Prova Escrita de Matemática B
|
|
|
- Yago Lisboa Pinhal
- 9 Há anos
- Visualizações:
Transcrição
1 EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/004, de 6 de Março Prova Escrita de Matemática B 10.º/11.º anos ou 11.º/1.º anos de Escolaridade Prova 735/1.ª Fase 8 Páginas Duração da Prova: 150 minutos. Tolerância: 30 minutos 008 Utilize apenas caneta ou esferográfica de tinta indelével azul ou preta, excepto nas respostas que impliquem a elaboração de construções, desenhos ou outras representações, que podem ser primeiramente elaboradas a lápis, sendo, a seguir, passadas a tinta. Utilize a régua, o compasso, o esquadro, o transferidor e a calculadora gráfica sempre que necessário. Não é permitido o uso de corrector. Em caso de engano, deve riscar, de forma inequívoca, aquilo que pretende que não seja classificado. Escreva de forma legível a numeração dos grupos e/ou dos itens, bem como as respectivas respostas. Para cada item, apresente apenas uma resposta. Se escrever mais do que uma resposta a um mesmo item, apenas é classificada a resposta apresentada em primeiro lugar. Prova 735 Página 1/ 8
2 Em todas as respostas, indique todos os cálculos que tiver de efectuar e todas as justificações necessárias. Sempre que, na resolução de um problema, recorrer à sua calculadora, apresente todos os elementos recolhidos na sua utilização. Mais precisamente: sempre que recorrer às capacidades gráficas da sua calculadora, apresente o gráfico, ou gráficos, obtido(s), bem como as coordenadas de pontos relevantes para a resolução do problema proposto (por exemplo, coordenadas de pontos de intersecção de gráficos, máximos, mínimos, etc.); sempre que recorrer a uma tabela obtida na sua calculadora, apresente todas as linhas da tabela relevantes para a resolução do problema proposto; sempre que recorrer a estatísticas obtidas na sua calculadora (média, desvio-padrão, coeficiente de correlação, declive e ordenada na origem de uma recta de regressão, etc.), apresente as listas que introduziu na calculadora para as obter. As cotações dos itens encontram-se na página 7. A prova inclui um Formulário na página 8. Prova 735 Página / 8
3 1. Pretende-se fazer um canteiro, no jardim de uma escola, com a forma de um quadrado de 7 metros de lado. D H C G E A F x B Fig. 1 A figura 1 representa um projecto desse canteiro, designado por [ABCD], em que a região sombreada representa a zona que se pretende relvar, e o quadrado [EFGH] representa o local destinado a plantar roseiras. Tem-se, em metros: AE = FB = GC = HD = x 1.1. Admita que x = 3. Pretende-se plantar 700 roseiras na zona reservada para esse efeito. Cada roseira necessita de uma área quadrangular com 0 centímetros de lado. Será possível plantar as 700 roseiras nessa zona? Justifique. 1.. Mostre que a área, a, da região relvada, em metros quadrados, é dada, em função de x, por a x ( ) = 14x x Calcule a(0) e interprete o valor obtido no contexto da situação descrita.. Nos itens seguintes, considere a função a( x ) = 14x x, definida no intervalo [0, 7], no contexto descrito no grupo de itens anterior..1. Mostre que a taxa de variação média da função a, no intervalo [3, 4], é zero... Do facto de a taxa de variação média da função a, no intervalo [3, 4], ser zero, podemos concluir que a função a é constante no intervalo [3, 4]? Justifique a sua resposta..3. Atendendo ao orçamento existente, pretende-se que a zona relvada tenha a maior área possível. Determine o valor de x para que tal aconteça. Prova 735 Página 3/ 8
4 3. O «jogo da moedinha» consiste no seguinte: cada jogador (num conjunto de dois ou mais) esconde zero, uma, duas ou três moedas, numa das suas mãos. Seguidamente, cada um dos jogadores tenta adivinhar o número total de moedas «escondidas». O David e o Pedro jogam com frequência o «jogo da moedinha». Admita que cada um deles escolhe, aleatoriamente e com igual probabilidade, o número de moedas, entre zero e três, que vai esconder na sua mão Seja Y a variável aleatória «número total de moedas escondidas pelo David e pelo Pedro». Construa a tabela de distribuição de probabilidade da variável aleatória Y. Indique se é mais provável que o número total de moedas escondidas pelo David e pelo Pedro seja menor do que dois ou maior do que três. 3.. Considere X a variável aleatória «número de vezes por semana que os dois amigos se encontram para realizar o referido jogo». Admita que a seguinte tabela corresponde à distribuição de probabilidade da variável X. X = x i P(X = x i ) 0,10 0,0 a 0,5 0,15 Determine o valor de a e calcule o valor médio da variável aleatória X. 4. Thomas Malthus, pensador do século XVIII, elaborou um modelo para prever a evolução da população mundial. De acordo com este modelo, a população mundial duplicaria, de 5 anos em 5 anos. Considerando que, no ano de 1900, a população mundial era de 1,65 mil milhões de pessoas, estime, de acordo com o Modelo de Malthus, qual teria sido o valor da população mundial em 000. Apresente o resultado em milhares de milhões, arredondado às unidades. Prova 735 Página 4/ 8
5 5. A população mundial, desde 1900, evoluiu de acordo com a tabela abaixo: Ano Número de pessoas (em milhares de milhões) , , , , , , , , , , ,08 Admita que a evolução da população mundial desde 1900 é bem modelada por uma função exponencial do número de pessoas, em que a variável independente designa o número de anos após Estime a população mundial para 010. Recorra à calculadora e utilize a regressão exponencial para determinar a expressão de uma função que se ajuste aos dados da tabela, percorrendo as seguintes etapas: considere o ano de 1900 como o ano zero (0), o ano de 1910 como o ano dez (10), e assim sucessivamente até ao ano de 000 como o ano cem (100); escreva essa expressão (apresente os valores numéricos envolvidos na expressão e fornecidos pela calculadora, com quatro casas decimais); usando essa expressão, estime a população mundial para 010 (apresente o resultado em milhares de milhões de habitantes, arredondado às centésimas). Prova 735 Página 5/ 8
6 6. Na figura está representado um pêndulo simples, E, oscilando no plano DAB. D Quando um pêndulo oscila à superfície da Terra, o plano de oscilação não se mantém fixo, vai rodando ao longo do tempo, em torno de um eixo vertical, representado na figura por CD, devido ao movimento de rotação da Terra. O tempo que decorre entre o início da oscilação do pêndulo e o momento em que o plano de oscilação do pêndulo completa uma rotação de 360º designa-se por período. Este período não é o mesmo em todos os lugares da Terra, pois depende da latitude do lugar em que se realiza a experiência. Vamos considerar apenas lugares do hemisfério norte. A relação entre o período, T, medido em horas, e a latitude do lugar, q, medida em graus, estabelecida por Jean Foucault ( ), em 1851, é: B g C f E A Fig. T 4 = sen () q (Lei do seno de Foucault) 6.1. Mostre que, no Pólo Norte, o pêndulo tem um período de 4 horas. Recorde que a latitude no Pólo Norte é de 90º. 6.. A latitude de Paris, onde Foucault realizou a experiência que confirmou a referida lei, é, aproximadamente, de 49º. O João declarou ter feito uma experiência semelhante à de Foucault, nas mesmas condições, tendo obtido o valor de 48 horas para o período do pêndulo. Num pequeno texto e usando apenas a lei do seno de Foucault: indique o período que Foucault terá registado na sua experiência de 1851; indique a latitude do local em que o João terá feito a sua experiência; comente, fundamentadamente, a possibilidade de a experiência do João poder ter sido realizada em Portugal Continental, sabendo que Portugal Continental está compreendido entre, aproximadamente, as latitudes 36º e 4º. FIM Prova 735 Página 6/ 8
7 COTAÇÕES pontos pontos pontos pontos pontos pontos pontos pontos pontos pontos pontos pontos pontos pontos pontos TOTAL pontos Prova 735 Página 7/ 8
8 Formulário Comprimento de um arco de circunferência α r (α amplitude, em radianos, do ângulo ao centro; r raio) Áreas de figuras planas Losango: Diagonal maior Diagonal menor Trapézio: Base maior + Base menor Altura Polígono regular: Semiperímetro Apótema Sector circular: α r (α amplitude, em radianos, do ângulo ao centro; r raio) Áreas de superfícies Área lateral de um cone: π r g (r raio da base; g geratriz) Área de uma superfície esférica: 4 π r (r raio) Volumes Pirâmide: 1 3 Área da base Altura Cone: 1 3 Área da base Altura Esfera: 4 3 π r 3 (r raio) Progressões Soma dos n primeiros termos de uma Progressão aritmética: u 1 + u n n Progressão geométrica: u 1 1 r n 1 r Prova 735 Página 8/ 8
Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.
Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 7.01.011 11.º Ano de Escolaridade Decreto-Lei n.º 74/004, de 6 de Março Na sua folha de respostas,
Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [Novembro 2015]
Proposta de Teste Intermédio [Novembro 05] Nome: Ano / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado. Para cada resposta, identifica
Versão 2. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.
Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 07.02.2011 9.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro Identifica claramente,
ESCOLA SECUNDÁRIA DE CASQUILHOS
ESCOLA SECUNDÁRIA DE CASQUILHOS 2º Ano Turma B - C.C.H. de Ciências e Tecnologias - Teste de Avaliação de Matemática A V Duração: 90 min 03 Fev. 200 Prof.: Na folha de respostas, indicar de forma legível
Prova Escrita de Matemática B
EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/004, de 6 de março Prova Escrita de Matemática B 10.º e 11.º Anos de Escolaridade Prova 735/Época Especial 1 Páginas Duração da Prova: 150 minutos.
Versão 1. Identifica, claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.
Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 27.04.2010 3.º Ciclo do Ensino Básico 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de
Versão 2. Identifica, claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.
Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 11.05.2010 3.º iclo do Ensino ásico 9.º ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro
MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos
MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos 1 Seja um número real. Considere, num referencial o.n., a reta e o plano definidos, respetivamente, por e Sabe-se
Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.
Teste Intermédio de Matemática Entrelinha 1,5 Teste Intermédio Matemática Entrelinha 1,5 (Versão única igual à Versão 1) Duração do Teste: 90 minutos 29.02.2012 8.º Ano de Escolaridade Decreto-Lei n.º
Prova Escrita de Matemática A
EXAME NACINAL D ENSIN SECUNDÁRI Decreto-Lei n.º 74/004, de 6 de março Prova Escrita de Matemática A.º Ano de Escolaridade Prova 65/Época Especial 4 Páginas Duração da Prova: 50 minutos. Tolerância: 0 minutos.
AEFG. Sabe-se que: ABCD e. AD, respetivamente.
Escola Básica de Ribeirão (Sede) ANO LETIVO 04/0 Nome: N.º: Turma: Classificação: Professor: Enc. Educação: 9.º Ano Ficha de Avaliação de Matemática Versão Duração do Teste: 0 minutos (Caderno ) + 0 minutos
VERSÃO 1. Prova Escrita de Matemática A. 12.º Ano de Escolaridade. Prova 635/1.ª Fase. Duração da Prova: 150 minutos. Tolerância: 30 minutos.
EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 9/0, de 5 de julho Prova Escrita de Matemática A.º Ano de Escolaridade Prova 65/.ª Fase 5 Páginas Duração da Prova: 50 minutos. Tolerância: 0 minutos.
Informação n.º 24.13. Data: 2012.12.19. Para: Direção-Geral da Educação. Inspeção-Geral da Educação e Ciência. Direções Regionais de Educação
Prova Final de Ciclo de Matemática Prova 92 2013 3.º Ciclo do Ensino Básico Para: Direção-Geral da Educação Inspeção-Geral da Educação e Ciência Direções Regionais de Educação Secretaria Regional da Educação
Matemática A. Teste Intermédio Matemática A. Versão 1. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos 27.05.2009. 12.º Ano de Escolaridade
Teste Intermédio Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 27.05.2009 12.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na folha de respostas,
Teste Intermédio de Matemática A Matemática A Entrelinha 1,5 (Versão única igual à Versão 1) 12.º Ano de Escolaridade
Teste Intermédio de Matemática A Entrelinha,5 Teste Intermédio Matemática A Entrelinha,5 (Versão única igual à Versão ) Duração do Teste: 90 minutos 8.0.03.º Ano de Escolaridade Decreto-Lei n.º 74/004,
Caderno 2: 60 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora)
Prova Final de Matemática 2.º Ciclo do Ensino Básico Prova 62/1.ª Fase/2015 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ALUNO Nome completo Documento de identificação Assinatura do Aluno CC
Nome: N.º: Turma: Classificação: Professor: Enc. Educação:
Escola EB, de Ribeirão (Sede) ANO LECTIVO 010/011 Dezembro 010 Nome: Nº: Turma: Classificação: Professor: Enc Educação: Ficha de Avaliação de Matemática Versão Duração do Teste: 90 minutos 6 de Dezembro
Prova Escrita de Matemática B
EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/004, de 6 de Março Prova Escrita de Matemática B 11.º/1.º Anos de Escolaridade Prova 735/Época Especial 11 Páginas Duração da Prova: 150 minutos.
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taxa de Variação e Derivada TPC nº 6 (entregar no dia 14 01
Proposta de resolução da Prova de Matemática A (código 635) 2ª fase. 19 de Julho de 2010
Proposta de resolução da Prova de Matemática A (código 65) ª fase 9 de Julho de 00 Grupo I. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é, existem tantas bolas roxas
BILHETE DE IDENTIDADE N.º EMITIDO EM (LOCALIDADE) Não escreva o seu nome em ASSINATURA DO ESTUDANTE. Data / / MINISTÉRIO DA EDUCAÇÃO EXAME NACIONAL
EXAME NACIONAL DE MATEMÁTICA 2005 9.º ANO DE ESCOLARIDADE / 3.º CICLO DO ENSINO BÁSICO A preencher pelo estudante NOME COMPLETO BILHETE DE IDENTIDADE N.º EMITIDO EM (LOCALIDADE) Não escreva o seu nome
Exercícios de 11.º ano nos Testes Intermédios TRIGONOMETRIA
Escola Secundária de Francisco Franco Exercícios de 11.º ano nos Testes Intermédios TRIGONOMETRIA 1. Na figura está representado o círculo trigonométrico e um triângulo [OPR]. O ponto P desloca-se ao longo
Teste Intermédio de Matemática A Matemática A Versão 1 11.º Ano de Escolaridade
Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 27.01.2010 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de
Teste Intermédio Matemática A. Versão 1. Teste Intermédio Matemática A. Versão 1. Duração do Teste: 90 minutos 24.01.2008. 11.º Ano de Escolaridade
Teste Intermédio Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 24.01.2008 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de respostas,
Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase
Prova Escrita de MATEMÁTICA A - 1o Ano 011 - a Fase Proposta de resolução GRUPO I 1. Como no lote existem em total de 30 caixas, ao selecionar 4, podemos obter um conjunto de 30 C 4 amostras diferentes,
MATRIZ DA PROVA DE EXAME A NÍVEL DE ESCOLA AO ABRIGO DO DECRETO-LEI Nº 357/2007, DE 29 DE OUTUBRO
MATRIZ DA PROVA DE EXAME A NÍVEL DE ESCOLA AO ABRIGO DO DECRETO-LEI Nº 357/2007, DE 29 DE OUTUBRO (Duração: 90 minutos + 30 minutos de tolerância) MATEMÁTICA A 11º+12º ANO (Cursos Científico-Humanísticos
Não é permitido o uso de corrector. Em caso de engano, deve riscar, de forma inequívoca, aquilo que pretende que não seja classificado.
Teste Intermédio de Matemática B 2010 Teste Intermédio Matemática B Duração do Teste: 90 minutos 13.04.2010 10.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Utilize apenas caneta ou esferográfica
Prova Escrita de MATEMÁTICA A - 12o Ano 2015 - Época especial
Prova Escrita de MATEMÁTICA A - 1o Ano 015 - Época especial Proposta de resolução GRUPO I 1. Como P A B = P A + P B P A B, substituindo os valores conhecidos, podemos calcular P A: 0,7 = P A + 0,4 0, 0,7
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 2ª FASE 21 DE JULHO 2015 GRUPO I
Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 1500-36 Lisboa Tel.: +351 1 716 36 90 / 1 711 03 77 Fax: +351 1 716 64 4 http://www.apm.pt email: [email protected] PROPOSTA DE
MATEMÁTICA B 10ºANO ANO LETIVO 2015/2016 Módulo Inicial
ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL- ESTREMOZ MATEMÁTICA B 10ºANO ANO LETIVO 2015/2016 Módulo Inicial Revisões de conceitos do 3º ciclo Efetuar cálculos com números reais utilizando valores exatos
, 10 4. pertence ao conjunto dado? Justifica a resposta e apresenta todos os cálculos que efetuares.
Teste de Avaliação Escrita Duração: 90 minutos 9 de maio de 0 Escola E.B., Eng. Nuno Mergulhão Portimão Ano Letivo 0/0 Matemática 9.º B Nome: N.º Classificação: Fraco (0% 9%) Insuficiente (0% 9%) Suficiente
Prova Escrita de MATEMÁTICA A - 12o Ano 2015-2 a Fase
Prova Escrita de MATEMÁTICA A - o Ano 205-2 a Fase Proposta de resolução GRUPO I. O valor médio da variável aleatória X é: µ a + 2 2a + 0, Como, numa distribuição de probabilidades de uma variável aleatória,
EXAME NACIONAL DO ENSINO SECUNDÁRIO
EXAME NACIONAL DO ENSINO SECUNDÁRIO 11.º Ano de Escolaridade (Decreto-Lei n.º 74/2004, de 26 de Março) PROVA 735/11 Págs. Curso Científico-Humanístico de Artes Visuais Duração da prova: 150 minutos 2006
Teste de Avaliação Escrita
Teste de Avaliação Escrita Duração: 90 minutos 19 de fevereiro de 014 Escola E.B.,3 Eng. Nuno Mergulhão Portimão Ano Letivo 013/014 Matemática 9.º B Nome: N.º Classificação: Fraco (0% 19%) Insuficiente
Informação n.º 27.12. Data: 2012.01.05 (Republicação) Para: Inspeção-Geral de Educação. Direções Regionais de Educação. Escolas com 3.
Prova Final de Ciclo de Matemática Prova 92 2012 3.º Ciclo do Ensino Básico Decreto-Lei n.º 6/2001, de 18 de janeiro Para: Direção-Geral de Inovação e de Desenvolvimento Curricular Inspeção-Geral de Educação
Teste Intermédio de Matemática A Matemática A Versão 1 11.º Ano de Escolaridade
Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 07.05.2009 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de
ESCOLA SECUNDÁRIA ALCAIDES DE FARIA FICHA DE TRABALHO - MATEMÁTICA 11º ANO ANO LECTIVO 2011/2012
ESCOLA SECUNDÁRIA ALCAIDES DE FARIA FICHA DE TRABALHO - MATEMÁTICA 11º ANO ANO LECTIVO 2011/2012 1 - Duas povoações A e B, distanciadas 8 km uma da outra, estão a igual distância de uma fonte de abastecimento
ABCD ADEF 810. é a corda da circunferência contida no eixo Oy. é uma corda da circunferência, paralela ao eixo Ox
Ficha de Trabalho n.º 3 página.1. Mostre que o ponto C tem coordenadas ( 09, ) e que o ponto D tem coordenadas ( 8, 9 )... Determine uma equação da mediatriz do segmento AD. Apresente a sua resposta na
Escola Secundária Gabriel Pereira. Nome: N.º: Ano Turma
Escola Secundária Gabriel Pereira FICHA DE EXERCÍCIOS Nº MATEMÁTICA A Rectas e Planos Nome: Nº: Ano Turma 1) Determina uma equação vectorial e cartesianas da recta que passa em A,1, 4 11) paralela ao vector
7) (F.C.CHAGAS) Determine a área da região hachurada nos casos:
EXERCÍCIOS - PARTE 1 1) (PUC) Se a área do retângulo é de 32 cm 2 e os triângulos formados são isósceles, então o perímetro do pentágono hachurado, em cm, é: 39 a) b) 10+7 2 c) 10 + 12 2 d) 32 e) 70 2
Prova Final de Matemática
Prova Final de Matemática 2.º Ciclo do Ensino Básico Decreto-Lei n.º 19/2012, de 5 de julho Prova 62/1.ª Fase Braille, Entrelinha 1,5, sem figuras Critérios de Classificação 9 Páginas 2015 Prova 62/1.ª
Prova Escrita de Matemática Aplicada às Ciências Sociais
EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Prova Escrita de Matemática Aplicada às Ciências Sociais 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 835/1.ª Fase 15 Páginas Duração
Prova Escrita de Matemática A
EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/004, de 6 de Março Prova Escrita de Matemática A 1.º Ano de Escolaridade Prova 635/Época Especial 14 Páginas Duração da Prova: 150 minutos. Tolerância:
Tema: Circunferência e Polígonos. Rotações
Escola EB 2,3 de Ribeirão (Sede) ANO LECTIVO 2010/2011 Ficha de Trabalho Abril 2011 Nome: N.º: Turma: Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Circunferência
SUMÁRIO. 1. REVISÃO DE GINÁSIO Critérios de divisibilidade. 2. CONJUNTOS Introdução. Operações de conjuntos. Conjuntos numéricos
SUMÁRIO 1. REVISÃO DE GINÁSIO Critérios de divisibilidade Reconhecimento de número primo Decomposição em fatores primos Aplicação Potência Expressão numérica 2. CONJUNTOS Introdução Representação de um
Deve ainda ser tido em consideração o Despacho Normativo n.º 24-A/2012, de 6 de dezembro, bem como o Despacho n.º 15971/2012, de 14 de dezembro..
PROVA DE EQUIVALÊNCIA À FREQUÊNCIA Decreto-Lei n.º 139/2012, de 5 de julho Prova Escrita de Físico-Química 9º Ano de Escolaridade Prova 11 / 1ª Fase Duração da Prova: 90 minutos. Informações da prova INTRODUÇÃO
Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.
Teste Intermédio de Matemática A Versão Teste Intermédio Matemática A Versão Duração do Teste: 90 minutos 24.05.20.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de respostas,
GEOMETRIA NO PLANO E NO ESPAÇO I Alguns exercícios saídos em provas globais, exames e testes intermédios
Escola Secundária de Francisco Franco Matemática A 10.º ano GEMETRIA N PLAN E N ESPAÇ I Alguns eercícios saídos em provas globais, eames e testes intermédios 1. Num referencial o.n. z, a intersecção das
PROVA DE AFERIÇÃO DO ENSINO BÁSICO 2011 A PREENCHER PELO ALUNO
PROVA DE AFERIÇÃO DO ENSINO BÁSICO 2011 A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA
Prova Final de Matemática
Prova Final de Matemática 2.º Ciclo do Ensino Básico Decreto-Lei n.º 19/2012, de 5 de julho Prova 62/1.ª Fase Critérios de Classificação 10 Páginas 2015 Prova 62/1.ª F. CC Página 1/ 10 CRITÉRIOS GERAIS
Prova Escrita de Matemática
ESCOLA SECUNDÁRIA C/3º CICLO DO ENSINO BÁSICO DE LOUSADA Prova Escrita de Matemática 3.º Ciclo do ensino Básico ; 9ºAno de escolaridade A PREENCHER PELO ALUNO Nome completo do aluno Duração da Prova: 90
Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano
Escola Secundária/ da Sé-Lamego Ficha de Trabalho de Matemática no Lectivo 00/0 Geometria - Revisões º no Nome: Nº: Turma: região do espaço definida, num referencial ortonormado, por + + = é: [] a circunferência
No arquivo Exames e Provas podem ser consultados itens e critérios de classificação de provas desta disciplina.
INFORMAÇÃO-PROVA GEOMETRIA DESCRITIVA A Novembro de 2016 Prova 708 11.º Ano de Escolaridade (Decreto-Lei n.º 139/2012, de 5 de julho) O presente documento divulga informação relativa à prova de exame final
Prova Escrita de Matemática B
EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Prova Escrita de Matemática B 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 735/1.ª Fase 14 Páginas Duração da Prova: 150 minutos. Tolerância:
Escola Básica Integrada Canto da Maia
Escola Básica Integrada Canto da Maia Ano Letivo 2014/2015 Matriz da Prova de Exame a Nível de Escola Matemática 2º Ciclo MODALIDADE: Exame escrito. ESTRUTURA DA PROVA: A prova é constituída por dois cadernos
Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:
Teste de Matemática A 2017 / 2018 Teste N.º 4 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 90 minutos 12.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
EXAME DE RESUMOS.TK. Autor: Francisco Cubal. A ausência dessa indicação implica a classificação com zero pontos das respostas aos itens do Grupo I.
Estudar nunca foi tão fácil! EXAME DE RESUMOS.TK Autor: Francisco Cubal Prova Escrita de Matemática A 12.º Ano de Escolaridade Prova MAT12/2.ª Fase 11 Páginas Duração da Prova: 150 minutos. Tolerância:
Prova Final de Matemática
PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 1 Páginas Entrelinha 1,5 Duração da Prova: 90 minutos.
Exame de Recuperação Curso Profissional de Técnico de Gestão e Programação de Sistemas Informáticos
Exame de Recuperação Curso Profissional de Técnico de Gestão e Programação de Sistemas Informáticos DISCIPLINA: Física e Química Módulo: Q1 2015/2016 10 ºAno de escolaridade Data: 30 de outubro de 2015
Prova Escrita de Matemática B
EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/004, de 6 de Março Prova Escrita de Matemática B 11.º/1.º Anos de Escolaridade Prova 735/.ª Fase 11 Páginas Duração da Prova: 150 minutos. Tolerância:
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 1: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
Escola Secundária com 3ºCEB de Lousada (A) 72 (B) 36 (C) 24 (D) 18 (A) -10 (B) 5 (C) 20 (D) 15. =, então - 2 é imagem do objecto: (A) 4 (B) 1 (C) 4
Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano - nº Data: / 0 / 0 Assunto: Preparação para o teste intermédio I Lições nº, n. O termo geral de uma sequência numérica é.
Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã
Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã ======================================================== 1) Num retângulo, a base tem cm a mais do que o dobro da altura e a diagonal
é necessário percorrer pelas seguintes etapas: , sendo ACV e BCA ângulos suplementares; , por ser um ângulo inscrito e portanto ser igual a
Escola Secundária com º CEB de Lousada PM Assunto: Soluções da Mega-ficha de Preparação para o Eame Nacional I _ No cálculo de AV B é necessário percorrer pelas seguintes etapas: AB A- Determinar A C B
(B) 10 rosas e 30 cravos (D) 11 rosas e 31 cravos
Escola Secundária de Lousada Ficha de Trabalho de Matemática do 9º ano - nº Data: / 0/ 0 Assunto: Preparação para o teste intermédio II Lições nº,. Considera a circunferência de centro O onde está inscrito
PROVA PARA OS ALUNOS DE 2º ANO DO ENSINO MÉDIO. 4 cm
PROVA PARA OS ALUNOS DE º ANO DO ENSINO MÉDIO 1ª Questão: Um cálice com a forma de um cone contém V cm de uma bebida. Uma cereja de forma esférica com diâmetro de cm é colocada dentro do cálice. Supondo
Aulas Previstas. Objectivos Conteúdos Estratégias/Actividades Recursos Avaliação. Avaliação diagnóstica. Observação e registo das atitudes dos alunos
Escola E.B. 2.3 Pedro Santarém Objectivos Conteúdos Estratégias/Actividas Recursos Avaliação Preparar e organizar o trabalho a realizar com os alunos Distinguir número inteiro número fraccionário. Reconhecer
Lista de Estudo P2 Matemática 2 ano
Lista de Estudo P2 Matemática 2 ano 24) Dada a figura a seguir e sabendo-se que os dois quadrados possuem lados iguais a 4cm, sendo O o centro de um deles, quanto vale a área da parte preenchida? a) 100.
Escola Secundária com 3ºCEB de Lousada. Ficha de Trabalho de Matemática do 9º ano - nº Data / / 2010
Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano - nº Data / / 010 Assunto: Preparação para o teste Lições nº,, e Apresentação dos Conteúdos e Objectivos para o 1º Teste
Versão 2 COTAÇÕES. 13... 5 pontos. 6... 4 pontos 7... 7 pontos. 5... 6 pontos. 8... 9 pontos. 9... 8 pontos
Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 07.02.2011 9.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro 1. 2. COTAÇÕES 1.1....
Prova Escrita de Matemática B
Exame Nacional do Ensino Secundário Decreto-Lei n.º 74/004, de 6 de Março Prova Escrita de Matemática B 10.º e 11.º Anos de Escolaridade Prova 735/1.ª Fase 8 Páginas Duração da Prova: 150 minutos. Tolerância:
Professor Alexandre Assis. Lista de exercícios - Geometria Analítica. 6. Duas pessoas A e B decidem se encontrar em
6. Duas pessoas A e B decidem se encontrar em 1. Sendo (x + 2, 2y - 4) = (8x, 3y - 10), determine o valor de x e de y. um determinado local, no período de tempo entre 0h e 1h. Para cada par ordenado (x³,
Geometria Espacial. Revisão geral
Geometria Espacial Revisão geral Considere o poliedro cujos vértices são os pontos médios das arestas de um cubo. O número de faces triangulares e o número de faces quadradas desse poliedro são, respectivamente:
18/06/2013. Professora: Sandra Tieppo UNIOESTE Cascavel
18/06/01 Professora: Sandra Tieppo UNIOESTE Cascavel 1 Superfícies geradas por uma geratriz (g) que passa por um ponto dado V (vértice) e percorre os pontos de uma linha dada d (diretriz), V d. Se a diretriz
Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 7º ano - Nº 24
Escola Secundária com º CEB de Lousada Ficha de Trabalho de Matemática do 7º ano - Nº Assunto: Objectivos para o teste de de Março/ Ficha de preparação para o teste Lições nº e Data / 0/ 00 Conteúdos para
VESTIBULAR UFPR 2009 (2ª FASE) PROVA DE MATEMÁTICA
GERAL DOS PROFESSORES DO CURSO POSITIVO VESTIBULAR UFPR 009 (ª FASE) PROVA DE MATEMÁTICA Estamos diante de um exemplo de prova! A afirmação acima, feita pelo prof. Adilson, sintetiza a nossa impressão
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 8.º ANO PLANIFICAÇÃO GLOBAL 1. Representação, comparação e ordenação. Representar números racionais
Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.
Teste Intermédio de Matemática Entrelinha 1,5 Teste Intermédio Matemática Entrelinha 1,5 (Versão única igual à Versão 1) Duração do Teste: 90 minutos 10.05.2012 9.º Ano de Escolaridade Decreto-Lei n.º
Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.
Teste Intermédio de Matemática Versão Teste Intermédio Matemática Versão Duração do Teste: 90 minutos 10.05.01 9.º Ano de Escolaridade Decreto-Lei n.º 6/001, de 18 de janeiro Identifica claramente, na
Matemática A COTAÇÕES GRUPO I GRUPO II. Teste Intermédio. Versão 2. Duração do Teste: 90 minutos 29.11.2013. 12.º Ano de Escolaridade. 5...
Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 29..203 2.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de março????????????? COTAÇÕES GRUPO I.... 0 pontos 2.... 0 pontos 3....
Problemas de Optimização. Aplicações das taxas de variação. Programação linear.
Escola Secundária com 3º Ciclo D. Dinis Problemas de Optimização. Aplicações das taxas de variação. Programação linear. Ano Lectivo 008 / 009 Matemática B 1º Ano, D+E 1. Pretende-se fazer um canteiro,
PLANEJAMENTO ANUAL 2014
PLANEJAMENTO ANUAL 2014 Disciplina: GEOMETRIA Período: Anual Professor: JOÃO MARTINS Série e segmento: 9º ANO 1º TRIMESTRE 2º TRIMESTRE 3º TRIMESTRE vários campos da matemática**r - Reconhecer que razão
MATEMÁTICA 32,2 30. 0 2 4 5 6 8 10 x
MATEMÁTICA 01. O preço pago por uma corrida de táxi normal consiste de uma quantia fixa de R$ 3,50, a bandeirada, adicionada de R$ 0,25 por cada 100 m percorridos, enquanto o preço pago por uma corrida
PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2013/2014 1º ANO DO ENSINO MÉDIO
CONCURSO DE ADMISSÃO 2013/2014 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Membro da CEOCP (Mat / 1º EM) Presidente da CEI Dir Ens CPOR / CMBH PÁGINA 1 RESPONDA AS QUESTÕES DE 1 A 20 E TRANSCREVA
Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 8º ano N.º 29 Assunto: Estatística
Escola Secundária com 3º CEB de Lousada Ficha de Trabalho de Matemática do 8º ano N.º 29 Assunto: Estatística Lições nº e Data /05/2011 Estatística A Estatística é um ramo da Matemática que tem por objectivo:
EXAME NACIONAL DO ENSINO SECUNDÁRIO
PROVA 735/11 Págs. EXAME NACIONAL DO ENSINO SECUNDÁRIO 10.º/11.º ou 11.º/12.º Anos de Escolaridade Decreto-Lei n.º 74/2004,de 26 de Março Duração da prova: 150 minutos 2007 1.ª FASE PROVA ESCRITA DE MATEMÁTICA
Teste Intermédio de Matemática B
Ano letivo: 01-013 Teste Intermédio de Matemática B 11º Ano de Escolaridade Duração do teste: 90 minutos 4 de Maio de 013 Curso Tecnológico de Gestão e Dinamização Desportiva Curso Tecnológico de Química
Ficha de Trabalho nº11
Ano lectivo 011/01 Matemática A 11º Ano / Curso de Ciências e Tecnologias Tema: Geometria Ficha de Trabalho nº11 Geometria no Espaço 1. Observa a figura onde está representado um cone recto cuja base pertence
