Complexidade de Algoritmos
|
|
|
- Antônia Salgado
- 6 Há anos
- Visualizações:
Transcrição
1 Complexidade de Algoritmos
2 Complexidade de Algoritmos Definição A Complexidade de um Algoritmo consiste na quantidade de trabalho necessária para a sua execução, expressa em função das operações fundamentais, as quais variam de acordo com o algoritmo, e em função do volume de dados
3 Complexidade de Algoritmos Um algoritmo serve para resolver um determinado problema, e todos os problemas têm sempre uma entrada de dados (N) O tamanho desse N afeta sempre diretamente no tempo de resposta de um algoritmo Dependendo do problema, já existem alguns algoritmos prontos, ou que podem ser adaptados O problema é: qual algoritmo escolher?
4 Complexidade de Algoritmos A complexidade de um algoritmo pode ser dividido em: Complexidade Espacial: Quantidade de recursos utilizados para resolver o problema; Complexidade Temporal: Quantidade de Tempo utilizado. Pode ser visto também como o número de instruções necessárias para resolver determinado problema; Em ambos os casos, a complexidade é medida de acordo com o tamanho dos dados de entrada (N)
5 Complexidade de Algoritmos Existem três escalas de complexidade: Melhor Caso Caso Médio Pior Caso Nas três escalas, a função f(n) retorna a complexidade de um algoritmo com entrada de N elementos
6 Complexidade de Algoritmos Melhor Caso Definido pela letra grega Ω (Ômega) É o menor tempo de execução em uma entrada de tamanho N É pouco usado, por ter aplicação em poucos casos. Ex.: Se tivermos uma lista de N números e quisermos encontrar algum deles assume-se que a complexidade no melhor caso é f(n) = Ω (1), pois assume-se que o número estaria logo na cabeça da lista.
7 Complexidade de Algoritmos Caso Médio Definido pela letra grega θ (Theta) Dos três, é o mais difícil de se determinar Deve-se obter a média dos tempos de execução de todas as entradas de tamanho N, ou baseado em probabilidade de determinada condição ocorrer No exemplo anterior: A complexidade média é P(1) + P(2) P(N) Para calcular a complexidade média, basta conhecer as probabilidades de Pi; Pi = 1/N, 1 <= i <= N Isso resulta em P(1/N) + P(2/N) P(N/N) Que resulta em 1/N( N) Que resulta em 1 N(N+1) N 2 Que resulta em f(n) = θ (N+1) 2
8 Complexidade de Algoritmos Pior Caso Será o caso utilizado durante esse curso Representado pela letra grega O (O maiúsculo. Trata-se da letra grega ômicron maiúscula) É o método mais fácil de se obter. Baseia-se no maior tempo de execução sobre todas as entradas de tamanho N Ex.: Se tivermos uma lista de N números e quisermos encontrar algum deles, assume-se que a complexidade no pior caso é O (N), pois assume-se que o número estaria, no pior caso, no final da lista. Outros casos adiante
9 Complexidade de Algoritmos Mas como saber qual é a complexidade de um determinado algoritmo implementado? Para resolver esse problema, dividiu-se os algoritmos em Classes de Problemas, de acordo com o parâmetro que afeta o algoritmo de forma mais significativa
10 Classes de Algoritmos São elas: 1. Complexidade Constante 2. Complexidade Linear 3. Complexidade Logarítmica 4. NlogN 5. Complexidade Quadrática 6. Complexidade Cúbica 7. Complexidade Exponencial
11 Complexidade Constante São os algoritmos de complexidade O(1) Independe do tamanho N de entradas É o único em que as instruções dos algoritmos são executadas num tamanho fixo de vezes Ex.: Function Vazia(Lista: TipoLista): Boolean; Begin End; Vazia := Lista.Primeiro = Lista.Ultimo;
12 Complexidade Linear São os algoritmos de complexidade O(N) Uma operação é realizada em cada elemento de entrada, ex.: pesquisa de elementos em uma lista Procedure Busca(Lista: TipoLista; x: TipoElem; Var pos: integer) Var i: integer; Begin End; i:=1; while Lista.Elemento[i] <> x do i := i+1; if i >= Lista.MaxTam then else pos := -1 pos := i;
13 Complexidade Logarítmica São os algoritmos de complexidade O(logN) Ocorre tipicamente em algoritmos que dividem o problema em problemas menores Ex.: O algoritmo de Busca Binária
14 Complexidade NLogN Como o próprio nome diz, são algoritmos que têm complexidade O(NlogN) Ocorre tipicamente em algoritmos que dividem o problema em problemas menores, porém juntando posteriormente a solução dos problemas menores A maioria dos algoritmos de ordenação externa são de complexidade logarítmica ou N Log N
15 Complexidade Quadrática São os algoritmos de complexidade O(N²) Itens são processados aos pares, geralmente com um loop dentro do outro Ex.: Procedure SomaMatriz(Mat1, Mat2, MatRes: Matriz); Var i, j: integer; Begin for i:=1 to n do for j:=1 to n do MatRes[i,j] := Mat1[i, j] + Mat2[i,j];
16 Complexidade Cúbica São os algoritmos de complexidade O(N³) Itens são processados três a três, geralmente com um loop dentro do outros dois Ex.: Procedure SomaElementos_Vetor_Indices_Matriz Var i, j: integer; Begin for i:=1 to n do for j:=1 to n do (mat: Matriz, vet: Vetor); for k:=1 to n do mat[i, j] := mat[i, j] + vet[k];
17 Complexidade Exponencial São os algoritmos de complexidade O(2 N ) Utilização de Força Bruta para resolvê-los (abordagem simples para resolver um determinado problema, geralmente baseada diretamente no enunciado do problema e nas definições dos conceitos envolvidos) Geralmente não são úteis sob o ponto de vista prático
18 Ordens mais comuns 2 n (exponencial) n 2 (quadrática) n log n f n n (linear) log n (logarítmica) 1 (constante)
19 Cálculo da Complexidade Foi visto que, para calcular a complexidade de um algoritmo, deve-se analisar o pior caso A análise deve ser feita no programa todo, de acordo com a tabela a seguir
20 Algumas Operações com a Notação O
21 Alguns Exemplos Procedure Verifica_Item_Lista (Lista: TipoLista; x: TipoItem; pos: integer); Var i: integer; Begin i:=1; O(1) achou := false; while (i <= Lista.Tamanho) and not achou do begin inc(i); if Lista.Item[i] = x then achou := true; end; if achou then pos := i else pos := -1; O(1) O(N) f(n) = O(9 * O(1) + O(N)) = O(O(1) + (O(N)) = O(N)
22 Alguns Exemplos Procedure Verifica_Item(Lista: TipoLista; x: TipoItem; pos: integer); Var i: integer; Begin i:=1; achou := false; while (i <= Lista.Tamanho) and not achou do if Lista.Item[i] = x then achou := true; if achou then pos := i else for i:= Lista.Tamanho +1 to MaxTam; Lista.Item[i] := x; O(1) O(1) O(N) O(1) O(N) f(n) = O(7 * O(1) + 2*O(N)) = O(O(1) + (O(N)) = O(N)
23 Alguns Exemplos - Recursividade No caso da recursividade, depende da quantidade de iterações que se pode chegar Ex.: se eu quiser saber os N primeiros termos de um fatorial, a complexidade é N Function Fatorial (N: Integer): Integer; Begin If n=0 then Fatorial := 1 Else Fatorial := N * Fatorial (N-1) End;
24 Análise de Recursividade Fatorial O(n) = 1, se n = 0 = O(n-1) + 1, se n > 1 mas quanto é O(n-1)?
25 Fatorial = (O(n-1)) + 1 = (O(n-2) + 1) + 1 = O(n-2) + 2 = (O(n-3) + 1) + 2 = O(n-3) forma geral, O(n) = O(n-k) + k, 1 k n Como k é o número do fatorial, fazendo n = k, reduzimos a O(n) = n
26 Complexidade de Algoritmos Essas ordens vistas definem o Limite Superior (Upper Bound) dos Algoritmos, ou seja, qualquer que seja o tamanho da entrada, a execução será aquela determinada pelo algoritmo. Algumas otimizações podem ser feitas para melhorar o limite superior; Existem, porém, os Limites Inferiores (Lower Bound) dos Algoritmos, que são pontos em que não são mais possíveis otimizações
27 Complexidade de Algoritmos Um Exemplo Prático Dado um problema de Multiplicação de 2 matrizes N X N. Pelo método trivial, a complexidade no pior caso seria O(n 3 ); Sabemos assim que a complexidade deste problema não deve superar O(n 3 ), uma vez que existe um algoritmo desta complexidade que o resolve; Este limite superior de um algoritmo pode mudar se alguém descobrir um algoritmo melhor. Isso de fato aconteceu com o algoritmo de Strassen, que resolveu o problema com uma complexidade de O(nlog 7), que seria o novo limite superior do problema de multiplicação de matrizes; Outros pesquisadores melhoraram ainda mais este resultado. Atualmente o melhor resultado é o de Coppersmith e Winograd de O(n ). O limite superior de um algoritmo é parecido com o recorde mundial de uma modalidade de atletismo. Ela é estabelecida pelo melhor atleta ( algoritmo ) do momento. Assim como o recorde mundial, o limite superior pode ser melhorado por um algoritmo (atleta) mais veloz.
28 Complexidade de Algoritmos Um Exemplo Prático Às vezes é necessário mostrar que, para um dado problema, qualquer que seja o algoritmo a ser usado, requer um certo número de operações: o Limite inferior Para o problema de multiplicação de matrizes de ordem n, apenas para ler os elementos das duas matrizes de entrada leva O(n 2 ). Assim uma cota inferior trivial é Ω(n 2 ). Na analogia anterior, o limite inferior não dependeria mais do atleta. Seria algum tempo mínimo que a modalidade exige, qualquer que seja o atleta. Um limite inferior trivial para os 100 metros seria o tempo que a velocidade da luz leva para percorrer 100 metros no vácuo. Se um algoritmo tem uma complexidade que é igual ao limite inferior do problema então o algoritmo é ótimo. O algoritmo de CopperSmith e Winograd é de O(n ) mas o limite inferior é de Ω(n²). Portanto não é ótimo. Este limite superior ainda pode ser melhorado
ALGORITMOS AVANÇADOS UNIDADE I Análise de Algoritmo - Notação O. Luiz Leão
Luiz Leão [email protected] http://www.luizleao.com Conteúdo Programático 1.1 - Algoritmo 1.2 - Estrutura de Dados 1.2.1 - Revisão de Programas em C++ envolvendo Vetores, Matrizes, Ponteiros, Registros
Algoritmos Avançados Análise de Complexidade
CCAE Centro de Ciências Aplicadas e Educação UFPB - Campus IV - Litoral Norte Algoritmos Avançados Análise de Complexidade COMPLEXIDADE DE ALGORITMOS Definição: A Complexidade de um Algoritmo consiste
ESTRUTURA DE DADOS I AULA I
ESTRUTURA DE DADOS I AULA I PROF. ME. HÉLIO ESPERIDIÃO O que é um dado? Dado pode ser definido como a matéria-prima originalmente obtida de uma ou mais fontes (etapa de coleta). o que é a informação A
Análise de Complexidade de Algoritmos. mario alexandre gazziro
Análise de Complexidade de Algoritmos mario alexandre gazziro Definição A complexidade de um algoritmo consiste na quantidade de esforço computacional necessária para sua execução. Esse esforço é expresso
Análise e Projeto de Algoritmos
Análise e Projeto de Algoritmos Mestrado em Ciência da Computação Prof. Dr. Aparecido Nilceu Marana Faculdade de Ciências I think the design of efficient algorithms is somehow the core of computer science.
Análise e Projeto de Algoritmos
Análise e Projeto de Algoritmos Prof. Eduardo Barrére www.ufjf.br/pgcc www.dcc.ufjf.br [email protected] www.barrere.ufjf.br Consumo de tempo assintótico Seja A um algoritmo para um problema
INF 1010 Estruturas de Dados Avançadas
INF 1010 Estruturas de Dados Avançadas Complexidade de Algoritmos 2012 DI, PUC-Rio Estruturas de Dados Avançadas 2012.2 1 Introdução Complexidade computacional Termo criado por Hartmanis e Stearns (1965)
Área que visa determinar a complexidade (custo) de um algoritmo, com isso é possível:
Área que visa determinar a complexidade (custo) de um algoritmo, com isso é possível: Comparar algoritmos: existem algoritmos que resolvem o mesmo tipo de problema. Determinar se o algoritmo é ótimo :
INF 1010 Estruturas de Dados Avançadas
INF 1010 Estruturas de Dados Avançadas Complexidade de Algoritmos 1 Introdução Complexidade computacional Termo criado por Juris Hartmanis e Richard Stearns (1965) Relação entre o tamanho do problema e
Análise de Algoritmos
Análise de Algoritmos Parte 3 Prof. Túlio Toffolo http://www.toffolo.com.br BCC202 Aula 06 Algoritmos e Estruturas de Dados I Como escolher o algoritmo mais adequado para uma situação? (continuação) Exercício
ANÁLISE DE ALGORITMOS: PARTE 3
ANÁLISE DE ALGORITMOS: PARTE 3 Prof. André Backes 2 A notação grande-o é a forma mais conhecida e utilizada de análise Complexidade do nosso algoritmo no pior caso Seja de tempo ou de espaço É o caso mais
Aula 1. Teoria da Computação III
Aula 1 Teoria da Computação III Complexidade de Algoritmos Um problema pode ser resolvido através de diversos algoritmos; O fato de um algoritmo resolver um dado problema não significa que seja aceitável
Análise e Projeto de Algoritmos
Análise e Projeto de Algoritmos Prof. Eduardo Barrére www.ufjf.br/pgcc www.dcc.ufjf.br [email protected] www.barrere.ufjf.br Solução de recorrências Para analisar o consumo de tempo de um algoritmo
É interessante comparar algoritmos para valores grandes de n. Para valores pequenos de n, mesmo um algoritmo ineficiente não custa muito para ser
É interessante comparar algoritmos para valores grandes de n. Para valores pequenos de n, mesmo um algoritmo ineficiente não custa muito para ser executado 1 Fazendo estimativas e simplificações... O número
Complexidade de Algoritmos
MAC 5710 - Estruturas de Dados - 2008 Objetivo de estudar complexidade de algoritmos Por que analisar a complexidade dos algoritmos? A preocupação com a complexidade de algoritmos é fundamental para projetar
Teoria da Computação. Aula 3 Comportamento Assintótico 5COP096. Aula 3 Prof. Dr. Sylvio Barbon Junior. Sylvio Barbon Jr
5COP096 Teoria da Computação Aula 3 Prof. Dr. Sylvio Barbon Junior 1 Sumário 1) Exercícios Medida de Tempo de Execução. 2) Comportamento Assintótico de Funções. 3) Exercícios sobre Comportamento Assintótico
Análise de complexidade
Introdução Algoritmo: sequência de instruções necessárias para a resolução de um problema bem formulado (passíveis de implementação em computador) Estratégia: especificar (definir propriedades) arquitectura
Análise de Algoritmos Estrutura de Dados II
Centro de Ciências Exatas, Naturais e de Saúde Departamento de Computação Análise de Algoritmos Estrutura de Dados II COM10078 - Estrutura de Dados II Prof. Marcelo Otone Aguiar [email protected]
Técnicas de Projeto de Algoritmos
UNIVERSIDADE NOVE DE JULHO - UNINOVE Pesquisa e Ordenação Técnicas de Projeto de Algoritmos Material disponível para download em: www.profvaniacristina.com Profa. Vânia Cristina de Souza Pereira 03 _ Material
BCC202 - Estrutura de Dados I
BCC202 - Estrutura de Dados I Aula 06: Análise de Algoritmos (Parte 3) Reinaldo Fortes Universidade Federal de Ouro Preto, UFOP Departamento de Ciência da Computação, DECOM Website: www.decom.ufop.br/reifortes
Análise de Algoritmos
Análise de Algoritmos Aula 04 Prof. Fernando Freitas Classes de Comportamento Assintótico Se f é uma função de complexidade para um algoritmo F, então O(f) é considerada a complexidade assintótica ou o
Medida do Tempo de Execução de um Programa
Medida do Tempo de Execução de um Programa Livro Projeto de Algoritmos Nívio Ziviani Capítulo 1 Seção 1.3.1 http://www2.dcc.ufmg.br/livros/algoritmos/ Comportamento Assintótico de Funções O parâmetro n
Introdução à Ciência da Computação II
Introdução à Ciência da Computação II 2semestre/200 Prof Alneu de Andrade Lopes Apresentação com material gentilmente cedido pelas profas Renata Pontin Mattos Fortes http://wwwicmcuspbr/~renata e Graça
Medida do Tempo de Execução de um Programa. David Menotti Algoritmos e Estruturas de Dados II DInf UFPR
Medida do Tempo de Execução de um Programa David Menotti Algoritmos e Estruturas de Dados II DInf UFPR Classes de Comportamento Assintótico Se f é uma função de complexidade para um algoritmo F, então
ESTRUTURAS DE DADOS prof. Alexandre César Muniz de Oliveira
ESTRUTURAS DE DADOS prof. Alexandre César Muniz de Oliveira 1. Introdução 2. Pilhas 3. Filas 4. Listas 5. Árvores 6. Grafos 7. Complexidade 8. Ordenação 9. Busca Sugestão bibliográfica: ESTRUTURAS DE DADOS
Projeto e Análise de Algoritmos
Projeto e Análise de Algoritmos Aula 01 Complexidade de Algoritmos Edirlei Soares de Lima O que é um algoritmo? Um conjunto de instruções executáveis para resolver um problema (são
Análise de algoritmos. Parte I
Análise de algoritmos Parte I 1 Recursos usados por um algoritmo Uma vez que um procedimento está pronto/disponível, é importante determinar os recursos necessários para sua execução Tempo Memória Qual
ANÁLISE DE COMPLEXIDADE DOS ALGORITMOS
1/18 ANÁLISE DE COMPLEXIDADE DOS ALGORITMOS Algoritmos 2/18 Algoritmos Algoritmo - sequência de instruções necessárias para a resolução de um problema bem formulado (passíveis de implementação em computador)
Teoria da Computação Aula 9 Noções de Complexidade
Teoria da Computação Aula 9 Noções de Complexidade Prof. Esp. Pedro Luís Antonelli Anhanguera Educacional Análise de um Algoritmo em particular Qual é o custo de usar um dado algoritmo para resolver um
Quantidade de memória necessária
Tempo de processamento Um algoritmo que realiza uma tarefa em 10 horas é melhor que outro que realiza em 10 dias Quantidade de memória necessária Um algoritmo que usa 1MB de memória RAM é melhor que outro
Análise de Complexidade de Algoritmos
Análise de Complexidade de Algoritmos Algoritmos e Estruturas de Dados 2009/2010 Introdução Algoritmo: conjunto claramente especificado de instruções a seguir para resolver um problema Análise de algoritmos:
Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] Grafos e Algoritmos Preparado a partir do texto: Rangel, Socorro.
Complexidade de algoritmos Notação Big-O
Complexidade de algoritmos Notação Big-O Prof. Byron Leite Prof. Tiago Massoni Engenharia da Computação Poli - UPE Motivação O projeto de algoritmos é influenciado pelo estudo de seus comportamentos Problema
Algoritmo. Exemplo. Definição. Programação de Computadores Comparando Algoritmos. Alan de Freitas
Algoritmos Programação de Computadores Comparando Algoritmos Um algoritmo é um procedimento de passos para cálculos. Este procedimento é composto de instruções que definem uma função Até o momento, vimos
Aula 03: Análise de algoritmos melhor caso, pior caso e caso médio
Aula 03: Análise de algoritmos melhor caso, pior caso e caso médio David Déharbe Programa de Pós-graduação em Sistemas e Computação Universidade Federal do Rio Grande do Norte Centro de Ciências Exatas
CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches
CT-234 Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural Carlos Alberto Alonso Sanches Bibliografia T.H. Cormen, C.E. Leiserson and R.L. Rivest Introduction to algorithms R. Sedgewick
Projeto e Análise de Algoritmos
Projeto e Algoritmos Pontifícia Universidade Católica de Minas Gerais [email protected] 26 de Maio de 2017 Sumário A complexidade no desempenho de Quando utilizamos uma máquina boa, ela tende a ter
Teoria da Computação Aula 8 Noções de Complexidade
Teoria da Computação Aula 8 Noções de Complexidade Prof. Esp. Pedro Luís Antonelli Anhanguera Educacional Motivação: Por que estudar algoritmos? Perguntas: - Por que estudar algoritmos se os computadores
03 Análise de Algoritmos (parte 3) SCC201/501 - Introdução à Ciência de Computação II
03 Análise de Algoritmos (parte 3) SCC201/501 - Introdução à Ciência de Computação II Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2010/2 Moacir
CES-11. Noções de complexidade de algoritmos. Complexidade de algoritmos. Avaliação do tempo de execução. Razão de crescimento desse tempo.
CES-11 Noções de complexidade de algoritmos Complexidade de algoritmos Avaliação do tempo de execução Razão de crescimento desse tempo Notação O Exercícios COMPLEXIDADE DE ALGORITMOS Importância de análise
Complexidade de Algoritmos
Complexidade de Algoritmos! Uma característica importante de qualquer algoritmo é seu tempo de execução! é possível determiná-lo através de métodos empíricos, considerando-se entradas diversas! é também
Elementos de Análise Assintótica
Elementos de Análise Assintótica Marcelo Keese Albertini Faculdade de Computação Universidade Federal de Uberlândia 23 de Março de 2018 Aula de hoje Nesta aula veremos: Elementos de Análise Assintótica
5. Análise de Complexidade de Algoritmos. João Pascoal Faria (versão original) Ana Paula Rocha (versão 2003/2004) Luís Paulo Reis (versão 2005/2006)
5. Análise de Complexidade de Algoritmos João Pascoal Faria (versão original) Ana Paula Rocha (versão 2003/2004) Luís Paulo Reis (versão 2005/2006) FEUP - MIEEC Prog 2-2006/2007 Introdução Algoritmo: conjunto
Análise e Complexidade de Algoritmos
Análise e Complexidade de Algoritmos Métodos de busca - seqüêncial - binária Prof. Rodrigo Rocha [email protected] http://www.bolinhabolinha.com Onde Estamos Ementa Revisão: Estrutura de dados;crescimento
Algoritmos 3/17/ Algoritmos como área de estudo e investigação
Algoritmos e Complexidade Ana Teresa Freitas INESC-ID/IST ID/IST 3/17/2005 1 O que é um algoritmo? Algoritmos: Sequência de instruções necessárias para a resolução de um problema bem formulado [passíveis
Módulo 7. Complexidade de Algoritmos. Algoritmos e Estruturas de Dados II C++ Rone Ilídio
Módulo 7 Complexidade de Algoritmos Algoritmos e Estruturas de Dados II C++ Rone Ilídio Tempo de execução de um programa Qual algoritm executará mais rápido? int main(){ SYSTEMTIME inicio,fim; GetSystemTime(&inicio);
Departamento de Engenharia Rural Centro de Ciências Agrárias. Programação I
Departamento de Engenharia Rural Centro de Ciências Agrárias Programação I Algoritmos de busca Basicamente podem ser citadas duas estratégias para procurar (ou buscar) algo em uma coleção de dados: Busca
Refinamentos sucessivos
Refinamentos sucessivos Objetivos: Estudar a técnica de refinamentos sucessivos Jogo: 2048 Implementaremos o jogo 2048, com o objetivo de estudar a manipulação dos elementos de uma matriz Utilizaremos
Teoria dos Grafos Aula 7
Teoria dos Grafos Aula 7 Aula passada Implementação BFS DFS, implementação Complexidade Aplicações Aula de hoje Classe de funções e notação Propriedades da notação Funções usuais Tempo de execução Comparando
Projeto e Análise de Algoritmos Aula 4: Dividir para Conquistar ou Divisão e Conquista ( )
Projeto e Análise de Algoritmos Aula 4: Dividir para Conquistar ou Divisão e Conquista (2.1-2.2) DECOM/UFOP 2013/1 5º. Período Anderson Almeida Ferreira Adaptado do material desenvolvido por Andréa Iabrudi
Complexidade de Algoritmos
60 Desempenho 50 40 30 20 Algoritmo1 Algoritmo2 Algoritmo3 10 0 Complexidade de Algoritmos INFORMÁTICA BÁSICA Prof. Demétrios Coutinho C a m p u s P a u d o s F e r r o s D i s c i p l i n a d e A l g
01 Análise de Algoritmos (parte 2) SCC201/501 - Introdução à Ciência de Computação II
01 Análise de Algoritmos (parte 2) SCC201/501 - Introdução à Ciência de Computação II Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2010/2 Moacir
SCC 202 Algoritmos e Estruturas de Dados I. Pilhas (Stacks) (implementação dinâmica)
SCC 202 Algoritmos e Estruturas de Dados I Pilhas (Stacks) (implementação dinâmica) Operações alocação encadeada dinâmica typedef struct elem{ tipo_info info; struct elem *lig; tipo_elem; typedef struct{
Pascal. -Cabeçalho do programa. - label - const - type - var - procedure - function. - integer - real - byte - boolean - char - string
Pascal -Cabeçalho do programa Áreas do programa -Área de declarações -Corpo do programa - label - const - type - var - procedure - function - integer - real - byte - boolean - char - string Program
Pesquisa Sequencial e Binária. Introdução à Programação SI2
Pesquisa Sequencial e Binária Introdução à Programação SI2 3 Contexto Diferentes estratégias para pesquisa (busca) de um elemento específico em um conjunto de dados. Lista, array, coleção Operação importante,
Complexidade de Algoritmos
Complexidade de Algoritmos O que é um algoritmo? Sequência bem definida e finita de cálculos que, para um dado valor de entrada, retorna uma saída desejada/esperada. Na computação: Uma descrição de como
LISTAS LINEARES. Estrutura de Dados
LISTAS LINEARES Lista Linear Definição: seqüência de zero ou mais elementos a 1,a 2,...,a n sendo a i elementos de um mesmo tipo n o tamanho da lista linear Propriedade fundamental: os elementos têm relações
Complexidade Assintótica de Programas Letícia Rodrigues Bueno
Complexidade Assintótica de Programas Letícia Rodrigues Bueno Análise de Algoritmos 1. Introdução; Análise de Algoritmos 1. Introdução; 2. Conceitos básicos; Análise de Algoritmos 1. Introdução; 2. Conceitos
Pesquisa Sequencial e Binária
Pesquisa Sequencial e Binária Prof. Wylliams Barbosa Santos [email protected] Introdução à Programação Crédito de Conteúdo: Professora Ceça Moraes Agenda Pesquisa Sequencial Noções de complexidade Pesquisa
BCC202 - Estrutura de Dados I
BCC202 - Estrutura de Dados I Aula 05: Análise de Algoritmos (Parte 2) ASN Universidade Federal de Ouro Preto, UFOP Departamento de Computação, DECOM Material elaborado com base nos slides do Prof. Reinaldo
Aula 06: Análise matemática de algoritmos recursivos
Aula 06: Análise matemática de algoritmos recursivos David Déharbe Programa de Pós-graduação em Sistemas e Computação Universidade Federal do Rio Grande do Norte Centro de Ciências Exatas e da Terra Departamento
Comportamento Assintótico. Algoritmos e Estruturas de Dados Flavio Figueiredo (http://flaviovdf.github.io)
Comportamento Assintótico Algoritmos e Estruturas de Dados 2 2017-1 Flavio Figueiredo (http://flaviovdf.github.io) 1 Até Agora Falamos de complexidade de algoritmos com base no número de passos Vamos generalizar
Algoritmos e Estruturas de Dados I Prof. Tiago Eugenio de Melo
Algoritmos e Estruturas de Dados I Prof. Tiago Eugenio de Melo [email protected] www.tiagodemelo.info Observações O conteúdo dessa aula é parcialmente proveniente do Capítulo 11 do livro Fundamentals of
Medida do Tempo de Execução de um Programa. Bruno Hott Algoritmos e Estruturas de Dados I DECSI UFOP
Medida do Tempo de Execução de um Programa Bruno Hott Algoritmos e Estruturas de Dados I DECSI UFOP Medida do Tempo de Execução de um Programa O projeto de algoritmos é fortemente influenciado pelo estudo
CIC 110 Análise e Projeto de Algoritmos I
CIC 110 Análise e Projeto de Algoritmos I Prof. Roberto Affonso da Costa Junior Universidade Federal de Itajubá Introdução ao curso AULA 01 Prof. Roberto Affonso da Costa Junior [email protected] http//www.facebook.com/rcosta62br
ANÁLISE DE ALGORITMOS
ANÁLISE DE ALGORITMOS Paulo Feofiloff Instituto de Matemática e Estatística Universidade de São Paulo agosto 2009 Introdução P. Feofiloff (IME-USP) Análise de Algoritmos agosto 2009 2 / 102 Introdução
Análise de Algoritmos
Análise de Algoritmos Estes slides são adaptações de slides do Prof. Paulo Feofiloff e do Prof. José Coelho de Pina. Algoritmos p. 1 Introdução CLRS 2.2 e 3.1 AU 3.3, 3.4 e 3.6 Essas transparências foram
Classificação e Pesquisa
Classificação e Pesquisa Análise de Algoritmos - Complexidade Prof. Rodrigo Rocha [email protected] http://www.bolinhabolinha.com Onde Estamos Ementa Pesquisa de Dados Seqüencial Binária Métodos
BCC202 - Estrutura de Dados I
BCC202 - Estrutura de Dados I Aula 05: Análise de Algoritmos (Parte 2) Reinaldo Fortes Universidade Federal de Ouro Preto, UFOP Departamento de Ciência da Computação, DECOM Website: www.decom.ufop.br/reifortes
Análise de Algoritmos
Análise de Algoritmos Parte 1 Prof. Túlio Toffolo http://www.toffolo.com.br BCC202 Aula 04 Algoritmos e Estruturas de Dados I Qual a diferença entre um algoritmo e um programa? Como escolher o algoritmo
Algoritmos de pesquisa
Define-se pesquisa como a operação que permite encontrar ou concluir que não existe, um dado elemento num dado conjunto. A pesquisa de um elemento pode ser feita num conjunto ordenado ou não. Quando o
Listas Lineares. Livro Projeto de Algoritmos Nívio Ziviani Capítulo 3 Seção 3.1
Listas Lineares Elerson R. S. Santos [email protected] Livro Projeto de Algoritmos Nívio Ziviani Capítulo 3 Seção 3.1 http://www2.dcc.ufmg.br/livros/algoritmos/ Listas Lineares Uma das formas mais simples
Análise de Problemas Recursivos. Algoritmos e Estruturas de Dados Flavio Figueiredo (
Análise de Problemas Recursivos Algoritmos e Estruturas de Dados 2 2017-1 Flavio Figueiredo (http://flaviovdf.github.io) 1 Lembrando de Recursividade Procedimento que chama a si mesmo Recursividade permite
Lista 1. 8 de abril de Algorithms: Capítulo 0, exercícios 1 e 2. Tardos: Todos exercícios do cap 2 do livro texto, exceto 7 e 8 letra b.
Lista 1 8 de abril de 2013 1 Exercícios Básicos 1.1 Na bibliografia Algorithms: Capítulo 0, exercícios 1 e 2. Tardos: Todos exercícios do cap 2 do livro texto, exceto 7 e 8 letra b. 1.2 Outros 1. Projete
Medida do Tempo de Execução de um Programa. David Menotti Algoritmos e Estruturas de Dados II DInf UFPR
Medida do Tempo de Execução de um Programa David Menotti Algoritmos e Estruturas de Dados II DInf UFPR Medida do Tempo de Execução de um Programa O projeto de algoritmos é fortemente influenciado pelo
Pesquisa e Ordenação
Pesquisa e Ordenação SC121 - Introdução à Programação ICMC - USP - São Carlos Maio de 2009 Algoritmo de Procura Algoritmo de Procura O problema de procurar, pesquisar alguma informação numa tabela ou num
Análise e Complexidade de Algoritmos
Análise e Complexidade de Algoritmos Principais paradigmas do projeto de algoritmos - Recursividade - Tentativa e erro - Divisão e Conquista - Programação dinâmica - Algoritmos Gulosos e de Aproximação
Classes, Herança e Interfaces
Escola de Artes, Ciências e Humanidades EACH-USP ACH2002 Introdução à Ciência da Computação II Professor: Delano Medeiros Beder revisada pelo professor: Luciano Digiampietri EACH Segundo Semestre de 2011
Divisão e Conquista. Norton T. Roman. Apostila baseada nos trabalhos de Cid de Souza, Cândida da Silva e Delano M. Beder
Divisão e Conquista Norton T. Roman Apostila baseada nos trabalhos de Cid de Souza, Cândida da Silva e Delano M. Beder Divisão e Conquista Construção incremental Ex: Consiste em, inicialmente, resolver
