MEDIÇÃO VAZÃO GEINP/GEIN-N REINALDO SERFATY MAT TEL : OU REVISÃO 01-16/08/96

Tamanho: px
Começar a partir da página:

Download "MEDIÇÃO VAZÃO GEINP/GEIN-N REINALDO SERFATY MAT. 033202.0 TEL : 861-2304 OU 861-6443 REVISÃO 01-16/08/96"

Transcrição

1 MEDIÇÃO DE VAZÃO GEINP/GEIN-N REINALDO SERFATY MAT TEL : OU REVISÃO 01-16/08/96

2 ÍNDICE ASSUNTO I- MEDIÇÃO DE VAZÃO 1 1- Introdução 1 2- Conceito de vazão 1 3- Vazão em tubulação 1 4- Tipos de vazão 2 5- Distúrbios na medição 5 6- Medidores de vazão 7 7- Seleção e aplicação dos medidores 9 8- Desempenho de um instrumento Erros da medição Calibração dos instrumentos Padrões 38 pág. II- SISTEMA COM PRESSÃO DIFERENCIAL Elementos do sistema Placa de orifício Sensores de pressão diferencial 51 III- TURBINA MEDIDORA DE VAZÃO Introdução Turbina padrão integral 57 IV- MEDIDOR MAGNÉTICO DE VAZÃO Introdução Relações matemáticas Conceito Elemento primário Elemento secundário Conector tubo-transmissor Instrumento receptor 75

3 8- Classificação dos medidores Características e aplicações Vantagens e limitações Conclusão 79 V- MEDIDOR DE VAZÃO DESLOCAMENTO POSITIVO Introdução Princípio de funcionamento Características e aplicações Tipos de medidores Vantagens e desvantagens Conclusão 84 VI- MEDIDOR DE VAZÃO CORIOLIS Introdução Relações matemáticas Calibração Medidor industrial Características Aplicações Critérios de seleção Limitações Conclusão 89 VII- MEDIDOR DE VAZÃO ULTRA-SÔNICO Introdução Tipo diferença de tempo Tipo diferença de freqüência Efeito Doppler 91 ANEXO I - MEDIDOR ULTRA-SÔNICO CONTROLOTRON 93

4 ANEXO II - VANTAGENS E DESVANTAGENS DOS MEDIDORES 101 ANEXO III- PROCEDIMENTOS E CUIDADOS QUE DEVEM SER TOMADOS COM MEDIDORES DE DESLOCAMENTO POSITIVO 108 ANEXO IV- HISTÓRICO DA MEDIÇÃO NA E&P BACIA DE CAMPOS 112 ANEXO V- ESPECIFICAÇÃO TÉCNICA 119 ANEXO VI- SELECIONANDO O MEDIDOR CORRETO 155

5 I - MEDIÇÃO DE VAZÃO 1- Introdução A medição da vazão é essencial a todas as fases da manipulação dos fluidos, incluindo a produção, o processamento, a distribuição dos produtos e das utilidades. Ela está associada com o balanço do processo e está diretamente ligada aos aspectos de compra e venda dos produtos. A medição confiável e precisa requer uma correta engenharia que envolve a seleção do instrumento de medição, a sua instalação, a sua operação, a sua manutenção e a interpretação dos resultados obtidos. O conjunto formado pelo medidor e os trechos da tubulação antes e depois do medidor deve ser considerado globalmente e não apenas o medidor isolado. Este conjunto pode incluir retificadores de vazão, reguladores do perfil da velocidade, removedores de vórtices, filtros, tomadas de medições. A vazão de fluidos é complexa e nem sempre sujeita à análise matemática exata. Diferente do sólido, os elementos de um fluido vazando podem mover em velocidades diferentes e podem ser sujeitos a acelerações diferentes. 2- Conceito de Vazão Quando se toma um ponto de referência, a vazão é a quantidade do produto ou da utilidade, expressa em massa ou em volume, que passa por ele, na unidade de tempo. A unidade de vazão é a unidade de volume por unidade de tempo ou a unidade de massa por unidade de tempo. A vazão volumétrica é igual ao produto da velocidade do fluido pela área da seção transversal da tubulação. A vazão mássica é igual ao produto da vazão volumétrica pela densidade do fluido. Na prática, como é difícil a medição direta da densidade do fluido e a composição dos gases é constante, usam-se as medições da temperatura e da pressão para inferir a densidade. A partir da vazão volumétrica ou mássica pode-se obter a sua totalização, através da integral da vazão instantânea. Outra dificuldade apresentada na medição da vazão está relacionada com a grande variedade de fluidos manipulados e com o elevado número de configurações diferentes. Por isso, é freqüente na medição da vazão o uso de extrapolações e de similaridades geométricas, dinâmicas e cinemáticas entre os diferentes modelos. 3- Vazão em Tubulação Em aplicações industriais de medição da vazão, o mais comum é se ter fluidos em tubulações fechadas. O caminho mais empregado para transportar o fluido entre dois pontos da planta é a tubulação com seção circular. O círculo fornece a maior resistência estrutural e apresenta a maior área transversal por unidade de superfície da parede. Por isso, a não ser que seja dito diferente, as palavras tubo e tubulação sempre serão referidas a um conduite fechado, com seção circular e com diâmetro interno constante. Ocasionalmente são encontrados conduites com seção transversal não-circular ou tubulações com seção circular porém não totalmente preenchidas pelo fluido. Quando se calcula o número de Reynolds, nestas situações, utiliza se o conceito de raio hidráulico, que é a relação entre a área transversal da vazão e o perímetro molhado. Muitas fórmulas empíricas propostas para a medição da vazão em tubo são muito limitadas e podem ser aplicadas apenas quando as condições reais do processo se aproximam das condições do laboratório. Para transferir o fluido de A para B, coloca-se uma tubulação ligando os, dois pontos e instala-se uma bomba nesta tubulação. Por causa do atrito entre o fluido móvel e a tubulação fixa, o fluido deve ser pressurizado, para que escoe. Ou seja, para haver vazão do fluido através da tubulação, a pressão na saída da bomba deve ser maior que a pressão na entrada do tanque B. Esta diferença de pressão produz a força que faz o fluido escoar através da tubulação. O fluido atinge um equilíbrio ou fica em vazão de regime permanente quando a força requerida para movê-lo através da tubulação é igual a força produzida pela diferença de pressão. Vários parâmetros influem na queda de pressão ao longo da tubulação: o seu comprimento, o seu diâmetro interno, a velocidade, a densidade e a viscosidade do fluido que se move através da tubulação e o atrito provocado pela rugosidade da parede interna da tubulação no fluido. Existem equações teóricas e experimentais relacionando todos estes parâmetros. A espessura da parede da tubulação, determinada pelo schedule do tubo, pode variar substancialmente para um determinado diâmetro da tubulação, enquanto o diâmetro externo permanece constante. Como

6 conseqüência, o diâmetro interno pode variar e por isso há ábacos e tabelas na literatura técnica para a sua obtenção. Em geral, quando o número do schedule aumenta, a espessura da parede aumenta e o diâmetro interno diminui. Para um fluido ideal, sem atrito, a velocidade da vazão adjacente a superfície limitante é a mesma. Na realidade, a adesão entre o fluido e as superfícies da parede tendem a fazer a velocidade do fluido igual a velocidade da superfície do corpo. Para uma pequena distância da superfície a velocidade aumenta com a distância em uma taxa rápida por causa da viscosidade dentro do fluido. A vazão nesta camada fina é laminar. Esta camada fina é conhecida como a camada laminar limístrofe. Há então uma zona de transição, onde os limites são indefinidos e além do qual a vazão é totalmente turbulenta. Mais distante da superfície, o efeito da superfície desaparece e a vazão não é perturbada. A camada entre o campo laminar e o perturbado é conhecida como a camada de limite da turbulência. Os efeitos da viscosidade são mais pronunciados próximo da parede ou do corpo sólido e diminui rapidamente com a distância da superfície limite. 4- Tipos de Vazão A vazão pode ser classificada de muitos modos, tais como laminar ou turbulenta, ideal ou real, compressível ou incompressível, homogênea ou com mais de uma fase, viscosa ou sem viscosidade, regime estável ou instável, rotacional ou irrotacional, isentrópica, adiabática, isotérmica ou pode ter designação de cientistas, tais como vazão de Couette, de Rayleigh, de Stokes. Para cada vazão, há hipóteses simplificadoras e as correspondentes equações permitem a análise. As simplificações se referem à viscosidade, densidade, pressão, temperatura, compressibilidade e energia em suas diferentes formas. Sempre há aspectos teóricos e informações experimentais. Em qualquer situação existem três condições: 1. a lei de Newton do movimento se aplica para cada partícula em cada instante; 2. a equação da continuidade é válida; 3. nas paredes do tubo, a componente normal da velocidade é igual à velocidade do tubo. Para o fluido real, a componente tangencial da velocidade do fluido na parede é zero, em relação à parede Vazão Ideal ou Real O fluido ideal não tem viscosidade e por isso não pode haver movimento rotacional das partículas em torno de seus centros de massa e nem tensão de cisalhamento. A vazão de um fluido sem viscosidade é chamada de vazão ideal e pode ser representada por uma única vazão resultante. A vazão ideal é irrotacional. Na vazão ideal as forças internas em qualquer seção são sempre perpendiculares a seção. As forças são puramente forças de pressão. Tal vazão é aproximada e nunca é conseguida na prática. A vazão de um fluido viscoso é chamada de vazão real. Vazão viscosa e vazão real são sinônimos. Todos os fluidos reais possuem algum grau de viscosidade Vazio Laminar ou Turbulenta A vazão laminar é assim chamada por que todas as partículas do fluido se movem em linhas distintas e separadas. As partículas do fluido se movem em linhas retas paralelas ao eixo da tubulação, de modo ordenado. A ação é como se as lâminas do fluido escorregassem relativamente entre si. No caso da vazão laminar em uma tubulação circular, a velocidade adjacente a parede é zero e aumenta para um máximo no centro do tubo. O perfil da velocidade é uma parábola e a velocidade média da vazão volumétrica é a metade da velocidade máxima no centro. A vazão laminar é governada pela Lei de Newton da viscosidade. Ela pode ser considerada como a vazão em que toda a turbulência é amortecida pela ação da viscosidade. Por isso, os termos vazão laminar e vazão viscosa são equivalentes.

7 A vazão laminar é caracterizada por um movimento suave e contínuo do fluido, com pouca deformação. A vazão laminar é conseguida de vários modos: fluido com pequena densidade, movimento em baixa velocidade, pequenos tamanhos dos corpos como os microrganismos nadando no mar ou fluido com alta viscosidade, tais como os óleos lubrificantes. A vazão laminar ocorre para vazões com Re menor que Um modo experimental de verificar quando um fluido está em vazão laminar é introduzir um filamento fino de um líquido colorido na vazão do fluido, através de um tubo de vidro. As trajetórias de todas as partículas do fluido serão paralelas as paredes do tubo e portanto o líquido se move em uma linha reta, como se estivesse dentro de um tubo fino mergulhado no fluido. Este estado da vazão depende da viscosidade, da densidade e da velocidade do fluido. Quando se aumenta a velocidade, a vazão continua laminar até se atingir um valor crítico, acima do qual, o líquido colorido começa a se dispersar e misturar com o fluido vazante. Neste ponto, as partículas do líquido colorido não são mais paralelas as paredes do tubo mas sua velocidade possui componentes transversais. Esta forma de vazão é chamada de turbulenta. Na vazão turbulenta não se tem linhas de vazão distintas mas o fluido consiste de uma massa de redemoinhos. As partículas não seguem a mesma trajetória. O perfil de velocidade mostra a velocidade máxima também no centro, mas a velocidade próxima das paredes da tubulação é igual a metade da máxima velocidade. O perfil é mais chato para um tubo liso do que para um tubo rugoso. Fig. 2. Vazão turbulenta Erroneamente se pensa que é mais fácil medir.vazões laminares. Na prática industrial e na natureza, a maioria das vazões é turbulenta e muitos medidores só conseguem medir vazões com número de Reynolds acima de um determinado limite, tipicamente de Vazão Estável ou Instável A vazão estável, também chamada de vazão em regime, é aquela conseguida quando, em qualquer ponto, a velocidade de partículas sucessivas do fluido é a mesma em períodos sucessivos de tempo ( v/ t = 0 ). Na vazão estável a velocidade é constante em relação ao tempo, mas pode variar em diferentes pontos ou com relação à distância ( v/ t 0 ). Na vazão estável a velocidade é constante com o tempo, e por isso as outras variáveis (pressão, densidade) também não variam com o tempo. Obtém-se vazão estável somente quando a profundidade, inclinação, velocidade, área da seção transversal da tubulação são constantes ao longo do comprimento da tubulação. A vazão estável é obtida somente com a vazão laminar. Na vazão turbulenta há flutuações continuas na velocidade e na pressão em cada ponto. Porém, se os valores flutuam em torno de um valor médio constante, de modo simétrico, a vazão pode ser considerada estável. Na vazão estável, as condições são usualmente constantes no tempo, embora, em determinado momento, elas não sejam necessariamente as mesmas em seções diferentes. Na vazão instável, a velocidade varia com o tempo ( v/ t 0 ) e como conseqüência, as outras condições (pressão, densidade, viscosidade) também variam em relação ao tempo. Depois de muito tempo, a vazão

8 instável pode se estabilizar ou ficar zero. Esta variação da vazão pode ser lenta, como resultado da ação de uma válvula de controle proporcional ou pode ser rápida, como o resultado do fechamento repentino, que pode produzir o fenômeno conhecido como golpe de aríete ou martelo d'água. A vazão instável acontece também quando se tem a vazão de um reservatório para outro, em que o equilíbrio é conseguido somente quando os dois níveis se igualam. A vazão instável também inclui o movimento periódico ou cíclico, tal como o das ondas do mar ou o movimento do mar em estuários e outras oscilações. A diferença entre tais casos e a vazão média de regime em vazões turbulentas é que os desvios da média da vazão instável e a escala de tempo são muito maiores Vazão Uniforme e Não-uniforme Tem-se uma vazão uniforme quando o valor e a direção da velocidade não mudam de um ponto a outro no fluido, ou seja, a velocidade não varia com a distância percorrida ( v/ t = 0). Na vazão uniforme, as outras variáveis do fluido (pressão, densidade, viscosidade) também não variam com a distância. A vazão de líquidos sob pressão através de tubulações longas com diâmetro constante é uniforme, com a vazão estável ou instável. Ocorre a vazão não-uniforme quando a velocidade, profundidade, pressão ou densidade do fluido varia de um ponto a outro na vazão ( v/ t 0 ). A vazão em um tubo com seção variável é não-uniforme Vazão Volumétrica ou Mássica Os medidores industriais podem medir a vazão volumétrica (volume/tempo) ou mássica (massa/tempo). A massa, junto com as unidades de comprimento e de tempo, constitui a base para todas as medidas físicas. Como um padrão fundamental de medição, a unidade de massa não é derivada de nenhuma outra fonte. As variações de temperatura, pressão, densidade, viscosidade, condutividade térmica ou elétrica não afetam a massa do fluido cuja vazão está sendo medida. Por exemplo, em determinadas temperaturas e pressões, a água é sólida, líquida ou gás. Qualquer que seja o estado da água, porém, 1,0 quilograma de massa de água, gelo ou vapor permanece exatamente 1,0 quilograma. Atualmente, já é disponível comercialmente medidores diretos de vazão mássica, como o tipo Coriolis, o termal e o medidor com dois rotores. Como a massa do fluido independe de medições de outras variáveis do processo, como pressão, temperatura ou densidade, a medição da vazão mássica é mais vantajosa que a medição da volumétrica, na maioria das aplicações. Porém, em sistemas envolvendo tanques de armazenagem, é essencial que seja medida a vazão volumétrica. A maioria dos medidores industriais mede a velocidade e infere a vazão volumétrica do fluido. A partir da velocidade e da área da seção transversal da tubulação tem-se a vazão volumétrica. Como o volume do fluido compressível depende.umbilicalmente da pressão e da temperatura, deve-se conhecer continuamente os valores da pressão e da temperatura para que o valor do volume tenha significado prático. Como a pressão estática e a temperatura do processo variam continuamente, para compensar estes desvios dos valores padrão de projeto, medem-se a pressão e a temperatura e fazem-se as correções, obtendo-se a vazão volumétrica compensada. Na prática, a maioria das medições de vazão de líquidos não tem nenhuma compensação, a minoria das vazões de líquidos possui apenas compensação da temperatura. A maioria absoluta das vazões de gases necessita da compensação da pressão e da temperatura, uma minoria reduzida não faz qualquer compensação e algumas aplicações requerem ainda a medição e compensação da densidade, além das medições de pressão e temperatura. Há aplicações onde se mede a temperatura e usa o seu valor para compensar a variação provocada simultaneamente no volume e na densidade do fluido Vazão Incompressível e Compressível Na vazão incompressível o fluido se move com a densidade constante. Nenhum fluido é verdadeiramente incompressível, desde que até os líquidos podem variar a densidade quando submetidos à altíssima pressão. Na prática, para fluidos com número de Mach menor que 0,3 a vazão pode ser considerada incompressível. É quase impossível se atingir a velocidade de líquido de 100 m/s, por causa da altíssima pressão requerida. Por isso o líquido é considerado incompressível. A diferença essencial entre um fluido compressível e um incompressível está na velocidade do som. Em um fluido incompressível a propagação da variação da pressão é praticamente instantânea; em um fluido compressível a velocidade é finita. Um pequeno distúrbio se propaga na velocidade do som. Quando a velocidade do fluido se iguala a velocidade do som no fluido, a variação da densidade (ou do volume) é igual a variação da velocidade. Ou seja, grande variação da velocidade, em vazão de alta velocidade, causa grande variação na densidade do fluido.

9 4.7- Vazão monofásica e bifásica Nenhum medidor de vazão pode distinguir entre um líquido puro e um líquido contendo ar ou gás entranhado. O gás entranhado pode resultar em uma medição com grande erro, mesmo com pequenas quantidades de gás. Quando se tem um medidor construído para medir líquido e há gases em suspensão ou quando se tem um medidor para gases e há condensado ou líquido entranhado, há erros grosseiros de medição. Para se ter medições com erros mínimos devem se instalar eliminadores de gás para garantir que não há nenhum gás entranhado no líquido medido. Os eliminadores de ar reduzem a velocidade do fluido em uma câmara para dar tempo aos gases escaparem antes de reentrar na tubulação. Quando o gás se acumula, o nível do líquido cai, baixando uma bóia que abre um vent para liberar o gás do eliminador. É importante que seja mantida uma pressão de retomo na saída suficiente para garantir uma vazão de descarga correta do gás. Atualmente há desenvolvimento de medidores para a indústria de petróleo para medir e distinguir as vazões de diferentes fases. As vazões com duas fases ocorrem quando há instabilidade e turbulências na tubulação e dependem das velocidades dos fluidos. As mais freqüentes são: 1. Vazão de bolha (bubble) quando há bolhas de gás dispersas através do líquido. 2. Vazão plug, quando há grandes bolhas de gás na fase líquida. 3. Vazão estratificada quando há uma camada de líquido abaixo de uma camada de gás 4. Vazão ondulada que é parecida com a vazão estratificada porém a interface é ondulada devido a altas velocidades. 5. Vazão anular quando há um filme líquido nas paredes internas com gás no centro. 6. Vazão spray com gotas de líquido dispersas no gás. 5- Distúrbios na Medição A precisão estabelecida para a medição da vazão é baseada na vazão de regime de um fluido newtoniano, homogêneo, com uma única fase, com um perfil de velocidade constante, com o coeficiente de descarga obtido em uma tubulação com extenso trecho reto. Os desvios destas condições de referência afetam a medição e o medidor, desde a introdução de erros de polarização até a destruição total do elemento sensor de vazão Cavitação Pode se ferver o líquido de dois modos distintos: aumentando a sua temperatura e mantendo constante a sua pressão; diminuindo a sua pressão e mantendo constante a sua temperatura. Por definição, a cavitação é a ebulição de um líquido causada pela diminuição da pressão, em vez de ser provocada pelo aumento da temperatura. É a formação de cavidades cheias de vapor dentro do líquido, causada pela despressurização do fluido em movimento, quando ele passa por alguma restrição e a pressão é reduzida a um valor abaixo da pressão de vapor do fluido, sem variação da temperatura ambiente. Quando a pressão a jusante aumenta, as cavidades de vapor formadas entram em colapso, gerando ondas de, choque internas que resultam em ruído e danos materiais. Os gases dissolvidos e as bolhas de gás nos líquidos fornecem os pontos nucleativos e estão presentes no processo de formação da cavitação. Com concentrações de gases na faixa de 40 ppm os fluidos podem cavitar em pressão estática mais elevada. Geralmente, a cavitação começa em mais alta pressão estática e menor velocidade em tubulações com diâmetros maiores. Uma vez começada, a cavitação contínua em pressão estática maiores que a pressão inicial. A cavitação ocorre em um sistema quando a pressão se reduz suficientemente, ou por atrito, ou por separação do fluido, ou por restrição apresentada por válvula, obstáculo, elemento de vazão gerador de pressão diferencial. Mesmo em um sistema com tubulação bem projetado, pode aparecer a cavitação quando a válvula de controle ou de alivio é aberta repentinamente. Na medição de vazão com geração a pressão diferencial, tem se uma queda brusca da pressão após o elemento primário. Quando a pressão da tubulação cai, aproximando se da pressão de vapor do líquido da linha, começa a cavitação.

10 A cavitação depende da temperatura e da pressão estática da tubulação e da pressão de vapor do fluido. A cavitação quando intensa pode destruir a tubulação, restringir a vazão, arruinar o elemento primário, produzir vibrações nas estruturas e produzir níveis de ruído inaceitáveis. O flashing ou flacheamento é um fenômeno análogo a cavitação. Há cavitação quando o líquido se transforma em vapor, quando a pressão cai e depois, o vapor volta para o estado líquido, quando a pressão volta a aumentar. No flacheamento, o líquido se transtorna em vapor e permanece vapor, pois a pressão recuperada ainda é menor que a pressão de vapor do fluido. A maioria dos problemas de cavitação ou flacheamento ocorre na medição de líquidos voláteis, com vapores formados antes e depois do elemento primário ou de vapores que se acumulam na tubulação. Os vapores podem ser eliminados pelo uso de selos ou purgas. A formação de vapores antes e depois do elemento primário pode ser evitada pelo uso de seguinte: placa de orifício segmentar ou excêntrica em linhas horizontais; furo de dreno na placa de orifício, quando a quantidade vapor é pequena; instalação vertical, com o fluxo na direção ascendente. A cavitação em medidores de vazão é geralmente remediada ou pelo aumento da pressão a montante ou a jusante do medidor ou pela diminuição da temperatura do líquido para baixar suficientemente a sua pressão de vapor. Como a geração da cavitação e do flashing também pode ser devida ou facilitada pela presença de gases no líquido, evita-se estes inconvenientes não permitindo a formação de vazão com duas fases Vazão Pulsante Quando todas as variáveis associadas à vazão do fluido, tais como pressão, velocidade, densidade, viscosidade, massa ou volume não se alteram ou variam muito lentamente (em relação à resposta de freqüência do sistema de medição de vazão), a vazão está em regime permanente (steady). Se qualquer uma dessas variáveis variar ciclicamente em relação ao.tempo, em um ponto da tubulação, a vazão é chamada de pulsante. A vazão pulsante é geralmente causada por equipamentos reciprocantes ou rotativos, como compressores, bombas ou turbinas e menos freqüentemente, por válvulas de alívio, líquidos que oscilam em uma pequena porção de uma linha de gás ou vapor, bolhas e variações cíclicas da carga do processo. O efeito da vazão pulsante é sentido como flutuações da pressão diferencial ou total, geralmente detectáveis no ponteiro do indicador ou na pena do registrador. Quando a vazão está pulsante, o indicador de vazão volumétrica dá uma leitura errada e com poucas exceções, o indicador i, apresenta uma vazão maior que a real Tubulação e Acessórios A vazão em uma tubulação reta com seção circular sofre uma queda da pressão ao longo da linha, dada pela equação de Darcy-Fanning ou de Darcy-Weisbach. Há vários parâmetros da tubulação que influem na perda de carga da vazão: o material de que o tubo é feito, o método de fabricação, o diâmetro, o tratamento da superfície e a idade da tubulação. A utilização de trocadores de calor, válvulas, expansões, contrações, conexões, curvas, cotovelos e tês provoca quedas adicionais da pressão. a) Válvulas As válvulas podem ser divididas em dois grupos principais, quando se considera a resistência a vazão: a válvula globo, que apresenta grande resistência a vazão usada para controle contínuo; a válvula com disco gaveta que representa uma pequena resistência e geralmente usada para abrir e fechar totalmente. A maioria das válvulas se situa entre estes dois grupos. b) Conexões As principais conexões da tubulação são as uniões, os tês de separação, os cotovelos de deflexão, os redutores e os expansores. Normalmente, a queda de pressão provocada por estas conexões é dada por tamanhos equivalentes de tubulação reta que causariam a mesma queda de pressão, sob as mesmas condições de vazão Golpe de Ariete

11 O golpe de ariete é um fenômeno que aparece e se propaga na tubulação causado pela variação brusca de alguma seção ou pela abertura ou fechamento rápido de uma válvula. Ele é chamado também de martelo d'água. Quando se corta rapidamente a vazão de um fluido aparece uma pressão elevada, no sentido contrário ao da vazão. Os efeitos elásticos da água e das paredes do tubo afetam as condições, amortecendo a pressão ao longo da linha. As partes mais afetadas estão mais próximas a válvula. Estas partes são comprimidas e as paredes adjacentes são expandidas pelo aumento de pressão provocado pelo fechamento. O golpe de ariete é inconveniente porque pode destruir medidores de vazão, válvulas de controle e bombas e pode ser útil no transporte de água através do carneiro hidráulico. 6- Medidores de Vazão 6.1. Sistema de Medição Os medidores de vazão consistem de duas partes distintas, cada uma exercendo uma função diferente: elemento primário; elemento secundário. O elemento primário está em contato direto com o fluido (parte molhada), resultando em alguma forma interação. Esta interação pode ser a separação do jato do fluido, aceleração, queda de pressão, alteração da temperatura, formação de vórtices, indução de força eletromotriz rotação de impellers, criação de uma força de impacto, criação de momentum angular, aparecimento de força de Coriolis, alteração no tempo,de propagação e muitos outros fenômenos naturais. O elemento secundário tem a função de medir a grandeza física gerada pela interação com a vazão do fluido e transformá-la em volume, peso ou vazão instantânea. O elemento secundário é finalmente ligado a um instrumento receptor de display, como indicador, registrador ou totalizador. As condições para a instalação apropriada e a operação correta, os erros e as outras características do elemento primário são independentes e diferentes das características do elemento secundário, de modo que eles devem ser tratados separadamente. O elemento primário se refere especificamente à medição de vazão e o elemento secundário se refere à instrumentação em geral. A placa de orifício é o elemento primário que mede a vazão gerando uma pressão diferencial e será estuda aqui. O transmissor de pressão diferencial, que é o elemento secundário associado a ela, será visto aqui muito superficialmente, para completar o estudo do sistema de medição. Este mesmo transmissor pode ser usado em outras aplicações, para medir nível ou pressão manométrica. O sistema de medição de vazão ainda inclui o instrumento de display que pode ser: indicador da vazão instantânea; registrador da vazão; totalizador da vazão acumulada em determinado período de tempo Classes de Medidores As classificações dos medidores de vazão se baseia somente no tipo do elemento primário ou no princípio físico envolvido. Os medidores de vazão podem ser divididos em dois grandes grupos funcionais: medidores de quantidade; medidores de vazão instantânea. Os medidores de vazão podem ser ainda classificados sob vários aspectos, como: relação matemática entre a vazão e o sinal gerado, se linear ou não-linear; tamanho físico do medidor em relação ao diâmetro da tubulação, igual ou diferente; fator K, com ou sem; tipo da vazão medida, volumétrica ou mássica; manipulação da energia, aditiva ou extrativa. Obviamente, há superposições das classes; por exemplo, a medição de vazão por placa de orifício envolve um medidor de vazão volumétrica instantânea, com saída proporcional ao quadrado da vazão, com diâmetro total, sem fator K e com extração de energia. O medidor de deslocamento positivo com pistão reciprocante é um

12 medidor de quantidade, linear, com fator K, com diâmetro total e com extração de energia. O medidor magnético é um medidor de vazão volumétrica instantânea, com fator K, diâmetro total e com adição de energia. a) Quantidade ou Vazão Instantânea No medidor de quantidade, o fluido passa em quantidades sucessivas, completamente isoladas, em peso ou em volumes, enchendo e esvaziando alternadamente câmaras de capacidade fixa e conhecida, que são o elemento primário. O elemento secundário do medidor de quantidade consiste de um contador para indicar ou registrar a quantidade total que passou através do medidor. O medidor de quantidade é, naturalmente, um totalizador de vazão. Quando se adiciona um relógio para contar o tempo, obtém-se também o registro da vazão instantânea. No medidor de vazão instantânea, o fluido passa em um jato contínuo. O movimento deste fluido através do elemento primário é utilizado diretamente ou indiretamente para atuar o elemento secundário. A vazão instantânea, ou relação da quantidade de vazão por unidade de tempo, é derivada das interações do jato e o elemento primário por conhecidas leis físicas teóricas suplementadas por relações experimentais. b) Relação Matemática Linear e Não-Linear A maioria dos medidores de vazão possui uma relação linear entre a vazão e a grandeza física gerada. São exemplos de medidores lineares: turbina, magnético, área variável, resistência linear para vazão laminar, deslocamento positivo. O sistema de medição de vazão mais aplicado, com placa de orifício é não linear. A pressão diferencial gerada pela restrição é proporcional ao quadrado da vazão medida. Exemplo de outro medidor não-linear é o tipo alvo, onde a força de impacto é proporcional ao quadrado da vazão. A rangeabilidade do medidor, que é a relação entre a máxima vazão medida dividida pela mínima vazão medida, com o mesmo desempenho é uma função inerente da linearidade. Os medidores lineares possuem a rangeabilidade típica de 10:1 e os medidores com grandeza física proporcional ao quadrado da vazão possuem a rangeabilidade de 3: 1. Exemplos típicos de medidores de vazão não lineares: placa de orifício, venturi, bocal, target, calha parshall (exponencial); medidores lineares: turbina, deslocamento positivo, magnético, coriolis, área variável. c) Diâmetros Totais e Parciais do Medidor Sob o aspecto da instalação do medidor na tubulação, há dois tipos básicos: com buraco pleno (full bore) ou de inserção. A maioria dos medidores possuem aproximadamente o mesmo diâmetro que a tubulação onde ele é instalado. A tubulação é cortada, retira-se um carretel do tamanho do medidor e o instala, entre flanges ou rosqueado. Tipicamente o seu diâmetro é aproximadamente igual ao da tubulação e ele é colocado direto na tubulação, cortando a tubulação e inserindo o medidor alinhado com ela. Esta classe de medidores é mais cara e com melhor desempenho. Exemplos de medidores com diâmetro pleno: placa, venturi, bocal, turbina, medidor magnético, deslocamento positivo, target, vortex. A outra opção de montagem é através da inserção do medidor na tubulação. Os medidores de inserção podem ser portáteis e são geralmente mais baratos porém possuem desempenho e precisão piores. Exemplos de medidores: tubo pitot e turbina de inserção. d) Medidores Com e Sem Fator K Há medidores que possuem o fator K, que relaciona a vazão com a grandeza física gerada. A desvantagem desta classe de medidores é a necessidade de outro medidor padrão de vazão para a sua aferição periódica. São exemplos de medidores com fator K: turbina, magnético, Vortex. O sistema de medição de vazão com placa de orifício é calibrado e dimensionado a partir de equações matemáticas e dados experimentais disponíveis. A grande vantagem da medição com placa de orifício é a sua calibração direta, sem necessidade de simulação de vazão conhecida ou de medidor padrão de referência. e) Medidores Volumétricos ou Mássicos A maioria dos medidores industriais mede a velocidade do fluido. A partir da velocidade se infere o valor da vazão volumétrica (volume = velocidade x área). A vazão volumétrica dos fluidos compressíveis depende

13 da pressão e da temperatura. Na prática, o que mais interessa é a vazão mássica, que independe da pressão e da temperatura. Tendo-se a vazão volumétrica e a densidade do fluido pode-se deduzir a vazão mássica. Porém, na instrumentação, a medição direta e em linha da densidade é difícil e complexa. Na prática, medem-se a vazão volumétrica, a pressão estática e a temperatura do processo para se obter a vazão mássica, desde que a composição do fluido seja constante. Atualmente, já são disponíveis instrumentos comerciais que medem diretamente a vazão mássica. O mais comum é o baseado no princípio de Coriolis. f) Energia Extrativa ou Aditiva Em termos simples, os medidores de vazão podem ser categorizados sob dois enfoques diferentes relacionados com a energia: ou extraem energia do processo medido ou adicionam energia ao processo medido. Como o fluido através da tubulação possui energia, sob várias formas diferentes, como cinética, potencial, de pressão e interna, pode-se medir a sua vazão extraindo alguma fração de sua energia. Este enfoque de medição envolve a colocação de um elemento sensor no jato da vazão. O elemento primário extrai alguma energia do fluido suficiente para faze-lo operar. A vantagem desta filosofia é a não necessidade de uma fonte externa de energia. Porém, o medidor é intrusivo e oferece algum bloqueio a vazão, o que é uma desvantagem inerente a classe de medição. Exemplos de medidores extratores de energia: placa de orifício, venturi, bocal, alvo, cotovelo, área variável, pitot, resistência linear, vertedor, calha, deslocamento positivo, turbina e vortex. O segundo enfoque básico para medir a vazão é chamado de energia aditiva. Neste enfoque, alguma fonte externa de energia é introduzida no fluido vazante e o efeito interativo da fonte e do fluido é monitorizado para a medição da vazão. A medição com adição de energia é não-intrusivo e o elemento primário oferece nenhum ou pequeno bloqueio a vazão. Como desvantagem, é necessário o uso de uma fonte externa de energia. Exemplos de medidores aditivos de energia: magnético, sônico, termal. O número de medidores baseados na adição da energia é menor que o de medidores com extração da energia. Isto é apenas a indicação do desenvolvimento mais recente destes medidores e este fato não deve ser interpretado de modo enganoso, como se os medidores baseados na adição da energia sejam piores ou menos favoráveis que os medidores baseados na extração da energia. 7. Seleção e Aplicação dos Medidores Quanto maior o número de opções, mais difícil é a escolha. A seleção do medidor de vazão é uma tarefa difícil e complexa, geralmente exigindo várias iterações para se chegar à melhor escolha. Para dificultar a escolha, a vazão é a variável do processo industrial que possui o maior número de diferentes elementos sensores e de medidores. São disponíveis tabelas relacionando os tipos dos medidores e as suas aplicações ideais, aceitáveis e proibidas. Porém, tais tabelas não são completas e não consideram todas as exigências e aplicações. Às vezes, elas são apresentadas pelo suspeito fabricante de determinado medidor e relacionam imparcialmente as principais vantagens do medidor especifico. A seleção do medidor é algo tão complicado que não deve-se limitar a uma tabela bi-dimensional. A seleção do medidor é feita em dois passos: 1. identificar os que medidores que sejam tecnicamente capazes de fazer a medição de vazão e que sejam disponíveis em material adequado ao fluido manipulado; 2. selecionar a melhor escolha entre os disponíveis. Pode-se, fazer um check-list das características chave que o medidor deve ter. Esta lista serve para eliminar os medidores tecnicamente inadequados. Para verificar se o medidor de vazão atende às especificações especiais como vazão reversa, vazão pulsante, tempo de resposta, é necessário estudar as especificações de cada medidor em detalhe ou consultar os respectivos fabricantes. Embora os passos acima eliminem tecnicamente os medidores inadequados, eles não necessariamente apontam um único medidor que seja tecnicamente adequado à aplicação. Um medidor pode possuir algumas das características requeridas mas pode não ter a combinação de todas as características desejadas. O tamanho da lista dos medidores tecnicamente adequados depende da complexidade da aplicação. Há aplicação complexa onde um único medidor é aplicável: o medidor de relação cruzado é o único que pode medir um líquido não condutor elétrico e altamente corrosivo com sólido em suspensão. Em aplicações simples, como a medição de água limpa, podem se usar praticamente todos os medidores.

14 Para se estreitar a escolha, o técnico deve se concentrar nos motivos para a medição da vazão. Por exemplo, a característica mais importante pode ser a alta precisão, a repetibilidade por longos períodos de tempo, o baixo custo da instalação ou a facilidade de manutenção. É essencial que as exigências sejam objetivamente especificadas, senão pode ser escolhido um medidor utópico ou inexistente. Atualmente, existem medidores em desenvolvimento que ainda não são comercialmente disponíveis, como medidores de vazão com duas fases. Os parâmetros que devem ser considerados na escolha e na especificação do medidor de vazão são os seguintes: 1. Dados da vazão 2. Custo 3. Função do instrumento 4. Desempenho 5. Geometria 6. Instalação 7. Fluido manipulado 8. Perda de pressão permanente 9. Tecnologia 7.1. Dados da Vazão Antes da seleção do medidor de vazão mais conveniente e para qualquer medidor escolhido é mandatório se ter todos os dados disponíveis da vazão de modo claro, confiável e definitivo. A vazão requer mais dados que a temperatura e a pressão, pois devem ser conhecidas as condições e instalações do processo e do fluido medido. É necessário o conhecimento dos seguintes dados da vazão : 1. o tamanho da linha a ser usada. Este dado pode ser usado como verificação do dimensionamento do medidor. Nunca se poderá ter um medidor de vazão com diâmetro maior que o diâmetro da linha onde ele será montado. Quando se obtém o diâmetro do medidor maior do que o da linha, geralmente há um erro relacionado com a vazão máxima do processo, que está superdimensionada; 2. a faixa de medição vazão máxima, mínima e normal. A vazão é a variável de processo mais afetada pela rangeabilidade, que é a habilidade do medidor operar desde vazão muito pequena até vazão muito elevada, com o mesmo desempenho. A maioria dos erros de vazão é devida à medição de baixas vazões em um medidor dimensionado para elevada vazão máxima; 3. a responsabilidade e a integridade do instrumento; se a aplicação é de simples indicação ou é de custódia (cobra e venda de produto), se a falha do medidor compromete a segurança do processo; 4. o tipo de vazão se pulsante, constante, com golpe de ariete, turbulenta, laminar; 5. as características e tipo do fluido medido (líquido, vapor ou gás), qualidade do vapor (saturado ou superaquecido), condições (sujeira, sólidos em suspensão, abrasividade), pressão estática, temperatura do processo, perda de carga permissível, velocidade, número de Reynolds correspondente, densidade, viscosidade, compressibilidade, peso molecular do gás ou do vapor e pressão de vapor do líquido. 6. os efeitos de corrosão química do fluido, para a escolha dos materiais em contato direto com o processo Custo O custo do sistema de medição incluem os relativos a instalação, operação, consumo de energia, pressão de bombeamento, manutenção e calibração. A maioria das pessoas só considera os custos diretos e imediatos da compra dos instrumentos, o que é incompleto. Por exemplo, os custos de um sistema de medição com placa de orifício incluem: 1. placa (dimensionamento, confecção); 2. instalação da placa: flange com furo ou furos na tubulação; 3. transmissor pneumático, eletrônico convencional ou inteligente. Se pneumático, ainda há custos do filtro regulador de pressão de alimentação; 4. tomada do transmissor à tubulação, com distribuidor de três ou cinco válvulas para bloqueio e equalização; 5. instrumento receptor com escala raiz quadrática ou com escala linear mais um instrumento ou circuito extrator de raiz quadrada; 6. se não houver trecho reto suficiente para a instalação da placa, deve-se adicionar um retificador de vazão, que é muito caro;

15 7. quando se quer uma maior precisão do sistema de medição, pode-se montar a placa em um trecho reto especial, com as tomadas prontas, com acabamentos especiais, com centralização garantida da placa, porém este kit de medição é caríssimo. Quando a perda de pressão permanente provocada pela placa é muito grande, deve-se aumentar a pressão na entrada do sistema (que custa algo) ou então trocar a placa de orifício por um tubo venturi, que provoca uma perda de carga muito menor mas que custa muito mais que a placa. Existem ainda custos invisíveis relacionados com a manutenção futura e com as calibrações posteriores. Instrumentos sem peças móveis (p. ex., medidor magnético e vortex) normalmente requerem menos manutenção que instrumentos com peças móveis (p. ex., turbina e deslocamento positivo). A calibração do medidor de vazão requer um padrão de vazão com classe de precisão superior a do medidor, que sempre custa muito mais que o medidor calibrado. O sistema com placa de orifício é calibrado em relação à pressão diferencial e por isso requer um padrão de pressão e não requer padrão de vazão. Quando se tem uma grande quantidade de medidores com fator K, que requerem calibrações periódicas, deve-se fazer um estudo econômico para implantação de um laboratório de vazão, em vez de enviar todos os medidores para o laboratório do fabricante ou um laboratório especializado. O consumo de energia elétrica ou pneumática do sistema de medição também deve ser considerado. O custo da energia consumida depende da potência requerida pelo medidor, tempo que o medidor fica ligado e do valor da energia elétrica cobrada pelo distribuidor. Para os medidores baseados na extração da energia, os custos ainda do valor da vazão, densidade e viscosidade do fluido e eficiência da bomba ou compressor de acionamento Função A função do instrumento receptor associado à vazão pode ser uma ou a combinação das seguintes: 1. indicação da vazão instantânea (ratemeter); 2. registro para totalização posterior ou apenas para verificação; 3. totalização direta da vazão, no local ou remota; 4. controle contínuo ou liga-desliga. Medidores com saída em pulso (deslocamento positivo, turbina, vortex, coriolis) são convenientes para totalização; medidores com saída analógica (placa de orifício, magnético) são mais apropriados para registro e controle. Para a indicação, é indiferente se o sinal é analógico ou digital. Medidores com deslocamento positivo são totalizadores naturais de vazão e os rotâmetros de área variável são adequados para indicação local da vazão. O instrumento que possui a indicação instantânea da vazão e simultaneamente uma chave para atuação liga-desliga de um contato é chamado de monitor de vazão Desempenho O erro de medidor de vazão determina sua precisão e exatidão. A precisão depende dos erros aleatórios e a exatidão depende dos erros sistemáticos do medidor. Os erros sistemáticos podem ser diminuídos ou eliminados pela calibração correta do medidor. Os erros aleatórios são inerentes ao instrumento e nunca podem ser eliminados. Através da manutenção correta do instrumento, a sua precisão é mantida igual à nominal, expressa pelo fabricante quando o instrumento é feito e está novo. A precisão do medidor inclui a repetibilidade, reprodutibilidade, linearidade, sensibilidade, rangeabilidade e estabilidade da operação. Em aplicações de controle e chave de vazão, a repetibilidade é mais importante que a igualdade. Em aplicações de compra e venda de produtos através da medição da vazão, a igualdade é tão importante quanto a repetibilidade. Há basicamente dois tipos de medidores quanto à sua precisão: 1. expressa em percentagem do fundo de escala; 2. expressa em percentagem do valor medido. No instrumento com precisão expressa em fundo de escala (ou em largura de faixa ou em unidade de engenharia) o erro absoluto é constante e o erro relativo aumenta hiperbolicamente com a diminuição da vazão medida. Os instrumentos que possuem erros.devidos ao zero e à largura de faixa tem precisão expressa em percentagem do fundo de escala, como o sistema com placa de orifício. No instrumento com precisão expressa em valor medido, o erro relativo é constante e o erro absoluto diminui linearmente com a diminuição da vazão medida. Os instrumentos que possuem erro devido apenas à largura de faixa e não possui erro de zero tem precisão expressa em percentagem do valor medido, como a turbina. A precisão expressa pelo fabricante é válida apenas para o instrumento novo e nas condições de calibração. A precisão total da malha é a resultante da soma das precisões do elemento sensor, do elemento secundário, do instrumento receptor, dos padrões de calibração envolvidos e das condições do local e dos procedimentos de calibração.

16 Geralmente, quanto mais preciso o instrumento, mais elevado é o seu custo. O medidor mais preciso é a turbina medidora de vazão, usada como padrão de calibração de outros medidores. Porém, o mesmo tipo de medidor pode ter diferentes precisões em função do fabricante, projeto de construção e materiais empregados. Além da precisão da medição, são fatores importantes a estabilidade, contabilidade e disponibilidade do medidor Geometria A geometria do processo inclui a tubulação fechada, esteira ou canal aberto; a disponibilidade de trechos retos antes e depois do local do medidor; a necessidade de uso adicional de retificadores de vazão e modificações das instalações existentes. Medidores diferentes requerem trechos retos a montante e a jusante do medidor diferentes. Geralmente o trecho reto a montante é maior que o trecho reto a jusante. Quando o trecho reto for insuficiente, deve-se usar retificadores de vazão. Quando o medidor é muito pesado, deve-se usar suporte para ele. Também, o medidor de vazão não pode provocar tensões mecânicas na tubulação onde ele é inserido. As dimensões e o peso do medidor estão relacionados com a facilidade de armazenagem, manipulação e montagem do medidor na tubulação. A maioria dos medidores é instalada entre flanges e pelas especificações do fabricante, pode-se planejar os cortes na tubulação e a colocação das flanges adequadas para montar o medidor. É essencial que o medidor esteja alinhado com a tubulação, ou seja, que os eixos do medidor e da tubulação sejam coincidentes Instalação A instalação do medidor inclui todos os acessórios, tomadas, filtros, retificadores, suportes e miscelânea do medidor. Antes de escolher o medidor, deve-se avaliar a facilidade da instalação na tubulação já existente, a simplicidade da operação futura e a possibilidade de retirada e de colocação do medidor sem interrupção do processo. Todo medidor de vazão deve ser montado em local de fácil acesso para o operador de campo do processo e principalmente, para o instrumentista reparador. Quando a retirada do medidor não pode afetar a operação do processo, deve-se prover um by-pass para o medidor. Medidores de vazão para compra e venda de material não pode ter by-pass. É disponível dispositivo para retirar e colocar placa de orifício na tubulação, sem interrupção do processo (válvula Daniel ou Pecos). Medidores frágeis, com peças móveis e que manipulem fluidos com sólidos em suspensão, geralmente requerem filtros a montante. Os inconveniente do filtro são o seu custo em si e o aumento da perda de carga permanente Faixa de Medição A faixa de medição da vazão inclui os valores máximo e mínimo, largura de faixa, condições de pressão estática e de temperatura do processo. Embora toda faixa teórica de medição seja de 0 até a vazão máxima, a rangeabilidade do medidor define a vazão mínima que pode ser medida com a mesma precisão que a máxima. Os medidores lineares possuem maior rangeabilidade que os medidores com saída proporcional ao quadrado da vazão, como a placa de orifício. Os medidores digitais possuem maior rangeabilidade que os analógicos. O diâmetro do medidor de vazão é sempre menor que o diâmetro da tubulação; em raros casos ambos os diâmetros são iguais. Um medidor deve ser dimensionado ter capacidade de, no máximo, 80% da vazão máxima de projeto e a vazão normal de trabalho.deve estar entre 75 a 80% da vazão máxima do medidor. Quanto maior a vazão medida, menor é o erro relativo da medição, principalmente quando o medidor tem precisão expressa em percentagem do fundo de escala. Medidor de vazão com peças móveis que trabalhe muito tempo em sua vazão máxima tem vida útil diminuída drasticamente. Quando o medidor trabalha próximo da sua capacidade máxima, a velocidade do fluido é a máxima e há maior chance de haver cavitação do fluido dentro do medidor, que pode destruí-lo rapidamente Fluido As características químicas e físicas do fluido que entra em contato direto com o medidor, como corrosividade, viscosidade, abrasividade, sólidos em suspensão, valor e perfil da velocidade são determinantes na escolha do medidor de vazão e dos seus materiais constituintes.

17 O fluido serve para eliminar medidores. Por exemplo, o medidor magnético mede somente fluidos eletricamente condutores; a turbina mede somente fluidos limpos, o medidor ultra-sônico mede somente fluidos com partículas em suspensão. Dependendo do tipo da sujeira e do medidor, a solução é usar filtro antes do medidor, com os seus inconvenientes inerentes e custo adicional e inspeções periódicas. O problema da corrosão química pode ser eliminado com a escolha adequada do material das partes molhadas e do fluido. Na literatura técnica, são disponíveis tabelas com a lista de materiais recomendados, aceitáveis e proibidos para uso com determinados produtos. No aspecto de corrosão e compatibilidade com fluidos, o melhor medidor é o magnético, por causa da grande variedade do material de revestimento e dos eletrodos. O problema de erosão física pode ser eliminado com o dimensionamento correto do medidor, que resulte em velocidades baixas. Às vezes, a solução também envolve o uso de filtro para eliminar partículas abrasivas em suspensão. Medidores com peça móvel e com elemento intrusivo geralmente são mais susceptíveis à erosão e desgaste que os medidores sem peça móvel e não intrusivos. O perfil de velocidade é muito importante quando se tem medidores de inserção, onde a posição do medidor deve ser matematicamente estabelecida para medir a velocidade média correta. A temperatura e pressão do fluido são fundamentais, pois elas podem alterar o estado do fluido. Alta temperatura e baixa pressão podem transformar líquido em gás; alta pressão e baixa temperatura podem transformar gás em líquido. Praticamente todos os medidores de vazão tem projeto e construção para medir somente uma fase. A mudança de fase pode provocar grandes erros ou danificar o medidor de vazão Perda de Carga A perda de carga permanente é a queda de pressão que o medidor provoca irrecuperavelmente na pressão estática da tubulação. Os medidores intrusivos provocam grande perda de carga e os medidores não-intrusivos provocam pequena ou nenhuma perda de carga. Quanto maior a perda de carga provocada pelo medidor, maior deve ser a pressão a montante do medidor e como conseqüência, maior a pressão de bombeamento. O medidor magnético praticamente não provoca queda de pressão adicional; o medidor ultra-sônico pode ser colocado externamente à tubulação (clamp-on) para medir a vazão. O outro inconveniente de se provocar grande perda de carga, além da maior pressão a montante, é a possibilidade de haver cavitação no líquido, que pode destruir o medidor. A cavitação é provocada por baixa pressão ou alta temperatura Tecnologia A tecnologia empregada está associada à manutenção, tradição e número de peças de reposição. É uma boa prática de engenharia padronizar um medidor de vazão, pois isso facilita a manutenção e diminui o número de peças de reposição. Nota-se que os medidores à base de energia extrativa são mais numerosos e mais usados que os medidores de energia aditiva. No Brasil, há medidores que tiveram um bom trabalho de marketing e são muito vendidos, como o medidor mássico coriolis. Outros medidores, com excelente desempenho, como o tipo vortex, são pouco conhecidos e pouco usados Medidor Universal Ideal de Vazão Não existe um medidor ideal para ser usado universalmente para qualquer aplicação. Todo medidor de vazão possui vantagens e limitações inerentes e para cada aplicação há um medidor mais conveniente, depois de analisados os aspectos técnicos e comerciais. Para cada conjunto de condições e exigências de processo há um medidor mais adequado que deve ser o escolhido. Isto obriga o engenheiro ou o técnico conhecer os princípios básicos de todos os medidores de vazão e a aplicação ótima para cada tipo. O ponto de partida para a escolha é o conhecimento prévio de todos os dados do processo da vazão. A escolha deve ser feita, baseada no compromisso entre o custo e o desempenho. Porém, a escolha do melhor medidor de vazão não é suficiente para a futura medição precisa e confiável. O instrumento escolhido deve ser montado corretamente, mantido em perfeitas condições e os dados fornecidos por ele devem ser interpretados e entendidos de modo exato e preciso. O medidor ideal teria as seguintes características : 1. alta rangeabilidade, podendo medir com pequeno erro, grandes e altas vazões; 2. sinal de saída linear com a vazão medida; 3. sinais de saída analógico e digital; 4. imunidade a ruídos e outras influências externas; 5. medição da vazão sem influência da densidade, viscosidade, condutividade e outras variáveis modificadoras; 6. perda de carga desprezível;

18 7. sem obstrução, para manipular fluidos com sólidos em suspensão; 8. sem peças moveis; 9. alta resistência a fluidos abrasivos e corrosivos; 10. capacidade de medir igualmente líquidos e gases; 11. capacidade de uso em altas e baixas temperaturas e altas pressões; 12. disponibilidade em diferentes tamanhos para ser usado em tubulações grandes e pequenas; 13. capacidade de ser instalado e retirado do processo sem interrupção da operação; 14. altíssima precisão (repetibilidade, linearidade, sem histerese e sem banda morta); 15. ausência de manutenção; 16. estabilidade, contabilidade e integridade; 17. facilidade e retenção da calibração (calibração requerida em longos intervalos de tempo). 8. Desempenho do Instrumento 8.1. Introdução A medição é o processo experimental de atribuir.números para as propriedades dos objetos ou eventos no mundo real, de modo a descrevê-los quantitativamente. A medição das propriedades do objeto, não a descrição do objeto. A medição é a comparação de uma quantidade desconhecida com um valor padrão predeterminado adotado. O resultado completo de uma medição inclui: 1. um número que mostra quantas vezes a unidade padrão está contida na quantidade medida; 2. a unidade de engenharia da quantidade; 3. a tolerância da medição, expressa por limites de erro ou de incerteza. Mede-se uma variável de processo, direta ou indiretamente. O valor da variável medida deve ser apresentado na unidade de engenharia e não em termos de corrente elétrica, sinal pneumático ou movimento mecânico. O processo que inclui a variável medida possui outras variáveis que podem influir e perturbar a medição. Para se medir uma variável, todas as outras variáveis que Interferem nela devem ser mantidas constantes para não haver erro. O instrumentista confia na folha de especificação do fabricante onde estão definidas a precisão e as características do instrumento e deve proceder corretamente para obter a medição confessável, seguindo as instruções de operação e entendendo corretamente os conceitos básicos associados. O elemento sensor primário produz uma saída que é função da variável medida, segundo uma lei matemática conhecida. A saída do elemento sensor pode ser um deslocamento mecânico ou uma variável elétrica, como tensão, corrente, resistência, capacitância. O elemento sensor intrusivo sempre perturba a variável medida, ou extraindo ou adicionando energia. A quantidade medida é sempre modificada pela medição, tomando impossível a medição perfeita e sem erro. O sensor é tanto melhor quanto menos influenciar a variável medida. Para o instrumento desempenhar sua função de indicação, registro ou controle, é necessário converter o sinal de saída em outro mais manipulável e conveniente, mas preservando a informação contida no sinal original. O elemento de manipulação da variável condiciona o sinal de saída do elemento sensor para que o instrumento desempenhe a sua função, preservando a natureza física da variável medida. O elemento de apresentação dos dados depende da função do instrumento: indicação pelo conjunto ponteiro escala ou através de dígitos, registro pelo conjunto pena gráfico, armazenamento em sistema digital. A leitura feita pelo observador no elemento apresentador dos dados possui erros inerentes aos equipamentos e ao método da medição. Toda leitura apresenta erro e possui uma precisão. A metrologia é a ciência da medição e é considerada monótona e desinteressante por muitos técnicos. Porém, ela é necessária e felizmente existem metrologistas para definir e monitorar os padrões Características do Instrumento As características de desempenho do instrumento são importantes pois elas constituem a base para a escolha do instrumento mais apropriado para a aplicação especifica. O instrumento possui características estáticas e dinâmicas. Estático significa entradas e saídas estacionárias e dinâmico quer dizer entradas e saídas não estacionárias. Um sistema é chamado de estático se sua relação entrada/saída é independente da velocidade de variação da entrada. Todos sistemas físicos eventualmente violam esta definição quando a velocidade de variação da entrada aumenta. Assim, o termo estático é usualmente acompanhado por uma limitação que especifica a faixa para a qual o sistema é estática, como a faixa de freqüência estendendo de zero até algum valor [imite. Por exemplo, uma mola mecânica opera com variação de entrada lenta e relação força-deslocamento constante. Em

19 grandes variações da entrada, a massa da mola se torna um fator importante e a mola não se comporta mais como um dispositivo estático. Um sistemas é chamado dinâmico se sua relação entrada-saída depende da taxa de variação da entrada. O sistema dinâmico tem armazenagem de energia e sua descrição requer mais de uma equação diferencial. O tempo de resposta de um sistema dinâmico é caracterizado por sua constante de tempo e freqüência natural. Os sistemas de instrumentação são dinâmicos, mas eles são projetados para ter constantes de tempo menores e freqüências naturais maiores do que as do sistema sendo medido. Por exemplo, em um sistema de controle com realimentação negativa, o tempo de resposta do elemento sensor é projetado e selecionado de modo a ser muito mais rápido que o sistema medido. O comportamento transitório e dinâmico de um.instrumento é mais importante que o estático. Os instrumentos raramente respondem instantaneamente às variações da variável medida, mas exibem um atraso, devido a várias causas, como a inércia da massa, a capacitância termal, elétrica e fluídica, a resistência de transferência de energia. As características dinâmicas do instrumento são: a velocidade de resposta, a contabilidade, o atraso e o erro dinâmico. Os instrumentos podem ter respostas dinâmicas de ordem zero (potenciômetro com deslocamento), primeira (termômetro com enchimento termal) e segunda (balanço da mola). As características estáticas são aquelas consideradas quando as condições do processo são constantes. Elas são conseguidas através do processo de calibração do instrumento e incluem a exatidão, rangeabilidade e precisão. A precisão possui os parâmetros constituintes de linearidade, repetibilidade, reprodutibilidade e sensitividade Exatidão Conceito O autor traduz o termo accuracy como exatidão, embora já tenha sido criado o neologismo de acurácia. Também se emprega a palavra justeza como sinônimo de exatidão. Exatidão é o grau de conformidade de um valor indicado para um valor padrão reconhecidamente aceito ou valor ideal. A exatidão medida é expressa pelo desvio máximo observado no teste de um instrumento sob determinadas condições e através de um procedimento especifico. É usualmente medida como uma inexatidão e expressa como exatidão. O conceito de exatidão pode ser aplicado a uma única medição ou à média um conjunto de medições. Valor Verdadeiro O valor verdadeiro é o valor real atribuído à quantidade. O valor verdadeiro da quantidade nunca pode ser achado e não é conhecido. O valor atribuído a uma quantidade somente será conhecido com alguma incerteza ou erro. Na prática, o valor verdadeiro é substituído pelo valor verdadeiro convencional, dado por um instrumento de medição padrão disponível. Por exemplo, se um medidor é considerado ser capaz de fornecer medições com erro menor que ± l% do valor medido, ele pode ser calibrado com um instrumento com erros menores que ±0,1% do valor medido, na mesma faixa. Neste caso, o segundo instrumento fornece o valor verdadeiro convencional. Por norma, o instrumento padrão deve ter um erro de 4 a 10 vezes menor que o instrumento a ser calibrado. O objetivo de toda medição é o de obter o valor verdadeiro da variável medida e o erro é tomado como a diferença entre o valor medido e o valor verdadeiro. A exatidão é a habilidade de um instrumento de medição dar indicações equivalentes ao valor verdadeiro da quantidade medida. A exatidão se relaciona com a calibração do instrumento. Quando o instrumento perde a exatidão e deixa de indicar a média coincidente com o valor verdadeiro, ele precisa ser calibrado.

20 Fig. 3. Precisão e exatidão 8.4. Precisão Conceito A precisão é um dos assuntos mais importantes da instrumentação, embora seja mal entendido. Sua importância é grande pelos seguintes motivos: 1. a medição precisa das variáveis de processo é um requisito para um controle eficiente; 2. o termo é pobremente definido e muito mal interpretado. Em inglês, há duas palavras accuracy e precision que são traduzidas indistintamente como precisão para o português; 3. os conceitos de precisão (precision e accuracy), rangeabilidade (rangeability), aferição, calibração e manutenção nem sempre são bem definidos; 4. há a tendência de alguns fabricantes, por má fé ou por desconhecimento, em expressar numericamente a precisão de modo a parecer que seus produtos apresentam uma precisão maior do que real ou maior que a dos instrumentos concorrentes. Precisão (precision) é o grau de concordância mútua e consistente entre várias medições individuais, principalmente relacionada com repetibilidade e reprodutibilidade. A precisão é uma medida do grau de liberdade dos erros aleatórios do instrumento. A precisão é a qualidade que caracteriza um instrumento de medição dar indicações equivalentes ao valor verdadeiro da quantidade medida. A precisão está relacionada com a qualidade do instrumento. Quando o instrumento deteriora a sua precisão, alargando a dispersão de suas medidas do mesmo valor, ele necessita de manutenção. A manutenção criteriosa do instrumento, utilizando peças originais e conservando o projeto original não melhora a precisão nominal do instrumento, fornecida pelo fabricante quando novo mas evita que ela se degrade e ultrapasse os limites originais.

Tipos de malha de Controle

Tipos de malha de Controle Tipos de malha de Controle SUMÁRIO 1 - TIPOS DE MALHA DE CONTROLE...60 1.1. CONTROLE CASCATA...60 1.1.1. Regras para Selecionar a Variável Secundária...62 1.1.2. Seleção das Ações do Controle Cascata e

Leia mais

Fundação Centro Tecnológico de Minas Gerais IMPLANTAÇÃO DO LABORATÓRIO DE VAZÃO DE GÁS DA FUNDAÇÃO CENTRO TECNOLÓGICO DE MINAS GERAIS

Fundação Centro Tecnológico de Minas Gerais IMPLANTAÇÃO DO LABORATÓRIO DE VAZÃO DE GÁS DA FUNDAÇÃO CENTRO TECNOLÓGICO DE MINAS GERAIS Fundação Centro Tecnológico de Minas Gerais IMPLANTAÇÃO DO LABORATÓRIO DE VAZÃO DE GÁS DA FUNDAÇÃO CENTRO TECNOLÓGICO DE MINAS GERAIS V Seminário de Metrologia Aeroespacial V SEMETRA 21 a 24 de julho de

Leia mais

Universidade Paulista Unip

Universidade Paulista Unip Elementos de Produção de Ar Comprimido Compressores Definição Universidade Paulista Unip Compressores são máquinas destinadas a elevar a pressão de um certo volume de ar, admitido nas condições atmosféricas,

Leia mais

INSTRUMENTAÇÃO E CONTROLE. vazão. Professor Miguel Neto

INSTRUMENTAÇÃO E CONTROLE. vazão. Professor Miguel Neto INSTRUMENTAÇÃO E CONTROLE vazão Professor Miguel Neto Conceito de vazão Definição: É a quantidade de fluido que passa atravésdeumaseçãodeumatubulação ou canal por unidade de tempo. Q=vazão V=velocidade

Leia mais

Transitores de tempo em domínio de tempo

Transitores de tempo em domínio de tempo Em muitos processos, a regulação do caudal permite controlar reacções químicas ou propriedades físicas através de um controlo de variáveis como a pressão, a temperatura ou o nível. O caudal é uma variável

Leia mais

Válvulas controladoras de vazão

Válvulas controladoras de vazão Generalidades Válvula controladora de vazão variável Válvula de controle de vazão variável com retenção integrada Métodos de controle de vazão Válvula de controle de vazão com pressão compensada temperatura

Leia mais

Período de injeção. Período que decorre do início da pulverização no cilindro e o final do escoamento do bocal.

Período de injeção. Período que decorre do início da pulverização no cilindro e o final do escoamento do bocal. CAPÍTULO 9 - MOTORES DIESEL COMBUSTÃO EM MOTORES DIESEL Embora as reações químicas, durante a combustão, sejam indubitavelmente muito semelhantes nos motores de ignição por centelha e nos motores Diesel,

Leia mais

Vazão. 7.1 Introdução

Vazão. 7.1 Introdução Cap. 7 Medição de 7.1 Introdução Vazão Existem diversos tipos de medidores de vazão de escoamento, sendo que a escolha de um tipo dependerá das condições necessárias ao sistema, como por exemplo, a faixa

Leia mais

Controle II. Estudo e sintonia de controladores industriais

Controle II. Estudo e sintonia de controladores industriais Controle II Estudo e sintonia de controladores industriais Introdução A introdução de controladores visa modificar o comportamento de um dado sistema, o objetivo é, normalmente, fazer com que a resposta

Leia mais

13 TUBULAÇÕES DE REFRIGERANTE

13 TUBULAÇÕES DE REFRIGERANTE 167 13 TUBULAÇÕES DE REFRIGERANTE As tubulações de refrigerante representam uma parte essencial no sistema de refrigeração, pois requer as mesmas considerações gerais de projeto que qualquer sistema de

Leia mais

Estes sensores são constituídos por um reservatório, onde num dos lados está localizada uma fonte de raios gama (emissor) e do lado oposto um

Estes sensores são constituídos por um reservatório, onde num dos lados está localizada uma fonte de raios gama (emissor) e do lado oposto um Existem vários instrumentos de medição de nível que se baseiam na tendência que um determinado material tem de reflectir ou absorver radiação. Para medições de nível contínuas, os tipos mais comuns de

Leia mais

Figura 6.1 - Ar sangrado do compressor da APU

Figura 6.1 - Ar sangrado do compressor da APU 1 Capítulo 6 - SANGRIA DE AR 6.1 - Finalidade e características gerais A finalidade da APU é fornecer ar comprimido para os sistemas pneumáticos da aeronave e potência de eixo para acionar o gerador de

Leia mais

Medição de Nível. Profa. Michelle Mendes Santos

Medição de Nível. Profa. Michelle Mendes Santos Medição de Nível Profa. Michelle Mendes Santos Introdução Medir a variável nível em processos industriais é quantificar referenciais por meio da monitoração contínua ou discreta com o objetivo de avaliar

Leia mais

Sensores e Atuadores (2)

Sensores e Atuadores (2) (2) 4º Engenharia de Controle e Automação FACIT / 2009 Prof. Maurílio J. Inácio Atuadores São componentes que convertem energia elétrica, hidráulica ou pneumática em energia mecânica. Através dos sistemas

Leia mais

Acumuladores hidráulicos

Acumuladores hidráulicos Tipos de acumuladores Compressão isotérmica e adiabática Aplicações de acumuladores no circuito Volume útil Pré-carga em acumuladores Instalação Segurança Manutenção Acumuladores Hidráulicos de sistemas

Leia mais

Purgadores da JEFFERSON

Purgadores da JEFFERSON Purgadores da JEFFERSON Purgador Termostasticos Purgador Bimetalico Purgador Balde Invertido Purgador de Boia Purgador Termodinâmico O que é Purgador? Purgadores são válvulas automáticas que abrem para

Leia mais

Medida de Vazão. Vazão: quantidade de líquidos, gases ou sólidos que passa por um determinado local na unidade de tempo;

Medida de Vazão. Vazão: quantidade de líquidos, gases ou sólidos que passa por um determinado local na unidade de tempo; Medida de Vazão Medida de Vazão Vazão: quantidade de líquidos, gases ou sólidos que passa por um determinado local na unidade de tempo; Unidade de medida (SI): m 3 /s Outras unidades: litros/min, m 3 /hora,

Leia mais

Medição de Vazão Submersa Livro Branco

Medição de Vazão Submersa Livro Branco Medição de Vazão Submersa Livro Branco Page 1 of 5 2009 by McCrometer, Inc. Printed in U.S.A. 24519-04 Rev. 1.0/06-09 Livro Branco By Marcus Davis V-Cone Flow Meter Product Manager McCrometer, Inc. Medição

Leia mais

Fundamentos de Automação. Atuadores e Elementos Finais de Controle

Fundamentos de Automação. Atuadores e Elementos Finais de Controle Ministério da educação - MEC Secretaria de Educação Profissional e Técnica SETEC Instituto Federal de Educação Ciência e Tecnologia do Rio Grande do Sul Campus Rio Grande Fundamentos de Automação Atuadores

Leia mais

Vazão ou fluxo: quantidade de fluido (liquido, gás ou vapor) que passa pela secao reta de um duto por unidade de tempo.

Vazão ou fluxo: quantidade de fluido (liquido, gás ou vapor) que passa pela secao reta de um duto por unidade de tempo. Medição de Vazão 1 Introdução Vazão ou fluxo: quantidade de fluido (liquido, gás ou vapor) que passa pela secao reta de um duto por unidade de tempo. Transporte de fluidos: gasodutos e oleodutos. Serviços

Leia mais

Centro de Seleção/UFGD Técnico em Refrigeração ==Questão 26==================== Assinale a alternativa que define refrigeração.

Centro de Seleção/UFGD Técnico em Refrigeração ==Questão 26==================== Assinale a alternativa que define refrigeração. Técnico em Refrigeração ==Questão 26==================== Assinale a alternativa que define refrigeração. (A) O movimento de energia de frio dentro de um espaço onde ele é necessário. (B) A remoção de calor

Leia mais

Chemguard - Sistemas de Espuma. Sistemas de espuma de alta expansão DESCRIÇÃO: SC-119 MÉTODO DE OPERAÇÃO

Chemguard - Sistemas de Espuma. Sistemas de espuma de alta expansão DESCRIÇÃO: SC-119 MÉTODO DE OPERAÇÃO Sistemas de espuma de alta expansão DESCRIÇÃO: O Gerador de Espuma de Alta Expansão (Hi-Ex) Chemguard é um componente em um Sistema de Supressão de Incêndios de Espuma de Alta Expansão. Não requer nenhuma

Leia mais

1 Introdução simulação numérica termoacumulação

1 Introdução simulação numérica termoacumulação 22 1 Introdução Atualmente o custo da energia é um dos fatores mais importantes no projeto, administração e manutenção de sistemas energéticos. Sendo assim, a economia de energia está recebendo maior atenção

Leia mais

11.1 EQUAÇÃO GERAL DOS BALANÇOS DE ENERGIA. Acúmulo = Entrada Saída + Geração Consumo. Acúmulo = acúmulo de energia dentro do sistema

11.1 EQUAÇÃO GERAL DOS BALANÇOS DE ENERGIA. Acúmulo = Entrada Saída + Geração Consumo. Acúmulo = acúmulo de energia dentro do sistema 11 BALANÇOS DE ENERGIA EM PROCESSOS FÍSICOS E QUÍMICOS Para utilizar adequadamente a energia nos processos é preciso que sejam entendidos os princípios básicos envolvidos na geração, utilização e transformação

Leia mais

Condensação. Ciclo de refrigeração

Condensação. Ciclo de refrigeração Condensação Ciclo de refrigeração Condensação Três fases: Fase 1 Dessuperaquecimento Redução da temperatura até a temp. de condensação Fase 2 Condensação Mudança de fase Fase 3 - Subresfriamento Redução

Leia mais

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSMISSAO E TELEMETRIA

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSMISSAO E TELEMETRIA INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSMISSAO E TELEMETRIA Introdução Frequentemente, o instrumento indicador, controlador, registrador, etc. e instalado a uma distancia considerável do ponto de medição.

Leia mais

FIGURA 63 - a) TUBULAÇÕES DE RETORNO DIRETO b) TUBULAÇÕES DE RETORNO INVERSO

FIGURA 63 - a) TUBULAÇÕES DE RETORNO DIRETO b) TUBULAÇÕES DE RETORNO INVERSO 82 7 DISTRIBUIÇÃO DE ÁGUA Os sistemas de distribuição de água podem ser classificados como: - Sem Recirculação: A água flui através do sistema sem reaproveitamento. - Recirculação Aberta: A água é bombeada

Leia mais

Bicos Pulverizadores. Análise da Pulverização. Fabricação da Pulverização. Controle da Pulverização. Sistema de Lubrificação Spraying Systems

Bicos Pulverizadores. Análise da Pulverização. Fabricação da Pulverização. Controle da Pulverização. Sistema de Lubrificação Spraying Systems Bicos Pulverizadores Controle da Análise da Fabricação da Sistema de Lubrificação Spraying Systems Sistemas de Lubrificação Spray Os Sistemas de Lubrificação Spray fornecem um método altamente eficiente

Leia mais

3 Transdutores de temperatura

3 Transdutores de temperatura 3 Transdutores de temperatura Segundo o Vocabulário Internacional de Metrologia (VIM 2008), sensores são elementos de sistemas de medição que são diretamente afetados por um fenômeno, corpo ou substância

Leia mais

Nível é a altura do conteúdo de um reservatório que pode ser sólido ou líquido. Os três tipos básicos de medição de nível são: a) direto b) indireto

Nível é a altura do conteúdo de um reservatório que pode ser sólido ou líquido. Os três tipos básicos de medição de nível são: a) direto b) indireto 4 NÍVEL Nível é a altura do conteúdo de um reservatório que pode ser sólido ou líquido. Os três tipos básicos de medição de nível são: a) direto b) indireto 4.1 Medição Direta É a medição que tomamos como

Leia mais

Procedimentos de montagem e instalação

Procedimentos de montagem e instalação Procedimentos de montagem e instalação de elementos filtrantes Pall grau P (farmacêutico) 1. Introdução Os procedimentos abaixo devem ser seguidos para a instalação dos elementos filtrantes Pall grau P

Leia mais

SENSORES INDUSTRIAIS

SENSORES INDUSTRIAIS SENSORES INDUSTRIAIS Sensores: são dispositivos que transformam grandezas físicas em um sinal Sensores Analógicos e Digitais Caracterís:cas Alcance Precisão Resolução Sensibilidade Tempo de Resposta Não

Leia mais

NORMA TÉCNICA MEDIÇÃO DE VAZÃO DE EFLUENTES LÍQUIDOS ESCOAMENTO LIVRE CPRH N 2.004

NORMA TÉCNICA MEDIÇÃO DE VAZÃO DE EFLUENTES LÍQUIDOS ESCOAMENTO LIVRE CPRH N 2.004 NORMA TÉCNICA MEDIÇÃO DE VAZÃO DE EFLUENTES LÍQUIDOS ESCOAMENTO LIVRE CPRH N 2.004 MEDIÇÃO DE VAZÃO DE EFLUENTES LÍQUIDOS ESCOAMENTO LIVRE 1 OBJETIVO Esta Norma fixa as condições exigíveis para a indicação

Leia mais

INSTALAÇÃO, LUBRIFICAÇÃO E MANUTENÇÃO DAS CORRENTES TRANSPORTADORAS PROCEDIMENTO DE INSTALAÇÃO DA CORRENTE

INSTALAÇÃO, LUBRIFICAÇÃO E MANUTENÇÃO DAS CORRENTES TRANSPORTADORAS PROCEDIMENTO DE INSTALAÇÃO DA CORRENTE UNP-130408 1 de 6 INSTALAÇÃO, LUBRIFICAÇÃO E MANUTENÇÃO DAS CORRENTES TRANSPORTADORAS A vida útil das correntes transportadoras e elevadoras está diretamente ligada aos cuidados com a instalação, lubrificação

Leia mais

Apêndice J Medidores (Descrição para a Unidade de Incineração de Resíduos da Clariant site Suzano - SP)

Apêndice J Medidores (Descrição para a Unidade de Incineração de Resíduos da Clariant site Suzano - SP) Apêndice J Medidores (Descrição para a Unidade de Incineração de Resíduos da Clariant site Suzano - SP) 188 Apêndice J Medidores (Descrição para a Unidade de Incineração de Resíduos da Clariant site Suzano

Leia mais

Evocar os conceitos do MRUV (movimento retilíneo uniformemente variado), do MRU (movimento retilíneo uniforme) e a decomposição de forças.

Evocar os conceitos do MRUV (movimento retilíneo uniformemente variado), do MRU (movimento retilíneo uniforme) e a decomposição de forças. 14 Curso Básico de Mecânica dos Fluidos Objetivos da segunda aula da unidade 1: Evocar os conceitos do MRUV (movimento retilíneo uniformemente variado), do MRU (movimento retilíneo uniforme) e a decomposição

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

Ponte rolante: como escolher

Ponte rolante: como escolher Ponte rolante: como escolher Vários fatores devem ser analisados antes de se optar por um modelo A decisão sobre a escolha do tipo de ponte rolante é altamente influenciada pelo local onde ela deve ser

Leia mais

PRINCIPAIS DEFICIÊNCIAS EM CIRCUITOS HIDRÁULICOS QUE OCASIONAM FALHAS EM BOMBAS HIDRÁULICAS

PRINCIPAIS DEFICIÊNCIAS EM CIRCUITOS HIDRÁULICOS QUE OCASIONAM FALHAS EM BOMBAS HIDRÁULICAS INFORMATIVO TÉCNICO N 019/09 INFORMATIVO TÉCNICO PRINCIPAIS DEFICIÊNCIAS EM CIRCUITOS HIDRÁULICOS QUE OCASIONAM FALHAS EM BOMBAS HIDRÁULICAS 1/21 INFORMATIVO TÉCNICO N 019/09 O PRINCIPAL COMPONENTE DE

Leia mais

UNIVERSIDADE FEDERAL DE SANTA MARIA COLÉGIO TÉCNICO INDUSTRIAL DE SANTA MARIA Curso de Eletrotécnica

UNIVERSIDADE FEDERAL DE SANTA MARIA COLÉGIO TÉCNICO INDUSTRIAL DE SANTA MARIA Curso de Eletrotécnica UNIVERSIDADE FEDERAL DE SANTA MARIA COLÉGIO TÉCNICO INDUSTRIAL DE SANTA MARIA Curso de Eletrotécnica Apostila de Automação Industrial Elaborada pelo Professor M.Eng. Rodrigo Cardozo Fuentes Prof. Rodrigo

Leia mais

PRÁTICA 12: VISCOSIDADE DE LÍQUIDOS

PRÁTICA 12: VISCOSIDADE DE LÍQUIDOS PRÁTICA 12: VISCOSIDADE DE LÍQUIDOS Viscosidade é uma característica dos líquidos que está relacionada com a sua habilidade de fluir. Quanto maior a viscosidade de um líquido (ou de uma solução) mais difícil

Leia mais

BOMBEAMENTO DE ÁGUA COM ENERGIA SOLAR FOTOVOLTAICA

BOMBEAMENTO DE ÁGUA COM ENERGIA SOLAR FOTOVOLTAICA BOMBEAMENTO DE ÁGUA COM ENERGIA SOLAR FOTOVOLTAICA Eng. Carlos Alberto Alvarenga Solenerg Engenharia e Comércio Ltda. Rua dos Inconfidentes, 1075/ 502 Funcionários - CEP: 30.140-120 - Belo Horizonte -

Leia mais

Bicos Automação Análise Técnica. Sistemas. Guia de Tecnologia de Pulverização para Processos Farmacêuticos

Bicos Automação Análise Técnica. Sistemas. Guia de Tecnologia de Pulverização para Processos Farmacêuticos Bicos Automação Análise Técnica Sistemas Guia de Tecnologia de Pulverização para Processos Farmacêuticos Revestimento de Comprimidos com Baixa Manutenção Os maiores desafios no revestimento de comprimidos

Leia mais

DESIDRATAÇÃO, SEPARAÇÃO E LIQUEFAÇÃO DE GÁS NATURAL USANDO O TUBO VORTEX

DESIDRATAÇÃO, SEPARAÇÃO E LIQUEFAÇÃO DE GÁS NATURAL USANDO O TUBO VORTEX DESIDRATAÇÃO, SEPARAÇÃO E LIQUEFAÇÃO DE GÁS NATURAL USANDO O TUBO VORTEX REV C Por Luiz Henrique V. Souza Com Agradecimentos Especiais ao Engº Eduardo Gertrudes, CTGÁS/RN. Dezembro, 2010. ÍNDICE 1 - INTRODUÇÃO.

Leia mais

Diretrizes para determinação de intervalos de comprovação para equipamentos de medição.

Diretrizes para determinação de intervalos de comprovação para equipamentos de medição. Diretrizes para determinação de intervalos de comprovação para equipamentos de medição. De acordo com a Norma NBR 1001, um grande número de fatores influência a freqüência de calibração. Os mais importantes,

Leia mais

Geradores de Vapor. 4º ano Aula 3

Geradores de Vapor. 4º ano Aula 3 Geradores de Vapor 4º ano Aula 3 Classificação dos Geradores de Vapor Tópicos Definição Classificaçao das caldeiras Caldeiras Flamotubulares Caldeiras Aquatubulares Definição É basicamente um trocador

Leia mais

Medição tridimensional

Medição tridimensional A U A UL LA Medição tridimensional Um problema O controle de qualidade dimensional é tão antigo quanto a própria indústria, mas somente nas últimas décadas vem ocupando a importante posição que lhe cabe.

Leia mais

INSTRUMENTAÇÃO. Eng. Marcelo Saraiva Coelho

INSTRUMENTAÇÃO. Eng. Marcelo Saraiva Coelho INSTRUMENTAÇÃO CONCEITOS E DEFINIÇÕES Nas indústrias, o termo PROCESSO tem um significado amplo. Uma operação unitária, como por exemplo, destilação, filtração ou aquecimento, é considerado um PROCESSO.

Leia mais

CAPÍTULO 8 - SISTEMA DE ALIMENTAÇÃO (MOTORES OTTO) CARBURAÇÃO INJEÇÃO INTRODUÇÃO

CAPÍTULO 8 - SISTEMA DE ALIMENTAÇÃO (MOTORES OTTO) CARBURAÇÃO INJEÇÃO INTRODUÇÃO CAPÍTULO 8 - SISTEMA DE ALIMENTAÇÃO (MOTORES OTTO) CARBURAÇÃO INJEÇÃO INTRODUÇÃO Requisitos de mistura. Em geral, a ótima razão ar/combustível com determinada velocidade do motor consiste naquela em que

Leia mais

Transmissor de Vazão Mod. RTVG

Transmissor de Vazão Mod. RTVG 1. Introdução O Medidor de vazão tipo turbina é um instrumento de medição de vazão volumétrico. O elemento sensível à vazão é um rotor com um sistema de palhetas fixas, suspenso livremente sobre um eixo

Leia mais

Características de um fluido

Características de um fluido FLUIDOS - Propriedades Características de um fluido Gases e liquídos podem ambos ser considerados fluidos. Há certas características partilhadas por todos os fluidos que podem usar-se para distinguir liquidos

Leia mais

Tipos de Poços. escavação..

Tipos de Poços. escavação.. O que é um poço Tubular Chamamos de poço toda perfuração através da qual obtemos água de um aqüífero e há muitas formas de classificá-los. Usaremos aqui uma classificação baseada em sua profundidade e

Leia mais

6 Mistura Rápida. Continuação

6 Mistura Rápida. Continuação 6 Mistura Rápida Continuação 2 Ressalto em medidor Parshall (calha Parshall): Foi idealizado por R.L. Parshall, engenheiro do Serviço de Irrigação do Departamento de Agricultura dos EUA. Originalmente

Leia mais

ANEXO II TABELA DE TAXAS DE SERVIÇOS METROLÓGICOS. Seção 1. Verificação inicial e verificação subsequente

ANEXO II TABELA DE TAXAS DE SERVIÇOS METROLÓGICOS. Seção 1. Verificação inicial e verificação subsequente ANEXO II TABELA DE TAXAS DE SERVIÇOS METROLÓGICOS Seção 1 Verificação inicial e verificação subsequente Valor R$ da classe de exatidão M3 (peso comercial) 1 até 50 g 1,70 1,70 2 de 100 g até 1 kg 3,90

Leia mais

EXPERIÊNCIA Nº 4 ESTUDO DE UM TROCADOR DE CALOR DE FLUXO CRUZADO

EXPERIÊNCIA Nº 4 ESTUDO DE UM TROCADOR DE CALOR DE FLUXO CRUZADO EXPERIÊNCIA Nº 4 ESTUDO DE UM TROCADOR DE CALOR DE FLUXO CRUZADO 1. CONCEITOS ENVOLVIDOS Convecção de calor em escoamento externo; Transferência de calor em escoamento cruzado; Camada limite térmica; Escoamento

Leia mais

MEDIDORES DE VAZÃO. Prof. Ruy Alexandre Generoso

MEDIDORES DE VAZÃO. Prof. Ruy Alexandre Generoso MEDIDORES DE VAZÃO Prof. Ruy Alexandre Generoso Definição Velocidade com que um fluido passa por uma determinada seção de uma tubulação ou canal. Corresponde à taxa de escoamento de algum material transportado

Leia mais

Métodos normalizados para medição de resistência de aterramento Jobson Modena e Hélio Sueta *

Métodos normalizados para medição de resistência de aterramento Jobson Modena e Hélio Sueta * 40 Capítulo VI Métodos normalizados para medição de resistência de aterramento Jobson Modena e Hélio Sueta * A ABNT NBR 15749, denominada Medição de resistência de aterramento e de potenciais na superfície

Leia mais

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica.

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Texto 07 - Sistemas de Partículas Um ponto especial A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Porém objetos que apresentam uma geometria, diferenciada,

Leia mais

A Equação de Bernoulli

A Equação de Bernoulli Aula 4 A equação de Bernoulli Objetivos O aluno deverá ser capaz de: Descrever a dinâmica de escoamento de um fluido. Deduzir a Equação de Bernoulli. Aplicar a Equação de Bernoulli e a Equação da Continuidade

Leia mais

ANEMÔMETRO A FIO QUENTE

ANEMÔMETRO A FIO QUENTE UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA INSTRUMENTAÇÀO ELTRÔNICA ANEMÔMETRO A FIO QUENTE Cayo Cid de França Moraes 200321285 Natal/RN ANEMÔMETRO

Leia mais

1. Difusão. A difusão só ocorre quando houver gradiente de: Concentração; Potencial; Pressão.

1. Difusão. A difusão só ocorre quando houver gradiente de: Concentração; Potencial; Pressão. 1. Difusão Com frequência, materiais de todos os tipos são tratados termicamente para melhorar as suas propriedades. Os fenômenos que ocorrem durante um tratamento térmico envolvem quase sempre difusão

Leia mais

ATERRAMENTO ELÉTRICO 1 INTRODUÇÃO 2 PARA QUE SERVE O ATERRAMENTO ELÉTRICO? 3 DEFINIÇÕES: TERRA, NEUTRO, E MASSA.

ATERRAMENTO ELÉTRICO 1 INTRODUÇÃO 2 PARA QUE SERVE O ATERRAMENTO ELÉTRICO? 3 DEFINIÇÕES: TERRA, NEUTRO, E MASSA. 1 INTRODUÇÃO O aterramento elétrico, com certeza, é um assunto que gera um número enorme de dúvidas quanto às normas e procedimentos no que se refere ao ambiente elétrico industrial. Muitas vezes, o desconhecimento

Leia mais

Um sistema bem dimensionado permite poupar, em média, 70% a 80% da energia necessária para o aquecimento de água que usamos em casa.

Um sistema bem dimensionado permite poupar, em média, 70% a 80% da energia necessária para o aquecimento de água que usamos em casa. Mais Questões Isildo M. C. Benta, Assistência Técnica Certificada de Sistemas Solares Quanto poupo se instalar um painel solar térmico? Um sistema bem dimensionado permite poupar, em média, 70% a 80% da

Leia mais

Distância de acionamento. Distância sensora nominal (Sn) Distância sensora efetiva (Su) Distância sensora real (Sr) 15/03/2015

Distância de acionamento. Distância sensora nominal (Sn) Distância sensora efetiva (Su) Distância sensora real (Sr) 15/03/2015 Ministério da educação - MEC Secretaria de Educação Profissional e Técnica SETEC Instituto Federal de Educação Ciência e Tecnologia do Rio Grande do Sul Campus Rio Grande Sensores São dispositivos que

Leia mais

Considerações sobre redimensionamento de motores elétricos de indução

Considerações sobre redimensionamento de motores elétricos de indução Considerações sobre redimensionamento de motores elétricos de indução Artigo publicado na revista Lumiere Electric edição nº 166 Aplicações de investimentos dentro das empresas sempre são questionadas

Leia mais

Misturadores a jato e sistemas de mistura em tanques

Misturadores a jato e sistemas de mistura em tanques Misturadores a jato e sistemas de mistura em tanques Misturadores a jato Os misturadores a jato da Koerting são os principais componentes de sistemas de mistura especiais, podendo ser utilizados em operações

Leia mais

MEIOS DE LIGAÇÃO DE TUBOS

MEIOS DE LIGAÇÃO DE TUBOS MEIOS DE LIGAÇÃO DE TUBOS Ligações rosqueadas; Ligações soldadas; Ligações flangeadas; Ligações de ponta e bolsa; Outras Ligações: - Ligações de compressão; - Ligações patenteadas. 1 Fatores que influenciam

Leia mais

MEDIÇÃO DE VAZÃO. Instrumentação Industrial ENG3501 Prof. Letícia Chaves

MEDIÇÃO DE VAZÃO. Instrumentação Industrial ENG3501 Prof. Letícia Chaves MEDIÇÃO DE VAZÃO Instrumentação Industrial ENG3501 Prof. Letícia Chaves Medição de Vazão 2 1 MEDIDORES DE QUANTIDADE 1.1 Medidores de Quantidade por Pesagem 1.2 Medidores de Quantidade Volumétrica 2 MEDIDORES

Leia mais

Sistema de vácuo ICE Condensation Körting. para aplicações em óleo comestível

Sistema de vácuo ICE Condensation Körting. para aplicações em óleo comestível Sistema de vácuo ICE Condensation Körting para aplicações em óleo comestível Sistema de vácuo ICE Condensation No mercado de hoje em dia, o sistema de vácuo ICE Condensation Körting faz sentido! Como todos

Leia mais

Introdução ao Estudo da Corrente Eléctrica

Introdução ao Estudo da Corrente Eléctrica Introdução ao Estudo da Corrente Eléctrica Num metal os electrões de condução estão dissociados dos seus átomos de origem passando a ser partilhados por todos os iões positivos do sólido, e constituem

Leia mais

Manual de Operação e Instalação

Manual de Operação e Instalação Manual de Operação e Instalação Transmissor de nível Cod: 073AA-005-122M Rev. A Série LT-200 Fevereiro / 2004 S/A. Rua João Serrano, 250 Bairro do Limão São Paulo SP CEP 02551-060 Fone: (11) 3488-8999

Leia mais

TR Tanque Flash. 1. Termo de garantia. 2. Informações gerais de segurança. 3. Informações de segurança específicas do produto

TR Tanque Flash. 1. Termo de garantia. 2. Informações gerais de segurança. 3. Informações de segurança específicas do produto 1.753.000.080 IM-D176-01 BR Rev.00 TR Tanque Flash Manual de Instalação e Manutenção 1. Termo de garantia 2. Informações gerais de segurança 3. Informações de segurança específicas do produto 4. Informações

Leia mais

ENERGIA DO HIDROGÊNIO - Célula de Combustível Alcalina

ENERGIA DO HIDROGÊNIO - Célula de Combustível Alcalina Universidade Federal do Pará Instituto de Tecnologia Programa de Pós Graduação em Engenharia Elétrica PPGEE0030 - INTRODUÇÃO ÀS ENERGIAS RENOVÁVEIS Docente: Professor Doutor João Tavares Pinho Discente:

Leia mais

PROCESSO SELETIVO TURMA DE 2010 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2010 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCESSO SELETIVO TURM DE 2010 FSE 1 PROV DE FÍSIC E SEU ENSINO Caro professor, esta prova tem 4 (quatro) questões, com valores diferentes indicados nas próprias questões. Duas das questões são objetivas,

Leia mais

AS CARACTERÍSTICAS PRINCIPAIS DO MOTOR INCLUEM...

AS CARACTERÍSTICAS PRINCIPAIS DO MOTOR INCLUEM... Motores H-Compact COMPACTO, REFRIGERAÇÃO EFICIENTE A importância crescente da economia de energia, dos requerimentos ambientais, da procura por dimensões menores e das imposições dos mercados nacionais

Leia mais

Prof. Daniel Hasse. Robótica Industrial

Prof. Daniel Hasse. Robótica Industrial Prof. Daniel Hasse Robótica Industrial Aula 02 - Robôs e seus Periféricos Tipos de Sistemas de Controle Volume de Trabalho Dinâmica e Precisão dos Movimentos Sistemas de Acionamentos Garras Tipos de Sistemas

Leia mais

Solius 61 Manual de Instruções

Solius 61 Manual de Instruções Zona Industrial de Avintes, nº 103 4430 930 Avintes, V. N. de Gaia web: www.cirelius.pt e-mail: info@cirelius.pt tel: 227 843 817 fax: 227 843 819 Controlador Solar Solius 61 O controlador Solius 61 dispõe

Leia mais

MEDIÇÃO DE TEMPERATURA

MEDIÇÃO DE TEMPERATURA MEDIÇÃO DE TEMPERATURA 1 INTRODUÇÃO Temperatura é sem dúvida a variável mais importante nos processos industriais, e sua medição e controle, embora difíceis, são vitais para a qualidade do produto e a

Leia mais

Medir é uma atividade

Medir é uma atividade Algumas noções básicas sobre os padrões metrológicos Medir é uma atividade bastante corriqueira na sociedade atual. Ao olhar no relógio, por exemplo, a pessoa vê no mostrador o resultado de uma medição

Leia mais

Medição de Nível Parte 2. Adrielle C. Santana

Medição de Nível Parte 2. Adrielle C. Santana Medição de Nível Parte 2 Adrielle C. Santana Da aula passada... Pressão Hidrostática => P= gh Supressão de Zero Para maior facilidade de manutenção e acesso ao instrumento, muitas vezes o transmissor é

Leia mais

Curso de Instrumentista de Sistemas. Fundamentos de Controle. Prof. Msc. Jean Carlos

Curso de Instrumentista de Sistemas. Fundamentos de Controle. Prof. Msc. Jean Carlos Curso de Instrumentista de Sistemas Fundamentos de Controle Prof. Msc. Jean Carlos Ações de controle em malha fechada Controle automático contínuo em malha fechada Ação proporcional A característica da

Leia mais

ECA303 INSTRUMENTAÇÃO INDUSTRIAL I

ECA303 INSTRUMENTAÇÃO INDUSTRIAL I NOTAS 03 - MEDIÇÃO DE VAZÃO 3.1. INTRODUÇÃO A medição de vazão é uma das tarefas mais importantes em vários processos industriais, principalmente nos setores químico e petroquímico onde possuem um papel

Leia mais

CONTEÚDOS COMPETÊNCIAS HABILIDADES CONTEÚDOS

CONTEÚDOS COMPETÊNCIAS HABILIDADES CONTEÚDOS CONTÚDOS COMPTÊNCIAS CONTÚDOS GOVRNO DO STADO D MATO GROSSO DO SUL SCRTARIA D STADO D DUCAÇÃO SUPRINTNDÊNCIA D POLÍTICAS D DUCAÇÃO COORDNADORIA D NSINO MÉDIO DUCAÇÃO PROFISSIONAL RFRNCIAL CURRCULAR - CIÊNCIAS

Leia mais

n 1 L 1 n 2 L 2 Supondo que as ondas emergentes podem interferir, é correto afirmar que

n 1 L 1 n 2 L 2 Supondo que as ondas emergentes podem interferir, é correto afirmar que QUESTÃO 29 QUESTÃO 27 Uma escada de massa m está em equilíbrio, encostada em uma parede vertical, como mostra a figura abaixo. Considere nulo o atrito entre a parede e a escada. Sejam µ e o coeficiente

Leia mais

Princípios de Funcionamento do Filtro de do Combustível

Princípios de Funcionamento do Filtro de do Combustível 10 Princípios Princípios de Funcionamento do Sistema de Filtração de Combustível O sistema de alimentação de combustível tem a finalidade de conduzir o combustível, do tanque até a camara de combustão,

Leia mais

Fontes de Alimentação

Fontes de Alimentação Fontes de Alimentação As fontes de alimentação servem para fornecer energia eléctrica, transformando a corrente alternada da rede pública em corrente contínua. Estabilizam a tensão, ou seja, mesmo que

Leia mais

AULA 6 Esquemas Elétricos Básicos das Subestações Elétricas

AULA 6 Esquemas Elétricos Básicos das Subestações Elétricas CONSIDERAÇÕES INICIAIS AULA 6 Esquemas Elétricos Básicos das Subestações Elétricas Quando planejamos construir uma subestação, o aspecto de maior importância está na escolha (e, conseqüentemente, da definição)

Leia mais

Boletim da Engenharia

Boletim da Engenharia Boletim da Engenharia 28 Compressores Octagon Aplicação Sub Crítica com Dióxido de Carbono CO 2 09/08 Nesse boletim vamos abordar as instruções de operação dos compressores Octagon aplicados com o Dióxido

Leia mais

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS MEDIÇÃO DE TEMPERATURA TERMÔMETROS DE RESISTÊNCIA

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS MEDIÇÃO DE TEMPERATURA TERMÔMETROS DE RESISTÊNCIA INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS MEDIÇÃO DE TEMPERATURA TERMÔMETROS DE RESISTÊNCIA Introdução O uso de termômetros de resistência esta se difundindo rapidamente devido a sua precisão e simplicidade

Leia mais

RESUMOS TEÓRICOS de QUÍMICA GERAL e EXPERIMENTAL

RESUMOS TEÓRICOS de QUÍMICA GERAL e EXPERIMENTAL RESUMOS TEÓRICOS de QUÍMICA GERAL e EXPERIMENTAL 5 ESTUDO DA MATÉRIA 1 DEFINIÇÕES Matéria é tudo que ocupa lugar no espaço e tem massa. Nem tudo que existe no universo e matéria. Por exemplo, o calor e

Leia mais

Manual Técnico de Instalação, Operação e Manutenção. Lavador de Ar

Manual Técnico de Instalação, Operação e Manutenção. Lavador de Ar Manual Técnico de Instalação, Operação e Manutenção ISO 9001:2008 VENTEC AMBIENTAL EQUIPAMENTOS E INSTALAÇÕES LTDA Rua André Adolfo Ferrari, nº 550 - Distrito Industrial Nova Era - Indaiatuba - São Paulo

Leia mais

DESENVOLVIMENTO DE UM ROBÔ MANIPULADOR INDUSTRIAL

DESENVOLVIMENTO DE UM ROBÔ MANIPULADOR INDUSTRIAL 1 DESENVOLVIMENTO DE UM ROBÔ MANIPULADOR INDUSTRIAL Carlos Henrique Gonçalves Campbell Camila Lobo Coutinho Jediael Pinto Júnior Associação Educacional Dom Bosco 1. Objetivo do Trabalho Desenvolvimento

Leia mais

HIDRÁULICA BÁSICA RESUMO

HIDRÁULICA BÁSICA RESUMO HIDRÁULICA BÁSICA RESUMO Antonio Marozzi Righetto 1. Hidráulica é o ramo da ciência que trata das condições físicas da água em condições de repouso e em movimento. 2. Um volume de água aprisionado em um

Leia mais

Termelétrica de Ciclo Combinado

Termelétrica de Ciclo Combinado Termelétrica de Ciclo Combinado As usinas termelétricas são máquinas térmicas que têm como objetivo a conversão da energia de um combustível em energia elétrica. A eficiência térmica de conversão destas

Leia mais

6 Conclusões e sugestões para trabalhos futuros

6 Conclusões e sugestões para trabalhos futuros 6 Conclusões e sugestões para trabalhos futuros 6.1. Conclusões Neste trabalho estudou-se um sistema de acompanhamento de alvos do tipo pan-tilt atuado por motores de corrente contínua e fixo em um corpo

Leia mais

Desumidificador. Desidrat Plus IV Desidrat Plus V

Desumidificador. Desidrat Plus IV Desidrat Plus V Desumidificador Desidrat Plus IV Desidrat Plus V Lista de instrução de uso. Painel de controle. Introdução à estrutura. Instrução de Uso. Proteção e Manutenção. Solução de problemas. Referência. Obrigado

Leia mais

1 Propagação de Onda Livre ao Longo de um Guia de Ondas Estreito.

1 Propagação de Onda Livre ao Longo de um Guia de Ondas Estreito. 1 I-projeto do campus Programa Sobre Mecânica dos Fluidos Módulos Sobre Ondas em Fluidos T. R. Akylas & C. C. Mei CAPÍTULO SEIS ONDAS DISPERSIVAS FORÇADAS AO LONGO DE UM CANAL ESTREITO As ondas de gravidade

Leia mais

TRANSFORMADORES. P = enrolamento do primário S = enrolamento do secundário

TRANSFORMADORES. P = enrolamento do primário S = enrolamento do secundário TRANSFORMADORES Podemos definir o transformador como sendo um dispositivo que transfere energia de um circuito para outro, sem alterar a frequência e sem a necessidade de uma conexão física. Quando existe

Leia mais

Os motores de CA podem ser monofásicos ou polifásicos. Nesta unidade, estudaremos os motores monofásicos alimentados por uma única fase de CA.

Os motores de CA podem ser monofásicos ou polifásicos. Nesta unidade, estudaremos os motores monofásicos alimentados por uma única fase de CA. Motores elétricos Os motores de CA podem ser monofásicos ou polifásicos. Nesta unidade, estudaremos os motores monofásicos alimentados por uma única fase de CA. Para melhor entender o funcionamento desse

Leia mais

MÁQUINAS AGRÍCOLAS PROF. ELISEU FIGUEIREDO NETO

MÁQUINAS AGRÍCOLAS PROF. ELISEU FIGUEIREDO NETO MÁQUINAS AGRÍCOLAS PROF. ELISEU FIGUEIREDO NETO COLHEITA NA AUSTRALIA Hoje nós temos que preocupar não só em aprimorar as MÁQUINAS, mas também os OPERADORES que com elas trabalham. PARTES CONSTITUINTES

Leia mais