA (ρ ). - É o quociente entre a Massa do fluido e o Volume que contém essa massa. m ρ
ESTE Aula 1- Introdução à convecção. A camada limite da convecção
Universidade Federal do ABC ESTE013-13 Aula 1- Introdução à convecção. A camada limite da convecção Convecção Definição: Processo de transferência de calor entre uma superfície e um fluido adjacente, quando
Fenômenos de Transporte
Fenômenos de Transporte Introdução a Fenômenos de Transporte Prof. Dr. Felipe Corrêa Introdução a Fenômenos de Transporte Fenômenos de Transporte Refere-se ao estudo sistemático e unificado da transferência
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II FLUIDOS. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II FLUIDOS Prof. Bruno Farias Fluidos Os fluidos desempenham um papel vital em muitos aspectos
FENÔMENOS DE TRANSPORTES
FENÔMENOS DE TRANSPORTES AULA 10 ESCOAMENTO INTERNO INCOMPRESSÍVEL PROF.: KAIO DUTRA Escoamento Interno e Externo Escoamentos internos ou em dutos: São escoamentos completamente envoltos por superfícies
Unidade Curricular: Física Aplicada
Mestrado Integrado em Ciências Farmacêuticas Unidade Curricular: Física Aplicada Aulas Laboratoriais Trabalho laboratorial n.º 3 (1.ª parte) Viscosidade de Líquidos DETERMINAÇÃO DO COEFICIENTE DE VISCOSIDADE
RESUMO MECFLU P3. REVER A MATÉRIA DA P2!!!!! Equação da continuidade Equação da energia 1. TEOREMA DO TRANSPORTE DE REYNOLDS
RESUMO MECFLU P3 REVER A MATÉRIA DA P2!!!!! Equação da continuidade Equação da energia 1. TEOREMA DO TRANSPORTE DE REYNOLDS Equação do Teorema do Transporte de Reynolds: : variação temporal da propriedade
Conceitos fundamentais (cont)
Conceitos fundamentais (cont) Paulo R. de Souza Mendes Grupo de Reologia Departamento de Engenharia Mecânica Pontifícia Universidade Católica - RJ agosto de 2010 comportamento mecânico decomposição da
Mecânica dos Fluidos (MFL0001) Curso de Engenharia Civil 4ª fase Prof. Dr. Doalcey Antunes Ramos
Mecânica dos Fluidos (MFL0001) Curso de Engenharia Civil 4ª fase Prof. Dr. Doalcey Antunes Ramos 1.1 Dimensões, Homogeneidade Dimensional e Unidades Aspectos qualitativos >>> GRANDEZA Natureza, Tipo, Características.
Cinemática da partícula fluida
Cinemática da partícula fluida J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Cinemática da partícula fluida 1 / 16 Sumário 1 Descrição do movimento 2 Cinemática
CAA 346 Hidráulica UNIVERSIDADE ESTADUAL DE SANTA CRUZ Departamento de Ciências Agrárias e Ambientais
CAA 346 Hidráulica UNIVERSIDADE ESTADUAL DE SANTA CRUZ Departamento de Ciências Agrárias e Ambientais HISTÓRIA Leitura dos itens 1 e 2 do Cap. 01: Princípios Básicos (Manual de Hidráulica Azevedo Neto,
Enquanto o sólido deforma limitadamente, os fluidos (líquidos e gases) se deformam continuamente.
MECÂNICA DO FLUIDOS CAPÍTULO 1 INTRODUÇÃO, DEFINIÇÃO E CONCEITOS. É a ciência que estuda o comportamento físico dos fluidos e as leis que regem este comportamento. Utilizado em diversos sistemas como:
Departamento de Engenharia Mecânica. ENG Fenômenos de Transporte I
Departamento de Engenharia Mecânica ENG1011 - Fenômenos de Transporte I Aula 1: Introdução e Manometria O que é um fluido? Área de aplicação da Mecânica de Fluidos Formulação (leis de conservação; leis
Décima aula de FT. Segundo semestre de 2013
Décima aula de FT Segundo semestre de 2013 Vamos eliminar a hipótese do fluido ideal! Por que? Simplesmente porque não existem fluidos sem viscosidade e para mostrar que isto elimina uma situação impossível,
Quarta aula. Segundo semestre de 2015
Quarta aula Segundo semestre de 2015 Exercícios Ex 2 Se a pressão em A é 36500 Pa, especifique a pressão em B na escala absoluta. Dado: pressão atmosférica igual a 95200 Pa. Exercícios (cont.) Ex 4 Se
PME/EP/USP. Prof. Antonio Luiz Pacífico
Introdução à Cinemática dos Fluidos PME 3230 - Mecânica dos Fluidos I PME/EP/USP Prof. Antonio Luiz Pacífico 2 Semestre de 2016 PME 3230 - Mecânica dos Fluidos I (EP-PME) Cinemática 2 Semestre de 2016
ESTÁTICA DOS FLUIDOS FENÔMENOS DE TRANSPORTE I
ESTÁTICA DOS FLUIDOS FENÔMENOS DE TRANSPORTE I Prof. Marcelo Henrique 1 DEFINIÇÃO DE FLUIDO Fluido é um material que se deforma continuamente quando submetido à ação de uma força tangencial (tensão de
Tubo de Pitot. Usado para medir a vazão; Vantagem: Menor interferência no fluxo; Empregados sem a necessidade de parada;
Tubo de Pitot Usado para medir a vazão; Vantagem: Menor interferência no fluxo; Empregados sem a necessidade de parada; Desvantagem: Diversas tecnologias, o que dificulta a calibração do equipamento (de
Unidade Curricular: Física Aplicada
Mestrado Integrado em Ciências Farmacêuticas Unidade Curricular: Física Aplicada Aulas Laboratoriais Trabalho laboratorial nº. 3 (1ª. parte) Viscosidade de Líquidos DETERMINAÇÃO DO COEFICIENTE DE VISCOSIDADE
ESTÁTICA DOS FLUIDOS
ESTÁTICA DOS FLUIDOS FENÔMENOS DE TRANSPORTE I Prof. Marcelo Henrique 1 DEFINIÇÃO DE FLUIDO Fluido é um material que se deforma continuamente quando submetido à ação de uma força tangencial (tensão de
Propriedades de uma substância pura
Propriedades de uma substância pura Substância pura possui composição química invariável e homogênea, independentemente da fase em que está. Ex.: água Equilíbrio de fases em uma substância pura, as fases
Noção de fluido. Fluido é toda a substância que macroscopicamente apresenta a propriedade de escoar.
Sumário Unidade I MECÂNICA 3- de fluidos Hidrostática - Noção de fluido, massa volúmica, peso volúmico ou peso específico e densidade relativa. - Noção de pressão e força de pressão. Unidade SI de pressão.
CONSTRUÇÃO DE MÓDULO DE REYNOLDS PARA VISUALIZAÇÃO DOS REGIMES DE ESCOAMENTO APLICADO AO ENSINO DE MECÂNICA DOS FLUIDOS
CONSTRUÇÃO DE MÓDULO DE REYNOLDS PARA VISUALIZAÇÃO DOS REGIMES DE ESCOAMENTO APLICADO AO ENSINO DE MECÂNICA DOS FLUIDOS Caroline Klinger 1, Nataly Leidens 2, Isaac dos Santos Nunes 3 1 URI Campus Santo
3.1- Escoamento É a mudança de forma do fluido sob a ação de um esforço tangencial.
UNIVERSIDADE FEDERAL DO PAMPA Campus Bagé SEMESTRE: 2013/2 CURSOS: ENGENHARIA DE COMPUTAÇÃO/ ENGENHARIA DE PRODUÇÃO COMPONENTE CURRICULAR: FENÔMENOS DE TRANSPORTE (BA000200) PROFESSOR: Marcilio Machado
Universidade Estadual do Sudoeste da Bahia
Universidade Estadual do Sudoeste da Bahia Departamento de Estudos Básicos e Instrumentais Mecânica dos Fluidos Física II Prof. Roberto Claudino Ferreira ÍNDICE ) - Introdução; ) - Densidade; 3) - Pressão;
Lista de Exercícios Perda de Carga Localizada e Perda de Carga Singular
Lista de Exercícios Perda de Carga Localizada e Perda de Carga Singular 1. (Petrobrás/2010) Um oleoduto com 6 km de comprimento e diâmetro uniforme opera com um gradiente de pressão de 40 Pa/m transportando
Laboratório de Engenharia Química I. Aula Prática 02
Laboratório de Engenharia Química I Aula Prática 02 Determinação do coeficiente de viscosidade em líquidos Método de Stokes Prof. Dr. Gilberto Garcia Cortez 1 Introdução A viscosidade dinâmica (ou absoluta)
GASES. https://www.youtube.com/watch?v=wtmmvs3uiv0. David P. White. QUÍMICA: A Ciência Central 9ª Edição Capítulo by Pearson Education
GASES PV nrt https://www.youtube.com/watch?v=wtmmvs3uiv0 David P. White QUÍMICA: A Ciência Central 9ª Edição volume, pressão e temperatura Um gás consiste em átomos (individualmente ou ligados formando
Mecânica dos Fluidos. Prof. Giovani Zabot
Mecânica dos Fluidos Prof. Giovani Zabot Sumário Fundamentos de Mecânica dos Fluidos Definição de Fluido Fluidos Compressíveis e Incompressíveis Campo de Velocidades Linha de corrente e campo Classificação
