UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOQUÍMICA: PETRÓLEO E MEIO AMBIENTE

Tamanho: px
Começar a partir da página:

Download "UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOQUÍMICA: PETRÓLEO E MEIO AMBIENTE"

Transcrição

1 0 UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOQUÍMICA: PETRÓLEO E MEIO AMBIENTE KETLYN LUIZE FIORAVANTI SELEÇÃO DE CONSÓRCIOS MICROBIANOS DE SEDIMENTOS DE MANGUEZAIS COM POTENCIAL DE DEGRADAÇÃO DE HIDROCARBONETOS DE PETRÓLEO Salvador 2013

2 1 KETLYN LUIZE FIORAVANTI SELEÇÃO DE CONSÓRCIOS MICROBIANOS DE SEDIMENTOS DE MANGUEZAIS COM POTENCIAL DE DEGRADAÇÃO DE HIDROCARBONETOS DE PETRÓLEO Dissertação apresentada ao Programa de Pós Graduação em Geoquímica: Petróleo e Meio Ambiente, na Universidade Federal da Bahia, como requisito parcial para a obtenção do título de Mestre em Geoquímica: Petróleo e Meio Ambiente. Orientador: Prof. Dr. Joil José Celino Co-orientador: Prof. Dr. Juan Carlos Rossi Alva Salvador 2013

3 2 KETLYN LUIZE FIORAVANTI SELEÇÃO DE CONSÓRCIOS MICROBIANOS DE SEDIMENTOS DE MANGUEZAIS COM POTENCIAL DE DEGRADAÇÃO DE HIDROCARBONETOS DE PETRÓLEO Dissertação apresentada ao Programa de Pós Graduação em Geoquímica: Petróleo e Meio Ambiente, na Universidade Federal da Bahia, como requisito parcial para a obtenção do título de Mestre em Geoquímica: Petróleo e Meio Ambiente. Aprovada em 26 de março de Banca Examinadora Prof. Dr. Joil José Celino (orientador) Doutor em Geologia Regional: Universidade de Brasília Universidade Federal da Bahia (UFBA) Prof. Dr. Juan Carlos Rossi-Alva (co-orientador) Doutor em Bioquímica: Universidade Federal do Rio de Janeiro Universidade Católica do Salvador (UCSAL) Profª. Drª. Eliane Soares de Souza Doutora em Engenharia de Reservatório e de Exploração: Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF) Profª. Drª. Cristina Maria Assis Lopes Tavares da Mata Hermida Quintella Doutora em Ciências Moleculares: University of Sussex (UK) Universidade Federal da Bahia (UFBA)

4 3 Dedico este trabalho à minha vozinha querida (in memorian). Um exemplo de pessoa, de garra, dedicação à família e luta pela vida.

5 4 AGRADECIMENTOS A Deus que sempre me iluminou e abriu os caminhos para novas conquistas, que me deu sabedoria, paciência e força nesse longa jornada. Ao meu esposo Jean (meu toy) por todo amor, carinho, companheirismo e muiiita, mas muita paciência nos momentos em que não estive presente ao longo desses dois anos. Obrigada por sempre me apoiar e por cuidar tão bem de mim. Aos meus pais Milka e Julio e ao meu irmão pelo amor, por acreditarem e confiarem no meu potencial. Mesmo estando distante fisicamente estamos conectados a todo o momento. À minha nova família (Sonia; Antônio e Kauana) que me acolheram como uma filha e sempre me apoiaram. Muito obrigada! Ao professor Joil, que desde o início confiou em minha capacidade e acreditou no projeto. Obrigada pela orientação, pelos ensinamentos, pelas novas idéias, pela paciência por estar disponível em todos os momentos de dúvida e desespero rsrsrs. Ao professor Juan Carlos que me acolheu como co-orientador, que acreditou na proposta desse trabalho e abriu as portas do LEMA para que eu e minha equipe pudéssemos realizar esse trabalho. Muito obrigada professor, seu apoio foi fundamental! Aos professores do LEMA (Wilson e Vanice) e aos estagiários (Daiana, Ana Cláudia, Antonio, Camila) pelo interesse e pela disposição. Aos professores Antônio Fernando, Olivia, Triguis, e Paulo Mafalda pelos ensinamentos e por todo o apoio oferecido. À professora Karina por ter me apresentado a POSPETRO, pelos conselhos e confiança. À professora Gisele, pela sabedoria, pelo brilhantismo, pela transmissão de conhecimento e por ser um exemplo a ser seguido. Às professoras Kêsia, Norma e Eliane pelo auxilio na complementação das análises. Ao técnico Assis do Laboratório de Física Nuclear me mesmo não estando em plena saúde se propôs me auxiliar no final do experimento. Aos colegas de turma (Jaciara, Leila, Fabiany e João), pela amizade, companheirismo, conversas e pelas boas risadas. A todas as estagiárias (Mayara, Larissa, Jéssica e Ayslany) pela dedicação, por acreditarem no projeto, por estarem disponível. Essas meninas trabalharam muito!!! Às estagiárias do NEA (Nayjane, Ingrid, Ana Clara, Ana Paula) que também trabalharam e me apoiaram nessa pesquisa.

6 5 À Cláudia pelos ensinamentos em geoquímica, pela paciência em me ensinar várias vezes a mesma coisa, pela preocupação e por todo apoio. Ainda te devo muitas farinhas de arepa! Aos técnicos do laboratório, em especial a Sarah e Gisele que estiveram sempre presentes e disponíveis para a retirada de dúvidas, sugestões, sempre fazendo as coisas parecerem mais fáceis. Obrigada por sempre estarem disponíveis. À Naná, ao Cicero e ao Sr. Itanajara, pela atenção, pelos sorrisos e pela simpatia. A todos muito obrigada!!!!!!

7 6 Que os vossos esforços desafiem as impossibilidades, lembrai-vos de que as grandes coisas do homem foram conquistadas do que parecia impossível Charles Chaplin

8 FIORAVANTI, Ketlyn. L. Seleção de Consórcios Microbianos de Sedimentos de Manguezais com Potencial de Degradação de Hidrocarbonetos de Petróleo f. Dissertação (Mestrado em Geoquímica: Petróleo e Meio Ambiente). Universidade Federal da Bahia Di RESUMO No intuito de colaborar para a remediação de áreas impactadas por atividades petrolíferas este estudo buscou isolar, selecionar e avaliar o potencial de microrganismos provenientes de sedimentos de manguezais em degradar os diferentes compostos do petróleo em cultura líquida. Foram coletadas em 06 pontos, 12 amostras de sedimentos superficiais de manguezais próximos a setores da cadeia produtiva do petróleo (produção, transporte e refino) na Baía de Todos os Santos (BTS). Amostras referências provenientes do Sul da Bahia foram utilizadas a fim de verificar o comportamento dos microrganismos em região não impactada por atividades petrolíferas. Em seguida foram enriquecidas em meio mineral Buschnell Haas e 1% de petróleo, óleo diesel e gasolina como única fonte de carbono e energia. Bactérias, fungos filamentosos e leveduras foram os principais isolados. As bactérias representaram o maior número quando o petróleo foi utilizado como fonte de carbono, sendo utilizadas na execução dos subsequentes ensaios de seleção e degradação. Com o uso do indicador 2,6 diclorofenolindofenol, das 127 bactérias isoladas na BTS, 26 foram selecionadas no primeiro ensaio e 15 no segundo ensaio. As amostras de petróleo degradadas pelas bactérias, dentre elas a Enterobacter gergoviae, avaliadas por cromatografia em fase gasosa com detector de ionização de chama (CG/FID) identificaram 7 cepas promissoras para a formação de dois consórcios denominados consórcio A e consórcio B. Os ensaios de degradação dos consórcios foram realizados em cinco diferentes períodos de tempo (2 horas, 24 horas, 7 dias, 15 dias e 30 dias) sob agitação em shaker rotativo, a fim de avaliar os níveis de degradação dos n-alcanos de cadeia longa (C 18 -C 32 ) e dos hidrocarbonetos policíclicos aromáticos de alto peso molecular (benzo(k)fluoranteno, benzo(b)fluoranteno, benzo(a)pireno, dibenzo(a,h)antraceno, benzo(g,h,i)perileno e Indeno (1,2,3,c-d) pireno. A partir de 7 dias o consórcio A foi capaz de degradar 100% dos compostos acima do C 28, porém, para os demais, as melhores taxas de degradação foram presenciadas após 30 dias de experimento, sendo acima de 90%. O consórcio B atuou de forma semelhante na degradação de compostos acima do C 20 após 7 e 15 dias de experimento, com níveis de degradação superiores a 81%. O Indeno(1,2,3,c-d)pireno foi o composto mais degradado (92%) com atuação do consórcio A após 7 dias de experimento. O consórcio B proporcionou rápidas reduções nas concentrações de todos os HPAs após 2 horas e 24 horas de experimento, colaborando com elevados níveis de degradação após 30 dias. Os microrganismos isolados de sedimentos de manguezal foram considerados promissores para a degradação de hidrocarbonetos de petróleo, tendo o consórcio A obtido preferência para os n-alcanos de cadeia longa e o B para os HPAs de alto peso molecular representando, até o momento, um dos poucos ensaios para a completa degradação dos contaminantes. Palavras chaves: Biorremediação, ensaios de degradação, consórcios bacterianos, petróleo, n- alcanos, hidrocarbonetos policíclicos aromáticos.

9 8 ABSTRACT In order to contribute to the remediation of areas impacted by oil activities this study aim to isolate, select and evaluate the potential of microorganisms from mangrove sediments in the degrade oil of differents groups in liquid culture. Were collected in 06 points, 12 samples of surface sediments of mangroves near sectors of the oil production chain (production, transportation and refining) in the Todos os Santos Bay (TSB). Samples references from South of Bahia were used to verify the behavior of microorganisms in the region not affected by oil activities. The samples were enriched in mineral medium and Haas Buschnell 1% oil, diesel and petrol as sole source of carbon and energy. Bacteria, yeasts and molds were the main isolates. Bacteria represented the largest number when the oil was used as carbon source being used for the execution of screening assays and subsequent degradation. Using the indicator 2.6 dichlorophenolindophenol, from 127 isolates in BTS, 26 were selected in the first test and 15 in the second test. Samples oil degraded by bacteria, among them Enterobacter gergoviae and evaluated by gas chromatography with flame ionization (GC / FID) identified seven strains promising for the formation of two consortium named consortia consortium A and B. The degradation tests of the consortia were made at five different periods of time (2 hours, 24 hours, 7 days, 15 days and 30 days) under stirring in a rotary shaker, to assess the level of degradation of n-alkanes long chain (C18-C32) and aromatic polycyclic hydrocarbons of high molecular weight (benzo (k) fluoranthene, benzo (b) fluoranthene, benzo (a) pyrene, dibenzo (a, h) anthracene, benzo (g, h, i) perylene and indeno (1,2,3, cd) pyrene. 7 days From The consortium was able to degrade 100% of the compounds above C28, but for others, the best degradation rates were witnessed after 30 days experiment, being above 90%. consortium B acted similarly in the degradation of compounds above C20 after 7 and 15 days of experiment, with degradation levels exceeding 81%. indene (1,2,3, cd ) pyrene was degraded more compound (92%) with the performance of the consortium after 7 days of experiment. The consortium B provided rapid reductions in the concentrations of all PAHs after 2 hours and 24 hours of experiment with high levels of degradation after 30 days. microorganisms isolated from mangrove sediments were considered promising for the degradation of petroleum hydrocarbons, having obtained the A preference for n-alkanes and long chain B for the high molecular weight PAHs - representing up to now, one of the few trials for the complete degradation of the contaminants. Keywords: Bioremediation, degradation test, bacterial consortia, oil, n-alkanes, polycyclic aromatic hydrocarbons

10 9 SUMÁRIO 1 INTRODUÇÃO CARACTERIZAÇÃO DAS ÁREAS DE ESTUDO SUL DA BAHIA E BAÍA DE TODOS OS SANTOS COMPONENTES DO PETRÓLEO E SEUS DERIVADOS IMPACTOS CAUSADOS PELOS DERRAMES DE ÓLEO EM MANGUEZAIS O USO DE MICRORGANISMOS NA DEGRADAÇÃO DE PETRODERIVADOS MATERIAIS E MÉTODOS ATIVIDADES DE CAMPO MATÉRIA ORGÂNICA E GRANULOMETRIA ENRIQUECIMENTO E ISOLAMENTO DOS MICRORGANISMOS ENSAIOS DE SELEÇÃO OBTENÇÃO DOS CONSÓRCIOS HIDROCARBONOCLÁSTICOS ENSAIOS DE DEGRADAÇÃO ANÁLISES GEOQUÍMICAS ANÁLISES DOS RESULTADOS FÍSICO-QUÍMICA E MATÉRIA ORGÂNICA DE SEDIMENTOS DE MANGUEZAIS E DE FUNDO DE RIO E SUA INFLUÊNCIA NO ISOLAMENTO E SELEÇÃO DE MICRORGANISMOS EM ÁREAS IMPACTADAS E NÃO IMPACTADAS RESUMO ABSTRACT INTRODUÇÃO MATERIAIS E MÉTODOS Áreas de Estudo Atividades de Campo Análise de Sedimento Enriquecimento e Isolamento Tratamento Estatístico RESULTADOS E DISCUSSÕES... 31

11 CONCLUSÃO AGRADECIMENTOS REFERÊNCIAS DEGRADAÇÃO DE ALCANOS NORMAIS DE CADEIA LONGA (C 18 -C 32 ) POR CONSÓRCIOS BACTERIANOS ISOLADOS DE SEDIMENTOS DE MANGUEZAIS DA BAÍA DE TODOS OS SANTOS, BAHIA, BRASIL RESUMO ABSTRACT INTRODUÇÃO MATERIAIS E MÉTODOS A área de estudo Amostragem Meios de cultura, solventes e padrões Isolamento dos microrganismos Ensaios de seleção Formação dos consórcios hidrocarbonoclásticos Caracterização bioquímica e morfotintorial das bactérias selecionadas Ensaios de Degradação Cromatografia líquida Cromatografia gasosa Tratamento estatístico RESULTADOS E DISCUSSÕES CONCLUSÕES AGRADECIMENTOS REFERÊNCIAS MICRORGANISMOS DE SEDIMENTOS DE MANGUEZAIS POTENCIAIS DEGRADADORES DE HIDROCARBONETOS POLICÍCLICOS AROMÁTICOS (HPAS) DE ALTO PESO MOLECULAR... ERRO! INDICADOR NÃO DEFINIDO. RESUMO ABSTRACT INTRODUÇÃO MATERIAIS E MÉTODOS Área de Estudo e Coleta... 73

12 Enriquecimento, Isolamento e Seleção Formação dos Consórcios Ensaios de Degradação Cromatografia Líquida Cromatografia Gasosa Acoplada ao espectrômetro de massas (CG/EM) Análises Estatísticas RESULTADOS E DISCUSSÕES CONCLUSÕES AGRADECIMENTOS REFERÊNCIAS CONCLUSÃO REFERÊNCIAS APÊNDICES

13 12 1 INTRODUÇÃO O aumento da necessidade por produtos derivados do petróleo (SATOW, 2008; MELO, 2011), bem como a mobilização de grandes volumes de óleo, tem aumentado a incidência de acidentes durante os processos de extração, transporte e refino com a contaminação dos ambientes marinhos (LE DRÉAU et al., 1997). O petróleo é um líquido viscoso composto por diferentes classes de hidrocarbonetos, o que propicia o crescimento de vários grupos bacterianos especializados em compostos preferenciais (HARAYAMA, 1999; YAKIMOV et al., 2005). Ao entrar em contato com o petróleo algumas populações microbianas sofre um processo de adaptação, reconhecendo seus componentes como fonte de carbono e energia, iniciando assim o processo de degradação (CRAPEZ et al., 2002). Em condições adequadas ao seu crescimento e desenvolvimento, os microrganismos providenciam uma vasta gama de serviços ambientais, dentre eles a biorremediação, alternativa promissora e eficaz para recuperação de áreas impactadas. Muitos gêneros bacterianos, tais como Pseudomonas, Marinobacter, Alcanivorax, Microbulbifer, Sphingomonas, Micrococcus, Gordonia entre outros, estão naturalmente presentes nos sedimentos de manguezais e são capazes de degradar hidrocarbonetos de petróleo (BRITO et al., 2006; SANTOS et al., 2011). Os municípios de São Francisco do Conde, Madre de Deus e Candeias representam importantes componentes estuarinos situados ao norte da Baía de Todos os Santos (BTS). Nestas regiões concentram-se desde o ano de 1950 atividades ligadas à indústria petrolífera (produção, transporte e refino), responsáveis por um dos maiores focos de poluição da BTS desde a segunda metade do século XX. Diante da problemática acima exposta o presente estudo objetivou avaliar o potencial de degradação de consórcios microbianos isolados a partir de sedimentos superficiais de ecossistemas de manguezais adjacentes às áreas com atividades econômicas da cadeia produtiva do petróleo na Baía de Todos os Santos, Bahia, Brasil. Os objetivos específicos foram: 1) Avaliar diferentes fontes de carbono (1% de petróleo, óleo diesel e gasolina) por meio do isolamento de microrganismos nativos de sedimento de fundo de rio e de sedimento superficial de manguezal do município de Belmonte, Sul da Bahia (área referência) e de sedimentos superficiais de manguezais próximos à um campo de produção à petróleo (campo de Dom João em São Francisco do Conde), de um terminal de transporte de petróleo e derivados

14 13 (Terminal Almirante Alves Câmara - TEMADRE em Madre de Deus) e de uma refinaria (Refinaria Landulpho Alves Mataripe RLAM nas proximidades de Candeias); 3) selecionar e identificar as bactérias potenciais degradadoras de hidrocarbonetos de petróleo em até 24 horas para a formação de consórcios. 5) avaliar a degradação dos n-alcanos de cadeia longa (C 18 -C 32 ) em diferentes períodos de tempo (2 horas, 1 dia, 7 dias, 15 dias e 30 dias) por meio dos consórcios bacterianos. 6) avaliar os níveis de degradação de hidrocarbonetos policíclicos aromáticos de alto peso molecular benzo(k)fluoranteno, benzo(b)fluoranteno, benzo(a)pireno, dibenzo(a,h)antraceno, benzo(g, h, i) perileno e indeno(1,2,3,c-d)pireno em ensaios de degradação por meio dos consórcios bacterianos em diferentes períodos amostrais. 1.1 CARACTERIZAÇÃO DAS ÁREAS DE ESTUDO SUL DA BAHIA E BAÍA DE TODOS OS SANTOS O município de Belmonte localiza-se no limite Sul da região cacaueira da Bahia, no baixo curso do rio Jequitinhonha. Os manguezais de Belmonte bem como o rio Jequitinhonha são a fonte de sobrevivência da maioria da população (GONÇALVES, 1997; SOUZA, 2011). Até o presente momento não existem indícios de influência de atividades econômicas da indústria petrolífera nos manguezais do município de Belmonte (SILVA, 2008). Desde o ano de 1950 estão instalados nos municípios de São Francisco do Conde, Madre de Deus e Candeias, ao norte da Baía de Todos os Santos BTS, setores industriais ligados às atividades de produção, transporte e refino e petróleo, sendo essas localidades alvos de impactos ambientais relacionados ao constante derrame de petroderivados (VEIGA, 2003; MOREIRA, 2011). No quadro 1 estão evidenciados alguns dos principais acidentes ocorridos na BTS entre os anos de 2000 e 2012 envolvendo derrame de petróleo e seus derivados em locais próximos aos setores de produção, transporte e refino. O campo de Dom João foi inaugurado nos anos 50, em uma área de 30 Km 2 a 40 km de Salvador, nas proximidades de São Francisco do Conde, Madre de Deus e Candeias. É considerado o primeiro campo de petróleo submarino brasileiro, pertencente aos arenitos da Bacia de Sergi, na Bacia do Recôncavo (VEIGA, 2003).

15 14 Quadro 1 - Acidentes envolvendo derramamento de petróleo e seus derivados na BTS entre o período de 2000 a Período Abril de 2000 Ocorrência Rompimento do duto da Petrobrás que liga o polo petroquímico de Camaçari à RLAM atingindo o rio Joanes. Julho de 2000 Outubro de 2000 Vazamento de aproximadamente litros de óleo dos dutos da RLAM atingindo a região de Caípe. Destruição parcial da unidade 9 da RLAM após incêndio provocado por vazamento. Março de 2001 Outubro de 2001 Setembro de 2002 Rompimento dos dutos da RLAM culminando em vazamento de litros de resíduo de gasóleo em suas intermediações. Vazamento de óleo em manguezal de Coqueiro Grande, próximo a RLAM, após realização de limpeza do sistema de dutos da Petrobrás. Explosão na planta de GLP da RLAM culminando com a morte de 3 funcionários. Abril de 2009 Vazamento de óleo proveniente da RLAM, contaminando praias localizadas na BTS. Junho de 2010 Vazamento de óleo em estrutura da Petrobrás desativada em 2002 em área de manguezal de São Francisco do Conde. Novembro 2012 Vazamento de diluente de óleo combustível entre a TEMADRE e a RLAM, atingindo praias de São Francisco do Conde. Fonte: Veiga (2003); Décimo (2009); Maia-Nogueira (2010); Federação Única dos Petroleiros (2010). O Terminal Almirante Alves Câmara - TEMADRE é tido como o segundo terminal portuário mais importante da Empresa de Petróleo Brasileira S/A - PETROBRÁS. O TEMADRE localiza-se ao Sul da Ilha de Madre de Deus, em uma região denominada Ponta do Mirim. É responsável pelo recebimento de petróleo e pelo embarque de petroderivados provenientes da Refinaria Landulpho Alves Mataripe RLAM (VILLOTE, 2010). A RLAM localiza-se dentro de uma região de manguezal, próximo ao município de Candeias, a 56 km da capital Salvador. Inaugurada no dia 17 de setembro de 1950, é a refinaria que está diretamente ligada à descoberta dos primeiros poços de petróleo brasileiros. Cerca de 40 petroderivados são produzidos pela RLAM, a exemplo de: GLP, nafta petroquímica, querosene, óleo diesel, gasolina, parafina, asfaltos, entre outros (VEIGA, 2003; OLIVEIRA, 2009).

16 COMPONENTES DO PETRÓLEO E SEUS DERIVADOS O grupo predominante no petróleo é dos hidrocarbonetos saturados, sendo composto pelos alcanos de cadeia normal, isoalcanos de cadeia ramificada, também conhecidos como parafínicos, e os cicloalcanos ou naftênicos. As resinas e asfaltenos são constituídas por átomos de enxofre, oxigênio e nitrogênio, sendo compostos de alto peso molecular (ZÍLIO; PINTO, 2002; VEIGA, 2003; THOMAS, 2004). Dentre os derivados do petróleo, o óleo diesel trata-se de uma mistura complexa de hidrocarbonetos, constituído principalmente por hidrocarbonetos de cadeia simples entre 6 a 30 átomos, hidrocarbonetos aromáticos e compostos contendo enxofre e nitrogênio. É um combustível menos volátil e menos solúvel do que a gasolina (MARIANO, 2006; GAZZONI, 2007; ANDRADE, 2009). A gasolina é formada principalmente por compostos orgânicos voláteis, sendo uma mistura constituída por aproximadamente 200 tipos de componentes distintos, a exemplo dos compostos alifáticos e aromáticos, dentre eles o BTEX (benzeno, tolueno, etilbenzeno e xileno) que são compostos tóxicos, parcialmente solúveis em água e que representam elevado grau de poluição (PENNER, 2000; RIBEIRO et al., 2003; MARIANO, 2006). Dentre os compostos orgânicos que apresentam principal interesse ambiental devido aos seus efeitos mutagênicos e carcinogênicos estão os HPAs (Hidrocarbonetos Policíclicos Aromáticos). São compostos formados por átomos de carbono e hidrogênio, constituídos por dois ou mais anéis aromáticos. Devido a sua ubiquidade, são considerados ameaças para a saúde das populações, principalmente para aquelas que trabalham e habitam ambientes diretamente influenciados pelas fontes de emissão (NETTO et al., 2000; CAVALCANTE et al., 2007; JACQUES et al., 2007). 1.3 IMPACTOS CAUSADOS PELOS DERRAMES DE ÓLEO EM MANGUEZAIS A presença de petróleo e seus derivados nos manguezais causam impactos físicos e seus efeitos toxicológicos podem ser agudos ou crônicos (NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, 2002). A exposição crônica ao petróleo pode ameaçar algumas espécies marinhas que possuem baixa taxa de reprodução, além de afetar o ser humano ao se alimentar de peixes e outros animais contaminados. Os peixes em contato com o petróleo ficam presos na camada de óleo, podendo ser levados á morte devido a dificuldades respiratórias

17 16 e de locomoção. Quando ingerido, o petróleo provoca falhas hepáticas, desordens neurológicas e bioacumulação dos HPAs (ZIOLLI, 2002). Ao atingir a superfície do solo, um contaminante passa a sofrer uma série de transformações, como, adsorção nas partículas sedimentares, fotodecomposição, além de transformações químicas e biológicas. O contaminante pode também, por meio de um processo de lixiviação, ser arrastado pelas águas, percolar nas camadas inferiores do solo e até mesmo atingir o lençol freático (CORSEUIL, 1997; PEREIRA et al., 2009; SANTOS et al., 2011). 1.4 O USO DE MICRORGANISMOS NA DEGRADAÇÃO DE PETRODERIVADOS Muitos microrganismos, a exemplo de bactérias, cianobactérias, fungos, leveduras além de algumas algas verdes, são capazes de oxidar hidrocarbonetos, crescendo em sua superfície e os utilizando como doadores de elétrons. Os hidrocarbonetos de petróleo são ricos em matéria orgânica, servindo de fonte de carbono e energia aos microrganismos sob condições aeróbicas (MADIGAN et al., 2004). As bactérias são seres capazes de se adaptarem rapidamente as alterações dos componentes bióticos e abióticos do meio. A variabilidade metabólica desse grupo de organismos, sua rápida capacidade de multiplicação e variabilidade genética, são algumas das características que as tornam conhecidas pelo seu potencial de degradação (RAMSAY et al., 2000; GOMES, 2004; PUCCI et al., 2009). Os fungos como agentes degradadores de petróleo e seus derivados em substratos, vêm sendo estudados e utilizados nos processos de biorremediação desde o ano de São microrganismos resistentes às condições de estresse ambiental, como insuficiência de nutrientes, baixos teores de umidades e valores de phs extremos (MACEDO et al., 2002; LIMA et al., 2011). Durante esse processo bactérias utilizam o seu potencial fisiológico para remover poluente do meio transformando o petróleo em biomassa, água e dióxido de carbono (WATANABE, 2001; CRAPEZ, 2002). No quadro 2 estão representados alguns microrganismos com capacidade de degradar determinadas frações ou compostos de petróleo bem como o ambiente em que estes são encontrados.

18 17 Quadro 2. Alguns microrganismos degradadores de compostos do petróleo em diferentes ambientes. Microrganismo Gênero/ Classe/ Filo Composto Ambiente Referências Bactéria 1 Alcanivorax n-alcanos Água do mar HARAYAMA et al., 1999 Bactéria 1 Pseudomonas n-alcanos; tolueno Água do mar HARAYAMA et al., 1999; VAN HAMME et al., 2003 Bactéria 1 Pseudomonas, 1 Pseudomonas, 1 Bulkholde ria Tolueno Água do mar HARAYAMA et al., 1999 Bactéria Bactéria 2 Betaproteobacteria HTP Sedimento PEIXOTO et al., Alphaproteobacteria Fenantreno Sedimento PEIXOTO et al., 2011 Bactéria 3 Actinobacteria Antraceno; HPA Sedimento PEIXOTO et al., 2011 Bactéria 1 Rhodoccocus; 1 Bacillus Benzo(a) pireno Sedimento YUN et al., 2008 Levedura 1 Candida Naftaleno; N-alcanos; Petróleo bruto Água do mar, sedimento, solo IJAH, 1998; HARAYAMA et al., 1999; FARAG; SOLIMAN, 2011 Levedura Filamentoso Filamentoso 1 Pichia, 1 Candida, 1 Sporidiobolus, 1 Rhodotorula 1 Aspergillus, 1 Penicillium, 1 Paecilomyces, 1 Fusarium 1 Chrysosporium, 1 Trichopyton, 1 Myceliophthora HPA Solo HESHAM et al., 2006; DENG et al., 2010 HPA Solo LEMOS;ARAÚJO, 2002; VASCO et al., 2011 HTP Solo ULFIG et al., 2003 Filamentoso 1 Cunninghamella, 1 Penicillium HPA Não especificado SACK et al., 1997 Filamentoso Aspergillus HPA Solo MOLLEA et al., Gênero; 2 Classe; 3 - Filo O processo de biorremediação é estudado desde Suas técnicas vêm sendo extensivamente aplicadas como uma maneira eficaz e de baixo custo para remediação de solos

19 18 contaminados por petróleo desde a década de 90 (ZOBEL, 1946; MACEDO et al., 2002; MARIANO et al., 2007; RIZZO et al., 2008). Durante a aplicação da biorremediação podem ser utilizadas técnicas ex situ, onde o contaminante é retirado juntamente com a matriz e tratado em outro local ou in situ, sendo o tratamento realizado no próprio local contaminado (COELHO, 2005). Entre as técnicas ex situ podem ser citadas: bioaeração, injeção de peróxido de hidrogênio, lagoas de estabilização, lodos ativados, filtros biológicos, compostagem, landfarming e biobarreiras (MARTINS et al., 2003). São exemplos de técnicas de biorremediação in situ: a biorremediação intrínseca ou natural, a bioestimulação por meio de agentes como nutrientes, oxigênio e biossurfactantes ou o bioaumento por meio da inoculação de consórcio microbianos enriquecidos (MARIANO et al., 2007). O petróleo é constituído por diferentes classes de hidrocarbonetos. Por esse fato, a degradação de seus compostos não pode ser realizada por uma única espécie microbiana, sendo necessária a formação de consórcios formados por várias espécies distintas. Por complementaridade metabólica, os consórcios degradam os compostos derivados do petróleo, podendo até mesmo chegar à sua completa mineralização (LEAHY; COLWELL, 1999; VAN HAMME et al., 2003; CRAPEZ et al., 2002; GHAZALI et al., 2004; JACQUES et al., 2007). Alguns fatores ambientais apresentam influência direta na eficiência da biorremediação, como: temperatura, ph, oxigênio, umidade, atividade de água, disponibilidade de nutrientes e biodisponibilidade dos contaminantes. Esses podem inibir ou acelerar o crescimento dos microrganismos potenciais degradadores de hidrocarbonetos de petróleo (BAMFORTH; SINGLETON, 2005). Fatores físicos, químicos e biológicos, a exemplo da quantidade de biomassa e diversidade microbiana, atividades enzimáticas, caracterização físico-química do substrato, concentração e estrutura dos poluentes, determinam o grau de eficiência de cada processo de biodegradação (WETLER-TONINI et al., 2010).

20 19 2 MATERIAIS E MÉTODOS Baseado em extensa revisão bibliográfica (complementações citadas no apêndice 1) foram realizados procedimentos de campo bem como diversificados procedimentos laboratoriais. Maiores detalhes acerca das metodologias empregadas estão relatadas nos artigos científicos apresentados como resultados do trabalho. 2.1 ATIVIDADES DE CAMPO As coletas da matriz de estudo foram realizadas em ecossistemas costeiros distintos pertencentes ao extremo Sul do Estado da Bahia, região de Belmonte (referência) (figura 1A) e aos municípios de São Francisco do Conde, Madre de Deus e Candeias, localizados na região norte da Baía de Todos os Santos (figura 1B). Em cada estação referência (sedimento de fundo do rio Jequitinhonha e sedimento superficial de manguezal em Belmonte) foram coletadas duas amostras. Nas estações pertencentes à BTS realizou-se amostragem dos sedimentos superficiais dos manguezais em dois pontos distintos, totalizando doze pontos de amostra (figura 2A). Todas as amostras foram coletadas em maré baixa e em período chuvoso. Os parâmetros físico-químicos ph, Eh, temperatura, condutividade e salinidade foram mensurados in situ, diretamente no rio Jequitinhonha ou em corpos d água próximos aos pontos de coleta nas amostras de manguezais (figura 2B). Para as análises microbiológicas coletou-se cerca de 50 g de amostra de sedimento de fundo de rio, a profundidade aproximada de 5 m e de sedimento superficial de manguezal entre 0,0 a 5,0 cm do substrato do manguezal em região de inter-maré (CELINO; QUEIROZ, 2006). Para as análises de carbono orgânico e granulometria as amostras coletadas (50 g aproximadamente) foram armazenadas em um saco plástico. Todas as amostras foram armazenadas em caixa de isopor contendo gelo até a chegada ao laboratório (figura 2C).

21 20 Figura 1 - Localização das áreas de estudo. (A) - Município de Belmonte, (B) Municípios da BTS pertencentes à cadeia produtiva do petróleo (DJ) Campo de produção em São Francisco do Conde, (MD) Madre de Deus e (CN) Candeias próximo da região de refino. Figura 2 - Atividades de campo. (A) Coleta das amostras; (B) Medição dos parâmetros físico-químicos; (C) Armazenamento as amostras. 2.2 MATÉRIA ORGÂNICA E GRANULOMETRIA Após as amostras serem liofilizadas, maceradas, desagregadas e peneiradas, foram realizados procedimentos analíticos para a determinação da matéria orgânica (m.o) e dos teores granulométricos. A determinação da matéria orgânica foi baseada na oxidação do Carbono Orgânico Total (COT), através da metodologia de Walkley e Black (1934) e Embrapa (1997). A

22 21 análise granulométrica se deu por meio do analisador de partículas, modelo Silas 1064, segundo metodologia da Embrapa (1997), com o uso do programa GRADSTAT para a leitura e tratamento dos dados. 2.3 ENRIQUECIMENTO E ISOLAMENTO DOS MICRORGANISMOS No Laboratório de Estudos em Meio Ambiente LEMA, da Universidade Católica do Salvador/UCSAL foram realizadas as análises microbiológicas. Cada amostra foi pesada três vezes (10g) totalizando 18 subamostras provenientes da BTS, além de 06 subamostras da área referência, sendo 03 do rio Jequitinhonha (RJ) e 03 do manguezal em Belmonte (BE). Uma amostra controle foi escolhida para cada área de estudo, totalizando 27 amostras enriquecidas. No esquema 1 estão ilustradas as metodologias e enriquecimento e isolamento empregadas para os microrganismos. Esquema 1 - Metodologias adotadas para o enriquecimento e isolamento dos microrganismos Enriquecimento das amostras (10g) em 99 ml de meio Buschnell Haas (BH) e 1% de petróleo, óleo disel ou gasolina como fonte de carbono (SOUZA et al., 2005) Amostras agitadas a 180 RPM, 28ºC ± 2 durante 21 dias (CHAERUN et al., 2004; SOUZA et al., 2005; WETLER, 2006) Transferência de bactérias, leveduras e fungos para placas de TSA e Sabouraund (SOUZA et al., 2005) Semeadura das amostras enriquecidas em placa de Agar Buschnell Haas (BH) com adição de 1% de um dos petroderivados. Incubação em estufa a 30ºC durante 4 dias (SOUZA et al., 2005).

23 ENSAIOS DE SELEÇÃO Os procedimentos adotados durante a seleção primária (placas multipoços de 2,0 ml) e secundária (frascos tipo Erlenmeyers de 125 ml) estão demonstrados no esquema 2. Esquema 2. Sequência dos procedimentos executados nos ensaios de seleção Seleção primária Reativação das cepas em caldo Mueller Hinton e placas de TSA de TSA 118 cepas testadas 10 µl do indicador 2,6 diclorofenolindofenol - DCPIP 20 µl de petróleo 50 µl da suspensão bacteriana (1,5x10 8 UFC) 500 µl de Caldo BH 24 horas Seleção secundária Cepas promissoras no ensaio primário 50 ml de caldo BH 2 ml suspensão bacteriana (1,5x10 8 UFC) 520 µl de petróleo Agitação a 180 ± 2 rpm e 28ºC ±2/ 17 horas Adição de 1mL do 2,6 DCPIP 24 horas Fonte: Hanson (1993); Gomes (2004); Souza et al.(2005); Miranda et al.(2007); Afuwale e Modi (2012). 2.5 OBTENÇÃO DOS CONSÓRCIOS HIDROCARBONOCLÁSTICOS No Laboratório de Estudos do Petróleo LEPETRO, da Universidade Federal da Bahia (UFBA) as amostras de óleo contidas nos frascos tipo Erlenmeyers dos ensaios de degradação foram desidratadas e avaliadas em cromatografia gasosa acoplada a um detector de ionização de chama (CG/ FID) para avaliação dos fingerprints pela metodologia do whole oil (óleo total). Após a avaliação em CG/FID sete cepas bacterianas foram indicadas para a elaboração de dois consórcios hidrocarbonoclásticos.

24 23 Tais bactérias foram encaminhadas para o Laboratório de Fármacos e Ensaios Antimicrobiano pertencente ao Departamento de Antibióticos do Centro de Ciências Biológicas da Universidade Federal de Pernambuco UFPE para a realização de procedimentos de identificação baseado metodologia de Koneman et al. (2008). 2.6 ENSAIOS DE DEGRADAÇÃO Para a execução dos ensaios de degradação foram utilizados frascos tipo Erlenmeyers de 125 ml contendo 50 ml de caldo Buschnell Haas (BH), 400 µl de cada uma das cinco cepas bacterianas padronizadas a 1,5x10 8 Unidades Formadoras de Colônias (UFC) e 520 µl de petróleo sob agitação em 180 RPM a 28ºC ± 2. Um controle abiótico, em duplicata, e dois consórcios hidrocarbonoclásticos, em triplicata, compuseram os ensaios, totalizando 49 amostras. Após 2 horas (t0), 24 horas (t1), 7 dias (t2), 15 dias (t3) e 30 dias (t4) retirou-se a água contida nos frascos testados e os parâmetros ph, Eh, condutividade e salinidade foram mensurados com o uso phmetro (resolução 0,01) e condutivímetro (range 199,9 µs/cm; resolução 0,1 µs/cm) ambos da marca WTW. 2.7 ANÁLISES GEOQUÍMICAS As amostras de óleo presente nos frascos Erlenmeyers foram desidradatas para a execução das análises geoquímicas, conforme demonstrado por meio do quadro 3. Maiores informações acerca das condições dos equipamentos utilizados estão detalhadas nos procedimentos metodológicos elucidados nos artigos científicos. Quadro 3 Análises e procedimentos geoquímicos Análises Cromatografia Líquida Cromatografia Gasosa (CG/FID) Cromatografia Gasosa (CG/EM) Procedimentos Fracionamento de 0,02g de amostra de óleo desidratada para separação das frações SAT, ARO e NSO segundo metodologia adaptada pelo LEPETRO. Avaliação dos fingerprints dos n-alcanos (C 8 -C 40 ) por metodologia do whole oil para a formação dos consórcios hidrocarbonoclásticos. Avaliação dos fingerprints e concentração dos n-alcanos de cadeia longa (C 18 -C 32 ) e do C 30 hopano após os ensaios de degradação. Avaliação da concentração residual dos HPAs de alto peso molecular (m/z 252, 276 e 278) das amostras de óleo submetidas aos ensaios de degradação.

25 ANÁLISES DOS RESULTADOS A fim de obter uma melhor compreensão em relação aos dados obtidos em cada etapa analítica foram elaboradas tabelas e gráficos com o auxílio do programa Excel Com o uso do software GraphPhad Instat foram avaliadas a normalidade dos dados (teste de Kolmogorov e Smirnov (KS)), a significância (one-way ANOVA para os dados normais, Kruskal Wallis e Mann Whitney para dados não normais) e a homogeneidade (teste de Bartllet). Por meio do programa Estatística versão 7.0 realizou-se a Análise dos Componentes Principais (ACP) das variáveis e dos casos envolvidos nos experimentos e avaliou-se a correlação entre os dados por meio da matriz de Pearson. Os resultados apresentados pelo estudo em questão estão contemplados na forma de artigos científicos, sendo: - Físico-química e teores de matéria orgânica em ecossistemas costeiros e sua influência no isolamento de microrganismos em áreas impactadas e não impactadas; - Degradação de alcanos normais de cadeia longa (C 18 -C 32 ) por consórcios bacterianos isolados de sedimentos de manguezais da Baía de Todos os Santos, Bahia, Brasil; - Eficiência de microrganismos de sedimentos de manguezais potenciais degradadores de Hidrocarbonetos Policíclicos Aromáticos (HPAs) de alto peso molecular.

26 25 3 FÍSICO-QUÍMICA E TEORES DE MATÉRIA ORGÂNICA EM ECOSSISTEMAS COSTEIROS E SUA INFLUÊNCIA NO ISOLAMENTO DE MICRORGANISMOS EM ÁREAS IMPACTADAS E NÃO IMPACTADAS RESUMO Objetivou-se avaliar a relação dos fatores físico-químicos (ph, Eh, temperatura, condutividade, salinidade e granulometria) e dos teores de matéria orgânica na distribuição de microrganismos em sedimentos de ecossistemas impactados e não impactados por atividades da indústria petrolífera. Para tal isolaram-se bactérias, leveduras e fungos filamentosos provenientes de sedimento de fundo de rio e superficiais de manguezais das regiões de Belmonte e da Baía de Todos os Santos no Estado da Bahia, com o uso de 1% de petróleo, óleo diesel e gasolina como única fonte de carbono e energia. Os parâmetros físico-químicos foram mensurados in situ. Em laboratório foram realizadas análises dos teores de matéria orgânica e do padrão granulométrico de cada área de estudo. A Baía de Todos os Santos foi a região que obteve o maior número de isolados (65%) sob influência da temperatura, condutividade e do teor da matéria orgânica na região de refino. Belmonte obteve 25% do total de isolados determinados pela temperatura, salinidade, silte e areia muito fina. A área referência do rio Jequitinhonha contou com 10% dos isolados, influenciada pelos teores da matéria orgânica, Eh e areia fina. Palavras chaves: Microrganismos, parâmetros físico-químicos, Baía de Todos os Santos, ecossistemas costeiros ABSTRACT Aimed to evaluate the rate of physic-chemical (ph, Eh, temperature, conductivity, salinity and grain size) and content of organic matter in the sediment distribution of microorganisms in ecosystems impacted and not impacted by oil industry's activities. Were isolated bacteria, yeasts and filamentous fungi from bottom sediment of river and shallow of mangrove regions of Belmonte and the Todos os Santos Bay (TSB), in the state of Bahia, with the use of 1% oil, diesel and gasoline as sole source of carbon and energy. The physic-chemical parameters were measured in situ. In laboratory analyzes were carried out the levels of organic matter and particle size standard for each study area. The Todos os Santos Bay was the region that had the highest number of isolates (65%) with temperature influence, conductivity and organic matter in the region of refining. Belmonte won 25% of the total isolates determined by temperature, salinity, silt and very fine sand. The reference area of the river Jequitinhonha had 10% of the isolates, influenced by the levels of organic matter, Eh and fine sand. Keywords: microorganisms, physical-chemical parameters, Todos os Santos Bay, coastal ecosystems

27 INTRODUÇÃO Atividades relacionadas aos setores da cadeia produtiva do petróleo são atualmente uma das principais responsáveis pela contaminação dos ambientes marinhos (LE DRÉAU et al., 1997; SATOW, 2008). O petróleo é um líquido viscoso onde cerca de 90% dos seus componentes são hidrocarbonetos (HARAYAMA et al., 1999; YAKIMOV et al., 2005). Alguns microrganismos ao entrar em contato com o óleo derramado sofrem um processo de adaptação, reconhecendo seus componentes como fonte de carbono e energia, iniciando assim o processo de degradação (CRAPEZ et al., 2002). Microrganismos com habilidade em degradar hidrocarbonetos estão amplamente distribuídos na natureza (VAN HAMME et al., 2003). Os hidrocarbonetos de petróleo são passiveis de oxidação por bactérias, cianobactérias, fungos e leveduras, os quais crescem em sua superfície e utilizam-no como doadores de elétrons (MADIGAN et al., 2004). O petróleo derramado nos oceanos é levado para os ecossistemas costeiros, como por exemplo, os manguezais, típicos de regiões tropicais e subtropicais. Esse ecossistema destaca-se pela sua função de berçário, refúgio e abrigo para diversas espécies marinhas e estuarinas em busca de alimento e reprodução (ALONGI, 2002; QUEIROZ; CELINO, 2008). Os sedimentos de manguezal apresentam diferentes níveis de contaminação a depender do grau de intervenção humana ao qual estão expostos. A quantidade de óleo derramado, seu tipo, padrão de deposição e tempo de retenção são fatores que irão auxiliar na determinação dos impactos causados à fauna e à flora (NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, 2002; PEIXOTO et al., 2011; SANTOS et al., 2011). A diversidade microbiana naturalmente presente nos manguezais é responsável pela sua conservação e produtividade. Cerca de 90% da biomassa microbiana desse ecossistema é composta de bactérias, archaeas e fungos. Nos sedimentos de manguezais, os diferentes componentes do petróleo são degradados por microrganismos específicos, os quais podem atuar como indicadores ambientais. Microrganismos aeróbicos estão distribuídos na superfície dos sedimentos de manguezais e apresentam as vias metabólicas necessárias para a transformação do carbono orgânico em CO 2 (ALONGI, 2002; BRITO et al., 2006; PEIXOTO et al., 2011; SANTOS et al., 2011). Técnicas dependentes e independentes de cultura vêm sendo desenvolvidas com a finalidade de catalogar a variedade e o funcionamento das comunidades microbianas. No entanto

28 27 o estudo das propriedades funcionais dos microrganismos pertencentes a uma população é avaliada apenas com a obtenção de uma cultura pura (VAN HAMME et al., 2003; AFUWALE; MODI, 2012). Nos manguezais pertencentes aos municípios de São Francisco do Conde, Madre de Deus e Candeias, situados ao Norte da Baía de Todos os Santos (BTS), Bahia, Brasil, são realizadas atividades da indústria petrolífera desde a década de 50, sendo estes ramos responsáveis por um dos maiores focos de poluição da BTS (MOREIRA, 2011). Nesse sentido o principal objetivo deste trabalho foi avaliar o comportamento de variáveis físico-químicas e dos teores da matéria orgânica na distribuição de microrganismos isolados (bactérias, leveduras e fungos filamentosos) de sedimentos de ecossistemas costeiros impactados e não impactados por atividades da indústria petrolífera. 3.2 MATERIAIS E MÉTODOS São destacadas as metodologias empregadas nas etapas de campo e laboratoriais Areas de Estudo O município de Belmonte (BE), localizado no extremo Sul da Bahia, surgiu no final do século XIX em uma planície entre o rio Jequitinhonha e o oceano Atlântico (Belmonte News, 2012). Como vegetação de mangue, espécimes de Rizophora mangle, Avicennia spp e Laguncularia racemosa estão presentes ao longo da região litorânea bem como nos estuários dos rios (CENTRO DE RECURSOS AMBIENTAIS, 1996). Até os dias atuais não existem relatos de atividades relacionadas com a indústria petrolífera, no município de Belmonte, sendo este o fator decisivo para sua indicação como área referência. As demais áreas de estudo são municípios localizados ao Norte da Baía de Todos os Santos BTS, Bahia, onde abrigam diferentes setores da cadeia produtiva do petróleo, como: campo de produção de petróleo (campo de Dom João em São Francisco do Conde), terminal portuário (Terminal Almirante Alves Câmara TEMADRE, em Madre de Deus) e refinaria (RLAM, situado próximo ao município de Candeias).

29 Atividades de Campo Quatro amostras compuseram a área referência em período chuvoso. Duas consistiram de sedimento de fundo do rio Jequitinhonha (RJ), coletada em profundidade aproximada de 5 m e duas de sedimento superficial de manguezal (BE), entre 0,0 a 5,0 cm, em região de inter-maré (figura 3A) (CELINO; QUEIROZ, 2006). Na BTS, foram realizadas quatro amostragens em cada uma das três estações de estudo (São Francisco do Conde (DJ), Madre de Deus (MD) e Candeias (CN)) totalizando doze pontos de amostra também em período chuvoso (figura 3B). Figura 3 Localização: (A) - município de Belmonte (BE) e (B) - pontos de coleta da BTS, Bahia, Brasil. Onde: (DJ) Campo de Dom João, no município de São Francisco do Conde, (MD) Madre de Deus e (CN) Candeias. Os pontos de coleta foram selecionados mediante busca visual de indícios que inferiam a existência de uma possível contaminação do manguezal, como por exemplo, manchas de óleo e poços de exploração de petróleo desativados. A localização dos pontos foi determinada mediante um GPS (Sistema de Posicionamento Global). Com o auxílio de uma sonda multiparâmetros, HORIBA anteriormente calibrada e de um salinômetro ATAGO, os parâmetros ph, Eh, temperatura, condutividade e salinidade foram mensurados in situ, diretamente na água do rio Jequitinhonha e em corpos hídricos próximos aos pontos de coleta nas demais estações de estudo.

30 29 Para a execução dos procedimentos de isolamento foram coletados cerca de 50 g de sedimento, em frascos de vidro devidamente lavados e esterilizados. Para as análises dos teores de matéria orgânica (m.o) e granulometria cerca de 50 g de amostra foram coletadas nos mesmos pontos anteriores. Todas as amostras foram acondicionadas em caixa de isopor contendo gelo até a chegada ao laboratório Análise de Sedimento Anteriormente à execução das análises geoquímicas as amostras foram liofilizadas sob alto vácuo e temperatura de - 45ºC em liofilizador LABCONGO. Posteriormente foram maceradas, desagregadas, peneiradas em malha de 2 mm e armazenadas em temperatura de 4 ºC para as análises de matéria orgânica (m.o) e granulometria (LIMA, 2010) Matéria Orgânica (M.O) A determinação da m.o foi baseada no princípio da oxidação do Carbono Orgânico Total (COT). Por meio da metodologia de Walkley e Black (1934) tomou-se 0,5 g da amostra liofilizada em um frasco Erlenmeyer de 500 ml. Foram adicionados 10 ml de dicromato de potássio a 1N e 20 ml da solução de ácido sulfúrico-sulfato de prata. A amostra permaneceu sob agitação orbital durante 1 minuto, com posterior repouso por 30 minutos. Após o repouso foram adicionados 0,2 g de fluoreto de sódio, 10 ml de ácido fosfórico concentrado, 200 ml de água e 0,5 ml do indicador difenilamina. A amostra foi titulada com sulfato ferroso amoniacal a 0,5 N para a determinação de uma coloração de verde brilhante a verde opaco antes do ponto final. Para a amostra RJ, devido ao caráter arenoso, foram utilizados os mesmos reagentes, porém, com a metade dos volumes. Para a comprovação da precisão do método foram feitas triplicatas para 20% das amostras, obtendo-se uma média entre os valores que foram apresentados em % de carbono orgânico por peso seco. Controles brancos foram executados para todas as amostras a fim de garantir a qualidade das análises. Para o cálculo do teor de m.o tomou-se o valor de C.O x 1,724. Tal fator é utilizado por se admitir que o carbono constitua cerca de 60% da matéria orgânica do solo, sendo, portanto, considerado termos de mesmo significado (BENTO, 2005).

31 Granulometria A avaliação dos teores granulométricos (areia, silte e argila) foi realizada por meio de um analisador de partículas com difração a laser, modelo Silas Primeiramente realizou-se um pré-tratamento da amostra com peróxido de hidrogênio a fim de degradar a matéria orgânica nela presente. Foi então adicionado hexametafosfato de sódio, permanecendo sob agitação durante 24 horas. Para o tratamento dos dados e obtenção do percentual existente para cada fração granulométrica fez-se uso do programa GRADSTAT Enriquecimento e Isolamento Todas as amostras foram pesadas três vezes (10g). Cada subamostra foi enriquecida para o isolamento de bactérias, leveduras e fungos filamentosos com 1 % de petróleo, óleo diesel e gasolina como fonte de carbono (SOUZA et al., 2005). Uma localidade da BTS (CN) e duas das subamostras de Belmonte foram selecionadas para atuar como controle, sem adição de fontes de carbono. Cada subamostra foi enriquecida em frascos tipo Erlenmeyers de 250 ml, contendo 99 ml do meio mineral Buschnell Haas (BH), marca Difco, (composto de 1g de KH 2 PO 4, 1 g de NH 4 NO 3, 0,20 g de MgSO 4.7H 2 O, 0,05 g de FeCl 3, 0,02 g de CaCl 2.H 2 O, para 1 L de H 2 O, para estado sólido acrescenta-se 20,0g de Agar agar, sob ph 7,0 ± 0,2) e 1 % de petróleo, óleo diesel ou gasolina como única fonte de carbono. Não houve adição de fontes de carbono nos controles (SOUZA et al., 2005). A fim de garantir a oxigenação das amostras os frascos foram incubados em shaker rotativo, marca TECNAL, a 180 RPM ± 2 e temperatura de 28 ºC ± 2 durante 21 dias. (CHAERUN et al., 2004; SOUZA et al., 2005; WETLER, 2006). Após o período de enriquecimento, os frascos foram homogeneizados e uma alíquota da amostra (alçada abundante) foi semeada, em duplicata, na superfície da placa de ágar BH para a realização dos isolamentos. A cada 7 dias do período de enriquecimento, coletou-se uma alíquota das amostras enriquecidas para efetuação dos isolamentos. Com exceção dos controles, foi adicionado por cima das amostras semeadas 1 % de um dos petroderivados anteriormente utilizados. Devido a sua volatilidade a gasolina foi adicionada da tampa da placa (SOUZA et al., 2005). Para o crescimento dos microrganismos as placas semeadas foram incubadas a 30ºC durante 4 dias.

32 31 Tomando por base as características morfológicas de crescimento, os microrganismos semelhantes às bactérias foram transferidos para placas de Petri com TSA Tryptic Soy Ágar e os semelhantes às leveduras e aos fungos filamentosos foram transferidos para placas de Ágar Sabouraund. Ambos os meios de cultivo da marca Himedia, foram utilizados em repiques consecutivos até a obtenção do isolado propriamente dito e posteriormente para a manutenção destes a cada 30 dias. As placas foram incubadas por 48 horas, sendo as de TSA a 35ºC e as de Ágar Sabouraund a 30ºC. (SOUZA et al., 2005). Após o término de todos os isolamentos as cepas foram reativadas em tubos de ensaio com caldo Mueller Hinton, sendo posteriormente armazenadas em tubos de reação de 2,0 ml, em duplicata, contendo 10% de glicerol estéril e mantido em temperatura de 85ºC Tratamento Estatístico A normalidade das variáveis (ph, Eh, temperatura, condutividade, salinidade, granulometria e dos teores de matéria orgânica) apresentados para as áreas de estudo foi analisada por meio o teste estatístico de Kolmogorov e Smirnov (KS). A significância desses foi verificada pelo teste one-way ANOVA e Mann Whitney já a homogeneidade pelo teste de Barllet. Tais testes foram realizados com o auxílio do software GraphPad Instat. A matriz de correlação de Pearson de todas as variáveis e a Análise dos Componentes Principais (ACP) das variáveis e das estações investigadas foi realizada por meio do software Statistica versão 7.0 da Stratsoft Inc. 3.3 RESULTADOS E DISCUSSÕES Na BTS não foram localizadas manchas ou poças de óleo na superfície dos sedimentos, sendo observada apenas a presença de matéria orgânica produzida pelo próprio manguezal. Nas três áreas de estudo da BTS foram relatadas espécimes de vegetação de mangue pertencente aos gêneros Laguncularia, Rizophora e Avicennia. O gênero Laguncularia foi predominante nas áreas de refino e transporte, apresentando-se escassa, com tamanho reduzido e com as folhas amareladas na área de transporte. Segundo Veiga (2003) a proximidade de áreas industriais do setor petrolífero provoca a diminuição da vegetação de mangue na BTS, sendo observadas alterações morfológicas nas folhagens das plantas devido à exposição ao óleo.

33 32 Os parâmetros físico-químicos e o percentual de matéria orgânica de cada área de estudo com os respectivos números de microrganismos isolados estão representados na tabela 1. A temperatura média entre todos os pontos amostrados foi 26,6 ºC (tabela 1). A atividade dos microrganismos bem como a taxa de degradação dos compostos orgânicos são Tabela 1 - Parâmetros físico-químicos (ph, Eh, temperatura, condutividade, salinidade), areia grossa, areia média, areia fina, areia muito fina, silte, argila e matéria orgânica das diferentes áreas de estudo (RJ rio Jequitinhonha, BE Belmonte, DJ Dom João, MD Madre de Deus e CN Candeias) e o número total de bactérias, leveduras e fungos filamentosos isolados. Controle RJ BE DJ1 DJ2 MD3 MD4 CN5 CN6 Parâmetros RJ BE BTS ph 6,30 6,84 6,97 6,30 6,84 6,88 7,05 7,57 7,71 7,45 6,97 Eh (mv) Temp (ºC) 27,0 30,4 26,2 27,0 30,4 25,0 25,0 25,0 26,0 25,0 26,2 Cond. (m/s) 0,01 1,08 8,55 0,01 1,08 3,16 4,92 3,73 3,02 4,64 8,55 Sal. 0,0 15,0 5,0 0,0 15,0 13,0 10,0 11,0 20,0 3,0 5,0 M.O (%) - 4,54 6,51-4,54 2,81 4,0 0,81 3,53 8,11 6,51 Areia Grossa 8,39 1,26 45,81 8,39 1,26 8,36 22,30 1,29 13,70 50,10 45,81 Areia Média 7,37 0,0 0,0 7,37 0,0 0,0 0,0 0,33 0,03 0,0 0,0 Areia Fina 70,72 0,0 0,0 70,72 0,0 0,0 0,0 82,73 54,89 0,15 0,0 Areia M.Fina 8,94 26,38 4,35 8,94 26,38 0,01 0,50 8,70 17,31 23,93 4,35 Silte 4,58 70,90 48,75 4,58 70,90 89,24 75,86 6,82 13,96 25,54 48,75 Argila 0,0 1,45 1,19 0,0 1,45 2,39 1,34 0,14 0,11 0,28 1,19 Isolados B L F Total Legenda: B bactérias, L leveduras e F fungos filamentosos. influenciadas pela temperatura, podendo alterar a composição do petróleo e também a estrutura da comunidade microbiana (LEAHY; COLWELL, 1990; BAPTISTA, 2003). A faixa de temperatura situada entre 25 ºC e 30 ºC é considerada ótima para a metabolização dos contaminantes pelos microrganismos (ANDRADE et al., 2010). Tal constatação contribui positivamente para a realização de experimentos de biorremediação em ecossistemas da BTS impactados por atividades petrolíferas, já que a temperatura nessa localidade condiz com a média apresentada como ideal para a atividade dos microrganismos. O ph em torno da neutralidade contribuiu com o número de microrganismos isolados em todas as áreas de estudo. As localidades que apresentaram ph mais próximos do neutro obtiveram um maior número de isolados (tabela 1). A temperatura e o ph são os fatores que mais influenciam a atividade dos microrganismos no ambiente em que estão presentes (ANDRADE et

34 33 al., 2010). Valores de ph entre 6,0 e 8,0 propiciam o crescimento de um maior número de microrganismos (LEAHY; COLWELL, 1990; ANDRADE et al., 2010). Os íons H + afetam diretamente a atividade dos microrganismos, atuando na permeabilidade celular, nas atividades enzimáticas, exercendo também influencia indireta na disponibilidade de macro e micronutrientes (JACQUES et al., 2007). Os valores apresentados para o Eh variaram significativamente entre as áreas de estudo (tabela 1). A região do rio Jequitinhonha (RJ) obteve o valor de Eh mais elevado e também o menor número de microrganismos isolados, porém, por ser uma das áreas referências, com características de sedimento de fundo de rio arenoso já era esperado um número reduzido de isolados em relação às demais áreas de estudo. A salinidade variou de 0,0 (RJ) a 20,0 (MD4) (tabela 1). Nos manguezais a salinidade pode variar de 0,5 a 30,0, sendo considerado um dos parâmetros mais importantes para a determinação da extensão da biodegradação de compostos orgânicos. Elevados teores osmóticos alteram a solubilidade ou sorção dos contaminantes pelos microrganismos inibindo as taxas de degradação (WETLER, 2006; QIN et al., 2012). São desconhecidos estudos sobre a biodegradação de compostos tóxicos em ambientes hipersalinos (CRAPEZ et al., 2002). A quantidade de sais dissolvidos é indicada pela condutividade elétrica e possui influência direta nas funções dos microrganismos presentes no meio (ARIAS et al., 2005). Tal parâmetro contribuiu principalmente para os resultados obtidos da estação CN6 (tabela 1). A porcentagem de matéria orgânica variou de 0,81 (MD3) a 8,11(CN5), estando os maiores teores relacionados com o maior número de isolados. A região de produção (DJ1 e DJ2) apresentou equivalência com o resultado apresentado por Hadlich et al. (2007) (tabela 1). O teor de matéria orgânica, indicado pela quantidade de carbono orgânico total do meio é uma variável de grande importância no processo de biorremediação (ANDRADE et al., 2010), já que serve de fonte de carbono aos microrganismos. O manguezal é um ecossistema que naturalmente apresenta um elevado teor de matéria orgânica. Uma amostra utilizada como background por Lima (2010) apresentou um elevado teor de matéria orgânica, devido ao sedimento do manguezal já apresentar-se ligeiramente contaminado. Bento (2005) concluiu em seus experimentos que amostras de solo contaminadas com diesel apresentaram uma maior concentração de matéria orgânica quando comparado ao solo não contaminado. Em relação à distribuição do padrão granulométrico, a região do rio Jequitinhonha foi principalmente caracterizada pela presença de areia fina e Belmonte de silte (tabela 1). Entre as estações de estudo da BTS, DJ1 e DJ2 são principalmente representados pelo silte, MD3 e MD4 pela areia fina e CN5 e CN6 pela areia grossa e silte respectivamente (tabela 1). Em derrames de

35 34 petróleo os contaminantes aderem-se principalmente nas partículas sedimentares finas. O acesso dos microrganismos aos contaminantes, etapa inicial do processo de biodegradação, é significativamente influenciado pelos mecanismos de transportes e pela interação sedimentocontaminante. (ATLAS, 1995; LIMA, 2010). Como já era esperado, obteve-se um elevado número de microrganismos isolados com diferentes padrões morfológicos. A variedade de isolados obtidos nas diferentes áreas de estudo indica a abundância e versatilidade de microrganismos presentes em localidades com constantes entradas de hidrocarbonetos (AFUWALE; MODI, 2012). A área de estudo que obteve o maior número de isolados foi a BTS (65%) que também possuiu o maior número de amostras, seguido de BE (25%) e RJ (10%) (figura 4A). Figura 4 Microrganismos isolados por área de estudo (A) percentual e (B) número total de isolados, onde: (BTS) Baía de Todos os Santos, (BE) Belmonte e (RJ) Rio Jequitinhonha. (A) (B) Em relação aos controles, BE apresentou o maior número de microrganismos. Sugere-se que tal diversidade seja uma condição natural dessa região, tendo sido posteriormente confirmado pela análise multivariada dos parâmetros físico-químicos e dos teores granulométricos. Em relação ao total de microrganismos por área de estudo, no rio Jequitinhonha (RJ) obteve-se um total de 47 microrganismos isolados, sendo 58% bactérias, 38% leveduras e 4% fungos filamentosos (figura 4B). A amostra BE proporcionalmente prevaleceu com o maior número de microrganismos isolados (119) com 57% de bactérias, 39% de leveduras e 4% de fungos filamentosos (figura

36 35 4B). Tal resultado não condiz com o informado na literatura onde locais contaminados com hidrocarbonetos de petróleo o número de cepas microbianas isoladas é maior do que em áreas sem fontes de contaminação (ATLAS, 1995; WILD; JONES, 1996; LEAHY; COLWELL, 1990), porém os parâmetros físico-químicos em conjunto contribuíram positivamente com o elevado número de microrganismos. Mesmo tendo sido detectado maiores quantificações no manguezal de Belmonte esses não apresentaram potencial para a degradação de hidrocarbonetos de petróleo pelo fato de não estarem adaptados à constante presença desse composto (dados não publicados). Na BTS foram isolados 306 microrganismos, destes 67% foram bactérias, 24% leveduras e 4% fungos filamentosos (figura 4B). Em trabalhos realizados em diferentes regiões do Brasil e do mundo nota-se um maior número de bactérias isoladas em relação às leveduras e aos fungos filamentosos quando expostos às diversas fontes de carbono (CHAINEAU et al, 1999; EL- MORSY, 2005; SOUZA et al., 2005; BATISTA et al., 2006). Em sedimentos de manguezais da BTS o grupo de microrganismos predominantes foi de bactérias, seguido das arqueobactérias e dos fungos filamentosos, independente do tipo de poluente e das condições físico-químicas do meio (MELO, 2006, dados não publicados). Com o uso das fontes de carbono todas as áreas apresentaram um maior número de bactérias com adição do petróleo (figura 5). Isolamentos de microrganismos com o uso de hidrocarbonetos como única fonte de carbono revelaram que os isolados apresentaram preferências distintas quanto ao substrato utilizado (VAN-HAMME et al., 2003; WETLER- TONINI, 2011). A diversidade de elementos que constituem o petróleo bruto ou refinado influencia na degradação do óleo como um todo, bem como as de suas frações (LEAHY; COLWELL, 1990). O óleo diesel possui massa específica e cadeias maiores do que a gasolina, sendo, portanto, menos tóxico e menos volátil (MARIANO, 2006) o que propiciou o crescimento de um maior número de microrganismos em relação à gasolina (figura 5). A gasolina é uma mistura composta principalmente por hidrocarbonetos voláteis, e em grande parte por parafinas ramificadas, cicloparafinas, além de compostos aromáticos como benzeno, tolueno, etilbenzeno e xileno (BTEX) que são altamente tóxicos e solúveis em água (MARIANO, 2006; ANDRADE, 2008). Por possuir um grande número de hidrocarbonetos voláteis a gasolina é considerada um dos derivados de petróleo mais tóxicos aos microrganismos do solo (FERREIRA et al., 2009). A volatilidade da gasolina também diminui a sua concentração no meio, indicando que baixas concentrações podem não sofrer degradação pelos

37 36 microrganismos pelo fato de não estarem disponíveis na forma em que estes podem assimilá-los facilmente (MARTINS et al., 2003). Figura 5 Total de microrganismos isolados nas diferentes áreas de estudo com o uso das fontes de carbono, onde BP Bactérias crescidas em petróleo; BD Bactérias crescidas em diesel; BG Bactérias crescidas em gasolina; BC Bactérias controle; LP Leveduras crescidas em petróleo; BD Leveduras crescidas em diesel; LG Leveduras crescidas em gasolina; LC Leveduras controle; FP Filamentos crescidos em petróleo; FD Filamentosos crescidos em diesel; FG Filamentosos crescidos em gasolina; FC Filamentosos controle BP BD BG BC LP LD LG LC FP FD FG FC BTS BE RJ O número de isolados por atividade da cadeia produtiva do petróleo indicou um maior número de representantes na área de refino (CN) com 36% do total de isolados, principalmente bactérias com o uso do petróleo como fonte de carbono (figura 6C). A área de transporte (MD) apresentou 33% dos isolados (figura 6B) e a área de produção (DJ) 30% (figura 6A). A constante presença do petróleo e seus derivados em uma mesma localidade aumenta a biomassa dos microrganismos que podem servir como indicadores biológicos de ambientes impactados cronicamente por esse composto (CRAPEZ, 2002; PEIXOTO et al., 2011). Em pesquisa realizada nas adjacências da Refinaria Gabriel Passos REGAP, Minas Gerais, na Refinaria Duque de Caxias REDUC, Rio de Janeiro e na garagem de manutenção de veículos da Universidade Federal de Viçosa (UFV) com amostras enriquecidas durante 7 dias com caldo BH e isoladas com o uso de petróleo ou gasolina como fonte de carbono, foram isoladas 185 bactérias, 3 fungos filamentosos e 4 leveduras (BATISTA et al., 2006). Visando isolar microrganismos provenientes de áreas contaminadas por petroderivados próximos à lagoa da Barra em Suape Pernambuco, Souza e colaboradores (2005) utilizaram óleo diesel, gasolina, bunker e querosene como fonte de carbono. Do total de 86 microrganismos isolados 46% corresponderam às bactérias, 23% às leveduras e 23% aos fungos filamentosos.

38 37 Figura 6 Número de microrganismos isolados por atividades do setor petrolífero. (A) Produção, (B) transporte e (C) - refino. Legenda: B bactéria, L levedura, F fungo filamentoso As análises estatísticas de KS revelaram que com exceção dos valores apresentados pelo potencial de oxi-redução (Eh) e pelos teores de argila, todos os demais obtiveram distribuição normal. O teste one-way ANOVA revelou que os dados normais foram considerados extremamente significativos com o valor de p> 0,0001, já pelo teste de Barllet verificou-se a heterogeneidade dos mesmos, ou seja, que as variáveis são independentes entre si. Devido ao fato de os valores apresentados pelo Eh e pelos teores de argila não terem sido considerados

39 38 normais, o teste executado para a verificação da significância foi o de Mann-Whitney, tendo revelado uma considerável significância para esses com o valor de p = 0,0104. Anteriormente à execução da matriz de correlação e das ACPs, os dados com distribuição não normal foram normalizados. Foram construídas duas matrizes de correlação de Pearson. A primeira (tabela 2) relacionada com os parâmetros físico-químicos (ph, Eh, temperatura, condutividade, salinidade) os teores de matéria orgânica (m.o) e os padrões granulométricos (areia grossa, areia média, areia fina, areia muito fina, silte e argila) das três áreas de estudo: rio Jequitinhonha, manguezal de Belmonte e manguezais da Baía de Todos os Santos. Já a segunda matriz de correlação (tabela 3) relacionou as mesmas variáveis anteriormente citadas, porém, apenas para as regiões contempladas para a Baía de Todos os Santos (Dom João, Madre de Deus e Candeias). Tabela 2 Matriz de correlação de Pearson dos parâmetros físico-químicos, padrões granulométricos e do número de microrganismos isolados no rio Jequitinhonha, manguezal de Belmonte e manguezais da Baía de Todos os Santos (Dom João, Madre de Deus e Candeias). Onde: M.O matéria orgânica; A.G areia grossa; A.M areia média; A.F areia fina; A.M.F areia muito fina; S silte; A argila; B bactéria; L levedura; F fungos filamentosos. ph Eh Temp. Cond. Sal. M.O A.G A.M A.F A.M.F S A ph 1,00 Eh -0,81 1,00 Temp. -0,40 0,12 1,00 Cond. 0,42-0,56-0,48 1,00 Sal. 0,55-0,68 0,25-0,09 1,00 M.O -0,75 0,99 0,09-0,56-0,68 1,00 A.G 0,23-0,25-0,44 0,81-0,43-0,23 1,00 A.M -0,73 0,99 0,08-0,58-0,65 1,00-0,28 1,00 A.F -0,06 0,55-0,17-0,47-0,19 0,60-0,46 0,65 1,00 A.M.F 0,18-0,17 0,67-0,42 0,31-0,13-0,19-0,14-0,10 1,00 S -0,06-0,49 0,24 0,22 0,43-0,57 0,00-0,59-0,85-0,07 1,00 A -0,10-0,45 0,18 0,26 0,38-0,54-0,01-0,55-0,79-0,19 0,97 1,00 A matriz de correlação das três áreas de estudo (tabela 2) revelou que o Eh juntamente com os teores de m.o e a fração média de areia foram as variáveis mais intimamente correlacionadas (0,99), seguido do silte e argila com 0,97 de correlação. Diferentemente da primeira matriz, a realizada apenas para os setores da BTS as variáveis mais correlacionadas foram os teores de m.o juntamente com a fração grossa da areia (0,98) seguido do silte e da argila (0,96). Em ambas as matrizes de correlação o ph e o Eh foram as variáveis menos correlacionadas.

40 39 Tabela 3 Matriz de correlação de Pearson dos parâmetros físico-químicos, padrões granulométricos e do número de microrganismos isolados dos sedimentos de manguezais da Baía de Todos os Santos (Dom João, Madre de Deus e Candeias). Onde: M.O matéria orgânica; A.G areia grossa; A.M areia média; A.F areia fina; A.M.F areia muito fina; S silte; A argila; B bactéria; L levedura; F fungos filamentosos. ph Eh Temp. Cond. Sal. M.O A.G A.M A.F A.M.F S A ph 1,00 Eh -0,98 1,00 Temp. -0,11-0,02 1,00 Cond. -0,55 0,47 0,66 1,00 Sal. 0,43-0,49-0,03-0,70 1,00 M.O -0,25 0,31 0,37 0,62-0,71 1,00 A.G -0,30 0,34 0,44 0,76-0,79 0,98 1,00 A.M 0,51-0,54-0,32-0,32 0,18-0,68-0,59 1,00 A.F 0,78-0,84-0,10-0,50 0,57-0,71-0,67 0,86 1,00 A.M.F 0,78-0,69-0,03-0,28-0,01 0,35 0,25 0,05 0,27 1,00 S -0,88 0,90-0,17 0,14-0,11 0,06 0,03-0,58-0,74-0,74 1,00 A -0,90 0,91-0,09 0,17-0,09-0,02-0,03-0,47-0,66-0,78 0,96 1,00 A ACP das variáveis e de todas as estações de estudo originou a formação de três agrupamentos distintos, confirmando as correlações observadas por meio das matrizes de Pearson. A associação de 2 fatores foi responsável por 65,28% de variância (figura 7A). Os teores de m.o juntamente com o Eh foram os parâmetros que mais influenciaram a distribuição obtida para o rio Jequitinhonha. Segundo dados anteriormente mencionados nessa região os teores de m.o foram inferiores aos limites de detecção. A característica granulométrica arenosa dificulta a adsorção da m.o. e consequentemente diminui a quantidade de carbono necessária para a sobrevivência dos microrganismos. Tal constatação associado ao elevado Eh determinou o menor número de microrganismos para essa região. O agrupamento da região de BE foi principalmente influenciado pela temperatura, salinidade, silte e areia muito fina (figura 7A). A temperatura de 30,4ºC juntamente com o padrão granulométrico fino, proporcionaram um maior número de microrganismos, os quais possivelmente podem estar adaptados a teores osmóticos um pouco mais elevados. As condições ambientais apresentadas em BE proporcionam um elevado número de microrganismos naturalmente presentes nessa região. Na BTS as variáveis de destaque foram condutividade, a areia grossa e o ph próximo da neutralidade, representado pela região de refino (CN), a qual obteve um maior número de isolados dentre as regiões da BTS (figura 7A).

41 40 Figura 7 Análise dos Componentes Principais (ACP) das variáveis e das estações de estudo (A) Todas as estações de estudo; (B) BTS. Onde: A.G areia grossa, A.M areia média, A.F areia fina, A.M.F areia muito fina, S silte, A argila, B bactéria, L levedura, F fungo filamentoso (A) (B) A fim de obter a explicação dos dados apenas para a BTS, já que dentre as regiões de estudo é mais influenciada pela indústria petrolífera, foi realizado um ACP das variáveis e dos casos separadamente (figura 7B). Comparado à análise anterior 70,36% de variância foi obtida por meio de dois fatores. Os agrupamentos para essa região foram correspondentes a cada setor da cadeia produtiva de petróleo. Na área de produção (DJ1 e DJ2) as variáveis de maior importância foram o Eh o os teores granulométricos mais finos (argila e silte) (figura 7B). Na

42 41 região de transporte (MD3 e MD4) as variáveis de maior significado foram o ph (7,57 e 7,71) juntamente com a fração de areia fina e areia muito fina (figura 7B). Diferentemente do ACP anterior na área de refino (CN5 e CN6) os teores de matéria orgânica juntamente com a fração mais grossa da areia, foram os parâmetros mais relevantes (figura 7B). O fato da coleta na região de refino ter sido realizada nas proximidades do estuário do rio São Paulo com a maré alta e em período chuvoso culminou com a coleta de material grosseiro e a presença de um maior número de sais dissolvidos determinado pela condutividade. 3.4 CONCLUSÃO As áreas contempladas no presente estudo apresentam características físico-químicas e teores de matéria orgânica diversificados. A avaliação isolada de cada variável não é suficiente para a compreensão do número de microrganismos isolados por área de estudo sendo necessária uma análise integrada entre todos os dados. O rio Jequitinhonha, com 47 microrganismos isolados, foi principalmente influenciado pelos teores de matéria orgânica e pelo Eh. BE proporcionalmente apresentou um maior número de isolados (119), sendo o silte e a salinidade as variáveis de maior significância. Na BTS a região de refino foi predominante com 105 microrganismos, influenciado principalmente pela matéria orgânica e pela areia grossa. Mesmo BE sendo uma das áreas referência nota-se que os microrganismos são capazes de se adaptarem às fontes de carbono, crescendo em seu substrato. Em relação às fontes de carbono o petróleo foi o que proporcionou o crescimento de um maior número de microrganismos, principalmente bactérias. Tal fato pode ser explicado pela variedade de arranjos existentes entre seus hidrocarbonetos, aos padrões de toxicidade quando comparado ao óleo diesel e à gasolina, em função do elevado teor de compostos aromáticos, e pelas bactérias normalmente corresponderem à massa microbiana mais abundante nos ecossistemas de manguezais. Concluiu-se que a quantidade e diversidade de microrganismos isolados foram determinadas principalmente pelas características das áreas de estudo e pelo uso das diferentes fontes de carbono culminando em padrões distintos. Para estudos subsequentes sugere-se a avaliação dos teores nutricionais (nitrogênio e fósforo) das diferentes áreas de estudo a fim de verificar se esses apresentam relações com a quantidade de microrganismos, principalmente nos controles.

43 AGRADECIMENTOS À PROAMB pelo auxílio financeiro para a aquisição dos materiais necessários e à FAPESB (termo de outorga nº BOL0469/2011) pela concessão da bolsa de mestrado. 3.6 REFERÊNCIAS AFUWALE, C; MODI, H. A. Study of bacterial diversity of crude oil degrading bacteria isolated from crude oil contaminated sites. Life sciences leaflets, v. 6, p.13-23, ALONGI, D. M. Present state and future of the word s mangroves forests. Environmental conservation, v.3, n.29, p , ANDRADE, D. M. Avaliação de bactérias provenientes de um biofiltro de tratamento de vapores de gasolina. 2008, 96f. Dissertação (Mestrado em Engenharia Ambiental), Universidade Federal de Santa Catarina, Florianópolis SC, ANDRADE, J. A; AUGUSTO, F; JARDIM, I. C. S. F. Biorremediação de solos contaminados por petróleo e seus derivados. Eclética química, v. 35, n. 3, p , ATLAS, R. M. Bioremediation of petroleum pollutants. International biodeterioration and biodegradation, v. 35, n. 1-4, p , BAPTISTA, S. J. Seleção das melhores condições de biodegradação de petróleo em solo argiloso f. Tese (mestrado em tecnologia de processos químicos e bioquímicos). Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, BATISTA, S. B; MOUNTEER, A. H; AMORIM, F. R; TOTOLA, M. R. Isolation and characterization of biosurfactant/biomulsifier producing-bacteria from petroleum contaminated sites. Bioresource technology, v. 97, p , BENTO, D. M. Análise química da degradação de hidrocarbonetos de óleo diesel no estuário da Lagoa dos Patos Rio Grande/RS f. Dissertação (Mestrado em oceanografia física, química e geológica), Universidade Federal do Rio Grande, Rio Grande RS, CELINO, J. J; QUEIROZ, A. F. S. Fonte de grau de contaminação por hidrocarbonetos policíclicos aromáticos (HPA) de baixa massa molecular em sedimentos da Baía de Todos os Santos, Bahia. Rev. Esc. Minas, v. 59, n. 3, p , CENTRO DE RECURSOS AMBIENTAIS. Projeto de gerenciamento costeiro do Estado da Bahia. Litoral Sul: sub-região III - Extremo Sul. v. 4, Salvador, p. CHAERUN, S. K; TAZAKI, K; ASADA, R; KOGURE, K. Bioremediation of coastal areas 5 years after the Nakhodka oil spill in sea of Japan: isolation and characterization of hydrocarbon degrading bacteria. Environment International, v. 30, p , 2004.

44 43 CHAINEAU, C. H; MOREL, J; DUPOND, J; BURY, E; OUDOT, J. Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolate from a temperate agricultural soi. The science of total environment, v. 227, p , CONHEÇA BELMONTE BAHIA. Belmonte News. Disponível em: acesso em: 27 dez, CRAPEZ, M. C; BORGES, A. L. N; Bispo, M. G. S; PEREIRA, D. C. Tratamento para derrames de petróleo: biorremediação. Ciência hoje, v. 30, n. 179, p , EL-MORSY, E. M. Evaluation of microfungi for the bioremediation of diesel oil in Egypt. Land contamination and reclamation, v. 13, n. 2, p , EMBRAPA, Centro Nacional de Pesquisa de Solos. Manual de análises químicas para a avaliação da fertilidade do solo. SILVA, F. C. da coord. Campinas: EMBRAPA INFORMÁTICA AGROPECUÁRIA; Rio de Janeiro, Embrapa solos, p FERREIRA, G; PARAISO, D; SÉRVULO, E. F. C. Monitoramento microbiológico de solo argiloso contaminado artificialmente com gasolina. In: SIMPOSIO DE MICROBIOLOGIA APLICADA, , Rio Claro. Resumo. Instituto de Biociências UNESP, HADLICH, G. M; CELINO, J. J. UCHA, J. M; SANTIAGO, J. Geoquímica de metais traços em apicuns (planícies hipersalinas) do campo de produção de petróleo em Dom João, São Francisco do Conde, Bahia. In: CONGRESSO BRASILEIRO DE GEOQUÍMICA, , Atibaia. Anais... Rio de Janeiro: Sociedade Brasileira de Geoquímica, 2007, v.1, p.1-3. CD-ROM. HARAYAMA, S; KISHIRA, H; KASAI, Y; SHUTSUBO, K. Petroleum biodegradation in marine environments. J. Molec. Microbiol. Biotechnol, v.1, n.1, p , JACQUES, R. J. S; BENTO, F. M; ANTONIOLLI, Z. I; CAMARGO, F. A. O de. Biorremediação de solos contaminados por hidrocarbonetos aromáticos policíclicos. Ciência Rural, v.37, n.4, p , LE DRÉAU, Y ; JACQUOT, F ; DOUMENQ, P ; GUILIANO, M ; BERTRAND, J. C ; MILLE, G. Hydrocarbon balance of a site wich had been highly and chronically contaminated by petroleum wastes of a refinery (from 1956 to 1992). Marine Pollution Bulletin, v. 34, n.6, p , LEAHY, J. G; COLWELL, R.R. Microbial degradation of hydrocarbons in the environment. Microbiological reviews, v. 54, n. 3, p , LIMA, D. F. Biorremediação em sedimentos impactados por petróleo na Bahia de Todos os Santos, Bahia: avaliação na degradação de hidrocarbonetos saturados. 2010, 234f. Dissertação (Mestrado em Geologia), Universidade Federal da Bahia, Salvador BA, MADIGAN, M. T; MARTINKO, J. M; PARKER, J. B. Brock Biología de los Microorganismos. 10 ed. Madri: Pearson Education, MARIANO, A. P. Avaliação do potencial de biorremediação de solos e água contaminados por óleo diesel. 2006, 162f. Tese (Doutorado em Geociências e Meio Ambiente), Universidade Estadual Paulista, Rio Claro SP

45 44 MARTINS, A; DINARDI, A. L; FORMAGI, V. M; LOPES, T. A; BARROS, R.de M; CONEGLIAN, C. R; BRITO, N. N de; SOBRINHO, G. D; TONSO, S; PELEGRINI, R. Biorremediação. In: FÓRUM DE ESTUDOS CONTÁBEIS, , Rio Claro. Anais eletrônicos. Faculdades Integradas, Disponível em: < Acesso em: 08 maio MELO, E. G. V. Avaliação da glicerina bruta na estimulação de bactérias hidrocarbonoclásticas para remediação de áreas contaminadas por hidrocarbonetos. 2011, 70f. Dissertação (Mestrado em Geoquímica: Petróleo e Meio Ambiente), Universidade Federal da Bahia, Salvador, MOREIRA, I. T. A. Avaliação da eficiência de modelos de biorremediação aplicados em sedimento de manguezal impactados por atividades petrolíferas. 2010, 163f. Dissertação (Mestrado em Geoquímica: Petróleo e Meio Ambiente), Universidade Federal da Bahia, Salvador BA, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION. Oil spills in mangrove: planning and response considerations. Wasshington: NOAA, p. PEIXOTO, R; CHAER, G. M; CARMO, F. L; ARAUJO, F. V; PAES, J. E; VOLPON, A; SANTIAGO, G. A; ROSADO, A. S. Bacterial communities reflect the spatial variation in pollutant levels in Brazilian mangrove sediments. Antonie Van Leeuwenhoeck, v. 99, p , QIN, X. TANG, J. C; LI, D. S; ZHANG, Q. M. Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline-alkaline soil. Letters in applied microbiology, v. 55, p , QUEIROZ, A. F. S; CELINO, J. J. Impacto ambiental da indústria petrolífera em manguezais da região norte da Baía de Todos os Santos (Bahia, Brasil). Boletim paranaense de geociências, n 62-63, p.23.34, SANTOS, H. F; CARMO, F.L; PAES, J. E. S; ROSADO, A. S; PEIXOTO, R. S. Bioremediation of mangroves impacted by petroleum. Water, air, soil, pollut, v. 216, p , SATOW, M. M. Avaliação do método de Iwatsu et al., (1981) para isolamento de leveduras negras no solo, degradadoras de hidrocarbonetos f. Dissertação (Mestrado em Ciências Biológicas). Universidade Estadual Paulista Julio Mesquita Filho, Rio Claro, SP, SOUZA, C. S; MIRANDA, R. C ; SENA, K. X. F. R; ARAÚJO, J. M ; CHIAPPETA, A de A; SOUZA, M. F. V. Q. Isolamento e seleção de microrganismos degradadores de derivados de petróleo. IN: CONGRESSO de P & D EM PETRÓLEO E GÁS, , Salvador. Anais eletrônicos. UFPE, VAN HAMME, J. D; SINGH, A; WARD, O. P. Recent advances in petroleum microbiology. Microbiology and molecular biology reviews, v. 67, n.4, p , VEIGA, I. G. Avaliação da origem dos hidrocarbonetos em sedimentos superficiais de manguezais da região norte da Baía de Todos os Santos/Ba f. Dissertação

46 45 (Mestrado em Geoquímica e Meio Ambiente), Universidade Estadual do Norte Fluminense, Macaé RJ, WALKLEY, A; BLACK, I. A. Na examination of the Degtjarref method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, n. 37, p , WETLER, R. M. C. Prospecção de microrganismos responsáveis pela degradação de compostos de petróleo em sedimento de um manguezal localizado no Sul da Bahia (Brasil) f. Dissertação (Mestrado em Ecologia), Universidade Estadual de Santa Cruz, Ilhéus BA, WETLER-TONINI, R. M. C; REZENDE, C. E; GRAVITOL, A. D. Biodegradação bacteriana de petróleo e seus derivados. Revista virtual de química, v. 3, n. 2, p , WILD, S. R; JONES, K. C. Biological and abiotic losses of polynuclear aromatic hydrocarbons (PAHSs) from soils freshly amended with sewage sludge. Environmental toxicology and Chemistry, v. 12, n.1, p. 5-12, YAKIMOV, M. M; DENARO, R; GENOVESE, M; CAPPELO, S; D AURIA, G; CHERNIKOVA, T. N; TIMMIS, K. N; GOLYSHIN, P. N; GILULIANO,Laura. Natural microbial diversity in sediments of Milazzo Harbour (Silicy) and community successions during microcosms enrichment with various hycrocarbons. Environmental microbiology, v. 7, n. 9, p , 2005.

47 46 4 DEGRADAÇÃO DE ALCANOS NORMAIS DE CADEIA LONGA (C 18 - C 32 ) POR CONSÓRCIOS BACTERIANOS ISOLADOS DE SEDIMENTOS DE MANGUEZAIS DA BAÍA DE TODOS OS SANTOS, BAHIA, BRASIL RESUMO Por meio de consórcios formados por bactérias isoladas e selecionadas de sedimentos de manguezais da Baía de Todos os Santos, Bahia, Brasil, avaliou-se a degradação de hidrocarbonetos de petróleo de cadeia longa (C 18 -C 32 ) em ensaios laboratoriais submetidos a cinco diferentes períodos de tempo (t0 2 horas, t1 24 horas, t2 7 dias, t3 15 dias e t4 30 dias). Foram utilizados como microcosmos frascos tipo Erlenmeyers de 125 ml com 50 ml de meio mineral Buschnell Haas, 2 ml da suspensão bacteriana padronizada para cada cepa formadora do consórcio e 1% de petróleo como única fonte de carbono e energia. A cromatografia em fase gasosa acoplada a espectrômetro de massas (CG/EM) revelou reduções na abundância molecular dos n-alcanos em comparação aos controles. Ambos os consórcios contribuíram com a redução dos compostos a depender do período de experimento. A partir do t2 o consórcio A foi capaz de degradar 100% dos compostos acima do C 28. O consórcio B contribuiu com níveis de degradação superiores a 81% para os compostos acima do C 20 após 7 e 15 dias de experimento. O consórcio B degradou principalmente compostos entre C 18 a C 22. O consórcio A obteve preferência na degradação dos n-alcanos a partir do C 23., no t0, t1 e t4 tendo sido considerado o mais promissor para a degradação dos n-alcanos de cadeia longa. Palavras chaves: Consórcios, biorremediação, n-alcanos, hopano, cadeia longa. ABSTRACT Through consortia formed by bacteria isolated and selected of mangrove sediments of Todos os Santos Bay (TSB), Bahia, Brazil, evaluated the degradation of petroleum hydrocarbons of long chain (C 18 -C 32 ) in laboratory trials submitted to five different periods of time (t0-2 hours, t1-24 hours, t2-7 days, t3 - t4 and 15 days - 30 days). Were used 125 ml Erlenmeyer flasks as microcosms with 50 ml of mineral medium Buschnell Haas, 2 ml of the standardized bacterial suspension for each strain of the the consortium and 1% of oil as the sole source of carbon and energy. The gas chromatography coupled to mass spectrometry (GC / MS) revealed reductions in the molecular abundance of n-alkanes compared to controls. Both consortia have contributed to the reduction of compounds depending on the experiment period. From t2 the consortium A was capable of degrading 100% of the compounds above C 28. The consortium B contributed with degradation levels exceeding 81% for compounds above C 20 after 7 and 15 days of experiment. The consortium B degraded mainly compounds between C 18 to C 22. The consortium A degrades preferably n-alkanes from C 23. At t0, t1 and t4 are considered the most promising for the degradation of n-alkanes long chain. Keywords: Consortia, bioremediation, n-alkanes, hopane, long chain.

48 INTRODUÇÃO O petróleo é uma mistura complexa de hidrocarbonetos formada por processos biogeoquímicos. É constituído por pequenas quantidades de compostos sulfurados, oxigenados, nitrogenados e organometálicos, como o níquel e o vanádio (PEDROZO et al., 2002). Os hidrocarbonetos saturados, também denominados alcanos, constituem o grupo predominante do petróleo. São compostos com baixa solubilidade em água dispostos em arranjos lineares (nalcanos ou alcanos normais), ramificados (isoalcanos) ou cíclicos (cicloalcanos) (PEDROZO et al., 2002; ZÍLIO; PINTO, 2002; VEIGA, 2003; THOMAS, 2004; WENTZEL et al., 2007; ALKHATIB et al., 2011). O derramamento de petróleo em ambientes marinhos proporciona consideráveis fontes de alcanos aos organismos (HEAD, 2006). Pesquisas envolvendo a degradação de alcanos pela ação microbiana tiveram início em 1913 (VAN BEILEN; FUNHOFF, 2007). Após esse período aplicações biotecnológicas tem sido realizadas por meio da biodegradação de alcanos no tratamento de ambientes contaminados (LI et al., 2008). Os hidrocarbonetos de petróleo podem ser degradados por várias espécies de microrganismos, identificados como atuantes na metabolização desde o C 1 (metano) até compostos pesados com mais de 40 átomos de carbono (ZIOLLI, 2002). Microrganismos vêm sendo constantemente relatados como capazes de degradar n- alcanos de cadeia longa, inclusive os maiores do que C 18, que são sólidos em temperatura ambiente (WENTZEL et al., 2007). Alcanos normais entre C 10 -C 24 são mais facilmente degradados pelos microrganismos enquanto que os menores do que C 10 são considerados tóxicos (PETERS et al., 2005). O presente estudo objetivou avaliar em escala laboratorial a degradação de n- alcanos de cadeia longa (C 18 C 32 ) por meio de consórcios bacterianos provenientes de sedimentos de manguezais situados ao norte da Baía de Todos os Santos BTS, Bahia, Brasil, após 2 horas, 24 horas, 7 dias, 15 dias e 30 dias de experimento.

49 MATERIAIS E MÉTODOS Estão destacadas as metodologias empregadas nas etapas de campo e laboratoriais A área de estudo Diretamente influenciada por atividades da indústria petrolífera desde o ano de 1950, ecossistemas da BTS são alvos de impactos ambientais relacionados aos constantes derrames de petroderivados (VEIGA, 2003; MOREIRA, 2011). As regiões de destaque tratam-se de localidades ao norte da BTS onde são praticadas atividades de produção de petróleo - DJ (campo de Dom João no município de São Francisco do Conde), transporte de petróleo e seus derivados MD (terminal portuário TEMADRE em Madre de Deus) e refino - CN (Refinaria Landulpho Alves Mataripe RLAM, próximo à Candeias) (figura 8). Figura 8 Localização da Baía de Todos os Santos com as três regiões de estudo: (DJ) campo de Dom João em São Francisco do Conde, (MD) Madre de Deus e (CN) Candeias

50 Amostragem Com o uso de frascos de vidro estéreis coletou-se cerca de 50 g de sedimento superficial de manguezal (0,0 a 5,0 cm) em região de inter-maré em 02 pontos de cada um dos três manguezais da BTS. As amostras foram armazenadas em caixa de isopor contendo gelo até a execução dos ensaios laboratoriais. A escolha dos pontos de amostragem baseou-se em busca visual de indícios que poderiam indicar possíveis contaminações por hidrocarbonetos, como por exemplo, manchas de óleo, proximidade de dutos de transporte e maquinários utilizados para exploração de petróleo ou poços de exploração desativados Meios de cultura, solventes e padrões Dentre os meios de cultura utilizados o meio mineral Buschnell Haas (BH) foi adquirido pela Difco laboratories. O TSA (Tryptic Soy Agar) e o caldo Mueller Hinton pertenceram à marca Himedia. O Ágar agar utilizado para a solidificação do meio BH foi adquirido pela Merck chemicals. Os solventes diclorometano e n-hexano pertenceram à marca Merck com grau P.A ACS ISO, enquanto que o metanol, marca J.TBaker, apresentou grau P.A ACS Isolamento dos microrganismos O petróleo utilizado durante todas as etapas laboratoriais foi cedido pela refinaria Landunpho Alves Mataripe - RLAM. Trata-se de um óleo parafínico, proveniente da Bacia do Recôncavo. Segundo informações da RLAM o grau API a 16ºC varia de 28,0 (óleo mediano) a 36,0 (óleo leve) (TISSOT; WELTE, 1978; BARRAGAN, 2012). As análises microbiológicas foram realizadas no Laboratório de Estudos em Meio Ambiente LEMA, da Universidade Católica do Salvador (UCSAL). Para tal pesou-se 10 g das amostras de sedimento fresco para o enriquecimento e isolamento dos microrganismos. Este procedimento foi realizado em frascos tipo Erlenmeryes de 250 ml contendo 99 ml do meio mineral Buschnell Haas (BH), composição descrita em Fioravanti e colaboradores (2012) (apêndice 4) e 1% de petróleo como única fonte de carbono (SOUZA et al., 2005). Em sua composição o meio BH possui os principais nutrientes necessários para o crescimento de microrganismos degradadores de hidrocarbonetos, com exceção da fonte de carbono. Os frascos

51 50 foram acondicionados em shaker rotativo Tecnal, permanecendo em agitação (180 rpm), sem luz, durante 21 dias à temperatura de 28ºC ± 2ºC (CHAERUN et al., 2004; SOUZA et al., 2005; WETLER, 2006). Uma subamostra foi aleatoriamente indicada para compor o controle, sem a adição da fonte de carbono. Os isolamentos dos microrganismos foram executados em duplicata a cada 7 dias em placas contendo o meio BH no estado sólido com 1% de petróleo por cima das amostras semeadas. As placas permaneceram incubadas a 30 ºC durante 4 dias para o crescimento dos microrganismos. Colônias esbranquiçadas, amarelas e marrons claro foram consideradas como microrganismos, sendo transferidas para placas de TSA para a confirmação do crescimento bacteriano (SOUZA et al., 2005). Foram realizados repiques consecutivos até a obtenção dos isolados e posteriormente a cada 30 dias para a manutenção das colônias Ensaios de Seleção Foram realizados dois ensaios de seleção. O primeiro em placas multipoços de 2,0 ml e o segundo adaptado para frascos tipo Erlenmeyers de 125 ml com as cepas selecionadas no primeiro ensaio Seleção primária As 127 cepas bacterianas isoladas com o uso do petróleo como fonte de carbono (FIORAVANTI et al., 2012) foram reativadas em tubos de ensaios com 10 ml de caldo Mueller Hinton e mantidas em incubação à 35ºC durante 48 horas para o restabelecimento do metabolismo microbiano. Posteriormente foram inoculadas em triplicata em placas de TSA sob as mesmas condições de incubação em caldo para a garantia de um crescimento satisfatório. Após as reativações, as cepas foram diluídas em solução salina a 0,9 % para padronização da suspensão bacteriana em 1,5x10 8 Unidades Formadoras de Colônias (UFC) com ajuste da turbidez até apresentar semelhança com tubo 0,5 da escala de MacFarland. Apenas 118 isolados foram utilizados no primeiro ensaio de seleção por crescerem melhor após as reativações. Os ensaios foram executados com a finalidade de verificar o potencial das referidas bactérias em degradar hidrocarbonetos de petróleo em 24 horas, com o uso do indicador 2,6 diclorofenolildopenol DCPIP. Tal técnica inicialmente desenvolvida por Hanson et al. (1993) vem sendo executada por outros autores. O indicador 2,6 - DCPIP atua como aceptor de elétrons, indicando o potencial dos microrganismos em degradar os

52 51 hidrocarbonetos de petróleo. Tal ocorrência pode ser constatada por meio da alteração da coloração do meio de cultura inicialmente azul (oxidado) para incolor (reduzido) (GOMES, 2004; SOUZA et al., 2005; MARIANO, 2006; MIRANDA et al., 2007; AFUWALE; MODI, 2012). Anteriormente à realização dos ensaios todas as vidrarias foram lavadas e deixadas em banho de Extran a 5% durante 24 horas. Após esse período foram enxaguadas três vezes com água destilada e mantidas em temperatura ambiente até a sua completa secagem. Após secas as vidrarias foram embaladas e esterilizadas em autoclave a 121 ºC durante 20 minutos. O primeiro ensaio de seleção foi executado em duplicata em placas multipoços de 2,0 ml, contendo: 500 µl do meio BH, 50 µl da suspensão bacteriana padronizada, 20 µl de petróleo como fonte de carbono e 10 µl do indicador 2,6 DCPIP. Foi utilizado um controle abiótico para a comparação dos resultados (HANSON et al., 1993; SOUZA et al., 2005). As cepas foram incubadas estaticamente durante 24 horas à 30 ºC Seleção secundária O segundo ensaio de seleção foi executado apenas com as cepas promissoras do primeiro ensaio. Utilizaram-se frascos tipo Erlenmeyers de 125 ml com 50 ml do meio BH, 2 ml da suspensão bacteriana padronizada e 1 % do petróleo como fonte de carbono e energia. Os frascos permaneceram sob agitação de 180 rpm em shaker rotativo, a 28 ºC ± 2 ºC, no escuro, durante 17 horas. Após esse período de adaptação dos microrganismos à fonte de carbono adicionou-se 1 ml do indicador 2,6-DCPIP, permanecendo em agitação por mais 24 horas. Neste ensaio utilizou-se um controle biótico (sem a adição da fonte de carbono) e um controle abiótico (sem a adição da suspensão bacteriana) para a garantia dos resultados obtidos (SOUZA et al., 2005; GOMES, 2004) Formação dos consórcios hidrocarbonoclásticos Anteriormente à avaliação das amostras de óleo degradadas pelas quinze cepas selecionadas no segundo ensaio, foram realizadas desidratações em pipetas de Pasteur com sulfato de sódio anidro (figuras 23 e 24 do apêndice 2). Após a evaporação do solvente utilizado durante o procedimento de desidratação, obtevese a massa de todas as amostra de óleo desidratadas para a padronização da concentração em 0,05 mg µl -1 de óleo de diclorometano. Em um cromatógrafo a gás acoplado a um detector de

53 52 ionização de chama (CG/FID) marca Varian, modelo CP- 3800, foi injetada manualmente 2 µl da amostra de óleo desidratada e padronizada. As condições operacionais do cromatógrafo estão representadas no quadro 4. Para a verificação de possíveis contaminações no equipamento e para a confirmação dos picos dos n-alcanos foram injetados diclorometano, como branco e o padrão único de n-alcanos (C 8 -C 40 ), marca Acustandard. O padrão foi preparado em concentração de 10 mg/l, a partir de um padrão inicial de 2000 mg/l diluído com diclorometano. Por meio da técnica de whole oil foram avaliados os perfis dos n-alcanos das amostras de óleo através da abundância molecular dos compostos e a da presença da MCNR (Mistura Complexa Não Resolvida). As cepas que contribuíram com os melhores índices de degradação nas amostras de óleo foram selecionadas para a formação de dois consórcios bacterianos. Quadro 4 Condições gerais do cromatógrafo a gás acoplado a um ionizador de chamas (CG/FID), utilizado para a avaliação dos perfis de n-alcanos das amostras de óleo contendo as quinze bactérias selecionadas no segundo ensaio de seleção. Variáveis Condições Rampa de temperatura Temperatura inicial de 40ºC/2 min. Aquecimento até 300ºC. Taxa de aquecimento de 10ºC/min durante 12 minutos. Temperatura do injetor 250ºC Temperatura do detector 300ºC Modelo e dimensões da coluna DB5 (5% de fenil), 15 metros x 0,25mm x 0,25µm Gás de arraste Hélio com fluxo de 1mL/min Tempo de análise 40 minutos Caracterização bioquímica e morfotintorial das bactérias selecionadas As quinze cepas selecionadas no segundo ensaio foram armazenadas em duplicata em tubos criogênicos com meio TSA em plano inclinado e encaminhadas para o Laboratório de Fármacos e Ensaios Antimicrobianos do Departamento de Antibióticos do Centro de Ciências Biológicas da Universidade Federal de Pernambuco UFPE para a caracterização bioquímica e morfotintorial segundo metodologia de Koneman et al. (2008). Foram observadas as características de crescimento em ágar EMB (Eosina Azul de Metileno), ágar tioglicolato, coloração de Gram e provas bioquímicas: TSI, citrato, motilidade, uréia, indol, citrato oxidase, sacarose, sorbitol, trealose, maltose, arabnose, catalase e produção de H 2 S.

54 Ensaios de Degradação As cepas bacterianas selecionadas para a formação dos consórcios foram reativadas em placas de TSA e a suspensão foi novamente padronizada em 1,5x10 8 UFC. Os ensaios de degradação foram realizados em frascos tipo Erlenmeryes de 125 ml contendo 50 ml de meio BH, 2 ml da suspensão bacteriana (400 µl de cada cepa) e 1% de petróleo como fonte de carbono. Um controle abiótico foi executado para a comparação dos resultados por meio da atenuação natural. Nos períodos t0 (2 horas), t1 (24 horas), t2 (7 dias), t3 (15 dias) e t4 (30 dias) os frascos foram recolhidos do shaker para a medição dos parâmetros físico-químicos. O conteúdo hídrico referente à cultura líquida foi cuidadosamente retirado com o auxílio de uma pipeta graduada estéril e transferido para frascos Erlenmeyers de 50 ml. Os parâmetros físico-químicos foram mensurados em triplicada. O ph e o Eh foram mensurados com um phmetro WTW (resolução 0,01), e a condutividade e salinidade com um condutivímetro (range 199,9 µs/cm; resolução 0,1 µs/cm) da mesma marca. Os equipamentos foram devidamente calibrados a cada período amostral. Os frascos com as amostras de óleo concentradas foram acondicionados em caixas de isopor com gelo e encaminhadas Laboratório de Estudos do Petróleo - LEPETRO da Universidade Federal da Bahia - UFBA para a realização da cromatografia líquida Cromatografia líquida Baseado em metodologia otimizada pelo LEPETRO/ UFBA, utilizou-se uma coluna de vidro para o fracionamento das frações SAT (hidrocarbonetos saturados), ARO (hidrocarbonetos aromáticos) e NSO (compostos heteroatômicos nitrogênio, oxigênio e enxofre) das amostras de óleo desidratadas. Para tal pesou-se 0,02 g do extrato desidratado e evaporado. Durante o preparo da coluna foi adicionado lã de vidro em sua base, seguido de 4g de silicagel Merck, para cromatografia líquida, previamente ativada em forno mufla por 2 horas a 500 ºC. Foi utilizado n-hexano para ambientação da coluna, umidificação da sílica e transferência da amostra. As amostras correspondentes a cada fração foram coletadas em balões de fundo redondo de 250 ml. Para a eluição da primeira fração (SAT) foram adicionados 30 ml de n-hexano. Para a eluição da fração (ARO) utilizou-se 20 ml de n-hexano juntamente com 10 ml de DCM e para eluição da fração NSO foram adicionados 32 ml de DCM e 8 ml de metanol. Os solventes presentes nos balões foram evaporados e transferidos para os respectivos vials nomeados, SAT,

55 54 ARO e NSO. Os vials foram pesados antes e após a obtenção das massas das frações e foi verificado o percentual de cada componente Cromatografia gasosa acoplada à espectrometria de massas As amostras de óleo desidratadas foram encaminhadas para o Laboratório de Engenharia e Exploração do Petróleo (LENEP), do Centro de Ciências e Tecnologia da Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF) para avaliação dos perfis dos n-alcanos por cromatografia gasosa acoplada à espectrometria de massas (CG/EM). As amostras foram analisadas em um cromatógrafo em fase gasosa Agilent 6890N, equipado com uma coluna D-B5 MS (30m x 0,25 mm x 0,25 µm de espessura do filme), acoplado a um detector seletivo de massas Agilent 5973 MSD. A programação de temperatura utilizada foi de 60 C (2 minutos), 22 C (1 minuto) até atingir 200 C (3 minutos). Uma nova rampa de aquecimento foi estabelecida, partindo de 200 C, com taxa de aquecimento de 3 C por minuto, chegando a 320 C (25 minutos). A temperatura do injetor do cromatógrafo e da linha de transferência foi de 280 C. Utilizou-se o método de monitoramento de íons selecionados para m/z 85 e m/z 191. A identificação dos compostos em todas as amostras foi baseada em seus tempos de retenção. Os resultados qualitativos das análises gerados por esse método foram processados pelo sistema Agilent Chemstation. O cálculo da degradação dos compostos foi baseado na altura do pico das duplicatas e os valores foram quantificados pela integração entre os dados. A fim de monitorar a eficiência de degradação dos n-alcanos m/z 85 (C 18 -C 32 ) ao longo do tempo foi realizada a normalização dos dados por meio biomarcador 17α(H)21β(h) C 30 hopano m/z 191. Para tal efetuou-se o cálculo da razão da altura do pico de cada composto de uma determinada amostra pelo valor do pico do hopano da mesma amostra. As taxas de degradação de cada composto em comparação à amostra controle foram calculadas por meio da fórmula: ((Concentração Alcano controle /Concentração C30 Hopano controle) (Concentração Alcano consórcio/ Concentração C30 Hopano consórcio)/ (Concentração Alcano controle /Concentração C30 Hopano controle) *100). Devido à sua resistência biológica inata o hopano é o biomarcador conservativo atualmente utilizado como normalizador na avaliação temporal da biodegradação dos compostos de petróleo (PRINCE et al., 1994; VENOSA et al., 1997). Desta forma é possível evitar a variabilidade de resultados relacionados à outros fatores que não estão relacionados propriamente com a degradação pelos microrganismos

56 Tratamento estatístico A normalização das razões das concentrações de cada composto (C 18 -C 32 )/ C 30 hopano, nos diferentes intervalos de tempo foi avaliada pelo software GraphPad Instat no teste de Kolmogorov e Smirnov (KS), a significância foi determinada pelo one-way ANOVA e Kruskal- Wallis e a homogeneidade pelo teste de Bartlett. A distribuição dos parâmetros físico-químicos juntamente com as razões entre as concentrações dos compostos ao longo dos diferentes intervalos de tempo foram determinadas pelas análises multivariada das componentes principais (ACP) com o auxílio do software Statística versão RESULTADOS E DISCUSSÕES Em ambientes contaminados os microrganismos com a capacidade de consumir ou tolerar compostos orgânicos tóxicos estão presentes em maior quantidade do que em locais sem indícios de contaminação (ATLAS, 1995; YAKIMOV et al., 2005). No primeiro ensaio de seleção 26 cepas foram indicadas como promissoras para a degradação de hidrocarbonetos de petróleo após 24 horas. A seleção de microrganismos adequados é uma das etapas do processo de biorremediação. Várias pesquisas são relatadas com a finalidade de verificar o potencial de degradação de hidrocarbonetos de petróleo e seus derivados por bactérias nativas isoladas e selecionadas (SOUZA et al., 2005; BRITO et al., 2010; AFUWALE; MODI, 2012). Após a análise dos fingerprints das quinze cepas potenciais obtidas no segundo ensaio de seleção (figuras 26 e 27 do apêndice 3 ) sete foram indicadas para a formação de 2 consócios bacterianos (figuras 28 a 30 do apêndice 3). Os dois consórcios obtidos foram denominados de consórcio A (cepas MD04p (81), DJ02p (102), CN06p (128), DJ02p (47) e CN06p (67) e consórcio B (cepas MD04p (81), DJ02p (100), CN06p (116), DJ02p (47) e CN06p (67)). As cepas foram denominadas a depender do região da BTS onde as amostras de sedimentos foram coletados (MD Madre de Deus, DJ Dom João e CN Candeias), do ponto de coleta (04, 02 e 06), da fonte de carbono utilizada ao longo do experimento (p petróleo) e da ordem de obtenção dos isolados. Devido às dificuldades apresentadas para a identificação de bactérias ambientais por meio de provas bioquímicas tradicionais apenas a cepa CN06p (67) foi identificada como Enterobacter gergoviae (tabelas 12 e 13 e figura 25 do apêndice 3). Não

57 56 foram localizados trabalhos científicos relacionados com a degradação de hidrocarbonetos de petróleo por meio desta espécie bacteriana. A cada período amostral (t0 2 horas, t1 24 horas, t2 7 dias, t3 15 dias e t4 30 dias) foram observadas alterações no aspecto visual nos frascos Erlenmeyers contendo as amostras de óleo. Em todas as amostras controles e para as amostras com a presença dos consórcios no t0, o óleo apresentou-se homogêneo e não ocorreu turvação no meio líquido, indicando que não teve crescimento bacteriano (figura 31 A(I), A(II), A(III), B(I),C(I) e D(I) do apêndice 3). Nas amostras cujos consórcios foram adicionados notou-se a partir do t1 um aumento da turbidez do meio e solubilização do óleo ao longo do tempo, indicado pelo crescimento dos microrganismos. Nestas amostras o petróleo apresentou aparência de pó, com uma única fase quando cessada a agitação (figura 31 B(II), B(III), C(II), C(III), D(II) e D(III) do apêndice 3). Em experimento realizado por Chaillan et al. (2004) as cepas que promoveram o aumento da turbidez nos tubos foram capazes de degradar hidrocarbonetos a partir do C 15. Em nosso trabalho tal fato pode ser explicado pela redução na tensão superficial do óleo, mesmo sem a realização de experimentos para esse fim, com provável produção de biossurfactantes ou enzimas degradadoras de hidrocarbonetos. Algumas espécies de microrganismos são capazes de secretar biossurfactantes que emulsificam os hidrocarbonetos, facilitando o transporte através da membrana celular. Outras produzem enzimas que reagem com os compostos do petróleo tornando-os solúveis em água, possibilitando o transporte por difusão para o interior do indivíduo (PETERS et al., 2005). As massas dos componentes SAR (saturados, aromáticos e NSO) do óleo, amostras controle, consórcio A e consórcio B desidratadas (figura 32 B, D e F do apêndice 3) obtidas pela cromatografia líquida revelaram que em todas as amostras a fração SAT correspondeu a mais de 50% dos componentes, já as frações ARO e NSO representaram aproximadamente 20% sem diferenças significativas entre si (tabelas 14 a 19 do apêndice 3). Comparado ao seu respectivo controle a fração SAT foi a mais degradada. O consórcio A foi responsável pela redução nos valores da fração SAT principalmente no t4 (8 %) (figura 9). O consórcio B contribuiu com a redução dos valores da fração ARO no t1 (13,6 %) e t2 (4 %) (figura 9). Já a fração NSO apresentou valores ligeiramente reduzidos nas amostras submetidas ao consórcio B no t0 e t2 e ao consórcio A no t4 (5% nas três amostras) (figura 9). Mesmo sendo considerada a fração do petróleo mais facilmente degradada, a remoção da fração saturada é um dos processos mais importantes na remediação de ambientes impactados por derrames de petróleo por serem os compostos mais abundantes no petróleo bruto (HEAD, 2006; WENTZEL et al., 2007; BRITO et al., 2010).

58 57 Figura 9 - Percentuais dos hidrocarbonetos saturados (SAT), aromáticos (ARO) e dos compostos heteroatomicos (NSO) do óleo e das amostras submetidas aos ensaios de degradação (controle, consórcio A e consórcio B) nos diferentes períodos de tempo (A) t0, (B) t1, (C) t2, (D) t3 e (E) t4. Para este estudo a cromatografia líquida não foi suficiente para avaliar o grau de degradação das amostras de óleo, já que segundo classificação de Tissot e Welte (1978) todas as amostras foram consideradas como óleo normal, sem indícios importantes de biodegradação (figura 33 do apêndice 3). A análise das amostras por meio da cromatografia gasosa (CG/EM) permitiu a visualização de perfis cromatográficos distintos para cada consórcio com o aumento do tempo de experimento, indicando diferentes níveis de degradação a depender do consórcio e do tempo de experimento. Verificou-se redução da abundância molecular dos n-alcanos entre o C 18 e C 32 nas

59 58 amostras submetidas à ação dos consórcios em relação ao óleo original (figura 10A) e ao seu respectivo controle (figura 10B). Figura 10 - Cromatograma da distribuição dos n-alcanos m/z 85 (C 18 -C 32 ). (A) Óleo original, (B) Controle (t2) Os perfis cromatográficos (figura 33 do apêndice 3) revelaram uma acentuada redução da abundância molecular dos n-alcanos a partir do t2 para ambos os consórcios (figura 11A(I) e B(I)). Ao atingir o período (t4) (figura 11A(II) e B(II), os níveis de degradação permaneceram acentuados, com elevada redução na abundância molecular dos picos dos n-alcanos nas amostras submetidas à presença dos dois consórcios bacterianos. A partir dos cromatogramas executados para a visualização dos íons m/z 191, verificou-se que o biomarcador 17α(H)21β(H) C 30 hopano foi o composto mais resistente ao processo de degradação (PRINCE et al., 2004; LÉ DREAU et al., 1997; VENOSA et al., 1997) (figura 34 do apêndice 3), característica que confirma a escolha deste para a normalização das concentrações dos n-alcanos. Baseado na normalização com o hopano (figura 12), a as análises estatísticas revelaram que os valores apresentados para todas as amostras controle são normais, extremamente significativos (p = 0,0006) e heterogêneos (p< 0,0001), ou seja, são diferentes a depender do período de experimento. Para o consórcio A os valores obtidos no t2 não foram considerados normais, porém por meio do teste de Kruskal-Wallis foram considerados extremamente significativos (p<0,0001). Os valores dos compostos no t2 e t3 foram não normais para o consórcio B, sendo também considerados extremamente significativos (p<0,0001) para o ensaio de degradação.

60 59 Figura 11 - Cromatogramas da distribuição dos n-alcanos m/z 85 (C 18 -C 32 ) do consórcio A e do consórcio B após 7 dias e 30 dias de experimento. Figura 12 - Cromatograma de distribuição dos Hopanos m/z 191, com destaque para o C 30 Hopano.

61 60 A quantificação dos compostos após a normalização permitiu estimar a extensão da biodegradação dos n-alcanos entre C 18 -C 32 por meio da ação dois consórcios a depender do período de tempo do experimento (figura 13). Figura 13 - Razões entre n-alcanos (C18 C32)/hopano do óleo, amostras controle, consórcio A e consórcio B submetidas aos ensaios de degradação após 2 horas, 24 horas, 7 dias, 15 dias e 30 dias. Os dados obtidos para cada consórcio foram baseados na comparação com as respectivas amostras controles. Os valores médios e os desvios padrões de cada composto por amostra e período de experimento estão representados nas tabelas 4 a 8.

62 61 Os compostos com maiores perdas apresentaram menores valores para as razões dos n- alcanos/c 30 hopano. No t0 apenas C 22 obteve concentrações com perdas de 20,5% sob atuação do consórcio A e de 12,9% com o consórcio B (figura 13 e tabela 4). Tabela 4 - Valores dos n-alcanos (C 18 -C 32 ) submetidos à normalização com o C 30 Hopano e seus respectivos desvios padrão das amostras controle, consórcio A e consórcio B após 2 horas de experimento (t0). Controle Consórcio A Consórcio B C18 16,7 ± 3,5 18,6 ± 5,2 19,4 ± 8,1 C19 16,5 ± 3,9 17,9 ± 4,6 20,5 ± 4,8 C20 14,7 ± 3,3 16,0 ± 4,6 18,2 ± 4,3 C21 14,2 ± 2,8 14,9 ± 2,9 16,0 ± 3,2 C22 17,1 ± 1,8 13,6 ± 2,7 14,9 ± 2,8 C23 12,3 ± 1,7 13,0 ± 2,0 13,7 ± 2,3 C24 10,7 ± 1,2 11,2 ± 1,2 11,6 ± 1,5 C25 10,0 ± 0,2 10,1 ± 0,5 10,5 ± 0,8 C26 7,9 ± 0,0 8,5 ± 0,1 8,7 ± 0,6 C27 6,7 ± 0,4 7,3 ± 0,4 7,2 ± 0,1 C28 4,6 ± 0,7 5,2 ± 0,4 5,1 ± 0,1 C29 3,2 ± 0,6 3,8 ± 0,5 3,7 ± 0,1 C30 1,8 ± 0,4 2,2 ± 0,4 2,1 ± 0,1 C31 1,1 ± 0,2 1,4 ± 0,2 1,3 ± 0,1 C32 0,6 ± 0,0 0,7 ± 0,0 0,6 ± 0,0 A partir do t1, com exceção do C 18 no t3, todos os compostos apresentaram menores concentrações quando comparado aos controles, indicando que a partir de 24 horas os microrganismos já estavam aclimatados, com capacidade em degradar os hidrocarbonetos de petróleo de cadeia longa (figura 13 e tabela 5). Os microrganismos integrantes do consórcio A foram os principais responsáveis pela redução das concentrações do C 18 ao C 31, com taxas de degradação superiores a 90% para os compostos acima do C 30 (figura 13 e tabela 5). A capacidade dos microrganismos em degradar o petróleo rapidamente sugere que estes já estejam pré-adaptados aos seus compostos (LEAHY; COLWELL, 1990)

63 62 Tabela 5 - Valores dos n-alcanos (C 18 -C 32 ) submetidos à normalização com o C 30 Hopano e seus respectivos desvios padrão das amostras controle, consórcio A e consórcio B após 24 horas de experimento (t1). Controle Consórcio A Consórcio B C18 23,5 ± 7,6 2,6 ± 1,9 4,4 ± 4,6 C19 23,1 ± 8,2 2,8 ± 2,1 4,6 ± 4,6 C20 8,3 ± 10,5 2,8 ± 2,0 4,1 ± 3,9 C21 17,2 ± 3,9 2,9 ± 2,1 4,1 ± 4,7 C22 15,4 ± 3,2 2,9 ± 2,0 4,0 ± 3,5 C23 14,9 ± 2,2 2,9 ±,8 4,0 ± 3,3 C24 12,1 ± 1,4 2,6 ± 1,6 3,7 ± 2,6 C25 11,0 ± 0,8 2,4 ± 1,4 3,4 ± 2,4 C26 9,0 ± 0,5 2,2 ± 1,1 3,0 ± 2,0 C27 7,6 ± 0,1 2,1 ± 0,9 2,7 ± 1,5 C28 5,3 ± 0,2 1,6 ± 0,7 2,0 ± 0,9 C29 3,7 ± 0,1 1,2 ± 0,4 1,0 ± 0,2 C30 2,1 ± 0,1 0,9 ± 0,2 1,0 ± 0,2 C31 1,3 ± 0,1 0,6 ± 0,1 0,7 ± 0,1 C32 0,7 ± 0,1 0,4 ± 0,1 0,4 ± 0,1 No t2, com exceção do C 30 que foi 100 % degradado pelo consórcio A, todos os demais foram reduzidos com níveis superiores a 70 % pelo consórcio A e 81 % pelo consórcio B (figura 13 e tabela 6) Tabela 6 - Valores dos n-alcanos (C 18 -C 32 ) submetidos à normalização com o C 30 Hopano e seus respectivos desvios padrão das amostras controle, consórcio A e consórcio B após 7 dias de experimento (t2). Controle Consórcio A Consórcio B C18 16,5 ± 5,0 31,1± 27,2 15,2 ± 4,7 C19 16,2 ± 4,5 4,8 ± 1,5 4,8 ± 1,8 C20 15,0 ± 4,0 1,9 ± 1,5 1,1 ± 0,4 C21 17,3 ± 2,6 2,8 ± 2,5 2,0 ± 0,4 C22 12,7 ± 2,4 2,9 ± 3,7 1,3 ± 1,3 C23 12,3 ± 2,1 1,9 ± 1,5 1,1 ± 0,8 C24 10,6 ± 1,6 2,0 ± 2,1 0,6 ± 0,0 C25 10,0 ± 1,8 1,5 ± 1,5 0,4 ± 0,0 C26 7,5 ± 2,1 1,2 ± 1,0 0,5 ± 0,0 C27 5,9 ± 2,3 1,7 ± 1,8 0,5 ± 0,0 C28 3,8 ± 2,0 0,0 ± 0,0 0,0 ± 0,0 C29 2,5 ± 1,6 0,0 ± 00 0,0 ± 0,0 C30 2,1 ± 0,0 0,0 ± 0,0 1,1 ± 0,6 C31 1,3 ± 0,0 0,0 ± 0,0 0,0 ± 0,0 C32 0,0 ± 0,0 0,0 ± 0,0 0,0 ± 0,0

64 63 No t3 nota-se que os compostos presentes nos controles apresentam valores significativamente inferiores em relação ao t1, t2 e t3 (figura 13 e tabela 7). Comparado aos demais períodos, os níveis de degradação entre o C 18 e C 21 foram ligeiramente inferiores para ambos consórcios. A partir do C 26 os dois consórcios atuaram de maneira semelhante com reduções acima de 89,5% e de 100% a partir do C 28 pelo consórcio A (figura 13 e tabela 7). Tabela 7 - Valores dos n-alcanos (C 18 -C 32 ) submetidos à normalização com o C 30 Hopano e seus respectivos desvios padrão das amostras controle, consórcio A e consórcio B após 15 dias de experimento (t3). Controle Consórcio A Consórcio B C18 7,7 ± 8,8 8,7 ± 4,9 5,6 ± 0,4 C19 7,0 ± 7,8 2,7 ± 1,5 1,9 ± 0,1 C20 5,2 ± 6,8 0,5 ± 0,3 0,4 ± 0,0 C21 4,7 ± 5,8 1,2 ± 0,6 0,6 ± 0,4 C22 4,3 ± 4,6 0,9 ± 0,4 0,4 ± 0,1 C23 4,6 ± 4,0 0,5 ± 0,1 0,6 ± 0,2 C24 4,4 ± 2,9 0,5 ± 0,4 0,5 ± 0,1 C25 4,3 ± 2,6 0,4 ± 0,1 0,3 ± 0,0 C26 3,8 ± 2,3 0,4 ± 0,2 0,4 ± 0,1 C27 3,4 ± 2,0 0,3 ± 0,0 0,3 ± 0,0 C28 2,5 ± 1,3 0,0 ± 0,0 0,0 ± 0,0 C29 1,8 ± 2,0 0,0 ± 0,0 0,0 ± 0,0 C30 1,1 ± 0,6 0,0 ± 0,0 0,0 ± 0,0 C31 0,7 ± 0,4 0,0 ± 0,0 0,0 ± 0,0 C32 0,4 ± 0,2 0,0 ± 0,0 0,0 ± 0,0 No t4, com exceção do C 18, o consórcio A proporcionou níveis de degradação acima de 91%, enquanto que o B colaborou com valores superiores a 58,3% (figura 13 e tabela 8) O consórcio A colaborou com melhores taxas de redução dos compostos com 30 dias de experimento obtendo preferência para os n-alcanos a partir do C 23. O consórcio B degradou principalmente os n-alcanos entre C 18 a C 22, atuando de forma semelhante tanto em 7 quanto em 15 dias de experimento para os compostos acima do C 20. Os compostos com maior número de átomos de carbono foram os que apresentaram as maiores reduções também são os compostos presentes em menores quantidades, mesmo nas amostras controle.

65 64 Tabela 8 - Valores dos n-alcanos (C 18 -C 32 ) submetidos à normalização com o C 30 Hopano e seus respectivos desvios padrão das amostras controle, consórcio A e consórcio B após 30 dias de experimento (t4). Controle Consórcio A Consórcio B C18 27,7 ± 0,0 7,8 ± 9,8 3,0 ± 2,7 C19 25,7 ± 0,0 2,5 ± 2,4 3,4 ± 3,0 C20 21,2 ± 0,0 1,1 ± 0,3 3,7 ± 2,8 C21 18,4 ± 0,0 1,3 ± 1,0 3,4 ± 3,0 C22 16,8 ± 0,0 0,9 ± 0,4 3,5 ± 2,3 C23 15,8 ± 0,0 1,0 ± 0,1 3,2 ± 2,2 C24 13,0 ± 0,0 0,6 ± 0,0 2,5 ± 2,3 C25 11,7 ± 0,0 0,5 ± 0,0 2,2 ± 2,0 C26 8,9 ± 0,0 0,8 ± 0,0 1,8 ± 1,4 C27 7,6 ± 0,0 0,4 ± 0,0 1,4 ± 1,3 C28 0,0 ± 0,0 0,0 ± 0,0 0,2 ± 0,6 C29 3,5 ± 0,0 0,0 ± 0,0 0,9 ± 0,6 C30 2,0 ± 0,0 0,0 ± 0,0 0,5 ± 0,1 C31 1,2 ± 0,0 0,0 ± 0,0 0,5 ± 0,0 C32 0,0 ± 0,0 0,0 ± 0,0 0,3 ± 0,0 Devido à capacidade de reduzir os compostos no início do experimento (t0 e t1), eliminálos completamente a partir no C 28 no t2, t3 e t4, e por contribuir com melhores resultados após 30 dias (t4), nesse experimento o consórcio A foi considerado o mais promissor para degradação de n-alcanos de cadeia longa principalmente a partir do C 23. O contato estabelecido com determinado contaminante altera a capacidade metabólica dos microrganismos, os quais muitas vezes não são capazes de degradá-lo em uma exposição inicial, mas sim após exposições duradouras por estarem mais adaptados aos compostos (MARTINS et al., 2003). Os mecanismos relacionados com a biodegradação de hidrocarbonetos de petróleo não são bem esclarecidos. Sabe-se por meio de pesquisas que determinadas espécies microbianas degradam preferencialmente determinados compostos (PETERS et al., 2005). Nos resultados acima expostos o fato de vários microrganismos estarem co-metabolicamente envolvidos no experimento pode estar relacionado com o consumo de substratos preferenciais por meio de cada um dos consórcios. As espécies bacterianas são capazes de crescer e degradar um composto ou uma mistura de compostos específicos dentre as diversas classes de hidrocarbonetos presentes no petróleo. A comunidade microbiana presente em amostras de sedimentos do porto Millazo na Itália, contribuiu com a degradação de 41,3 ± 2,2% dos n-alcanos entre C 10 e C 35 após 20 dias de experimento (YAKIMOV et al., 2005). Em experimento realizado por Chaillan et al. 2004,

66 65 microrganismos foram capazes de degradar n-alcanos acima de 18 átomos de carbono. Um cepa de Acinetobacter isolada proporcionou a degradação de parafinas até C 35 após 7 dias de experimento laboratorial em cultura líquida (BIHARI et al., 2007). A capacidade dos microrganismos em consumir alcanos como fonte de carbono envolve a ação de sistema enzimático e vias metabólicas especializadas em transformá-los em compostos mais simples. Os passos iniciais de degradação estão relacionados com a ação de enzimas oxidativas, a exemplo das monooxigenases, que convertem o substrato em álcool primário após o contato celular com os compostos hidrófobos. Para os n-alcanos de cadeia longa bactérias podem acessar os compostos do petróleo através do contato celular direto ou mediado pela ação de biossurfactantes por meio do petróleo solubilizado (WENTZEL et al., 2007; ROJO, 2009). A fim de compreender de forma mais clara os processos envolvidos na degradação dos compostos abordados faz-se necessário a realização de estudos relacionados com a viabilidade das colônias a cada período amostral para a verificação da correlação entre os valores com o aumento das células microbianas. Além disso, a caracterização do complexo enzimático e dos genes das bactérias envolvidas facilita a compreensão do metabolismo dos n-alcanos de cadeia longa (WENTZEL, 2007) indicando os mecanismos que envolvem a degradação de cada composto pelos microrganismos. A análise dos componentes principais (ACP) da distribuição dos parâmetros físicoquímicos (ph, Eh, condutividade e salinidade) e das razões das concentrações dos n-alcanos (C 18 -C 32 ) (variáveis) nos diferentes intervalos de tempo (casos) foi explicada por 78,4 % de variância entre os dois fatores (figuras 14A e 14B). O ph foi a única variável que determinou a distribuição dos compostos de C 18 a C 28 nas amostras controle no t0, t1, t2 e t4. Tal resultado relaciona-se com o valor das variáveis que não sofreram degradações significativas nesses períodos bem como com a não alteração do ph, o qual manteve-se próximo da neutralidade nesses períodos de tempo. A salinidade e a condutividade foram responsáveis pela distribuição do C 32, composto mais degradado, sob ação dos consórcios A e B no t1 e pelo consórcio A no t3. A distribuição das demais amostras foram determinadas pelos valores de Eh, parâmetro que mais sofreu variação com o aumento de tempo do experimento, onde os tempos com maiores taxas de degradação apresentaram maiores valores de Eh.

67 66 Figura 14 - Análise dos Componentes Principais (ACP). Onde: (A) Variáveis (ph, Eh, condutividade, salinidade e n-alcanos (C 18 -C 32 ) e (B) Casos (controle, consórcio A e consórcio B submetidos aos tempos amostrais t0, t1, t2, t3 e t4. (A) (B) A amostra controle no t3 não foi influenciada por nenhum parâmetro específico e o composto C31 determinou a distribuição do consórcio A no t1 e t2. O Eh foi o parâmetro que determinou o agrupamento da amostra de óleo submetida ao consórcio B no t1, e aos dois consórcios no t3 e t4 (figura 14), sendo o principal determinante dos níveis de degradação, já que os maiores valores foram observados na presença de um dos consórcios. Os valores médios dos parâmetros físico-químicos para cada intervalo de tempo do ensaio de degradação estão representados na tabela 9. Tabela 9 - Valores médios das réplicas dos parâmetros físico-químicos (ph, Eh, condutividade e salinidade) das amostras submetidas aos ensaios de degradação nos diferentes tempos amostrais (t0, t1, t2, t3 e t4). AMOSTRA Ph Eh Cond. Sal. t0 cont. 6,9 14,3 3,5 2,0 t0 cons.a 6,9 13,8 4,6 2,5 t0 cons.b 6,6 14,2 4,9 2,5 t1 cont. 7,5 13,7 3,8 1,9 t1 cons.a 6,2 62,4 4,4 2,3 t1 cons.b 5,7 60,3 4,2 2,2 t2 cont. 6,9 15,5 2,5 1,4 t2 cons.a 5,6 90,4 2,8 1,4 t2 cons.b 5,6 88,1 2,4 1,2 t3 cont. 7,0 13,3 2,6 1,3 t3 cons.a 5,8 74,6 4,7 2,5 t3 cons.b 5,8 75,5 3,7 1,9 t4 cont. 6,4 44,5 2,6 1,4 t4 cons.a 5,1 114,4 3,8 2,0 t4 cons.b 5,6 88,3 2,6 1,2

68 CONCLUSÕES Microrganismos apresentam preferência metabólica por determinados compostos do petróleo. Tal fato pode ser constatado pelos diferentes níveis de degradação de um mesmo composto com a presença dos diferentes consórcios. A partir do t2 o consórcio A foi capaz de degradar completamente todos os compostos acima do C 28, porém, para os demais compostos, as melhores taxas de degradação foram presenciadas após 30 dias de experimento indicando que os microrganismos apresentaram um ótimo metabólico após um longo período de exposição ao contaminante. O consórcio B atuou de forma semelhante na degradação de compostos acima do C 20 após 7 e 15 dias de experimento, com níveis de degradação superiores a 81%. O consórcio B degradou principalmente compostos entre C 18 a C 22. O consórcio A obteve preferência na degradação dos n-alcanos a partir do C 23., sendo considerado o mais promissor para a degradação dos n-alcanos de cadeia longa. Os perfis cromatográficos dos íons m/z 85, n-alcanos (C 18 -C 32 ), revelaram uma acentuada redução da abundância molecular dos compostos nas amostras submetidas à ação dos consórcios. A normalização dos compostos por meio do C30 hopano, associada à avaliação qualitativa, demonstrou que os dois consórcios contemplados no estudo foram eficazes na degradação dos hidrocarbonetos de cadeia longa. As amostras de óleo que foram submetidas à ação dos consórcios tiveram concentrações reduzidas em relação aos controles, tendo a normalização pelo hopano indicado que tais valores foram determinados pelo processo de biodegradação ao longo do tempo de experimento. 4.5 AGRADECIMENTOS financeiro. À Fapesb pela concessão da bolsa de mestrado. À PROAMB e CNPQ pelo auxílio 4.6 REFERÊNCIAS AFUWALE, C; MODI, H. A. Study of bacterial diversity of crude oil degrading bacteria isolated from crude oil contaminated sites. Life sciences leaflets, v. 6, p.13-23, 2012.

69 68 ALKAHATIB, M. F; ALAM, M. Z; SULEYMAN, A. M; IMAN, A. F. H. An isolated bacterial consortium for crude oil biodegradation. African Journal of Biotechnology, v. 10, n. 81, p , ATLAS, R. M. Bioremediation of petroleum pollutants. International biodeterioration and biodegradation, p , BARRAGAN, O. L. V. Caracterização geoquímica de óleos da América Latina f. Dissertação (Mestrado em Geoquímica: Petróleo e Meio Ambiente), Universidade Federal da Bahia, Salvador BA, BIHARI, Z; SZVETINIK, PETTKÓ-SZANDTNER, A; CSANÁDI, G; BALÁSZ, M; BARTOS, P; KESSERU, P; KISS, I; MÉCS, I. Isolation and characterization of a novel n-alkane-degrading strain, Acinetobacter haemolyticus AR-46. Z. Naturforch, v. 62, p , BRITO, G. C. B; SOUZA, D. B; VASCONCELOS, F. C. W; BRAGA, L. C. A importância da bioprospecção de microrganismos em áreas contaminadas com produtos derivados do petróleo. Revista em agronegócios e meio ambiente, v. 3. n. 3, p , CHAERUN, S. K; TAZAKI, Kazue; ASADA, Ryuji; KOGURE, Kazuhiro. Bioremediation of coastal areas 5 years after the Nakhodka oil spill in sea of Japan: isolation and characterization of hydrocarbon degrading bacteria. Environment International, v. 30, p , CHAILLAN, F; FLECHE, L; BURY, E; PHANTAVONG, Y; GRIMONT, P; SALIOT, A; OUDOT, J ; Identification and biodegradation potential of tropical aerobic hydrocarbondegrading microoganisms isolated from a temperate agricultural soil. Sci. total environ., v. 227, p; , FIORAVANTI, K. L; CELINO, J. J; ROSSI-ALVA, J. C. Isolamento, seleção e identificação de microrganismos degradadores de petróleo e seus derivados em sedimentos de manguezais contaminados. Cadernos de Geociências, v. 9, n. 2, p , GOMES, E. B. Biodegradabilidade de querosene de aviação movimentado pelo terminal portuário de Suape-PE. 2004, 127f. Dissertação (Mestrado em Biotecnologia de produtos bioativos), Universidade Federal de Pernambuco, Recife - PE, HANSON, K. G; DESAI, G; DESAI, A. J. A rapid and simple screening technique for potential crude oil degrading microorganisms. Biotechnology techniques, v. 7, n.10, p , HEAD, I.M; JONES, D. M; RÖLING, W. F. M. Marine microorganisms make a meal of oil. Nature reviews, v. 4, p , KONEMAN, E. W; ALLEN, S. D; DOWELL, V. R. et al., Diagnóstico microbiológico. 3 ed. Rio de Janeiro: Médica Panamericana S.A, p. LE DRÉAU, Y ; JACQUOT, F ; DOUMENQ, P ; GUILIANO, M ; BERTRAND, J. C ; MILLE, G. Hydrocarbon balance of a site wich had been highly and chronically contaminated by petroleum wastes of a refinery (from 1956 to 1992). Marine Pollution Bulletin, v. 34, n.6, p , LEAHY, J. G; COLWELL, R.R. Microbial degradation of hydrocarbons in the environment. Microbiological reviews, v. 54, n. 3, p , 1990.

70 69 LI, L; LIU, X; YANG, Y; XU, WANG, W; FENG, L; BARTLAM, M; WANG, L; RAO, Z. Crystal structure of long-chain n-alkane moonoxygenase (LadA) in complex with coenzyme FMN: unveling the long-chain alkane hydroxylase. J. Mol. Biol., v. 376, p , MARIANO, A. P. Avaliação do potencial de biorremediação de solos e água contaminados por óleo diesel. 2006, 162p. Tese (Doutorado em Geociências e Meio Ambiente), Universidade Estadual Paulista, Rio Claro SP MARTINS, A; DINARDI, A. L; FORMAGI, V. M; LOPES, T. A; BARROS, R.de M; CONEGLIAN, C. R; BRITO, N. N de; SOBRINHO, G. D; TONSO, S; PELEGRINI, R. Biorremediação. IN: FÓRUM DE ESTUDOS CONTÁBEIS, , Rio Claro. Anais eletrônicos. Faculdades Integradas, Disponível em < 3fec2401> Acesso em: 08.maio MIRANDA, R. C; SOUZA, C. S; GOMES, E. B; LOVAGLIO, R. B; LOPES, C. E; SOUZA, M. F. V. Q. Biodegradation of diesel oil by yeasts isolated from the vicinity of Suape port in the state of Pernambuco Brazil. Brazilian archives of biology and technology v. 50, n. 1, p , MOREIRA, I. T. A. Avaliação da eficiência de modelos de biorremediação aplicados em sedimento de manguezal impactados por atividades petrolíferas. 2010, 163f. Dissertação (Mestrado em Geoquímica: Petróleo e Meio Ambiente), Universidade Federal da Bahia, Salvador BA, PEDROZO, M. F. M; BARBOSA, E. M; CORSEUIL, H. X; SCHNEIDER, M; R; LINHARES, M. M. Ecotoxicologia e avaliação de risco do petróleo. Centro de Recursos Ambientais, séries cadernos de referência ambiental, v. 12, p. PETERS, K. E; WALTERS, C. C; MOLDOWAN, J. M. The biomarker guide: biomarkers and isotopes in petroleum exploration and earth history. 2. ed. Cambridge: Cambridge University Press, PRINCE, R. C; EIMENDORF, E. L; LUTE, J. R; HSU, C. S; HAITH, C. E; SENIUS, J. D; DECHERT, G. J; DOUGLAS, G. S; BUTLER, E. L. 17α(H)21β(H)-hopane as a conserved internal marker for estimating the biodegradation of crude oil. Environ. Sci. Technol., v.28, p , ROJO, F. Degradation of alkanes by bacteria. Enrironmental microbiology, v. 11, n.10, p , SOUZA, C. S; MIRANDA, R. C de; SENA, K. X. F. R; ARAÚJO, J. M de; CHIAPPETA, A de A; SOUZA, M. de F. V. Q. Isolamento e seleção de microrganismos degradadores de derivados de petróleo. IN: CONGRESSO de P & D EM PETRÓLEO E GÁS, 3, 2005, Salvador. Anais eletrônicos. UFPE, THOMAS, J. E. Fundamentos de engenharia do petróleo. Interciência: PETROBRÁS. 2ª ed., Rio de Janeiro, p. TISSOT, B. P; WELTE, D. H. Petroleum formation and occurence: a new approach to oil and gas exploration. Berlim: SPRINGER-VERLAG, 1978.

71 70 VAN BEILEN, J. B; FUNHOFF, E. G. Alkane hydroxylases involved in microbial alkane degradation. Appl. Microbiol. Biotecnhol., v. 74, p , VEIGA, I. G. Avaliação da origem dos hidrocarbonetos em sedimentos superficiais de manguezais da região norte da Baía de Todos os Santos/Ba f. Dissertação (Mestrado em Geoquímica e Meio Ambiente), Universidade Estadual do Norte Fluminense, Macaé RJ, VENOSA, A. D; SUIDAN, M. T; KING, D; WRENN, B. A. Use of hopane as a conservative biomarker for the monitoring bioremediation effectiveness of crude oil contaminating a sandy beach. Journal of industrial microbiology and biotechnology, v. 18, p , WENTZEL, A; ELLINGSEN, T. E; KOTLAR, H; ZOTCHEV, S. B; THRONE-HOLST, M. Bacterial metabolism of long-chain n-alkanes. Appl. Microbiol. Biotechnol., v. 76, p , WETLER, R. M. C. Prospecção de microrganismos responsáveis pela degradação de compostos de petróleo em sedimento de um manguezal localizado no Sul da Bahia (Brasil) f. Dissertação (Mestrado em Ecologia), Universidade Estadual de Santa Cruz, Ilhéus BA, YAKIMOV, M. M; DENARO, R; GENOVESE, M; CAPPELO, S; D AURIA, G; CHERNIKOVA, T. N; TIMMIS, K. N; GOLYSHIN, P. N; GILULIANO,Laura. Natural microbial diversity in sediments of Milazzo Harbour (Silicy) and community successions during microcosms enrichment with various hycrocarbons. Environmental microbiology, v. 7, n. 9, p , ZILIO, E. L; PINTO, U. B. Identificação e distribuição dos principais grupos de compostos presentes nos petróleos brasileiros. Boletim técnico da Petrobrás, v. 45, n.01, p.21-25, ZIOLLI, R. L Aspectos ambientais envolvidos na poluição marinha por petróleo. Revista saúde e ambiente, v. 3, n. 2, p , 2002.

72 71 5 EFICIÊNCIA DE MICRORGANISMOS DE SEDIMENTOS DE MANGUEZAIS POTENCIAIS DEGRADADORES DE HIDROCARBONETOS POLICÍCLICOS AROMÁTICOS (HPAS) DE ALTO PESO MOLECULAR RESUMO O objetivo deste estudo foi avaliar o comportamento de consórcios bacterianos na degradação de hidrocarbonetos policíclicos aromáticos (HPAs) de alto peso molecular. Para tal realizou-se experimento laboratorial em diferentes tempos amostrais (t0 2 horas, t1 24 horas, t2 7 dias, t3 15 dias, t4-30 dias) com dois consórcios inicialmente isolados de sedimentos de manguezais contaminados. Foram utilizados frascos Erlenmeyers com 50 ml de meio mineral Buschnell Hass e 1% de petróleo como única fonte de carbono e energia. O benzo (a) pireno foi o HPA responsável por maiores diferenças dos níveis de degradação entre os consórcios. O indeno (1,2,3-c,d) foi o HPA mais degradado em relação à amostra controle, com níveis de degradação de 92% após 7 dias de experimento sob ação do consórcio A e de 89,6% após 30 dias sob ação do consórcio B. O consórcio A contribuiu positivamente com os níveis de degradação apresentados após 7 e 15 dias de experimento e o consórcio B no início do experimento e ao final dos 30 dias. A avaliação por cromatografia gasosa (CG/EM) indicou que ao final de 30 dias todos os HPAs apresentaram concentrações reduzidas em relação aos seus controles indicando que ambos os consórcios foram eficazes na degradação dos HPAs de alto peso molecular. Palavras chaves: Biodegradação, petróleo, consórcios bacterianos, hidrocarbonetos policíclicos aromáticos ABSTRACT The aim of this study was to evaluate the behavior of bacterial consortia in the degradation of polycyclic aromatic hydrocarbons (PAHs) of high molecular weigth. The laboratory experiment was conduct at different times of sampling (t0 two hours, t1 24 hours, t2 7 days, t3 15 days and t4 30 days) with two consortia initially isolated from contaminated mangrove sediments. Erlenmeyers flasks were used with 50 ml of mineral medium Buchnell Hass and 1% of oil as the source of carbon and energy. Benzo (a) pyrene was the PAH responsible for the major differences in the levels of degradation between consortia. The indene (1,2,3-c,d) was the PAH further degraded compared with control sample, with levels of breakdown than 92% after 7 days of the experiment under action of the consortium B. The consortium B contributed positively to the levels of degradation after 7 and 15 days of experiment at baseline and at the end of 30 days. Evaluation by gas chromatography (CG/MS) showed that after 30 days all PAH concentrations were reduce compared to the control indicating that both consortia were effective in the degradation of high molecular weigth PAHs. Keywords: Biodegradation, oil, bacteria consortia, polycyclic aromatic hydrocarbons

73 INTRODUÇÃO Os Hidrocarbonetos Policíclicos Aromáticos (HPAs) de alto peso molecular são compostos tóxicos com elevado potencial mutagênico aos seres vivos (quadro 6 do apêndice 1) (CERNIGLIA, 1992). A baixa solubilidade em água associada à hidrofobicidade e tendência de sorção nas partículas orgânicas dos sedimentos, fazem dos HPAs compostos persistentes no meio ambiente e pouco disponível para os microrganismos (PENG et al., 2008; SEO et al., 2009). A recalcitrância dos HPAs de alto peso molecular é diretamente proporcional ao aumento do número de anéis e a disposição angular (figura 22 do apêndice 1). (SHUTTLEWORTH; CERNIGLIA, 1995; KANALY; HARAYAMA, 2000). A limpeza de ambientes contaminados com HPAs de alto peso molecular tem sido realizada por microrganismos com capacidade de degradar esses compostos em produtos menos tóxicos (YE et al., 1996). O primeiro microrganismo relatado com capacidade de degradar hidrocarbonetos de alto peso molecular foi isolado de amostras de sedimento, atuando em co-metabolismo na degradação de fluoranteno, pireno, 1-nitropireno, 3-metilcolantreno, 6 nitrocriseno e benzo (a) pireno, em concentração de 0,5 mg/l, suplementado com nutrientes durante 2 semanas de crescimento (HEITKAMP; CERNIGLIA, 1988). No processo de biorremediação, microrganismos adaptados aos poluentes são capazes de imobilizá-los, transformá-los ou mineralizá-los em H 2 O e CO 2 pela ação de enzimas dioxigenases (CHAINEAU et al., 1999; DÍAZ, 2004; JACQUES et al., 2007; HARITASH; KAUSHIK, 2009; SEO et al., 2009). Em laboratório cepas nativas isoladas podem ser utilizadas como ferramentas para a formação de consórcios com potencial degradador de compostos tóxicos (GARCÍA-RIVERO; PERALTA-PÉREZ, 2008). Os manguezais são importantes zonas úmidas estuarinas intimamente relacionadas com atividades humanas, sendo alvo frequente de contaminação por HPAs (TAM et al., 2002; HARITASH; KAUSHIK, 2009). Em sedimentos de manguezais contaminados com petróleo, microrganismos com potencial degradador de compostos aromáticos estão presentes em elevadas quantidades (10 6 células/ g -1 de sedimento), tendo sua concentração aumentada após exposições adicionais a esse composto (RAMSAY et al., 2000). Bactérias isoladas de sedimentos contaminados são extensivamente utilizadas na remediação de ambientes contaminados por compostos orgânicos. Vários gêneros bacterianos vêm sendo descritos como potenciais degradadores de HPAs de alto peso molecular como:

74 73 Bacillus, Nocardia, Rhodococcus, Gordona, Mycobacterium (KASTNER, 1996; GUO et al., 2005; HARITASH; KAUSHIK, 2009; ZHENG et al., 2010; MAITI et al., 2012). Vários são os estudos relacionados com a degradação microbiana de HPAs de baixo peso molecular, como fluoranteno, antraceno, fenantreno (ROMERO et al., 1998; YUAN et al., 2000; YUAN et al., 2001; TAM et al., 2002; TANG et al., 2006; YU et al., 2005; JACQUES et al., 2007; JACQUES et al., 2010). Um número inferior de pesquisas está voltado à degradação microbiana de HPAs de alto peso molecular contendo cinco ou mais anéis aromáticos (YE et al., 1996; KANALY; HARAYAMA, 2000). A degradação de HPAs com três a sete anéis aromáticos por meio do bioaumento, tem se mostrado uma ferramenta eficaz para a limpeza de solos contaminados com resíduos petroquímicos, porém os mecanismos relacionados com a degradação de HPAs com mais de cinco anéis não são bem esclarecidos (JUASZ, 1998; PENG et al., 2008). O objetivo deste estudo é avaliar a capacidade de dois consórcios bacterianos em degradar os HPAs de alto peso molecular benzo (k) fluoranteno, benzo (b) fluoranteno, benzo (a) pireno, dibenzo (a,h) antraceno benzo (g,h,i) perileno e indeno (1,2,3-c,d) pireno em ensaios de degradação em cultura líquida em diferentes períodos de tempo. 5.2 MATERIAIS E MÉTODOS Área de Estudo As coletas foram realizadas em três manguezais da Baía de Todos os Santos - BTS, Bahia, Brasil, pertencentes a municípios que atendem atividades distintas da cadeia produtiva do petróleo: São Francisco do Conde, município caracterizado pela exploração de petróleo pela PETROBRÁS no Campo de Dom João (DJ); Madre de Deus (MD) que abriga o Terminal Portuário Almirante Alves Câmara TEMADRE responsável pelo transporte de petroderivados para a capital e interior baiano e Candeias (CN) situada nas proximidades as Refinaria Landulpho Alves Mataripe RLAM (figura 15). Coletou-se assepticamente aproximadamente 50g de sedimento superficial de manguezal (0,0 a 5,0 cm) em região de intermaré. As amostras foram armazenadas em caixa de isopor contendo gelo até a chegada ao laboratório para a conservação dos microrganismos.

75 74 Figura 15 Localização da Baía de Todos os Santos com as três regiões de estudo: (DJ) campo de Dom João em São Francisco do Conde, (MD) Madre de Deus e (CN) Candeias Enriquecimento, Isolamento e Seleção Primeiramente 10 g das amostras de sedimento fresco foram enriquecidas em frascos tipo Erlenmeyers contendo 99 ml de meio mineral Buschneel Haas (BH) e 1 % de petróleo como única fonte de carbono e energia. Os frascos foram mantidos sob agitação em shaker (180 rpm) no escuro e em temperatura de 28 ºC ± 2, durante 21 dias (CHAERUN et al., 2004; SOUZA et al., 2005; WETLER, 2006). Após o período de enriquecimento as amostras foram semeadas em duplicada em placas de Petri com meio BH e 1 % de petróleo adicionado em sua superfície. As placas foram incubadas à 30ºC durante 4 dias para o crescimento dos microrganismos. Visando indicar as bactérias isoladas potenciais degradadoras de hidrocarbonetos de petróleo após 24 horas foram realizados dois ensaios de seleção com o uso do indicador de oxiredução 2,6 diclorofenolindofenol (HANSON et al., 1993). O primeiro ensaio foi conduzido em placas multipoços de 2,0 ml, incubadas estaticamente à 30ºC, durante 24 horas. A fim de confirmar o resultado obtido o segundo foi executado em frascos Erlenmeyers submetidos à agitação nas mesmas condições do enriquecimento. Após 17 horas de enriquecimento dos microrganismos adicionou-se 1mL do indicador 2,6 DCPIP (GOMES et al., 2004; MIRANDA et

76 75 al., 2007; AFUWALE; MODI, 2012). Maiores detalhes podem ser encontrados no apêndice 4 (FIORAVANTI et al., 2012) Formação dos Consórcios Foram elaborados dois consórcios bacterianos, denominados consórcio A e consórcio B, com as bactérias selecionadas no segundo ensaio de seleção. A indicação das cepas bacterianas para a composição dos consórcios baseou-se em avaliação dos fingerprints dos n-alcanos das amostras de óleo pelo método de whole oil. As amostras foram previamente desidratadas em pipetas de Pasteur (metodologia para desidratação após os ensaios de seleção descrita no apêndice 2), em cromatógrafo à gás, Varian CP-3800 com detector de ionização de chama (CG/FID). Tal equipamento apresentava-se equipado com coluna capilar modelo DB5 (15m x 0,25mm x 0,25 µm), utilizando hélio como gás para o fluxo de arraste. Sete cepas foram selecionadas para a formação de dois consórcios contendo cinco bactérias cada Ensaios de Degradação Os ensaios de degradação foram realizados em laboratório, com o uso de shaker rotativo. Para tal utilizaram-se frascos tipo Erlenmeryers de 125 ml contendo 50 ml do meio BH, 400 µl de cada cepa padronizada em 1,5x10 8 Unidades Formadoras de Colônias (UFC) com o auxílio do tubo 0,5 da escala de MacFarland (totalizando 2 ml) e 520 µl do petróleo como fonte de carbono. Os frascos permaneceram em agitação (180 RPM ± 2) e 28ºC ± 2, no escuro. Devido à capacidade do shaker a cada período amostral todo o procedimento foi novamente repetido. Após o término do ensaio estabelecido para cada tempo amostral, retirou-se cerca de 40 ml do conteúdo hídrico proveniente da cultura, transferindo-o para frascos Erlenmeyers de 50 ml. Com o uso de um phmetro de bancada WTW (resolução 0,01), calibrado a cada período, foram mensurados em triplicata os parâmetros ph e Eh e com o uso de um condutivímetro WTW (range 199,9 µs/cm; resolução 0,1 µs/cm) mensurou-se a condutividade e salinidade também em triplicata.

77 Cromatografia Líquida Adotou-se metodologia padronizada pelo Laboratório de Estudos do Petróleo LEPETRO, da Universidade Federal da Bahia/UFBA, onde a obtenção das frações SAT (hidrocarbonetos saturados) e ARO foi executada em uma coluna cromatográfica de vidro (60cm x 1cm d.i). Na base da coluna foi acondicionada lã de vidro, tendo sido o seu interior recheado com 4g de sílica gel Merck (0,063-0,200mm) previamente ativada em forno mufla a 500ºC/ 2h. A sílica foi umedecida com n-hexano e adicionada cuidadosamente no interior da coluna para evitar a formação de bolhas e rachaduras. Foram pesados cerca de 0,02 g do extrato desidratado e evaporado. A amostra diluída com n-hexano foi então transferida para o topo da coluna ambientada com esse mesmo solvente. Para a eluição da fração SAT adicionou-se 30 ml de n-hexano. Já para a fração ARO utilizou-se mistura de 30 ml de n-hexano/diclorometano (2:1, v/v). As frações foram capturadas em balões de fundo redondo e submetidas à evaporação natural. Após a evaporação do solvente as amostras foram transferidas para vials previamente pesados e identificados. Ambos os solventes utilizados pertenceram do grau P.A ACS ISO, tendo sido adquiridos da Merck (Darmstadt, Alemanha) Cromatografia Gasosa acoplada à espectrometria de massas (CG/EM) As amostras contendo as frações ARO foram encaminhadas para o Laboratório de Física Nuclear Aplicada para a avaliação quali-quantitativa da concentração dos 6 HPAs contemplados nesta pesquisa. Utilizou-se padrão contendo os 16 HPAs prioritários da Agência de Proteção Ambiental dos Estados Unidos US. EPA, marca Supelco, grau de pureza 99,9%, 99,5% e 99,1%). Foram realizadas diluições da solução (10 mg/l -1 ) para o preparo de padrões em concentrações de 0.010, 0.050, 0.100, 0.500, e mg/l -1, em diclorometano. As análises cromatográficas foram realizadas em cromatógrafo gasoso Shimadzu GC2010 acoplado a um espectrômetro de massas Shimadzu QP 2010 Plus. Tal equipamento é composto por uma coluna capilar DB-5 (5% fenil, 95% metilsiloxano) com 30 m de comprimento x 0.25 mm de diâmetro interno x 0.25 µm de espessura. A temperatura do injetor manteve-se em 250 o C. A programação da temperatura foi de 45 o C com taxa de aquecimento de 45 o C/min até 130 o C. Ao alcançar 180 o C a taxa de aquecimento foi de 10 o C/min, posteriormente de 6 o C, 240 o C e finalmente de 310 o C com taxa de 10 o C/min, permanecendo assim por 5 minutos.

78 77 O tempo total de cada análise foi de 29,39 minutos. Foram injetados 2 µl da amostra concentrada (0,05mg µl -1 de DCM) no modo splitless. O Hélio foi utilizado como gás de arraste com fluxo de 1.91 ml/min. A interface foi mantida a 250 o C com o detector operando no modo SIM (select ion monitoring). Os dados foram integrados por meio do software GCMSSolution. Os HPAs foram identificados mediante comparação dos tempos de retenção dos padrões autênticos e dos padrões de trabalho. Anteriormente à execução das análises foram injetados solventes brancos e a mistura padrão a fim de verificar a possibilidade de contaminações, bem como a checagem dos picos e dos tempos de retenção (CELINO et al., 2012). O percentual de degradação de cada consórcio comparado ao seu respectivo controle foi efetuado para a média entre as duplicadas por meio da fórmula: % de degradação = (concentração residual do HPA na amostra controle concentração residual do HPA na amostra com o consórcio)/(concentração residual do HPA na amostra controle)* Análises Estatísticas Com o uso do software Statistica, versão 7.0 efetuou-se análise multivariada dos componentes principais (ACP) para a compreensão do padrão de distribuição das amostras degradadas para o consórcio A e para o consórcio B em relação às variáveis (HPAs, ph, Eh, salinidade e condutividade). 5.3 RESULTADOS E DISCUSSÕES Foram isoladas dos manguezais da BTS, 127 cepas bacterianas. Por apresentarem melhores condições de crescimento após as reativações 118 foram usadas no primeiro ensaio de seleção, destas, se selecionaram 26 no primeiro e 15 no segundo ensaio. Dentre as 15 cepas selecionadas cujo fingerprints e perfis dos n-alcanos foram avaliados pela cromatografia gasosa (CG/FID) (figura 27 do apêndice 3), 7 apresentaram características necessárias para a formação de dois consórcios bacterianos (figuras 28 a 30 do apêndice 3), sendo estes: Consórcio A - MD04p (81), DJ02p (102), CN06p (128), DJ02p (47) e CN06p (67) e Consórcio B - MD04p (81), DJ02p (100), CN06p (116), DJ02p (47) e CN06p (67). A denominação adotada para cada consórcio baseou-se na localidade onde a amostra de sedimento para o isolamento das cepas foi coletado (MD Madre de Deus, DJ Dom João e CN Candeias; no ponto de coleta da amostra

79 78 (04, 02 e 06), na fonte de carbono utilizada para o enriquecimento e isolamento das bactérias (petróleo) e na ordem que os isolados foram obtidos (números entre parênteses). A avaliação dos tempos de retenção (CG/EM) das amostras aromáticas submetidas aos ensaios de degradação revelou que para alguns HPAs a amostra de óleo estava mais degradada, mesmo quando comparado aos controles (tabela 10) (tabela 20 do apêndice 3). Volatilização, foto-oxidação e oxidação químicas são alguns dos fatores intempéricos que contribuem com a degradação de HPAs no meio ambiente (YUAN et al., 2001; TAM et al., 2002). Por esse motivo a comparação dos dados foi realizada apenas entre as amostras contendo os consórcios A ou B e os seus respectivos controles abióticos. Tabela 10 Concentração (µg/l) dos HPAs de alto peso molecular benzo (k) fluoranteno - B(k)Fluo; benzo (b) fluoranteno B(b)Fluo; benzo (a) pireno - B(a)P; dibenzo (a,h) antraceno DibahA; benzo (g,h,i) perileno - B(g)P e indeno (1,2,3-c,d) pireno IndP, nas amostras de óleo e nos controles dos tempos t0, t1, t2, t3 e t4. Amostras HPAs (µg/l) B(k)Fluo B(b)Fluo B(a)P DibahA B(g)P IndP Óleo 176,0 223,9 744,5 173,3 196,5 177,1 t0 Cont. 159,3 175,0 489,0 148,8 184,6 94,8 t1 Cont. 220,6 324,0 1091,2 158,1 187,2 93,0 t2 Cont. 324,9 290,7 412,2 353,8 403,7 563,7 t3 Cont. 328,3 352,7 723,0 362,2 407,6 567,3 t4 Cont. 313,5 318,2 552,1 354,7 402,8 557,7 Com exceção do B(a)P submetido à ação do consórcio A após 15 dias de experimento, todos os HPAs apresentaram concentrações residuais inferiores em relação à amostra controle (figura 16). O consórcio B foi mais eficiente na redução da concentração dos HPAs principalmente após 30 dias de experimento (figura 16). Tal resultado juntamente com o aumento nos níveis de degradação ao longo dos tempos amostrais foi interpretado como biorremediação, já que os valores foram significativamente reduzidos em relação aos controles abióticos (tabela 20 do apêndice 3). Assim como no trabalho realizado por Boonchan et al. (2000) os dois consórcios foram capazes de degradar, em taxas diferenciadas, os HPAs de alto peso molecular. Em condições laboratoriais a degradação de hidrocarbonetos por co-metabolismo microbiano torna-se essencial, já que compostos considerados tóxicos para um determinado microrganismo podem servir como fonte de carbono para outro (WETLER-TONINI et al., 2011).

80 79 Figura 16 - Concentrações residuais dos HPAs (µg/l): B(k)Fluo benzo (k) fluoranteno, B(b)Fluo benzo (b) fluoranteno, B(a)P benzo (a) pireno, DibahA dibenzo (a,h) antraceno B(g)P benzo (g,h,i) perileno e IndP indeno (1,2,3-c,d) pireno nas amostras controle, consórcio A e consórcio B nos tempos amostrais t0(cerca de 2 horas), t1(24horas), t2(7 dias), t3(15 dias) e t4(30 dias). A maioria dos estudos voltados à biodegradação de HPAs, tanto de baixo quanto de alto peso molecular utilizam algum HPA ou a mistura de HPAs como fonte de carbono e energia (STRINGFELLOW; AITKEN, 1995; JANBANDHU; FULEKAR, 2011; MAITI et al., 2012). Em nosso estudo a não utilização de HPAs como fonte de carbono e energia durante o período de enriquecimento e isolamento não inviabilizou a degradação dos compostos de alto peso molecular tendo sido considerada satisfatória a adaptação dos microrganismos apenas com o uso do petróleo como fonte de carbono durante o experimento de degradação.

81 80 Em estudos voltados à degradação de compostos orgânicos torna-se necessário a compreensão do período necessário à adaptação do microrganismo a um determinado composto, sendo este o tempo de indução das enzimas responsáveis pelo consumo dos contaminantes (NIGAM et al., 2012). Durante o experimento a capacidade de degradação dos compostos a depender do período amostral foi evidenciada pelo aumento da turbidez no meio líquido presente nos frascos, decorrente do aumento da biomassa microbiana (figura 31 B(II), B(II), C(I), C(II), D(I) e D(II) do apêndice 3). Cepas isoladas de ambientes contaminados apresentam maior potencial de degradação em relação às isoladas de ambientes sem indícios de contaminação pelo fato de estarem adaptadas aos compostos presentes no ambiente contaminado (CHAINEAU et al., 1999). O consórcio B foi responsável por taxas de degradação superiores nos períodos t0, t1 e t4, já o consórcio A contribuiu com melhores resultados nos períodos t2 e t3 (tabela 11). Tabela 11 Percentual de degradação dos HPAs benzo (k) fluoranteno - B(k)Fluo, benzo (b) fluoranteno - B(b)Fluo, benzo (a) pireno - B(a)P, dibenzo (a,h) antraceno DibahA, benzo (g,h,i) perileno - B(g)P e indeno (1,2,3-c,d) pireno IndP nas amostras controle, consórcio A e consórcio B nos tempos t0, t1, t2, t3 e t4. Amostra % Degradação HPAs B(k)Fluo B(b)Fluo B(a)P DibahA B(g)P IndP t0 Cons.A 0,1 2,1 15,5 3,8 3,5 18,3 t0 Cons.B 9,7 23,9 49,4 11,1 4,7 43,6 t1 Cons.A 28,9 49,5 65,4 10,7 4,3 23,8 t1 Cons.B 35,0 59,4 77,6 15,1 5,8 48,5 t2 Cons.A 56,6 61,8 60,0 62,5 56,1 92,0 t2 Cons. B 53,5 50,3 29,2 61,8 56,0 88,6 t3 Cons. A 54,8 60,5 59,6 62,9 56,7 89,7 t3 Cons. B 53,4 54,2 45,1 61,1 56,0 86,2 t4 Cons. A 47,4 40,4 3,7 60,4 55,3 89,0 t4 Cons. B 53,2 56,6 51,9 62,1 56,0 89,6 Os microrganismos foram capazes de degradar os diferentes compostos de alto peso molecular presentes no petróleo. Estudos revelam que em baixas taxas de diluição os microrganismos são capazes de utilizar simultaneamente substratos de preferência (NIGAM et al., 2012). Os compostos mais degradados pelos microrganismos foram os que possuem maior relação massa/ carga (m/z), como o B(a)P (m/z 252), DibahA (m/z 278) e IndP (m/z 276). Geralmente microrganismos isolados apresentam um potencial de degradação reduzido para HPAs, sendo complexo os padrões de degradação de compostos simultaneamente (PENG et al., 2008). O consórcio A atingiu níveis ótimos na degradação do HPA IndP (18,3%) no t0, do B(a)P (65,4%) no t1, e do IndP no t2 (92,0%), t3 (89,7%) e t4 (89,0%). O consórcio B

82 81 proporcionou melhores taxas de degradação para do B(a)P no t0 (49,4%) e t1 (77,6%) e do IndP no t2 (88,6%), t3 (86,2) e t4 (89,6%) (tabela 11; figura 17). Mesmo sendo considerado o HPA mais tóxico e com elevado potencial mutagênico e carcinogênico (CERNIGLIA, 1992; JUHASZ; NAIDU, 2000; HARITASH; KAUSHIK, 2009) o B(a)P foi HPA que apresentou mais rapidamente elevado nível de degradação. A degradação do B(a)P pelos microrganismos é resultante do crescimento em substratos diferenciados como fonte de carbono que podem induzir os microrganismos a produzirem enzimas com capacidade de degradar esse composto (PENG et al., 2008). Figura 17 - Cromatogramas evidenciando os picos dos HPAs Benzo(k)Fluo - Benzo(k)Fluoranteno, Benzo(b)Fluo- Benzo(b) Fluoranteno e B(a)P - Benzo(a)Pireno, por meio dos tempos de retenção (22.50, 22,75 e 23.23), das amostras controle, consórcio A e consórcio B após 24 horas de experimento. Os HPAs B(k)Fluo, B(b)Fluo e IndP foram mais degradados após 7 dias de experimento (56,6% e 61,8%, 92,0%) sob atuação do consórcio A. O DibahA e o B(g)P foram mais degradados após 15 dias (62,9% e 56,7%) com a presença do mesmo consórcio (tabela 11). Para ambos os consórcios, um período maior de exposição não resultou em maiores taxas de degradação, ao contrário, culminou em redução nos valores do B(k)Fluo, B(b)Fluo e B(a)P e permaneceu inalterado para o DibahA, B(g)P e IndP (tabela 11). Assim como proposto por Nigam e colaboradores (2012) os microrganismos rapidamente adaptados possuem alta elasticidade metabólica, porém com limites de capacidade de degradação após um determinado período de exposição ao contaminante. Esperava-se um padrão de degradação semelhante para os HPAs B(k)Fluo, B(b)Fluo, B(a)P e DibahA com cinco anéis benzênicos e entre o B(g)P e IndP com seis anéis. Segundo a literatura quanto maior é o número de anéis, menor é a solubilidade, a volatilidade e maior é a hidrofobicidade dos HPAs (JUHASZ; NAIDU, 2000). Nesse estudo tal padrão de resposta foi

83 82 constatado apenas para o B(k)Fluo e para o B(b)Fluo e para o B(b)Fluo e B(a)P após 15 dias do ensaio de degradação. Para os demais HPA s foram observadas diferentes taxas de degradação, a depender do consórcio ao qual fora submetido e do período de tempo do experimento. Ye et al (1996) obteve constatações semelhantes revelando que após 16 horas de experimento o B(a)P foi mais degradado pela bactéria Sphingomonas paucimobilis, enriquecida inicialmente com fluoranteno, em relação ao DibahA, mesmo ambos possuindo cinco anéis benzênicos. Cerniglia (1992) afirma que a recalcitrância dos HPAs para os microrganismos aumenta proporcionalmente com o aumento do peso molecular e com o coeficiente de partição octanolágua (log K ow ). Em relação ao peso molecular, o IndP é o HPA que apresenta peso molecular mais elevado e foi o que mais degradou em comparação à amostra controle. Os parâmetros físico-químicos que mais contribuíram com os níveis de degradação foram o ph e o Eh. Em todas as amostras t0 e nos controles t1, t2 e t3 o ph manteve-se em torno da neutralidade, alcançando valores entre 5,1 e 5,6 após 30 dias (figura 18 A(I), A(II) e A(III), resultados similares foram observados em experimento realizado por Janbandhu e Fulekar (2011). Tal fato pode ser explicado pelo acúmulo de íons H + ou outros metabólitos ácidos resultantes do processo de degradação de alguns HPAs. Figura 18 - Parâmetros físico-químicos ph acima e Eh abaixo das amostras: (I) controle, (II) consórcio A e (III) consórcio B, nos intervalos de tempo t0 (2 horas), t1(24 horas), t2(7 dias), t3(15 dias) e t4(30 dias). O potencial redox (Eh) é o parâmetro utilizado para a mensuração dos teores de oxigênio. Valores elevados do Eh indicam maiores concentrações de oxigênio (MARIANO, 2006). O Eh foi o parâmetro que mais variou ao longo do experimento (figura 18 B(I), B(II) e B(III). Assim como no experimento de Delaune e colaboradores (1981) os maiores valores de Eh foram observados para as maiores taxas de degradação de HPAs.

84 83 A Análise dos Componentes Principais (ACP) foi explicada por 97,14% de variância entre os fatores para o consórcio A (figura 19A(I) e B(I)) e de 94,5% para o consórcio B (figura 19A(II) e B(II). Por meio desta análise os valores apresentados anteriormente foram confirmados e puderam ser compreendidos de forma mais ampla. Figura 19 - Análise dos Componentes Principais (ACP), onde A (I) - parâmetros físico-químicos (ph, Eh, temperatura, condutividade e salinidade) e concentrações dos HPAs B(k)Fluo, B(b)Fluo, B(a)P, B(g)P, IndP e DibahA) para o consórcio A, A(II) intervalos de tempo (t0,t1, t2, t3 e t4) para o consórcio A, B(I) parâmetros físico-químicos e concentração dos HPAs para o consórcio B, e B(II) intervalos de tempo para o consórcio B. B(II). A(I) A(II) B(I) B(II) Em ambos os consórcios os níveis de degradação apresentados para todos os HPAs não foram influenciados por nenhum parâmetro físico-químico específico. Com exceção do IndP, sob

85 84 atuação do consórcio B, que está agrupado no t2, todos os demais compostos foram igualmente agrupados no t3 (após 15 dias de experimento), existindo outros fatores que não estão abordados, influenciando tal relação. Tal constatação reforça os dados anteriormente expostos, estando os tempos relacionados aos agrupamentos correspondentes aos períodos onde maiores taxas de degradação foram observados. A capacidade dos microrganismos em degradar HPAs de alto peso molecular não é resultado apenas de sua biodisponibilidade, associada aos parâmetros físico-químicos, mas principalmente ao sinergismo metabólico existente entre os diferentes microrganismos (BOUCHEZ et al., 1999; VAN HERWIJNEN et al., 2003). Nos dois ACPs semelhanças relacionadas com o agrupamento das amostras nos diferentes períodos de tempo e os parâmetros influenciadores foram observadas. Os principais fatores que influenciaram o agrupamento dos casos e das variáveis estão representados nas tabelas 21 a 24 do apêndice CONCLUSÕES O IndP foi o HPA que obteve os maiores níveis de degradação (92,0%) com atuação do consórcio A após 7 dias de experimento. Nesse mesmo período esse consórcio proporcionou uma redução de 56,6% para o B(k)Fluo, 61,8% para o B(b)Fluo, 60,0% para o B(a)P, 62,5% para o DibahA e de 56,0% para o B(g)P. O Eh foi o parâmetro de destaque durante os ensaios de degradação, influenciando o agrupamento das amostras submetidas ao t2 (após 7 dias) e no t4 (após 30 dias). O consórcio B proporcionou rápidas reduções nas concentrações de todos os HPAs após 2 horas e 24 horas de experimento, colaborando com elevados níveis de degradação após 30 dias. Ao final do experimento o consórcio B foi responsável pela degradação de 53,2% do B(k)Fluo, 56,5% do B(b)Fluo, 51,9% do B(a)P, 62,1% do DibahA e 56% do B(g)P. O IndP foi o composto também sofreu consideráveis taxas de degradação pelo consórcio B (89,7%). Após 7 dias de experimento, intervalos de tempos superiores não proporcionaram aumento significativo nos níveis de degradação, sugerindo que após esse período de exposição ao contaminante o metabolismo dos microrganismos manteve-se constante. Considerando a rápida capacidade de adaptação e pela maior potencial de degradação após 30 dias de experimento o consórcio B foi considerado o mais promissor na biorremediação de HPAs de alto peso molecular.

86 AGRADECIMENTOS Aos integrantes do LEMA, do LEPETRO e do LFNA pelo auxílio nas análises geoquímicas. A FAPESB pela concessão da bolsa de mestrado. 5.6 REFERÊNCIAS AFUWALE, C; MODI, H. A. Study of bacterial diversity of crude oil degrading bacteria isolated from crude oil contaminated sites. Life sciences leaflets, v. 6, p.13-23, BOOUCHAN, S; BRITZ, M. L; STANLEY, G. A. Degradation and mineralization of polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Applied and environmental microbiology, v. 66, n. 3, p , BOUCHEZ. M; BLANCHET, D; BARDIN, B; HAESELER, F; VANDECASTEELE, J. Efficiency of defined strains and of soil consortia in the biodegradation of polycyclic aromatic hydrocarbon (PAH) mixtures. Biodegradation, v. 10, n. 6, p , CELINO, J. J; CORSEUIL, H. X; FERNANDES, M; HADLICH, G. M. Persistent toxic substances in surface water of Todos os Santos Bay, Brazil. Resources and environment, v. 2, n.4, p , CERNIGLIA, C. E. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, v.3, p , CHAERUN, S. K; TAZAKI, Kazue; ASADA, Ryuji; KOGURE, Kazuhiro. Bioremediation of coastal areas 5 years after the Nakhodka oil spill in sea of Japan: isolation and characterization of hydrocarbon degrading bacteria. Environment international, v. 30, p , CHAINEAU, C. H; MOREL, J; DUPOND, J; BURY, E; OUDOT, J. Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolate from a temperate agricultural soil. The science of total environment, v. 227, p , DIAZ. E. Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. International microbiology, v. 7, p , FIORAVANTI, K. L; CELINO, J. J; ROSSI-ALVA, J. C. Isolamento, seleção e identificação de microrganismos degradadores de petróleo e seus derivados em sedimentos de manguezais contaminados. Cadernos de Geociências, v. 9, n. 2, p , GARCÍA-RIVERO, M; PERALTA-PÉREZ, M. R. Cometabolismo em la biodegradación de hidrocarburos. Revista mexicana de ingeniería química, v. 7, n. 1, p.1-12, GOMES, E. B. Biodegradabilidade de querosene de aviação movimentado pelo terminal portuário de Suape-PE. 2004, 127f. Dissertação (Mestrado em Biotecnologia de produtos bioativos), Universidade Federal de Pernambuco, Recife - PE, 2004.

87 86 GUO, C. L; ZHOU, H. W; WONG, Y. S; TAM, N. F. Y. Isolation of PAH-degrading bacteria from mangrove sediments and their biodegradation potential. Marine pollution bulletin, v. 51, p , HANSON, K. G; DESAI, G; DESAI, A. J. A rapid and simple screening technique for potential crude oil degrading microorganisms. Biotechnology techniques, v. 7, n.10, p , HARITASH, A. K; KAUSHIK, C. P. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. Journal of hazardous materials, v. 169, p. 1-15, HEITKAMP, M. A; CERNIGLIA, C. E. Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl. Environ. Microbiol, v. 54, n. 6, p , JACQUES, R. J. S; BENTO, F. M; ANTONIOLLI, Z. I; CAMARGO, F. A. O de. Biorremediação de solos contaminados por hidrocarbonetos aromáticos policíclicos. Ciência rural, v.37, n.4, p ,2007. JACQUES, R. J. S; SILVA, K. J; BENTO, F. M; CAMARGO, F. A. O. Biorremediação de um solo contaminado com antraceno sob diferentes condições físicas e químicas. Ciência rural, v. 40, n.2, p , JANBANDHU, A; FULEKAR, A. H. Biodegradation of phenanthrene using adapted microbial consortium isolated from petrochemical contaminated environment. Journal of hazardous materials, v. 187, p , JUHASZ, A. L. Microbial degradation of high molecular weigth polycyclic aromatic hydrocarbons. 1998, tese (Ph.D), Victoria University Technology, Melbourn, Australia, JUHASZ, A. L; NAIDU, R. Bioremediation of high molecular weigth polycyclic aromatic hydrocarbons : a review of a microbial degradation of benzo(a)pyrene. International biodeterioration and biodegradation, v. 45, p , KANALY, R. A; HARAYAMA, S. Biodegradation of high molecular weigth polycyclic aromatic hydrocarbons by bacteria. American society for microbiology, v. 182, n, 8, pg , KASTNER, M. M. B. Microbial degradation of polycyclic aromatic hydrocarbons in soils affected by organic matrix of compost. Applied microbiology and biotechnology, v. 44, p , MAITI, A; DAS. S; BHATTACHARYYA. N. Bioremediation of higth molecular height polycyclic aromatic hydrocarbons by Bacillus thuringiensis strain NA2. Journal of sciences, v. 1, n. 4, p , MARIANO, A. P. Avaliação do potencial de biorremediação de solos e água contaminados por óleo diesel. 2006, 162p. Tese (Doutorado em Geociências e Meio Ambiente), Universidade Estadual Paulista, Rio Claro SP MIRANDA, R. C; SOUZA, C. S; GOMES, E. B; LOVAGLIO, R. B; LOPES, C. E; SOUZA, M. F. V. Q. Biodegradation of diesel oil by yeasts isolated from the vicinity of Suape port in the

88 87 state of Pernambuco Brazil. Brazilian archives of biology and technology v. 50, n. 1, p , NIGAM, A. PHALE, P. S; WNGIKAR, P. P. Assessment of the metabolic capacity and adaptability of aromatic hydrocarbon degrading strain Pseudomonas putida CSV86 in aerobic chemostat culture. Bioresource technology, n. 114, p , PENG, R; XIONG, A; XUE, Y; FU, X; GAO, F; ZHAO, W; TIAN, Y; YAO, Q. Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol. Rev., v. 32, p , PETERS, K. E; WALTERS, C. C; MOLDOWAN, J. M. The biomarker guide: biomarkers and isotopes in petroleum exploration and earth history. 2. ed. Cambridge: Cambridge University Press, RAMSAY, M. A; SWANNELL, R. P. J; SHIPTON, W. A; DUKE, N. C. Effect of bioremediation on the microbial community in oiled mangrove sediments. Marine pollution bulletin, v. 41, n. 7 e 12, p , ROMERO, M. C; CAZAU, M. C; GIORGIERI, S; ARAMBARRI, A.M. Phenanthrene degradation by microorganisms isolated from a contaminated stream. Environmental pollution, v. 101, p , SEO.J; KEUM, Y; LI.Q, X. Bacterial degradation of aromatic compounds. Int. J. Environ. Res. Public Health, v.6, p , SHUTTLEWORTH, K. L; CERNIGLIA, C. E. Environmental aspects of PAH biodegradation. Applied biochemistry and biotechnology, v. 54, p , SOUZA, C. S; MIRANDA, R. C de; SENA, K. X. F. R; ARAÚJO, J. M de; CHIAPPETA, A de A; SOUZA, M. de F. V. Q. Isolamento e seleção de microrganismos degradadores de derivados de petróleo. IN: CONGRESSO de P & D EM PETRÓLEO E GÁS, Salvador. Anais eletrônicos. UFPE, STRINGFELLOW, W; AITKEN, M. D. Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading Pseudomonas. Applied and environmental microbiology, v. 61, n.1, p , TAM, N. F. Y; GUO, C. L; YAU, W. Y; WONG, Y. S. Preliminary study on biodegradation of phenanthrene by bacteria isolated from mangrove sediments in Hong Kong. Marine pollution bulletin, v. 45, p , TANG, Y. J; QI, L. KRIEGER-BROCKETT. Evaluating factors that influence microbial phenanthrene biodegradation rates by regression with categorial variables. Chemosphere, v. 59, p ,2005. WETLER, R. M. C. Prospecção de microrganismos responsáveis pela degradação de compostos de petróleo em sedimento de um manguezal localizado no Sul da Bahia (Brasil) f. Dissertação (Mestrado em Ecologia), Universidade Estadual de Santa Cruz, Ilhéus BA, WETLER-TONINI, R. M. C; REZENDE, C. E; GRAVITOL, A. D. Biodegradação bacteriana de petróleo e seus derivados. Revista virtual de química, v. 3, n. 2. p , 2011.

89 88 YE, D; SIDDIKI, M. A; MACCUBBIN, A. E; KUMAR, S. SIKKA, H. C. Degradation of polynuclear aromatic hydrocarbons by Sphingomonas paucimobilis. Environ. Sci. Technol., v. 30, p , YU, S. H; KE, L; WONG, Y. S; TAM, N. F. Y. Degradation of polycyclic aromatic hydrocarbons (PAHs) by a bacterial consortium enriched from mangrove sediments. Environment international, v. 31, p , YUAN, S. Y; CHANG, J. S; YEN, J. H; CHANG, B. Biodegradation of phenanthrene in river sediment. Chemosphere, n. 43, p , YUAN, S. Y; WEI, S. H; CHANG, B. V. Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere, n. 41, p , ZHENG, J. LIN, X; ZHANG, J; LI, X. Isolation of polycyclic aromatic hydrocarbons (PAHs)- degrading Mycobacterium spp. And the degradation in soil. Journal of hazardous materials, v. 183, p , 2010.

90 89 6 CONCLUSÃO Com o uso de fontes de carbono a 1% de petróleo, óleo diesel ou gasolina um número significativo de microrganismos foi isolado dos sedimentos de manguezais próximos aos setores da cadeia produtiva do petróleo na Baía de Todos os Santos (BTS); e em menor número de área sem atividade relacionada no extremo Sul do Estado, nas margens do rio Jequitinhinha (RJ). A região de refino obteve um maior número de isolados (105), seguido da de transporte (95) e de produção (89). A temperatura, a salinidade e os teores de matéria orgânica foram os parâmetros que mais influenciaram a distribuição apresentada para a BTS, sendo as bactérias os microrganismos predominantes, principalmente quando o petróleo foi adicionado como única fonte de carbono e energia. Esse resultado associado aos ensaios de seleção demostraram o potencial dos microrganismos da BTS em degradar hidrocarbonetos em 24 horas, indicando a versatilidade metabólica e uma pré-adaptação ao uso de componentes do petróleo decorrentes de derrames acidentais inerentes às atividades do setor petrolífero. Os ensaios de degradação com os dois consórcios pré-selecionados juntamente com as análises cromatográficas com espectrômetro de massas (CG/EM) das amostras de óleo degradadas, revelaram que os microrganismos possuem potencial para a degradação dos n- alcanos de cadeia longa (C 18 a C 32 ) e dos HPAs de alto peso molecular em experimentos de biorremediação. Cada consórcio apresentou preferência na degradação de compostos diferenciados a depender do período de experimento. Os n-alcanos foram preferencialmente degradados pelo consórcio A (cepas MD04p (81), DJ02p (102), C06p (128), DJ02p (47) e C06p (67)) com capacidade de degradação de 100% dos compostos acima do C 28 após 7 dias de experimento (t2). Esse consórcio proporcinou maiores taxas de degradação em um curto período de tempo (t0 2 horas e t1 24 horas), atingindo níveis acima de 90,3% para compostos a partir do C 19 após 30 dias de experimento. Em relação aos HPAs de alto peso molecular, o consórcio com maiores níveis de degradação foi o B (cepas MD04p (81), DJ02p (100), C06p (116), DJ02p (47) e C06p (67)), contribuindo com reduções de 35,0%, 59,4% e 61,8% para os HPAs B(k)Fluo, B(b)Fluo e B(a)P após 24 horas e de 53,2%, 56,6%, 51,9%, 62,1%, 56,0% e 89,7% para o B(k)Fluo, B(b)Fluo, B(a)P, DibahA, B(g)P e IndP após 30 dias. Tanto para os n-alcanos quanto para os HPAs a partir de 7 dias de experimento os compostos foram significativamente reduzidos sob a ação dos dois consórcios. Intervalos de

91 90 tempo maiores contribuíram com acentuadas reduções nos picos nos n-alcanos em relação aos controles. Para os HPAs, tempos superiores a 7 dias não determinaram aumentos significantes na degradação dos compostos. Os resultados demostraram que tanto o consórcio A quanto o consórcio B podem ser utilizados em experimentos voltados à remediação de áreas impactadas por atividades petrolíferas tanto isoladamente quanto de forma conjunta até a completa degradação dos contaminantes. Os resultados apresentados por esse trabalho tratam-se de dados iniciais para pesquisas voltadas à biorremediação de áreas da Baía de Todos os Santos impactadas por atividades da cadeia produtiva do petróleo. São necessários estudos mais aprofundados a fim de compreender de forma mais ampla os processos envolvidos da degradação dos n-alcanos de cadeia longa e dos HPAs de alto peso molecular, como por exemplo: a) Identificação dos microrganismos pertencentes aos dois consórcios bacterianos por frações do petróleo; b) Estudo das vias e transformações metabólicas envolvidas na degradação de compostos específicos por técnicas de biologia molecular; c) Comparação da degradação dos compostos de petróleo por uma única espécie de microrganismo e pelos consórcios; d) Estudo da presença de biossurfactantes envolvidos no processo de degradação de petróleo; e) Aplicação do experimento de biodegradação de petróleo em campo a fim de comparar a eficiência atingida em laboratório. Estes são apenas alguns dos exemplos de pesquisas que poderão ser desenvolvidas tomando como base os microrganismos que foram isolados. Ainda podem ser utilizados estudos específicos de outras fontes de carbono ou mesmo os demais microrganismos (bactérias e leveduras) que não compõem os consórcios, mas que estão armazenados. Espera-se ampliar o estudo em questão e que demais pesquisadores tenham o interesse em utilizar os dados ou os microrganismos para pesquisas relacionadas com a referida temática. Os resultados apresentados por esse trabalho tratam-se de dados iniciais para pesquisas voltadas à biorremediação de áreas da Baía de Todos os Santos impactadas por atividades da cadeia produtiva do petróleo. São necessários estudos mais aprofundados a fim de compreender de forma mais ampla os processos envolvidos da degradação dos n-alcanos de cadeia longa e dos HPAs de alto peso molecular, como por exemplo: a) Identificação dos microrganismos pertencentes aos dois consórcios bacterianos por frações do petróleo; b) Estudo das vias e transformações metabólicas envolvidas na degradação de compostos específicos por técnicas de biologia molecular; c) Comparação da degradação dos compostos de petróleo por uma única espécie de microrganismo

92 91 e pelos consórcios; d) Estudo da presença de biossurfactantes envolvidos no processo de degradação de petróleo; e) Aplicação do experimento de biodegradação de petróleo em campo a fim de comparar a eficiência atingida em laboratório. Estes são apenas alguns dos exemplos de pesquisas que poderão ser desenvolvidas tomando como base os microrganismos que foram isolados. Ainda podem ser utilizados estudos específicos de outras fontes de carbono ou mesmo os demais microrganismos (bactérias e leveduras) que não compõem os consórcios, mas que estão armazenados. Espera-se ampliar o estudo em questão e que demais pesquisadores tenham o interesse em utilizar os dados ou os microrganismos para pesquisas relacionadas com a referida temática.

93 92 REFERÊNCIAS AFUWALE, C; MODI, H. A. Study of bacterial diversity of crude oil degrading bacteria isolated from crude oil contaminated sites. Life sciences leaflets, v. 6, p.13-23, 2012 ALKAHATIB, M. F; ALAM, M. Z; SULEYMAN, A. M; IMAN, A. F. H. An isolated bacterial consortium for crude oil biodegradation. African Journal of Biotechnology, v. 10, n. 81, p , 2011 ALONGI, D. M. Present state and future of the word s mangroves forests. Environmental conservation, v.3, n. 29 p , ANDRADE, B. G. N. Biorremediação de solos contaminados por óleo diesel com o uso da microbiota nativa. 2009, 28f. Trabalho de Conclusão de Curso (Curso Tecnológico em Biotecnologia), Centro Universitário Estadual da Zona Oeste, Rio de Janeiro RJ, ANDRADE, D. M. Avaliação de bactérias provenientes de um biofiltro de tratamento de vapores de gasolina. 2008, 96f. Dissertação (Mestrado em Engenharia Ambiental), Universidade Federal de Santa Catarina, Florianópolis SC, ANDRADE, J. A; AUGUSTO, F; JARDIM, I. C. S. F. Biorremediação de solos contaminados por petróleo e seus derivados. Eclética química, v. 35, n. 3, p , ARIAS, M. E; GONZALEZ-PERZ, J. A; GONZALEZ-VILA, F. J; BALL, A. S. Soil health a new challenge for microbiologists and and chemists. Intenational microbiology, v. 8, n.1, p , ATLAS, R. M. Bioremediation of petroleum pollutants. International biodeterioration and biodegradation, v. 35, n. 1-4, p , BAMFORTH, S. M; SINGLETON, I. Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. Journal of chemical technology and biotechnology. v. 80, p , BAPTISTA, S. J. Seleção das melhores condições de biodegradação de petróleo em solo argiloso f. Tese (mestrado em tecnologia de processos químicos e bioquímicos). Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, BARRAGAN, O. L. V. Caracterização geoquímica de óleos da América Latina f. Dissertação (Mestrado em Geoquímica: Petróleo e Meio Ambiente), Universidade Federal da Bahia, Salvador BA, BATISTA, S. B; MOUNTEER, A. H; AMORIM, F. R; TOTOLA, M. R. Isolation and characterization of biosurfactant/biomulsifier producing-bacteria from petroleum contaminated sites. Bioresource technology, v. 97, p , BENTO, D. M. Análise química da degradação de hidrocarbonetos de óleo diesel no estuário da Lagoa dos Patos Rio Grande/RS f. Dissertação (Mestrado em oceanografia física, química e geológica), Universidade Federal do Rio Grande, Rio Grande RS, 2005.

94 93 BIHARI, Z; SZVETINIK, PETTKÓ-SZANDTNER, A; CSANÁDI, G; BALÁSZ, M; BARTOS, P; KESSERU, P; KISS, I; MÉCS, I. Isolation and characterization of a novel n-alkane-degrading strain, Acinetobacter haemolyticus AR-46. Z. Naturforch, v. 62, p , BOOUCHAN, S; BRITZ, M. L; STANLEY, G. A. Degradation and mineralization of polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Applied and environmental microbiology, v. 66, n. 3, p , BOUCHEZ. M; BLANCHET, D; BARDIN, B; HAESELER, F; VANDECASTEELE, J. Efficiency of defined strains and of soil consortia in the biodegradation of polycyclic aromatic hydrocarbon (PAH) mixtures. Biodegradation, v. 10, n. 6, p , BRITO, E. M. S; GUYONEAUND, R; GÕNI-URRIZA, M; RANCHOU-PEYRUSE, A. VERBAERE, A, CRAPEZ, M. A. C; WASSERMAN, J. C. A; DURAN, R. Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay, Brazil. Research in microbiology, v. 157, n.8, p , BRITO, G. C. B; SOUZA, D. B; VASCONCELOS, F. C. W; BRAGA, L. C. A importância da bioprospecção de microrganismos em áreas contaminadas com produtos derivados do petróleo. Revista em agronegócios e meio ambiente, v. 3. n.3, p , CELINO, J. J; CORSEUIL, H. X; FERNANDES, M; HADLICH, G. M. Persistent toxic substances in surface water of Todos os Santos Bay, Brazil. Resources and environment, v. 2, n.4, p , CELINO, J. J; QUEIROZ, A. F. S. Fonte de grau de contaminação por hidrocarbonetos policíclicos aromáticos (HPA) de baixa massa molecular em sedimentos da Baía de Todos os Santos, Bahia. R. Esc. Minas, v. 59, n.3, p , CENTRO DE RECURSOS AMBIENTAIS. Projeto de gerenciamento costeiro do Estado da Bahia. Litoral Sul: sub-região III - Extremo Sul. v. 4, Salvador, p. CERNIGLIA, C. E. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, v.3, p , CHAERUN, S. K; TAZAKI, K; ASADA, R; KOGURE, K. Bioremediation of coastal areas 5 years after the Nakhodka oil spill in sea of Japan: isolation and characterization of hydrocarbon degrading bacteria. Environment International, v. 30, p , 2004 CHAILLAN, F; FLECHE, L; BURY, E; PHANTAVONG, Y; GRIMONT, P; SALIOT, A; OUDOT, J ; Identification and biodegradation potential of tropical aerobic hydrocarbondegrading microoganisms isolated from a temperate agricultural soil. Sci. total environ., v. 227, p; , CHAINEAU, C. H; MOREL, J; DUPOND, J; BURY, E; OUDOT, J. Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolate from a temperate agricultural soil. The science of total environment, v. 227, p , COELHO, M. F. Estudo do uso do fertilizante NPK imobilizado na biorremediação de derrames de petróleo no mar, simulação em laboratório f. Monografia (Bacharelado em engenharia de exploração e produção de petróleo). Universidade Federal do Norte Fluminense. Macaé RJ, 2005.

95 94 CONHEÇA BELMONTE BAHIA. Belmonte News. Disponível em: < acesso em: 27 dez, CORSEUIL, H, X; HUNT, C. S; SANTOS, R. F dos; ALVAREZ, P. J. J. The influence of the gasoline oxygenate ethanol on aerobic and anaerobic BTX biodegradation. Wat. Res., v. 32, n.07, p , CRAPEZ, M. C; BORGES, A. L. N; Bispo, M. G. S; PEREIRA, D. C. Tratamento para derrames de petróleo: biorremediação. Ciência hoje, v. 30, n. 179, p DÉCIMO, T. Acidente de óleo contamina a Baía de Todos os Santos. Estadão, São Paulo, 15 abr Notícias Disponível em: < Acesso em: 03 mar, DENG, Y; ZHANG, Y; HESHAM, A. E; LIU, R; YANG, M. Cell surface properties of five polycyclic aromatic compound degrading yeast strain. Applied microbial and cell physiology v. 86, p , DIAZ. E. Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. International microbiology, v. 7, p , 2004 EL-MORSY, E. M. Evaluation of microfungi for the bioremediation of diesel oil in Egypt. Land contamination and reclamation, v. 13, n2, p , EMBRAPA, Centro Nacional de Pesquisa de Solos. Manual de análises químicas para a avaliação da fertilidade do solo. SILVA, F. C. da coord. Campinas: EMBRAPA INFORMÁTICA AGROPECUÁRIA; Rio de Janeiro, Embrapa solos, p FARAG, S; SOLIMAN, N. A. Biodegradation of crude petroleum oil and environmental pollutants by Candida tropicalis strain. Brazilian Archives of biology and technology, v.54, n.4, p , FEDERAÇÃO ÚNICA DOS PETROLEIROS, FUP. Mais um acidente no sistema Petrobrás: vazamento de óleo na Baía de Todos os Santos. Disponível em : < Acesso em: 10 dez FERREIRA, G; PARAISO, D; SÉRVULO, E. F. C. Monitoramento microbiológico de solo argiloso contaminado artificialmente com gasolina. IN: IV SIMPOSIO DE MICROBIOLOGIA APLICADA, , Rio Claro. Resumo. Instituto de Biociências UNESP, FIORAVANTI, K. L; CELINO, J. J; ROSSI-ALVA, J. C. Isolamento, seleção e identificação de microrganismos degradadores de petróleo e seus derivados em sedimentos de manguezais contaminados. Cadernos de Geociências, v. 9, n. 2, p , GARCÍA-RIVERO, M; PERALTA-PÉREZ, M. R. Cometabolismo em la biodegradación de hidrocarburos. Revista mexicana de ingeniería química, v. 7, n. 1, p.1-12, GAZZONI, B. F. Fitorremediação de água residual contendo diesel e biodiesel utilizando Typha latifólia Linn f. Relatório de Estágio Supervisionado em Química. Universidade Estadual de Londrina, Londrina, 2007.

96 95 GHAZALI, F. M; RAHMAN, R. N. Z. A; SALLEEH, A. B; BASRI, M. Biodegradation of hydrocarbons in soil by microbial consortium. International biodeterioration and biodegradation. v. 54, n.1, p , GOMES, E. B. Biodegradabilidade de querosene de aviação movimentado pelo terminal portuário de Suape-PE. 2004, 127f. Dissertação (Mestrado em Biotecnologia de produtos bioativos), Universidade Federal de Pernambuco, Recife - PE, GUO, C. L; ZHOU, H. W; WONG, Y. S; TAM, N. F. Y. Isolation of PAH-degrading bacteria from mangrove sediments and their biodegradation potential. Marine pollution bulletin, v. 51, pg , HADLICH, G. M; CELINO, J. J. UCHA, J. M; SANTIAGO, J. Geoquímica de metais traços em apicuns (planícies hipersalinas) do campo de produção de petróleo em Dom João, São Francisco do Conde, Bahia. IN: CONGRESSO BRASILEIRO DE GEOQUÍMICA, , Atibaia. Anais... Congresso Brasileiro de Geoquímica. Rio de Janeiro: Sociedade Brasileira de Geoquímica, 2007, v.1, p.1-3. CD-ROM. HANSON, K. G; DESAI, G; DESAI, A. J. A rapid and simple screening technique for potential crude oil degrading microorganisms. Biotechnology techniques, v. 7, n.10, p , HARAYAMA, S; KISHIRA, H; KASAI, Y; SHUTSUBO, K. Petroleum biodegradation in marine environments. J. Molec. Microbiol. Biotechnol, v.1, n.1, p , HARITASH, A. K; KAUSHIK, C. P. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. Journal of hazardous materials, v. 169, p. 1-15, HEITKAMP, M. A; CERNIGLIA, C. E. Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl. Environ. Microbiol, v. 54, n. 6, p , HESHAM, A. E; WANG, Z; ZHANG, Y; LV, W; YANG, M. Isolation and identification of yeast strain capable of degrading four and five ring aromatic hydrocarbons. Annals of microbiology, v. 56, n. 2, p , HWANG, H; HU, X; ZHAO, X. Enhanced bioremediation of polycyclic aromatic hydrocarbons by environmentally friendly techniques. Journal of environmental science and health part c, v. 25, p , IJAH, U. Studies on relative capabilities of bacterial and yeast isolates from tropical soil in degrading crude oil.waste management v. 18, p , JACQUES, R. J. S; BENTO, F. M; ANTONIOLLI, Z. I; CAMARGO, F. A. O de. Biorremediação de solos contaminados por hidrocarbonetos aromáticos policíclicos. Ciência Rural, v.37, n.4, p , JACQUES, R. J. S; SILVA, K. J; BENTO, F. M; CAMARGO, F. A. O. Biorremediação de um solo contaminado com antraceno sob diferentes condições físicas e químicas. Ciência rural, v. 40, n.2, pg , 2010.

97 96 JANBANDHU, A; FULEKAR, A. H. Biodegradation of phenanthrene using adapted microbial consortium isolated from petrochemical contaminated environment. Journal of hazardous materials, v. 187, p , JUHASZ, A. L. Microbial degradation of high molecular weigth polycyclic aromatic hydrocarbons. 1998, tese (Ph.D), Victoria University Technology, Melbourn, Australia, JUHASZ, A. L; NAIDU, R. Bioremediation of high molecular weigth polycyclic aromatic hydrocarbons : a review of a microbial degradation of benzo(a)pyrene. International biodeterioration and biodegradation, v. 45, p , KANALY, R. A; HARAYAMA, S. Biodegradation of high molecular weigth polycyclic aromatic hydrocarbons by bacteria. American society for microbiology, v. 182, n, 8, p , KASTNER, M. M. B. Microbial degradation of polycyclic aromatic hydrocarbons in soils affected by organic matrix of compost. Applied microbiology and biotechnology, v. 44, p , KONEMAN, E. W; ALLEN, S. D; DOWELL, V. R. Diagnóstico Microbiológico, 3ª Ed. Rio de Janeiro: Editora Médica Panamericana S.A, 1465p LE DRÉAU, Y ; JACQUOT, F ; DOUMENQ, P ; GUILIANO, M ; BERTRAND, J. C ; MILLE, G. Hydrocarbon balance of a site wich had been highly and chronically contaminated by petroleum wastes of a refinery (from 1956 to 1992). Marine Pollution Bulletin, v. 34, n.6, p , LEAHY, J. G; COLWELL, R.R. Microbial degradation of hydrocarbons in the environment. Microbiological reviews, v. 54, n. 3, p , LEMOS, J. L. S; ARAUJO, F. M. S. Isolamento e identificação de fungos degradadores de petróleo. IN: JORNADA DE INICIAÇÃO CIENTÍFICA, CENTRO DE TECNOLOGIA MINERAL, CETEM-MCT , Rio de Janeiro, Resumo expandido. Rio de Janeiro, p LI, L; LIU, X; YANG, Y; XU, WANG, W; FENG, L; BARTLAM, M; WANG, L; RAO, Z. Crystal structure of long-chain n-alkane moonoxygenase (LadA) in complex with coenzyme FMN: unveling the long-chain alkane hydroxylase. J. Mol. Biol., v. 376, p , LIMA, D. F. Biorremediação em sedimentos impactados por petróleo na Bahia de Todos os Santos, Bahia: avaliação na degradação de hidrocarbonetos saturados. 2010, 234f. Dissertação (Mestrado em Geologia), Universidade Federal da Bahia, Salvador BA, LIMA, D. F; OLIVEIRA, O. M. C de; CRUZ, M. J. M. Utilização de fungos na biorremediação de substratos contaminados por petróleo: estado da arte. Cadernos de Geociências, v. 8, n.2, p , MACEDO, R. C; BERBERT, V. H. C; LEMOS, J. L. S; TRINDADE, P. V. O; RIZZO, A. C. L de. Biorremediação de solos impactados por óleo cru utilizando fungos filamentosos.in: JORNADA DE INICIAÇÃO CIENTÍFICA DO CENTRO DE TECNOLOGIA MINERAL CETEM/ MCT, 10, 2002, Rio de Janeiro. Resumo expandido. CETEM, 2002, p. 2-8.

98 97 Disponível em: < Acesso em 26. jan, MADIGAN, M. T; MARTINKO, J. M; PARKER, J. Brock Biología de los Microorganismos. 10ª ed. Madri: PEARSON EDUCATION, MAIA-NOGUEIRA, R. Acidente de óleo na BTS. 30 de jun Disponível em: MAITI, A; DAS. S; BHATTACHARYYA. N. Bioremediation of higth molecular height polycyclic aromatic hydrocarbons by Bacillus thuringiensis strain NA2. Journal of sciences, v. 1, n.4, p , MARIANO, A. P. Avaliação do potencial de biorremediação de solos e água contaminados por óleo diesel. 2006, 162p. Tese (Doutorado em Geociências e Meio Ambiente), Universidade Estadual Paulista, Rio Claro SP MARIANO, A. P; DE ANGELIS, D. de F; BONOTTO, D. M. Monitoramento de Indicadores Geoquímicos e Avaliação da Biodegradação em área contaminada por óleo diesel. Engenharia Sanitária e Ambiental, v 12, n.3. p , MARTINS, A; DINARDI, A. L; FORMAGI, V. M; LOPES, T. A; BARROS, R.de M; CONEGLIAN, C. R; BRITO, N. N de; SOBRINHO, G. D; TONSO, S; PELEGRINI, R. Biorremediação. IN: FÓRUM DE ESTUDOS CONTÁBEIS, , Rio Claro.Anais eletrônicos. Faculdades Intgradas, Disponível em: < Acesso em: 08.maio.2011 MELO, E. G. V. Avaliação da glicerina bruta na estimulação de bactérias hidrocarbonoclásticas para remediação de áreas contaminadas por hidrocarbonetos. 2011, 70f. Dissertação (Mestrado em Geoquímica: Petróleo e Meio Ambiente), Universidade Federal da Bahia, Salvador-BA, 2011 MIRANDA, R. C; SOUZA, C. S; GOMES, E. B; LOVAGLIO, R. B; LOPES, C. E; SOUZA, M. F. V. Q. Biodegradation of diesel oil by yeasts isolated from the vicinity of Suape port in the state of Pernambuco Brazil. Brazilian archives of biology and technology v. 50, n. 1, p , MOLLEA, C; BOSCO, F; RUGGERI, B. Fungal biodegradation of naphthalene: microcosms studies. Chemosphere, v. 60, p , MOREIRA, I. T. A. Avaliação da eficiência de modelos de biorremediação aplicados em sedimento de manguezal impactados por atividades petrolíferas. 2010, 163f. Dissertação (Mestrado em Geoquímica: Petróleo e Meio Ambiente), Universidade Federal da Bahia, Salvador BA, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION. Oil spills in mangrove: planning and response considerations. Wasshington: NOAA, p. NIGAM, A. PHALE, P. S; WNGIKAR, P. P. Assessment of the metabolic capacity and adaptability of aromatic hydrocarbon degrading strain Pseudomonas putida CSV86 in aerobic chemostat culture. Bioresource technology, n. 114, p , 2012.

99 98 OLIVEIRA, C. N. Indicadores de consumo e propostas para a racionalização do uso da água em instalações de empreiteiras: caso da Refinaria Landulpho Alves de Mataripe f. Dissertação (Mestrado em Gerenciamento e Tecnologias Ambientais no Processo Produtivo), Universidade Federal da Bahia, Salvador BA, OLIVEIRA, E. C; FELIX, J. P; LEITAO, R. C; MELO, V. M. M; SANTAELLA, S. T. Degradação de fenóis por fungos presentes em águas residuárias de refinarias de petróleo. IN: CONGRESSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL, anais Campo Grande, PEDROZO, M. F. M; BARBOSA, E. M; CORSEUIL, H. X; SCHNEIDER, M; R; LINHARES, M. M. Ecotoxicologia e avaliação de risco do petróleo. Centro de Recursos Ambientais, séries cadernos de referência ambiental, v. 12, p. PEIXOTO, R; CHAER, G. M; CARMO, F. L; ARAUJO, F. V; PAES, J. E; VOLPON, A; SANTIAGO, G. A; ROSADO, A. S. Bacterial communities reflect the spatial variation in pollutant levels in Brazilian mangrove sediments. Antonie Van Leeuwenhoeck, v. 99, p , PENG, R; XIONG, A; XUE, Y; FU, X; GAO, F; ZHAO, W; TIAN, Y; YAO, Q. Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol. Rev., v. 32, p , PENNER, G. C. Estudos laboratoriais da contaminação do solo por gasolina com o uso de detector de fotoionização. 2000, 131f. Dissertação (Mestrado em hidráulica e saneamento), Escola de Engenharia de São Carlos, São Carlos SP, PEREIRA, N. J; GOMES, E. B de; SORIANO, A. U. Biodegradação de hidrocarbonetos. Séries em biotecnologia.1ª ed. v.03. Rio de Janeiro, 76p PETERS, K. E; WALTERS, C. C; MOLDOWAN, J. M. The iomarker guide: biomarkers and isotopes in petroleum exploration and earth history. 2. Ed. Cambridge: PRINCE, R. C; EIMENDORF, E. L; LUTE, J. R; HSU, C. S; HAITH, C. E; SENIUS, J. D; DECHERT, G. J; DOUGLAS, G. S; BUTLER, E. L. 17α(H)21β(H)-hopane as a conserved internal marker for estimating the biodegradation of crude oil. Environ. Sci. Technol., v.28, p , PUCCI, G; ACUÑA, A; LLANES, M. L; TIEDEMANN, M.C; PUCCI, O. H. Diversidad de bactérias cultivables de la costa de Caleta Olivia, Patagônia, Argentina. Acta biológica Colombiana, v. 14, n. 03, p , QIN, X. TANG, J. C; LI, D. S; ZHANG, Q. M. Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline-alkaline soil. Letters in applied microbiology, v. 55, p , QUEIROZ, A. F. S; CELINO, J. J. Impacto ambiental da indústria petrolífera em manguezais da região norte da Baía de Todos os Santos (Bahia, Brasil). Boletim paranaense de geociências, n 62-63, p.23.34, RAMSAY, M. A; SWANNELL, R. P. J; SHIPTON, W. A; DUKE, N. C. Effect of bioremediation on the microbial community in oiled mangrove sediments. Marine pollution bulletin, v. 41, n. 7 e 12, p , 2000.

100 99 RIBEIRO, R; FERNANDES, S. B. S; FORESNTI, E; ZAIAT, M. Degradação de BTX em reator anaeróbio horizontal de leito fixo sob condições desnitrificantes. IN: SINAFERM SIMPÓSIO NACIONAL DE FERMENTAÇÕES, , Florianópolis. Anais... SINAFERM Simpósio Nacional de Fermentações, RIZZO, A. C. L; CUNHA, C. D da; SANTOS, R. L. C; SANTOS, R. M; MAGALHÃES, H. M; LEITE, S. G. R; SORIANO, A. U. Preliminary identification of the bioremediation limiting factors of a clay bearing soil contamined with crude oil. J. Braz. Chem. Soc, v. 19, n. 01, p , ROMERO, M. C; CAZAU, M. C; GIORGIERI, S; ARAMBARRI, A.M. Phenanthrene degradation by microorganisms isolated from a contaminated stream. Environmental pollution, v. 101, p , SACK, U; HEINZE, T. M; DECK, J; CERNIGLIA, C. E; CAZAU, M. C; FRITSCHE, W. Novel metabolites in phenanthrene and pyrene transformation by Aspergillus niger. Applied and environmental microbiology, v. 63, n.7, p , SANTOS, H. F; CARMO, F.L; PAES, J. E. S; ROSADO, A. S; PEIXOTO, R. S. Bioremediation of mangroves impacted by petroleum. Water, air, soil, pollut, v. 216, p , SATOW, M. M. Avaliação do método de Iwatsu et al., (1981) para isolamento de leveduras negras no solo, degradadoras de hidrocarbonetos f. Dissertação (Mestrado em Ciências Biológicas). Universidade Estadual Paulista Julio Mesquita Filho, Rio Claro-SP, SEO.J; KEUM, Y; LI.Q, X. Bacterial degradation of aromatic compounds. Int. J. Environ. Res. Public Health, v.6, p , SHUTTLEWORTH, K. L; CERNIGLIA, C. E. Environmental aspects of PAH biodegradation. Applied biochemistry and biotechnology, v. 54, p , SILVA, I. R. Subsídios para a gestão ambiental para praias da costa do descobrimento, litoram Sul do estado da Bahia, Brasil. Revista da gestão costeira integrada, v. 8, n.2, p , SOUZA, B. B. G. Levantamento participativo de bens e serviços ambientais para estudos de valoração em reservas extrativistas em áreas de manguezais. IN: ENCONTRO DA SOCIEDADE BRASILEIRA E ECONOMIA ECOLÓGICA, , Brasília. SOUZA, C. S; MIRANDA, R. C de; SENA, K. X. F. R; ARAÚJO, J. M de; CHIAPPETA, A de A; SOUZA, M. de F. V. Q. Isolamento e seleção de microrganismos degradadores de derivados de petróleo. IN: CONGRESSO de P & D EM PETRÓLEO E GÁS , Salvador. Anais eletrônicos. UFPE, Disponível em: < Acesso em: 20. nov, STRINGFELLOW, W; AITKEN, M. D. Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading Pseudomonas. Applied and environmental microbiology, v. 61, n.1, p , 1995.

101 100 TAM, N. F. Y; GUO, C. L; YAU, W. Y; WONG, Y. S. Preliminary study on biodegradation of phenanthrene by bacteria isolated from mangrove sediments in Hong Kong. Marine pollution bulletin, v. 45, p , TANG, Y. J; QI, L. KRIEGER-BROCKETT. Evaluating factors that influence microbial phenanthrene biodegradation rates by regression with categorial variables. Chemosphere, v. 59, p ,2005. THOMAS, J. E. Fundamentos de Engenharia do Petróleo. 2. ed. Rio de Janeiro: Interciência- PETROBRÁS, 271p, TISSOT, B. P; WELTE, D. H. Petroleum formation and occurence: A new approach to oil and gas exploration. Berlim: SPRINGER-VERLAG, VAN BEILEN, J. B; FUNHOFF, E. G. Alkane hydroxylases involved in microbial alkane degradation. Appl. Microbiol. Biotecnhol., v. 74, p , VAN HAMME, J. D; SINGH, A; WARD, O. P. Recent advances in petroleum microbiology. Microbiology and molecular biology reviews, v. 67, n. 4, p , VASCO, M. F; CEPERO, M. C; RESTREPO, S; VIVES-FLOREZ, M. Recovery of mitosporic fungi actively growing in soils after bacterial bioremediation of oily sludge and their potential for removing recalcitrants hydrocarbons. International biodeterioration and biodegradation, v. 65, p , VEIGA, I. G. Avaliação da origem dos hidrocarbonetos em sedimentos superficiais de manguezais da região norte da Baía de Todos os Santos/Ba f. Dissertação (Mestrado em Geoquímica e Meio Ambiente), Universidade Estadual do Norte Fluminense, Macaé RJ, VENOSA, A. D; SUIDAN, M. T; KING, D; WRENN, B. A. Use of hopane as a conservative biomarker for the monitoring bioremediation effectiveness of crude oil contaminating a sandy beach. Journal of industrial microbiology and biotechnology, v. 18, p , VILLOTE, J. Utilização de simulador matemático comparativamente ao analógico nos estudos de manobra portuária f. Dissertação (Mestrado em Engenharia Civil), Escola Politécnica, Universidade de São Paulo, São Paulo SP, WALKLEY, A; BLACK, I. A. Na examination of the Degtjarref method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, n. 37, p , WATANABE, K. Microrganisms relevant to bioremediation. Current opinion in biotechnology, v. 12, p , WENTZEL, A; ELLINGSEN, T. E; KOTLAR, H; ZOTCHEV, S. B; THRONE-HOLST, M. Bacterial metabolism of long-chain n-alkanes. Appl. Microbiol. Biotechnol., v. 76, pg , WETLER, R. M. C. Prospecção de microrganismos responsáveis pela degradação de compostos de petróleo em sedimento de um manguezal localizado no Sul da Bahia (Brasil).

102 f. Dissertação (Mestrado em Ecologia), Universidade Estadual de Santa Cruz, Ilhéus BA, WETLER-TONINI, R. M. C; REZENDE, C. E; GRAVITOL, A. D. Biodegradação bacteriana de petróleo e seus derivados. Revista virtual de química, v. 3, n. 2. p , WETTLER-TONINI, R. M. C; REZENDE, C. E de; GRATIVOL, A. D. Degradação e biorremediação de compostos do petróleo por bactérias: revisão. Oecologia australis, v. 14, n.4, p , WILD, S. R; JONES, K. C. Biological and abiotic losses of polynuclear aromatic hydrocarbons (PAHSs) from soils freshly amended with sewage sludge. Environmental toxicology and Chemistry, v. 12, n.1, p.5-12, YAKIMOV, M. M; DENARO, R; GENOVESE, M; CAPPELO, S; D AURIA, G; CHERNIKOVA, T. N; TIMMIS, K. N; GOLYSHIN, P. N; GILULIANO, Laura. Natural microbial diversity in sediments of Milazzo Harbour (Silicy) and community successions during microcosms enrichment with various hycrocarbons. Environmental microbiology, v. 7, n. 9, p , YE, D; SIDDIKI, M. A; MACCUBBIN, A. E; KUMAR, S. SIKKA, H. C. Degradation of polynuclear aromatic hydrocarbons by Sphingomonas paucimobilis. Environ. Sci. Technol., v. 30, p , YU, S. H; KE, L; WONG, Y. S; TAM, N. F. Y. Degradation of polycyclic aromatic hydrocarbons (PAHs) by a bacterial consortium enriched from mangrove sediments. Environment international, v. 31, p , YUAN, S. Y; CHANG, J. S; YEN, J. H; CHANG, B. Biodegradation of phenanthrene in river sediment. Chemosphere, n. 43, p , YUAN, S. Y; WEI, S. H; CHANG, B. V. Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere, n. 41, p , YUN, T; YUAN-RONG, L; THIAN-LING, LI-ZHE, C; XIAO-XING, C; CHONG-LING, Y. Contamination and potential biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments of Xiamen, China. Marine pollution bulletin, n. 56, p , ZHENG, J. LIN, X; ZHANG, J; LI, X. Isolation of polycyclic aromatic hydrocarbons (PAHs)- degrading Mycobacterium spp. And the degradation in soil. Journal of hazardous materials, v. 183, p , ZILIO, E. L; PINTO, U. B. Identificação e distribuição dos principais grupos de compostos presentes nos petróleos brasileiros. Boletim técnico da Petrobrás, v. 45, n.01, p.21-25, ZIOLLI, R. L. Aspectos ambientais envolvidos na poluição marinha por petróleo. Revista saúde e ambiente v. 3, n.2, p , ZOBEL, C. E. Action of microorganisms on hydrocarbons. Bacteriol. Rev. v 10, n.1-2 p. 1-49, 1946.

103 102 APÊNDICE 1 REVISÃO DE LITERATURA Esta revisão visa ampliar a discussão sobre aspectos relevantes ao trabalho exposto e que não foram contempladas devido aos limites estabelecidos para este. 1.1 Derrames acidentais de petróleo e seus derivados Desde a década de 70 são relatados diversos acidentes envolvendo derrame de petróleo e seus derivados no Brasil e no mundo (quadro 5). Os derrames acidentais decorrentes das atividades da indústria petrolífera podem ocorrer desde a fase de exploração até a comercialização dos petroderivados, podendo culminar com a contaminação de solos, rios e demais ambientes costeiros (SILVA, 2009; ANDRADE et al., 2010). Quadro 5 - Local e data dos dez principais acidentes envolvendo derramamento de petróleo no mundo e no Brasil Acidente Local Ano Quantidade derramada Mundo Argo Merchant Massachusetts ,7 milhões de litros de óleo combustível Amoco Cádiz França ,7 milhões de galões de petróleo Ixtoc I México milhões de litros óleo Burmagah Ágata Golfo do México ,8 milhões de litros de óleo Exxon Valdez Alasca barris de petróleo Megaborg Texas ,1 milhões de litros de petróleo Barge Cibro Savannah New Jersey mil litros de óleo Guerra do Golfo Golfo Pérsico milhões de barris de petróleo Barge Bouchard 55 Flórida mil litros de óleo combustível Horizon Deepwater Golfo do México barris de petróleo/dia Brasil Oleoduto REDUC Baía de Guanabara m 3 de óleo Transporte marítimo Tramandaí m 3 de óleo Rompimento de Rio Barigui e m 3 de óleo oleoduto Iguaçu N/T Vergina São Sebastião m 3 de óleo Plataforma P36 Bacia de Campos m 3 de óleo Plataforma P7 Bacia de Campos m 3 de óleo Navio Norma Baía de Paranaguá m 3 de óleo Oleoduto São São Sebastião m 3 de óleo Sebastião Navio Vicuña Baía de Paranaguá m 3 de metanol/ m 3 de Plataforma SEDCO 2006 óleo Bacia de Campos a 330 barris de petróleo/dia Fonte: CETESB, 2008 apud PARREIRA 2008; ANP, 2012; NOAA, 2012

104 103 O impacto causado pelos petroderivados nos ecossistemas depende do tipo de poluente, da quantidade derramada, toxicidade, padrão de deposição e tempo de retenção. Os contaminantes presentes são classificados de acordo com o seu potencial de biodegradabilidade, recalcitrância e comportamento no meio ambiente (ANTIZAR-LADISLAO, 2010). Em um acidente ou na ocorrência de um derramamento de óleo, as primeiras medidas a serem adotadas são a remoção física, como remoção mecânica ou química, como o uso de surfactantes. A biorremediação normalmente é realizada em uma fase posterior transformando o contaminante em compostos menos tóxicos ou até mesmo mineralizando completamente em água e CO 2 (PEREIRA et al., 2009). O processo de biorremediação é uma tecnologia que utiliza microrganismos autóctones (nativos) ou introduzidos para remover, reduzir ou mineralizar os contaminantes recalcitrantes presentes no meio ambiente. Pesquisadores atuais têm estudado intensamente o procedimento de biorremediação indicando-o como uma alternativa viável e eficaz para a descontaminação de ambientes contaminados (CRAPEZ et al., 2002) Durante a biodegradação os microrganismos estabelecem um contato entre a superfície celular e o óleo para em seguida metaboliza-lo em seu interior (figura 20) (WETLER-TONINI et al., 2010). Figura 20 Degradação de petróleo por microrganismos Fonte: Adaptado de Head et al.(2006). No ambiente natural a população microbiana capaz de degradar compostos tóxicos é reduzida. Devido a este fato a taxa de degradação dos poluentes torna-se lenta já que a população de microrganismos não aumenta proporcionalmente em relação à introdução dos contaminantes ao meio ambiente (GARCÍA-RIVERO; PERALTA-PÉREZ, 2008).

105 104 A diversidade de substratos existentes em ambientes impactados por petróleo faz com que os microrganismos possuam diferentes vias metabólicas possíveis para a assimilação dos hidrocarbonetos (WETLER-TONINI et al., 2011). Na degradação aeróbica de hidrocarbonetos, a exemplo dos alcanos, o oxigênio é utilizado como um reagente para a ativação da molécula, com o auxílio das enzimas monooxigenases. Normalmente o processo de biodegradação dos n-alcanos inicia com a oxidação do grupo metil terminal, transformando-o em um álcool primário, posteriormente em um aldeído e por fim em um ácido graxo. Os ácidos graxos são então convertidos à CoA e por um processo de β oxidação passam a gerar acetil-coa (figura 21) (VAN HAMME et al., 2003; ROJO, 2009). Figura 21 Vias de degradação aeróbica de alcanos Legenda: AH alcano hidroxilase; AD álcool desidrogenase; ALD aldeído desidrogenase; ACS acetil CoA sintetase; ω H ω hidroxilase; BVM Baeyer Villiger monooxigenase; E esterase; TCA ácido tri carboxílico. Fonte: Modificado de Rojo (2009). 1.2 Hidrocarbonetos Policíclicos Aromáticos (HPAs) Atualmente existem mais de 100 HPAs reconhecidos pela IUPAC (International Union of Pure and Applied Chemistry), porém, devido ao seu interesse industrial, toxicológico e ambiental somente 16 considerados são considerados prioritários pela Agência de Proteção Ambiental dos Estados Unidos (USEPA), sendo possíveis causadores de câncer em seres humanos (quadro 6 e figura 22) (POTIN et al., 2004; COSTA, 2006).

106 105 A introdução dos HPAs no meio ambiente se dá por meio de fenômenos naturais, como queimadas de florestas e erupções vulcânicas; pirólise de matéria orgânica proveniente de atividades antropogênicas, além da combustão incompleta de combustíveis fósseis. A distribuição dos HPAs no meio ambiente bem como seus efeitos nos organismos vivos, é determinada pelo número de anéis e pelo peso molecular. A solubilidade, volatilidade e reatividade química dos HPAs são inversamente proporcionais ao aumento do peso molecular (SEO et al., 2009; SISMARRO et al., 2010; CELINO et al., 2012). Volatilização, foto-oxidação, oxidação química, sedimentação, bioacumulação e biodegradação são alguns dos destinos ambientais dos HPAs (CERNIGLIA, 1992). Quadro 6-16 HPA s prioritários da USEPA e seus respectivos potenciais carcinogênicos, genotoxicos e mutagênicos. HPA Carcinogenicidade Genotoxicidade Mutagenicidade Naftaleno (Naf) Acenatfileno (Ac) Acenafteno (Ace) Fluoreno (Fl) I L (-) Antraceno (A) NC NC (-) Fenantreno (Fe) I L (+) Fluoranteno (Fluo) NC L (+) Pireno (Pi) NC L (+) Benzo(a)antraceno (BaA) Suf Suf (+) Criseno (Cri) L L (+) Benzo(k)fluoranteno (BkFluo) Suf I (+) Benzo(b)fluoranteno Suf I (+) (BbFluo) Benzo(a)pireno(BaP) Suf Suf (+) Benzo(g,h,i)perileno (BgP) I I (+) Indeno(1,2,3-c,d)pireno (IndP) Suf I (+) Dibenzo(a,h)antraceno (DiBahA) Suf Suf (+) Legenda: Suf suficiente; I insuficiente; L limitado; NC não caracterizado; (+) mutagenicidade positiva; (-) mutagenicidade negativa. Fonte: Adaptado de Costa (2006)

107 106 Figura 22 Estrutura química e peso molecular (m/z) dos 16 HPA s prioritários pela USEPA por ordem crescente de recalcitrância. Fonte: Cerniglia (1999); Costa (2006). Nos sedimentos de manguezais, vários são os fatores influenciadores do grau de contaminação por compostos tóxicos, como: fonte e tipo de poluição, propriedades físicoquímicas e proximidade com atividades antropogênicas (GUO et al., 2005). Comparado aos demais compostos orgânicos presentes em solos e sedimentos, os HPAs são mais recalcitrantes e mais difíceis de serem removidos por técnicas de limpeza convencionais. A remoção do contaminante por meio de escavação, isolamento ou incineração são medidas normalmente adotadas para a remoção de HPAs de sedimento, porem além de não apresentarem custo benefício satisfatórios podem acabar por transferir o poluente para outro compartimento ambiental (HARITASH; KAUSHIK, 2009). Referências AGÊNCIA NACIONAL DO PETRÓLEO. Cronologia do vazamento. Disponível em: < chebust= >. Acesso em: 03 mar ANDRADE, J. A; AUGUSTO, F; JARDIM, I. C. S. F. Biorremediação de solos contaminados por petróleo e seus derivados. Eclética química, v. 35, n. 3, p , 2010.

108 107 ANTIZAR-LADISLAO, B. Biorremediation: working with bacteria. Elements, v. 6, p , CELINO, J. J; CORSEUIL, H. X; FERNANDES, M; HADLICH, G. M. Persistent toxic substances in surface water of Todos os Santos Bay, Brazil. Resources and environment, v. 2, n.4, p , CERNIGLIA, C. E. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, v.3, p , COSTA, A. B. Caracterização molecular e isotópica de material orgânico em sedimentos da Baía de Todos os Santos BA. 2006, 124f. Tese (doutorado em geofísica). Universidade Federal da Bahia, Salvador BA, CRAPEZ, M. C; BORGES, A. L. N; Bispo, M. G. S; PEREIRA, D. C. Tratamento para derrames de petróleo: biorremediação. Ciência hoje, v. 30, n. 179, p GARCÍA-RIVERO, M; PERALTA-PÉREZ, M. R. Cometabolismo em la biodegradación de hidrocarburos. Revista mexicana de ingeniería química, v. 7, n. 1, p.1-12, GUO, C. L; ZHOU, H. W; WONG, Y. S; TAM, N. F. Y. Isolation of PAH-degrading bacteria from mangrove sediments and their biodegradation potential. Marine pollution bulletin, v. 51, p , HARITASH, A. K; KAUSHIK, C. P. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. Journal of hazardous materials, v. 169, p. 1-15, HEAD, I.M; JONES, D. M; RÖLING, W. F. M. Marine microorganisms make a meal of oil. Nature reviews, v. 4, p , NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION. National Ocean Service. Incident news. Office of response and restoration. National ocean servisse. Disponível em: < Acesso em: 04 mar PARREIRA, V. X. Modelagem da trajetória da pluma de óleo para derramamentos da região do porto de Tubarão. 71f Monografia (Graduação em Oceanografia). Universidade Federal do Espírito Santo, Vitória, PEREIRA, N. J; GOMES, E. B de; SORIANO, A. U. Biodegradação de hidrocarbonetos. Séries em biotecnologia.1ª ed. v.03. Rio de Janeiro, 76p POTIN, O; RAFIN, C; VEIGNIE, E. Bioremediation of na aged polycyclic aromatic hydrocarbons (PAHs) contaminated spol by filamentous fungi isolated from the soil. International biodeterioration and biodegradation, v. 54, n.1, p.45-52, ROJO, F. Degradation of alkanes by bacteria. Enrironmental microbiology, v. 11, n.10, pg , SEO.J; KEUM, Y; LI.Q, X. Bacterial degradation of aromatic compounds. Int. J. Environ. Res. Public Health, v.6, pg , 2009.

109 108 SILVA, L. J. Processo de landfarming para o tratamento de resíduos oleosos f. Dissertação (mestrado em Ciências), Escola de Química da Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ, SISMARRO, R. GONZÁLEZ, N; BAUTISTA, L. F; SANZ, R; MOLINA, M. C. Optimisation of key abiotic factors of PAH (naphtalene, phenanthrene and anthracene) biodegradation process by a bacterium consortium. Water air soil pollut., v. 217, p , VAN HAMME, J. D; SINGH, A; WARD, O. P. Recent advances in petroleum microbiology. Microbiology and molecular biology reviews, v. 67, n. 4, p , WETTLER-TONINI, R. M. C; REZENDE, C. E de; GRATIVOL, A. D. Degradação e biorremediação de compostos do petróleo por bactérias: revisão. Oecologia australis, v. 14, n.4, p , WETTLER-TONINI, R. M. C; REZENDE, C. E de; GRAVITOL, A. D. Biodegradação bacteriana de petróleo e seus derivados. Revista virtual de química, v.3, n.2, p , 2011.

110 109 APÊNDICE 2 MATERIAIS E MÉTODOS Estão exclusivamente contemplados os procedimentos adotados para a desidratação das amostras, realizado anteriormente às análises geoquímicas. 2.1Desidratação Os procedimentos de desidratação das amostras foram realizados primeiramente para cessar o metabolismo bacteriano, já que as bactérias sobrevivem na interface óleo água (ATLAS, 2011; PETERS et al., 2005) bem como para não criar resultados duvidosos em relação à degradação, já que alguns compostos são solúveis em água, podendo gerar um resultado falso positivo e também para não danificar o sistema de funcionamento do cromatógrafo a gás posteriormente utilizado para a avaliação dos resultados Preparação das amostras Com o auxílio de uma pipeta graduada estéril retirou-se o excesso do conteúdo hídrico presente nos frascos Erlenmeyers. Os frascos contendo as amostras com o óleo mais concentrado e resquícios de água foram acondicionados em caixas de isopor contendo gelo e destinados ao Laboratório de Estudos do Petróleo LEPETRO, da Universidade Federal da Bahia (UFBA) para a realização das desidratações. Todas as vidrarias utilizadas foram lavadas e permaneceram em banho de extran a 5% durante 24 horas. Posteriormente foram enxaguadas com água destilada e secas em estufa a 100ºC até a garantia de estarem completamente secas. Em seguida as vidrarias foram limpas com diclorometano (DCM), Merck Desidratação antes da formação dos consórcios bacterianos As amostras de óleo contendo as cepas selecionadas foram desidratadas em pipetas de Pasteur. Na base da pipeta foi acondicionada uma pequena quantidade de lã de vidro e o restante do interior foi preenchido com 6cm de sulfato de sódio anidro, previamente ativado em forno Mufla a 500ºC durante 1 hora. Em um vial limpo e descontaminado com diclorometano pesou-se

111 110 cerca de 10mg da amostra de óleo a ser desidratada. Calculou-se a quantidade de diclorometano necessária para a obtenção da concentração de 0,05mg de amostra/ µl de diclorometano e padronizou-se todas as amostras na mesma concentração. Com o uso do diclorometano (DCM), Merck P.A. As amostras foram então eluídas ao longo da pipeta e após serem desidratadas foram coletadas em um vial anteriormente pesado (figura 23). Figura 23 Amostras de óleo desidratadas em pipetas de Pasteur Desidratação após os ensaios de degradação Após a retirada do excesso de água presente nos frascos Erlenmeyers submetidos aos ensaios de degradação em cultura líquida, as amostras de óleo foram transferidas para tubos de centrífuga com diclorometano e centrifugadas a 2000 rpm durante 15 minutos (figura 24A). Duas fases foram formadas, a fase orgânica que permaneceu no fundo do frasco e inorgânica (água) a qual foi descartada (figura 24B). Cerca de 100mg da amostra de óleo foi pesada em um vial de vidro. Posteriormente foi adicionado DCM P.A ISO ACS, marca Merck, em volume suficiente para atingir uma concentração de 0,05 mg de amostra por µl de DCM. A amostra foi então sonicada em banho ultrassônico, marca UNIQUE durante 10 minutos, para forçar o rompimento das borbulhas de água e obter uma desidratação mais eficaz. Os demais procedimentos foram executados da mesma forma acima relatada. A fim de confirmar a eficiência do processo de desidratação foram escolhidas aleatoriamente 20% das amostras para a realização de duplicatas. Foram também retiradas microfotografias das amostras de óleo controle, consórcio A e consórcio B após 30 dias do

112 111 ensaio de degradação, por meio do microscópio OLYMPUS, modelo ACH com aumento da objetiva de 5 vezes. Figura 24 Procedimentos de desidratação. (A) Centrífugação a 2000 rpm durante 15 minutos, (B) Separação das frações orgânicas e inorgânicas, destaque para a água na parte superior da amostra após a centrifugação. REFERÊNCIAS ATLAS, R. Oil biodegradation and bioremediation: A tale of the two worst spills in U.S history. Environmental science and technology, v. 45, p , PETERS, K. E; WALTERS, C. C; MOLDOWAN, J. M. The biomarker guide: biomarkers and isotopes in petroleum exploration and earth history. 2. Ed. Cambridge: Cambridge University press, 2005.

113 112 APÊNDICE 3 RESULTADOS Estão relatados os resultados provenientes das etapas de caracterização dos microrganismos contemplados no estudo bem como tabelas contendo dados brutos e fotografias que não foram citadas. 3.1 Caracterização bioquímica e morfotintorial dos microrganismos selecionados A caracterização bioquímica e morfotintorial de cada colônia selecionada estão representadas nas tabelas 12 e 13. Ao chegarem à UFPE notou-se que três cepas MD04p (111), DJ02p (47) e CN06p (116) apresentavam 2 colônias distintas em uma mesma placa. Mesmo após vários repiques consecutivos não foi possível realizar o isolamento. Devido à forte associação apresentada, acredita-se tratar de um caso de associação entre as cepas. Nenhuma prova bioquímica foi executada para as cepas tidas como contaminadas. A coloração de Gram revelou a existência de 05 bactérias caracterizadas como bacilos Gram positivos, 05 cocos Gram positivos e apenas 01 bacilo Gram negativo. Pesquisas revelam que os bacilos Gram negativos, como por exemplo, os pertencentes ao gênero Pseudomonas são os que mais contribuem com a degradação de hidrocarbonetos de petroderivados, porém outros estudos também revelam um considerável número de cocos ou bacilos Gram positivos participantes do processo de biorremediação (AFUWALE; MODI, 2012). Devido às dificuldades apresentadas para a identificação de bactérias ambientais por meio de técnicas bioquímicas tradicionais apenas a cepa CN06p (67) foi identificada como Enterobacter gergoviae (figura 25). Em um derrame de óleo alguns dos principais gêneros bacterianos encontrados como degradadores das diferentes frações são Acidovorans, Acinetobacter, Aeromonas, Bacillus, Miccococcus, Nocardia, Pseudomonas, entre outros (CRAPEZ et al., 2002).

114 113 Tabela 12 Características morfotintoriais e de crescimento apresentadas pelas bactérias selecionadas Cepa Agar Tioglicolato Agar EMB Gram Características DJ01p (09) Crescimento na superfície e microaerófilo - Bacilos Gram (+) Colônias alaranjadas com pouco crescimento DJ02p (46) DJ02p (107) Crescimento na superfície Crescimento na superfície - Cocos Gram (+) Colônias alaranjadas com pouco crescimento - Bacilos Gram (+) Colônias alaranjadas com pouco crescimento CN06p (115) CN06p (118) MD04p (136) DJ02p (100) DJ02p (102) MD04p (81) CN06p (67) CN05p (128) Crescimento na superfície Crescimento abaixo da superfície Crescimento na superfície Crescimento na superfície Crescimento na superfície Crescimento abaixo da superfície Crescimento em toda a extensão Crescimento na superfície - Bacilos Gram (+) Colônias alaranjadas com pouco crescimento - Bacilos Gram (+) Colônias alaranjadas com pouco crescimento - Cocos Gram (+) Colônias alaranjadas com pouco crescimento - Cocos em tétrade Gram (+) Colônias alaranjadas com pouco crescimento - Bacilos Gram (+) Colônias alaranjadas com pouco crescimento - Cocos em tétrade Gram (+) Crescimento seco, escuro e sem brilho metálico Bacilos Gram (-) Colônias alaranjadas com pouco crescimento Colônias incolores - Cocos Gram (+) Colônias alaranjadas com pouco crescimento Legenda: n.r não realizado; DJ Dom João; MD Madre de Deus; CN Candeias; 01,02,04,05 e 06 pontos de coleta de onde as cepas foram isoladas; p - petróleo

115 114 Tabela 13 Características bioquímicas apresentadas pelas bactérias selecionadas Cepa TSI C M U I C.O SA SO TR M AR CAT H 2 S A. DJ01p al/al n.r n.r n.r n.r n.r + - (09) DJ02p al/al n.r n.r n.r n.r n.r + - (46) DJ02p al/al n.r n.r n.r n.r n.r + - (107) CN06p al/al n.r n.r n.r n.r n.r + - (115) CN06p al/al n.r n.r n.r n.r n.r + - (118) MD04p al/al n.r n.r n.r n.r n.r + - (136) DJ02p al/al n.r n.r n.r n.r n.r + - (100) DJ02p al/al n.r n.r n.r n.r n.r + - (102) MD04p al/al n.r n.r n.r n.r v + - (81) CN06p ac/ac (67) C05p (128) Alc/al c n.r n.r n.r n.r n.r + - Legenda: al/al pico alcalino e fundo alcalino; ac/ ac pico ácido e fundo ácido; C citrato; M motilidade; U uréia; I indol; C.O citrato oxidase; SA sacarose; SO sorbitol; TR trealose; AR arabnose; CAT catalase; n.r não realizado Figura 25 - Microfotografia da cepa bacteriana (C06p(67)) identificada como Enterobacter gergoviae (aumento de 40x).

116 Cromatografia gasosa das amostras de óleo submetidas aos ensaios de seleção Por meio da cromatografia gasosa (CG/ FID), visualizou-se no fingerprints do óleo original (figura 26A) uma leve degradação em relação ao controle abiótico (figura 26B). Nota-se no controle um leve aumento na abundância molecular dos n-alcanos (C 8 -C 40 ) e uma ligeira elevação da MCNR (Mistura complexa não resolvida). Figura 26 - Fingerprints das amostras de óleo original (A) e do controle abiótico(b) Das 15 cepas selecionadas apenas 14 foram tiveram as amostras de óleo correspondentes avaliadas por meio da cromatografia gasosa (CG). A análise das amostras por meio do whole oil permitiu a visualização de fingerprints distintos para cada cepa avaliada, indicando diferentes graus de degradação. Mesmo tendo sido identificada a existência de associações bacterianas nas três cepas anteriormente citadas resolveu-se utilizá-las para a avaliação dos fingerprints devido ao potencial de degradação apresentado, considerando, pois a denominação de apenas um isolado. A seleção das cepas para a composição dos consórcios foi realizada através do estudo qualitativo dos graus de degradação por meio dos perfis cromatográficos. Os fatores que corroboraram para tal decisão foram: abundância molecular de n-alcanos, disposição dos picos de n-alcanos degradados e tamanho da MCNR. Das cepas avaliadas 50% não apresentaram os parâmetros suficientes para a formação dos consórcios, porém, devido ao potencial de degradação anteriormente indicado e pelas características dos seus perfis cromatográficos, são passíveis de serem utilizadas em demais estudos relacionados com biorremediação de áreas impactadas por atividades petrolíferas. Na figura 27 estão representados os fingerprints das amostras de óleo cujas cepas não foram utilizadas para a formação dos consórcios. A denominação das cepas bacterianas foi baseada na localidade onde foi isolada (DJ- Dom João, MD Madre de Deus e CN Candeias),

117 116 no ponto onde a amostra para o isolamento foi inicialmente coletada (02, 04, 05 e 06) e p (petróleo utilizado como fonte de carbono). Figura 27 - Perfil de n-alcanos e fingerprints das amostras selecionadas que não foram utilizadas para a formação dos consórcios hidrocarbonoclásticos. A DJ01p(09); B DJ02p(46); C DJ02p(107); D MD04p(111); E CN06p(115); F CN06P (118) e G MD04P (136).

118 117 Sete cepas bacterianas foram indicadas para a formação dos consórcios (figuras 28 a 30). A escolha das cepas para a formação de cada consórcio baseou-se na abrangência dos picos ao longo do fingerprint, visando uma degradação mais eficiente ou mesmo uma completa mineralização do petróleo. Nas figuras 28 a 30 os fingerprints das cepas estão representados de acordo com a área de estudo onde foram inicialmente isoladas, sendo: DJ área de produção de petróleo; MD região caracterizado pelo transporte de petroderivados; CN localidade influenciada por atividades de refino. Figura 28 Fingerprints das amostras de óleo contendo as cepas (A) - DJ02p(47), (B) - DJ02p(100) e (C) - DJ02p(102), isoladas do campo de Dom João em São Francisco do Conde. Figura 29 Fingerprint da amostra contendo a cepa MD04p(81) isolada do terminal porturário TEMADRE em Madre de Deus.

119 118 Figura 30 Fingerprints das amostras (A) - CN06p(67),(B) - C06p(116) e (C) - C06p(128) isoladas nas proximidades da RLAM, em Candeias. Após a execução de todos os procedimentos laboratoriais, todas as bactérias isoladas foram armazenadas em duplicata em tubos de reação de 2,0mL, com 10% de glicerol estéril para a utilização em ensaios futuros caso seja necessário. 3.3 Ensaios de Degradação Na figura 31 estão representados os aspectos visuais dos frascos Erlenmeyers das amostras de óleo submetidas aos ensaios de degradação. As amostras correspondentes ao t4 não estão representadas, porém não houve diferença em relação ao t3.

120 119 Figura 31 Aspecto visual dos frascos Erlenmeyers das amostras controle (I), consórcio A (II) e consórcio B (III) em cultura líquida nos diferentes períodos de tempo de experimento. (A) - t0, (B) - t1, (C) - t2 e (D) t3 3.4 Desidratação das amostras de óleo submetidas à ação dos consórcios Por meio das microfotografias nota-se a presença de várias gotas de água nas amostras de óleo após os ensaios de degradação, formando emulsões óleo-água ou óleo água- óleo (figura 32E). As microfotografias das amostras de óleo revelaram que o procedimento de desidratação foi satisfatório, não sendo visualizada a presença de água nas amostras que foram desidratadas (figuras 32B, D e F).

121 120 Figura 32 - Microfotografias as amostras de óleo t4 controle, t4 consórcio A e t4 consórcio B. (A), (C) e (E) antes das desidratações e (B), (D) e (F) após as desidratações. 3.5 Cromatografia líquida Conforme mencionado no artigo 2, em todas as amostras a fração dos hidrocarbonetos saturados correspondeu a mais de 50% dos componentes do petróleo (figura 33). Nas tabelas 14 a 19 estão mencionadas as massas de óleo inicialmente pesadas, a massa total recuperada, a média entre os percentuais das frações SAT, ARO e NSO e erro percentual para as amostras de

122 121 óleo, controle, consórcio A e consórcio B nos tempos t0, t1, t2, t3 e t4. Os cromatogramas de distribuição dos n-alcanos (C 18 -C 32 ) e dos hopanos, presentes nas amostras de óleo estão representados nas figuras 33 e 34. Figura 33 - Diagrama ternário das massas das frações SAT, ARO e NSO do óleo original e dos controles (atenuação natural) das amostras de óleo submetidas aos ensaios de degradação em duplicata e dos consórcios bacterianos A e B (bioaumento) em triplicata nos tempos amostrais t0, t1, t2, t3 e t4. (B) (A) Óleo Tabela 14 - Massa inicial, recuperada e percentual das frações SAT, ARO e NSO das amostras de óleo original. AMOSTRA Massa Óleo(g) Massa total recuperada (g) Massa recuperada (%) SAT (%) ARO (%) NSO (%) Massa Total Óleo (1) 0,0203 0, ,15 57,38 19,67 22,95 100,00 Óleo (1.1) 0,0201 0, ,04 55,14 22,16 22,70 100,00 Média 56,26 20,92 22,83 100,00 (%) erro 3,99-11,90 1,09

123 122 Tabela 15 - Massa inicial, recuperada e percentual das frações SAT, ARO e NSO das amostras de óleo controle, consórcio A e consórcio B submetidas aos ensaios de degradação no tempo t0 (2 horas) AMOSTRA Massa Óleo (g) Massa total recuperada (g) Massa recuperada (%) SAT (%) ARO (%) NSO (%) Massa Total t0 Controle (1) 0,0203 0, ,8 60,24 18,07 21,69 100,00 t0 Controle (2) 0,0200 0, ,4 60,67 18,88 20,45 100,00 Média 60,45 18,48 21,07 100,00 (%) erro -0,71-4,38 5,87 100,00 t0 Consórcio A (1) 0,0203 0, ,3 58,08 19,16 22,75 100,00 t0 Consórcio A (2) 0,0202 0, ,2 60,62 19,37 20,00 100,00 t0 Consórcio A (3) 0,0200 0, ,5 57,76 21,74 20,50 100,00 Média 58,82 20,09 21,08 100,00 (%) erro 0,37-8,40 6,96 100,00 t0 Consórcio B (1) 0,0203 0, ,3 61,35 18,40 20,25 100,00 t0 Consórcio B (2) 0,0203 0, ,2 60,56 18,22 21,22 100,00 t0 Consórcio B (3) 0,0204 0, ,4 58,45 21,72 19,84 100,00 Média 60,12 19,45 20,44 100,00 (%) erro 3,23-11,00 1,35 100,00 Tabela 16 - Massa inicial, recuperada e percentual das frações SAT, ARO e NSO das amostras de óleo controle, consórcio A e consórcio B submetidas aos ensaios de degradação no tempo t1 (24 horas). AMOSTRA Massa Óleo (g) Massa total recuperada (g) Massa recuperada (%) SAT (%) ARO (%) NSO (%) Massa Total t1 Controle (1) 0,0200 0, ,0 57,45 21,81 20,74 100,00 t1 Controle (2) 0,0200 0, ,5 56,98 22,35 20,67 100,00 Média 57,22 22,08 20,71 100,00 (%) erro 0,81-2,44 0,36 t1 Consórcio A(1) 0,0200 0, ,0 51,06 24,47 24,47 100,00 t1 Consórcio A(2) 0,0201 0, ,5 51,92 25,48 22,60 100,00 t1 Consórcio A (3) 0,0200 0, ,22 23,16 20,53 100,00 Média 53,10 24,37 22,53 100,00 (%) erro -6,52 3,67 11,70 t1 Consórcio B(1) 0,0200 0, ,5 53,63 20,11 26,26 100,00 t1 Consórcio B (3) 0,0200 0, ,5 58,48 18,71 22,81 100,00 Média 56,06 19,41 24,53 100,00 (%) erro -8,65 7,20 14,06

124 123 Tabela 17 - Massa inicial, recuperada e percentual das frações SAT, ARO e NSO das amostras de óleo controle, consórcio A e consórcio B submetidas aos ensaios de degradação no tempo t2 (7 dias). AMOSTRA Massa Óleo (g) Massa total recuperada (g) Massa recuperada SAT (%) ARO (%) NSO (%) Massa Total t2 Controle (1) 0,0204 0, ,04 56,50 21,00 22,50 100,00 t2 Controle (2) 0,0200 0, ,00 53,37 21,91 24,72 100,00 Média 54,94 21,46 23,61 100,00 (%) erro 5,70-4,24-9,40 t2 Consórcio A(1) 0,0202 0, ,05 54,43 23,80 21,77 100,00 t2 Consórcio A(2) 0,0127 0, ,42 49,10 20,76 30,15 100,00 t2 Consórcio A(3) 0,0202 0, ,96 51,63 24,66 23,71 100,00 Média 51,72 23,07 25,21 100,00 (%) erro 3,51-2,35-5,60 t2 Consórcio B(1) 0,0202 0, ,60 51,38 25,97 22,65 100,00 t2 Consórcio B(2) 0,0203 0, ,15 54,64 22,40 22,95 t2 Consórcio B(3) 0,0202 0, ,66 52,66 24,85 22,49 100,00 Média 52,90 24,41 22,70 100,00 (%) erro -1,64 2,92 0,49 Tabela 18 - Massa inicial, recuperada e percentual das frações SAT, ARO e NSO das amostras de óleo controle, consórcio A e consórcio B submetidas aos ensaios de degradação no tempo t3 (15 dias). AMOSTRA Massa Óleo (g) Massa total recuperada (g) Massa recuperada SAT (%) ARO (%) NSO (%) Massa Total T3 Controle (1) 0,0205 0, ,07 55,78 23,12 21,11 100,00 T3 Controle (1.1) 0,0200 0, ,95 54,24 25,22 20,54 100,00 T3 Controle (2) 0,0201 0, ,44 57,59 20,88 21,53 100,00 Média 55,01 24,17 20,82 100,00 (%)erro -3,29 9,24-2,03 T3 Consórcio A(1) 0,0201 0, ,04 53,51 24,86 21,62 100,00 T3 Consórcio A(2) 0,0200 0, ,50 55,50 21,47 23,04 100,00 T3 Consórcio A(3) 0,0200 0, ,50 56,91 22,10 20,99 100,00 Média 55,31 22,81 21,88 100,00 (%)erro -4,10 7,84 1,96 T3 Consórcio B(1) 0,0200 0, ,50 52,33 23,83 23,83 100,00 T3 Consórcio B(2) 0,0201 0, ,64 55,32 21,05 23,63 100,00 T3 Consórcio B(3) 0,0208 0, ,31 55,21 22,92 21,88 0, ,75 55,56 22,22 22,22 100,00 Média 54,40 22,37 23,23 100,00 (%)erro -3,57 2,61 5,72

125 124 Tabela 19 - Massa inicial, recuperada e percentual das frações SAT, ARO e NSO das amostras de óleo controle, consórcio A e consórcio B submetidas aos ensaios de degradação no tempo t4 (30 dias). AMOSTRA Massa Óleo(g) Massa total recuperada (g) Massa recuperada (%) SAT (%) ARO (%) NSO (%) Massa Total T4 Controle (1) 0,0201 0, ,06 57,71 16,00 26, T4 Controle (1.1) 0,0201 0, ,43 59,21 20,61 20, T4 Controle (2) 0,0215 0, ,63 62,47 15,26 22, Média 59,80 17,29 22, (%) erro -5,27 3,10 10,97 T4 Consórcio A(1) 0,2050 0, ,59 52,53 23,50 23,96 T4 Consórcio A(2) 0,0201 0, ,51 58,16 22,45 19, T4 Consórcio A(3) 0,0151 0, ,64 55,06 22,78 22, Média 55,25 22,91 21, (%) erro -3,13 2,07 5,21 T4 Consórcio B(1) 0,0201 0, ,01 58,97 17,95 23, T4 Consórcio B(2) 0,0205 0, ,46 58,46 18,06 23, T4 Consórcio B(3) 0,0216 0, ,16 55,87 19,76 24, Média 57,77 18,59 23, (%) erro 2,85-4,90-3,04 Figura 33 - Cromatogramas da distribuição dos n-alcanos m/z 85 das amostras controle, consórcio A e consórcio B e suas respectivas réplicas, submetidas aos ensaios de degradação nos tempos amostrais t0 (2 horas), t1(24 horas), t2 (7 dias), t3(15 dias) e t4 (45 dias).

126 125

127 126

128 127

129 128

130 Figura 34 - Cromatogramas de distribuição dos Hopanos m/z 191 das amostras controle, consórcio A e consórcio B e suas respectivas réplicas, submetidas aos ensaios de degradação nos tempos amostrais t0 (2 horas), t1(24 horas), t2(7 dias), t3(15 dias) e t4 (45 dias). 129

131 130

132 131

133 132 Os valores das concentrações dos HPAs após a execução dos ensaios de degradação estão representados por meio da tabela 20.

134 133 Tabela 20 - Concentrações médias dos HPAs de alto peso molecular B(k)Fluo Benzo(k)Fluoranteno, B(b)Fluo Benzo(b)Fluoranteno, B(a)P Benzo(a)Pireno, DibahA Dibenzo(a,h)Antraceno, B(g)P Benzo(g,h,i)Perileno e IndP Indeno (1,2,3-c,d)Pireno, nas amostras de óleo, controle, consórcio A e consórcio B, submetidas aos ensaios de degradação nos tempos t0 (imediatamente) t1(24 horas), t2 (48 horas), t3 (15 dias) e t4 (30 dias). AMOSTRA BkFluo BbFluo. BaP BgP IndP DiBahA Óleo 176,0 223,9 744,5 196,5 177,1 173,3 T0 Cont. 159,3 175,0 489,0 184,6 94,8 148,8 T0 Cons. A 159,2 171,3 413,1 178,2 77,4 143,2 T0 Cons. (B) 143,9 133,2 247,6 176,0 53,5 132,3 T1 Cont. 220,6 324,0 1091,2 187,2 93,0 158,1 T1 Cons.A 156,9 163,7 377,5 179,1 70,8 141,2 T1 Cons. (A) 162,0 176,4 455,3 180,5 84,0 146,2 T1 Cons. (B) 143,4 131,4 244,5 176,4 47,9 134,2 T2 Cont. 324,9 290,7 412,2 403,7 563,7 353,8 T2 Cons.A 141,1 111,2 164,7 177,2 44,9 132,8 T2 Cons. B 151,1 144,6 291,8 177,7 64,4 135,1 T3 Cont. 328,3 352,7 723,0 407,6 567,3 362,2 T3 Cons. (A) 224,7 298,8 977,4 189,0 99,5 156,8 T3 Cons. (B) 152,9 161,7 382,3 179,3 78,0 141,0 T4 Cont. 313,5 318,2 552,1 402,8 557,7 354,7 T4 Cons. A 164,8 189,5 531,5 180,2 61,4 140,5 T4 Cons. (B) 146,5 138,1 265,6 177,0 58,2 134,5 Os principais fatores determinantes na distribuição das amostras de óleo submetidas à ação dos consórcio A e consórcio B na degradação dos HPAs de alto peso molecular estão demonstrados nas tabelas 21 a 24. Tabela 21 - Fatores determinantes na distribuição dos casos na ACP das amostras contendo o consórcio A. Fator 1 Fator 2 Fator 3 Fator 4 t0 cons.a -0, , , , t1 cons.a 0, , , , t2 cons.a 3, , , , t3 cons.a -3, , , , t4 cons.a 0, , , ,122660

135 134 Tabela 22 - Fatores determinantes na distribuição das variáveis na ACP das amostras contendo o consórcio A. Fator 1 Fator 2 Fator 3 Fator 4 B(k)Fluo -0, , , , B(b)Fluo. -0, , , , B(a)P -0, , , , DibahA -0, , , , B(g)P -0, , , , IndP -0, , , , Ph -0, , , , Eh 0, , , , Cond. -0, , , , Sal. -0, , , , Tabela 23 - Fatores determinantes na distribuição dos casos na ACP das amostras contendo o consórcio B. Factor 1 Factor 2 Factor 3 Factor 4 t0 cons.b -3, , , , t1 cons.b -1, , , , t2 cons.b 1, , , , t3 cons.b 2, , , , t4 cons.b 0, , , , Tabela 24 - Fatores determinantes na distribuição das variáveis na ACP das amostras contendo o consórcio B. Factor 1 Factor 2 Factor 3 Factor 4 B(k)Fluo 0, , , , B(b)Fluo. 0, , , , B(a)P 0, , , , DibahA 0, , , , B(g)P 0, , , , Indp 0, , , , Ph -0, , , , Eh 0, , , , Cond. -0, , , , Sal. -0, , , , Referências AFUWALE, C; MODI, H. A. Study of bacterial diversity of crude oil degrading bacteria isolated from crude oil contaminated sites. Life sciences leaflets, v. 6, p.13-23, 2012 CRAPEZ, M. C; BORGES, A. L. N; Bispo, M. G. S; PEREIRA, D. C. Tratamento para derrames de petróleo: biorremediação. Ciência hoje, v. 30, n. 179, p

136 135 APÊNDICE 4 Artigo publicado em revista CAPES qualis B4 Cadernos de Geociências. FIORAVANTI, K.L; CELINO, J. J; ROSSI-ALVA, J. C. Isolamento, seleção e identificação de microoganismos degradadores de petróleo e seus derivados em sedimentos de manguezais contaminados. Cadernos de Geociências, v. 9, n.2, p , 2012.

137 136

138 137

139 138

140 139

141 140

142 141

143 142

144 143

145 144

146 145

147 146

148 147

REMEDIAÇÃO DE MANGUEZAIS

REMEDIAÇÃO DE MANGUEZAIS REMEDIAÇÃO EM MANGUEZAIS MONITORAMENTO GEOQUÍMICO REMEDIAÇÃO DE MANGUEZAIS Dr. Jorge Alberto Trigüis BAIA DE TODOS OS SANTOS Dra. Eliane Soares de Souza Dra. Olívia Maria Cordeiro de Oliveira Dr. Antônio

Leia mais

clorados, continuam a migrar através do nível d água e da zona saturada até que seja atingida uma barreira impermeável (Alvarez-Cohen, 1993).

clorados, continuam a migrar através do nível d água e da zona saturada até que seja atingida uma barreira impermeável (Alvarez-Cohen, 1993). 1 Introdução A zona vadosa, ou não saturada, constitui um domínio através do qual a água de recarga deve passar para atingir o nível do lençol freático. Os estudiosos da ciência dos solos foram os pioneiros

Leia mais

Instituto Federal de Sergipe, Curso Técnico de Petróleo e Gás 2

Instituto Federal de Sergipe, Curso Técnico de Petróleo e Gás 2 MEDIDAS DE EFICIÊNCIA DOS FUNGOS FUSARIUM SOLANI, TRICHODERMA SSP., COLLETOTRICHUM ACUTATUM NA BIORREMEDIAÇÃO DE ÁREAS DEGRADADAS POR DERRAMAMENTO DE PETRÓLEO Ricardo Coelho de Sousa 1 ; Luiz Ricardo 2

Leia mais

APRESENTAÇÃO SEMINÁRIO - QUI193 TIPOS DE BIORREMEDIAÇÃO E EXEMPLOS DE APLICAÇÃO EM SOLOS CONTAMINADOS

APRESENTAÇÃO SEMINÁRIO - QUI193 TIPOS DE BIORREMEDIAÇÃO E EXEMPLOS DE APLICAÇÃO EM SOLOS CONTAMINADOS 1 APRESENTAÇÃO SEMINÁRIO - QUI193 TIPOS DE BIORREMEDIAÇÃO E EXEMPLOS DE APLICAÇÃO EM SOLOS CONTAMINADOS INTRODUÇÃO 2 Macau, China O aumento da população levou ao aumento da quantidade de resíduos produzidos;

Leia mais

1. Apresentação Objetivos Introdução O Solo Contaminação do solo... 6

1. Apresentação Objetivos Introdução O Solo Contaminação do solo... 6 i RESUMO A contaminação de solos por derivados de petróleo é freqüente no Estado de São Paulo. Nesta tese estudaram-se dois métodos de remediação de solo contaminado por derivados de petróleo: a oxidação

Leia mais

COMPORTAMENTO AMBIENTAL DOS HERBICIDAS. INSTITUTO AGRONÔMICO/PG Tecnologia da Produção Agrícola/Manejo e Biologia de Plantas Daninhas/AZANIA(2010)

COMPORTAMENTO AMBIENTAL DOS HERBICIDAS. INSTITUTO AGRONÔMICO/PG Tecnologia da Produção Agrícola/Manejo e Biologia de Plantas Daninhas/AZANIA(2010) COMPORTAMENTO AMBIENTAL DOS HERBICIDAS INSTITUTO AGRONÔMICO/PG Tecnologia da Produção Agrícola/Manejo e Biologia de Plantas Daninhas/AZANIA(2010) PARA O HERBICIDA ENTRAR NO AMBIENTE: Os FATORES EXTERNOS

Leia mais

APLICAÇÃO DE TESTE DE BIODEGRABILIDADE PARA SELEÇÃO DE CONSÓRCIO FÚNGICO PROMISSOR NA DEGRADAÇÃO DE HIDROCARBONETOS DE PETRÓLEO

APLICAÇÃO DE TESTE DE BIODEGRABILIDADE PARA SELEÇÃO DE CONSÓRCIO FÚNGICO PROMISSOR NA DEGRADAÇÃO DE HIDROCARBONETOS DE PETRÓLEO APLICAÇÃO DE TESTE DE BIODEGRABILIDADE PARA SELEÇÃO DE CONSÓRCIO FÚNGICO PROMISSOR NA DEGRADAÇÃO DE HIDROCARBONETOS DE PETRÓLEO S. D. da ROCHA 1, L. M. de CASTRO 1, J. R. S. de SOUZA 2, T. C. S. de OLIVEIRA

Leia mais

Identificação da fonte de hidrocarbonetos em áreas contaminadas pela análise de TPH fingerprint

Identificação da fonte de hidrocarbonetos em áreas contaminadas pela análise de TPH fingerprint Identificação da fonte de hidrocarbonetos em áreas contaminadas pela análise de TPH fingerprint Mauro Machado Novembro.2015 www.eurofins.com Agenda 1. TPH: definições e métodos de análise. 2. Discussão

Leia mais

ISOLAMENTO, SELEÇÃO E IDENTIFICAÇÃO DE MICROORGANISMOS DEGRADADORES DE PETRÓLEO E SEUS DERIVADOS EM SEDIMENTOS DE MANGUEZAIS CONTAMINADOS

ISOLAMENTO, SELEÇÃO E IDENTIFICAÇÃO DE MICROORGANISMOS DEGRADADORES DE PETRÓLEO E SEUS DERIVADOS EM SEDIMENTOS DE MANGUEZAIS CONTAMINADOS ISOLAMENTO, SELEÇÃO E IDENTIFICAÇÃO DE MICROORGANISMOS DEGRADADORES DE PETRÓLEO E SEUS DERIVADOS EM SEDIMENTOS DE MANGUEZAIS CONTAMINADOS 130 Ketlyn Luize FIORAVANTI ¹ Joil José CELINO ² Juan Carlos ROSSI-ALVA

Leia mais

Introdução. Os compostos que não são classificados como hidrocarbonetos concentram-se nas frações mais pesadas do petróleo.

Introdução. Os compostos que não são classificados como hidrocarbonetos concentram-se nas frações mais pesadas do petróleo. REFINO DE PETRÓLEO O petróleo é encontrado em muitos lugares da crosta terrestre e em grandes quantidades, e desse modo o seu processo de formação deve ser espontâneo. Trata-se de uma mistura inflamável,

Leia mais

Biorremediação de ambientes contaminados por petróleo e derivados

Biorremediação de ambientes contaminados por petróleo e derivados 13 de setembro de 2013 -UERJ Biorremediação de ambientes contaminados por petróleo e derivados Alexandre Soares Rosado Unidade de Ecologia microbiana e biotecnologia do Petróleo do polo de Biotecnologia

Leia mais

INSTITUIÇÃO: CENTRO UNIVERSITÁRIO DAS FACULDADES METROPOLITANAS UNIDAS

INSTITUIÇÃO: CENTRO UNIVERSITÁRIO DAS FACULDADES METROPOLITANAS UNIDAS TÍTULO: MICROBIOTA EM MATA ATLÂNTICA DA PRAIA GRANDE CATEGORIA: EM ANDAMENTO ÁREA: CIÊNCIAS BIOLÓGICAS E SAÚDE SUBÁREA: BIOMEDICINA INSTITUIÇÃO: CENTRO UNIVERSITÁRIO DAS FACULDADES METROPOLITANAS UNIDAS

Leia mais

Engenheira Ambiental: Valéria Tibola da Rocha Orientador: Dr. Antonio Thomé Co-orientação: Dr a Luciane Maria Colla

Engenheira Ambiental: Valéria Tibola da Rocha Orientador: Dr. Antonio Thomé Co-orientação: Dr a Luciane Maria Colla UNIVERSIDADE DE PASSO FUNDO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA INFRA-ESTRUTURA E MEIO AMBIENTE Engenheira Ambiental: Valéria Tibola da Rocha Orientador: Dr. Antonio Thomé Co-orientação: Dr a Luciane

Leia mais

O TRATAMENTO DE ÁGUAS ATRAVÉS DA BIORREMEDIAÇÃO UMA REVISÃO DE LITERATURA

O TRATAMENTO DE ÁGUAS ATRAVÉS DA BIORREMEDIAÇÃO UMA REVISÃO DE LITERATURA O TRATAMENTO DE ÁGUAS ATRAVÉS DA BIORREMEDIAÇÃO UMA REVISÃO DE LITERATURA Adolf Hitler Cardoso de Araújo (1) Universidade Estadual da Paraíba, adolf_araujo@hotmail.com INTRODUÇÃO Com o decorrer dos anos

Leia mais

Joil José Celino Antônio Fernando de Souza Queiroz Jorge Alberto Trigüis Olívia Maria Cordeiro de Oliveira

Joil José Celino Antônio Fernando de Souza Queiroz Jorge Alberto Trigüis Olívia Maria Cordeiro de Oliveira Fonte da matéria orgânica e grau de contaminação por Hidrocarbonetos Totais de Petróleo (HTP) em sedimentos de manguezais na porção norte da Baía de Todos os Santos, Bahia: Subsídios para a remediação

Leia mais

QUÍMICA. Energias Químicas no Cotidiano. Petróleo, Gás Natural e Carvão, Madeira, Hulha, Biomassa, Biocombustíveis e Energia Nuclear

QUÍMICA. Energias Químicas no Cotidiano. Petróleo, Gás Natural e Carvão, Madeira, Hulha, Biomassa, Biocombustíveis e Energia Nuclear QUÍMICA Energias Químicas no Cotidiano Petróleo, Gás Natural e Carvão, Madeira, Hulha, Biomassa, Prof a. Giselle Blois PETRÓLEO: é um combustível fóssil composto principalmente por hidrocarbonetos associados

Leia mais

BIODEGRADAÇÃO DE PETRÓLEO E PRODUÇÃO DE BIOSSURFACTANTE POR BACTÉRIAS INDÍGENAS DO SEDIMENTO DO MANGUEZAL DE GARGAÚ - RJ

BIODEGRADAÇÃO DE PETRÓLEO E PRODUÇÃO DE BIOSSURFACTANTE POR BACTÉRIAS INDÍGENAS DO SEDIMENTO DO MANGUEZAL DE GARGAÚ - RJ BIODEGRADAÇÃO DE PETRÓLEO E PRODUÇÃO DE BIOSSURFACTANTE POR BACTÉRIAS INDÍGENAS DO SEDIMENTO DO MANGUEZAL DE GARGAÚ - RJ Silva, A.M.F.D. 1, Wetler-Tonini, R.M.C. 2, Wagener, A.L.R. 3, Grativol, A.D. 4,

Leia mais

AVALIAÇÃO DA BIORREMEDIAÇÃO EM SOLO ARENOSO CONTAMINADO POR DIESEL

AVALIAÇÃO DA BIORREMEDIAÇÃO EM SOLO ARENOSO CONTAMINADO POR DIESEL AVALIAÇÃO DA BIORREMEDIAÇÃO EM SOLO ARENOSO CONTAMINADO POR DIESEL D. L. R. RIBEIRO 1, D. MONTERO-RODRÍGUEZ 2,3, R. F. da S. ANDRADE 2,3, G. M. de CAMPOS-TAKAKI 3, M. de L. A. P. F. PALHA 1 1 Universidade

Leia mais

Revista Eletrônica de Biologia

Revista Eletrônica de Biologia . REB Volume 3 (1): 58-64, 2010 ISSN 1983-7682 Revista Eletrônica de Biologia Potencialidade de Fungos Filamentosos em Degradar Óleos Lubrificantes Filamentous fungi potential to degrade lubricant oils

Leia mais

Universidade Estadual do Rio Grande do Sul Bacharelado em Gestão Ambiental Componente curricular: Microbiologia Ambiental Aula 10

Universidade Estadual do Rio Grande do Sul Bacharelado em Gestão Ambiental Componente curricular: Microbiologia Ambiental Aula 10 Universidade Estadual do Rio Grande do Sul Bacharelado em Gestão Ambiental Componente curricular: Microbiologia Ambiental Aula 10 Professor Antônio Ruas 1. Créditos: 60 2. Carga horária semanal: 4 3. Semestre:

Leia mais

TÍTULO: PROPOSTA METODOLÓGICA PARA BIORREMEDIAÇÃO DE ÁREAS CONTAMINADAS POR HIDROCARBONETOS DE PETRÓLEO

TÍTULO: PROPOSTA METODOLÓGICA PARA BIORREMEDIAÇÃO DE ÁREAS CONTAMINADAS POR HIDROCARBONETOS DE PETRÓLEO TÍTULO: PROPOSTA METODOLÓGICA PARA BIORREMEDIAÇÃO DE ÁREAS CONTAMINADAS POR HIDROCARBONETOS DE PETRÓLEO CATEGORIA: CONCLUÍDO ÁREA: CIÊNCIAS EXATAS E DA TERRA SUBÁREA: Engenharias INSTITUIÇÃO(ÕES): FACULDADE

Leia mais

Ciclo do Carbono. Variações Paleoclimáticas. Composição Isotópica. Biomarcadores Paleoclimáticos

Ciclo do Carbono. Variações Paleoclimáticas. Composição Isotópica. Biomarcadores Paleoclimáticos APRESENTAÇÃO Atmosfera Primitiva. Formação de Organismos Heterotróficos. Fotossíntese. Clorofila. Produção, Preservação e Degradação da Matéria Orgânica. Condições de Deposição. Matéria Orgânica na Geosfera.

Leia mais

Elaborado por: Luiz Augusto dos Santos Madureira Colaborador: Marina Pereira Coelho, graduanda em química. Bolsista IC.

Elaborado por: Luiz Augusto dos Santos Madureira Colaborador: Marina Pereira Coelho, graduanda em química. Bolsista IC. Elaborado por: Luiz Augusto dos Santos Madureira Colaborador: Marina Pereira Coelho, graduanda em química. Bolsista IC. 1 Hidrocarbonetos em amostras de água e sedimentos 1.1 Objetivos Avaliar e determinar

Leia mais

PRODUTOS ESPECIALIZADOS PARA TRATAMENTO DE EFLUENTES INDUSTRIAIS E DOMÉSTICOS

PRODUTOS ESPECIALIZADOS PARA TRATAMENTO DE EFLUENTES INDUSTRIAIS E DOMÉSTICOS Ecobac Biotecnologia Ltda. PRODUTOS ESPECIALIZADOS PARA TRATAMENTO DE EFLUENTES INDUSTRIAIS E DOMÉSTICOS Abril 2007 BIOTECNOLOGIA APLICADA A biotecnologia, nascida com Pasteur no século XIX, é o estudo

Leia mais

3 METODOLOGIA DE AMOSTRAGEM E ANÁLISE

3 METODOLOGIA DE AMOSTRAGEM E ANÁLISE 41 3 METODOLOGIA DE AMOSTRAGEM E ANÁLISE 3.1. Metodologia de Amostragem Todas as amostras de sedimento foram obtidas com um coletor do tipo Box-Corer (Figura 3.1). Figura 3.1. Desenho esquemático de um

Leia mais

AVALIAÇÃO QUALITATIVA E QUANTITATIVA DOS GRÃOS DE MILHO E DE SOJA ARMAZENADOS EM SILOS BAG

AVALIAÇÃO QUALITATIVA E QUANTITATIVA DOS GRÃOS DE MILHO E DE SOJA ARMAZENADOS EM SILOS BAG Estudo Universidade Viçosa: UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE ENGENHARIA AGRÍCOLA RELATÓRIO FINAL AVALIAÇÃO QUALITATIVA E QUANTITATIVA DOS GRÃOS DE MILHO E DE SOJA

Leia mais

Do Brasil Ltda. Desenvolvimento de Projetos de Biorremediação em Curitiba Brasil

Do Brasil Ltda. Desenvolvimento de Projetos de Biorremediação em Curitiba Brasil Desenvolvimento de Projetos de Biorremediação em Curitiba Brasil Atualmente, um dos grandes problemas enfrentados pelas concessionárias de energia elétrica é o vandalismo para furto da estrutura interna

Leia mais

ISOLAMENTO DE MICRORGANISMOS HIDROCARBONOCLÁSTICOS DE SOLOS CONTAMINADOS POR DERIVADOS DE PETRÓLEO.

ISOLAMENTO DE MICRORGANISMOS HIDROCARBONOCLÁSTICOS DE SOLOS CONTAMINADOS POR DERIVADOS DE PETRÓLEO. ISOLAMENTO DE MICRORGANISMOS HIDROCARBONOCLÁSTICOS DE SOLOS CONTAMINADOS POR DERIVADOS DE PETRÓLEO. B. F. NASCIMENTO 1, U. VASCONCELOS 2, S. F. M. SANTOS 1, T. P. GUEDES 1 R. K. P. SILVA 1 1 Universidade

Leia mais

CONCEITO DE SOLO CONCEITO DE SOLO. Solos Residuais 21/09/2017. Definições e Conceitos de Solo. Centro Universitário do Triângulo

CONCEITO DE SOLO CONCEITO DE SOLO. Solos Residuais 21/09/2017. Definições e Conceitos de Solo. Centro Universitário do Triângulo Centro Universitário do Triângulo CONCEITO DE SOLO Sistema Brasileiro de Classificação do Solo Definições e Conceitos de Solo É uma coleção de corpos naturais, constituídos por partes sólidas, líquidas

Leia mais

II PROJETO DE MONITORAMENTO AMBIENTAL

II PROJETO DE MONITORAMENTO AMBIENTAL Pág. 2/7 VII Projeto de Controle Ambiental para o Piloto do Sistema de Produção e Escoamento de Óleo e Gás da Área de Tupi, Bacia de Santos II PROJETO DE MONITORAMENTO AMBIENTAL... Malha Amostral Para

Leia mais

AVALIAÇÃO DA ROBUSTEZ DE ÍNDICES INDICADORES DE ORIGEM DE ÓLEOS E DE HPA EM AMOSTRAS AMBIENTAIS

AVALIAÇÃO DA ROBUSTEZ DE ÍNDICES INDICADORES DE ORIGEM DE ÓLEOS E DE HPA EM AMOSTRAS AMBIENTAIS AVALIAÇÃO DA ROBUSTEZ DE ÍNDICES INDICADORES DE ORIGEM DE ÓLEOS E DE HPA EM AMOSTRAS AMBIENTAIS Aluna: Larissa Rocha Pitta Xavier Orientadora: Angela de Luca Rebello Wagner Introdução O meio ambiente é

Leia mais

EMPREGO DE BIOESTIMULAÇÃO COM NITROGÊNIO NA BIORREMEDIAÇÃO IN SITU DE SOLO CONTAMINADO COM ÓLEO DIESEL

EMPREGO DE BIOESTIMULAÇÃO COM NITROGÊNIO NA BIORREMEDIAÇÃO IN SITU DE SOLO CONTAMINADO COM ÓLEO DIESEL EMPREGO DE BIOESTIMULAÇÃO COM NITROGÊNIO NA BIORREMEDIAÇÃO IN SITU DE SOLO CONTAMINADO COM ÓLEO DIESEL Mayara Guedes Sabino (*); Aurora Mariana Garcia de França Souza. * Centro Universitário Hermínio Ometto

Leia mais

Estudo da remoção de diesel em solo arenoso utilizando sistemas microemulsionados a base de óleo de maracujá

Estudo da remoção de diesel em solo arenoso utilizando sistemas microemulsionados a base de óleo de maracujá Estudo da remoção de diesel em solo arenoso utilizando sistemas microemulsionados a base de óleo de maracujá Francis Carneiro Madureira; Emilly Beatriz Freire dos Santos; Dr. João Paulo Lobo dos Santos;

Leia mais

4. Materiais e Métodos 4.1. Preparo da biomassa

4. Materiais e Métodos 4.1. Preparo da biomassa 4. Materiais e Métodos 4.1. Preparo da biomassa A cepa de Rhodococcus ruber empregada nos experimentos, como biossorvente, foi fornecida pela Fundação Tropical de Pesquisas e Tecnologia André Toselo (São

Leia mais

REDE COOPERATIVA EM RECUPERAÇÃO DE ÁREAS CONTAMINADAS POR ATIVIDADES PETROLÍFERAS RECUPETRO

REDE COOPERATIVA EM RECUPERAÇÃO DE ÁREAS CONTAMINADAS POR ATIVIDADES PETROLÍFERAS RECUPETRO RECUPETRO BAPPD Projeto NO REDE COOPERATIVA EM RECUPERAÇÃO DE ÁREAS CONTAMINADAS POR ATIVIDADES PETROLÍFERAS RECUPETRO Coordenação Geral Prof. Dr. Antônio Fernando de Souza Queiroz RECUPETRO BAPPD Projeto

Leia mais

BIORREMEDIAÇÃO, UMA ALTERNATIVA NA UTILIZAÇÃO EM ÁREAS DEGRADADAS PELA INDÚSTRIA PETROLÍFERA

BIORREMEDIAÇÃO, UMA ALTERNATIVA NA UTILIZAÇÃO EM ÁREAS DEGRADADAS PELA INDÚSTRIA PETROLÍFERA BIORREMEDIAÇÃO, UMA ALTERNATIVA NA UTILIZAÇÃO EM ÁREAS DEGRADADAS PELA INDÚSTRIA PETROLÍFERA Manuel Capristanio de Morais Filho 1 ; Ana Catarina Fernandes Coriolano 2 1 Universidade Potiguar, Unidade Natal

Leia mais

CRESCIMENTO DE FUNGOS AMAZÔNICOS EM RESIDUO DE ÓLEO DE PETRÓLEO DE OFICINAS AUTOMOTIVAS

CRESCIMENTO DE FUNGOS AMAZÔNICOS EM RESIDUO DE ÓLEO DE PETRÓLEO DE OFICINAS AUTOMOTIVAS CRESCIMENTO DE FUNGOS AMAZÔNICOS EM RESIDUO DE ÓLEO DE PETRÓLEO DE OFICINAS AUTOMOTIVAS Andresa Figueira Queiroz 1 ; Vanessa Vasconcelos Barros 2 ; Ademir Castro e Silva 3. 1 Universidade do Estado do

Leia mais

DETERMINAÇÃO DA ATIVIDADE METABÓLICA E DESENVOLVIMENTO FÚNGICO SOLO CONTAMINADO POR HIDROCARBONETOS

DETERMINAÇÃO DA ATIVIDADE METABÓLICA E DESENVOLVIMENTO FÚNGICO SOLO CONTAMINADO POR HIDROCARBONETOS DETERMINAÇÃO DA ATIVIDADE METABÓLICA E DESENVOLVIMENTO FÚNGICO SOLO CONTAMINADO POR HIDROCARBONETOS João Leonardo Uller 1 ; Ruth Noemi Tanaka Miyazaki 2 ; José Hilton Bernardino de Araújo 3 INTRODUÇÃO

Leia mais

CONTAMINAÇ O DE AQÜÍFEROS POR DERRAMAMENTOS DE GASOLINA E ALCOOL

CONTAMINAÇ O DE AQÜÍFEROS POR DERRAMAMENTOS DE GASOLINA E ALCOOL CONTAMINAÇ O DE AQÜÍFEROS POR DERRAMAMENTOS DE GASOLINA E ALCOOL Henry Xavier Corseuil (1) Professor Adjunto do Depto. de Engenharia Sanitária e Ambiental da UFSC - PhD em Engenharia Ambiental pela Universidade

Leia mais

O PETRÓLEO COMO FONTE DE ENERGIA

O PETRÓLEO COMO FONTE DE ENERGIA Universidade Federal do Ceará Centro de Tecnologia Curso de Engenharias de Energias e Meio Ambiente Disciplina de Introdução a EEMA O PETRÓLEO COMO FONTE DE ENERGIA Profa. Mônica C.G. Albuquerque O PETRÓLEO

Leia mais

Marina Andrada Maria Pesquisadora em Tecnologia, DSc

Marina Andrada Maria Pesquisadora em Tecnologia, DSc Marina Andrada Maria Pesquisadora em Tecnologia, DSc Posicionamento Soluções integradas em medições ambientais, tecnologias sustentáveis aplicadas a processos e recuperação ambiental Desmitificando o uso

Leia mais

Diminuição dos carnívoros do mundo

Diminuição dos carnívoros do mundo Propagação do efeito de uma perturbação em um determinado nível trófico para os demais níveis da cadeia alimentar. Este efeito pode aumentar ou diminuir o tamanho das populações.ado nível trófico para

Leia mais

O Futuro da Biorremediação no Brasil: Quais Segredos o Ambiente Tropical Guarda? Profa. Dra. Alessandra Argolo Carvalho

O Futuro da Biorremediação no Brasil: Quais Segredos o Ambiente Tropical Guarda? Profa. Dra. Alessandra Argolo Carvalho O Futuro da Biorremediação no Brasil: Quais Segredos o Ambiente Tropical Guarda? Profa. Dra. Alessandra Argolo Carvalho Porto Alegre, 2015. Agenda Fundamentos Biorremediação nos ecossistemas tropicais

Leia mais

Investigação dos parâmetros que influenciam na metodologia de extração de óleos e graxas através de um planejamento fatorial 2 3.

Investigação dos parâmetros que influenciam na metodologia de extração de óleos e graxas através de um planejamento fatorial 2 3. Investigação dos parâmetros que influenciam na metodologia de extração de óleos e graxas através de um planejamento fatorial 2 3. Juliana Patrícia Souza Duarte Pontes, Daniela Karla de Souza Xavier, Márcio

Leia mais

PROGRAMA DE DISCIPLINA

PROGRAMA DE DISCIPLINA 1/5 PROGRAMA DE DISCIPLINA Disciplina ORIGEM E CARACTERIZAÇÃO DO PETRÓLEO E DERIVADOS Departamento QUÍMICA Carga Horária Semanal Pré-requisitos Teórica 02 Prática 01 Total 03 Pré-requisitos Unidade Código

Leia mais

3001 Hidroboração/oxidação de 1-octeno a 1-octanol

3001 Hidroboração/oxidação de 1-octeno a 1-octanol 3001 Hidroboração/oxidação de 1-octeno a 1-octanol 1. NaBH, I CH H 3 C C. H O /NaOH H 3 OH C 8 H 16 NaBH H O I NaOH C 8 H 18 O (11.) (37.8) (3.0) (53.8) (0.0) (130.) Referência Bibliográfica A.S. Bhanu

Leia mais

Análise Preliminar de Risco

Análise Preliminar de Risco Escola de Engenharia de Lorena EEL-USP Análise Preliminar de Risco Disciplina: Projeto na Indústria Química Prof. Dr. Francisco José Moreira Chaves Ana Letícia de Lima Rico 6405711 Jean Carlos Bustamante

Leia mais

VI CARACTERIZAÇAO E EXTRAÇAO DE HIDROCARBONETOS TOTAIS DE PETROLEO EM SOLO CONTAMINADO

VI CARACTERIZAÇAO E EXTRAÇAO DE HIDROCARBONETOS TOTAIS DE PETROLEO EM SOLO CONTAMINADO 22º Congresso Brasileiro de Engenharia Sanitária e Ambiental 4 a 9 de Setembro 200 - Joinville - Santa Catarina VI-2 - CARACTERIZAÇAO E EXTRAÇAO DE HIDROCARBONETOS TOTAIS DE PETROLEO EM SOLO CONTAMINADO

Leia mais

PROMOVE NOÇÕES DA CADEIA DE PETRÓLEO

PROMOVE NOÇÕES DA CADEIA DE PETRÓLEO DESTILAÇÃO ATMOSFÉRICA PROMOVE NOÇÕES DA CADEIA DE PETRÓLEO Esquema Geral 4.b ESQUEMA DE UMA REFINARIA: GÁS COMBUSTÍVEL CAFOR PROPANO GLP(C3 E C4) FGLP BUTANO NAFTA LEVE NAFTA PETROQUÍMICA REFORMA NREF

Leia mais

PROSPECÇÃO DE BACTÉRIAS E LEVEDURAS LIPOLÍTICAS DO ESTADO DO TOCANTINS PROMISSORAS EM APLICAÇÕES INDUSTRIAIS

PROSPECÇÃO DE BACTÉRIAS E LEVEDURAS LIPOLÍTICAS DO ESTADO DO TOCANTINS PROMISSORAS EM APLICAÇÕES INDUSTRIAIS PROSPECÇÃO DE BACTÉRIAS E LEVEDURAS LIPOLÍTICAS DO ESTADO DO TOCANTINS PROMISSORAS EM APLICAÇÕES INDUSTRIAIS Maysa Lima Parente Fernandes¹; Ezequiel Marcelino da Silva². 1 Aluna do Curso de Engenharia

Leia mais

TÍTULO: VERIFICAÇÃO DA EFICIÊNCIA DO TRATAMENTO BIOLÓGICO DE EFLUENTE INDUSTRIAL, UTILIZANDO COMO BIOINDICADOR A PLANÁRIA DUGESIA TIGRINA.

TÍTULO: VERIFICAÇÃO DA EFICIÊNCIA DO TRATAMENTO BIOLÓGICO DE EFLUENTE INDUSTRIAL, UTILIZANDO COMO BIOINDICADOR A PLANÁRIA DUGESIA TIGRINA. TÍTULO: VERIFICAÇÃO DA EFICIÊNCIA DO TRATAMENTO BIOLÓGICO DE EFLUENTE INDUSTRIAL, UTILIZANDO COMO BIOINDICADOR A PLANÁRIA DUGESIA TIGRINA. CATEGORIA: EM ANDAMENTO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA:

Leia mais

Química Professora: Raquel Malta 3ª série Ensino Médio FONTE DE HIDROCARBONETOS

Química Professora: Raquel Malta 3ª série Ensino Médio FONTE DE HIDROCARBONETOS Química Professora: Raquel Malta 3ª série Ensino Médio FONTE DE HIDROCARBONETOS PETRÓLEO: ECONOMIA E POLÍTICA Energia petróleo fonte de combustível e matéria-prima. Distribuição das reservas de petróleo

Leia mais

Indicadores de Qualidade do Ar

Indicadores de Qualidade do Ar Indicadores de Qualidade do Ar Níveis de qualidade do ar determinados a partir dos valores de concentração de poluentes que são associados a atividades antropogênicas: CO, SO 2, NO x, O 3, orgânicos voláteis,

Leia mais

16 Efluentes/Processos de tratamento 56 Processos oxidativos avançados 58 Flotação 59 Descargas de efluentes após tratamentos químicos 59 Reúso da águ

16 Efluentes/Processos de tratamento 56 Processos oxidativos avançados 58 Flotação 59 Descargas de efluentes após tratamentos químicos 59 Reúso da águ 1 AMOSTRAGEM / 21 1.1 Análise química 21 1.2 Condições para uma boa amostragem 22 1.3 Coleta de amostras de líquidos 24 1.3.1 Efluentes 24 1.3.2 Poços de monitoramento 25 1.4 Coleta de amostras de sólidos

Leia mais

TRATAMENTO DE FENANTRENO UTILIZANDO PERSULFATO DE SÓDIO ATIVADO POR DIATOMITA MODIFICADA POR FERRO

TRATAMENTO DE FENANTRENO UTILIZANDO PERSULFATO DE SÓDIO ATIVADO POR DIATOMITA MODIFICADA POR FERRO TRATAMENTO DE FENANTRENO UTILIZANDO PERSULFATO DE SÓDIO ATIVADO POR DIATOMITA MODIFICADA POR FERRO S.S.O. SILVA. 1 ; A.R. SOUZA 1 ; A. G. CÂMARA 1 ; C. K. O. SILVA 2 ; M.M.G.R. VIANNA 2, O. CHIAVONE-FILHO

Leia mais

TRATAMENTO DE ÁGUAS CONTAMINADAS

TRATAMENTO DE ÁGUAS CONTAMINADAS 4º SEMINÁRIO ESTADUAL ÁREAS CONTAMINADAS E SAÚDE: CONTAMINAÇÃO DO SOLO E RECURSOS HÍDRICOS TRATAMENTO DE ÁGUAS CONTAMINADAS Profª Drª Dione Mari Morita Escola Politécnica Universidade de São Paulo 4º SEMINÁRIO

Leia mais

Ecologia Microbiana. Microbiologia do Solo. Microbiologia da Água

Ecologia Microbiana. Microbiologia do Solo. Microbiologia da Água Ecologia Microbiana Microbiologia do Solo Microbiologia da Água Camadas do solo (horizontes) Camada A: Solo superficial (rico em matéria orgânica) A Alta atividade microbiana Camada B: Subsolo (pobre

Leia mais

Do Brasil Ltda. Desenvolvimento de Projetos de Biorremediação em Curitiba Brasil

Do Brasil Ltda. Desenvolvimento de Projetos de Biorremediação em Curitiba Brasil Desenvolvimento de Projetos de Biorremediação em Curitiba Brasil Atualmente, um dos grandes problemas enfrentados pelas concessionárias de energia elétrica é o vandalismo para furto da estrutura interna

Leia mais

INJEÇÃO DE SOLVENTE PARA REMOÇÃO DE DANO ORGÂNICO

INJEÇÃO DE SOLVENTE PARA REMOÇÃO DE DANO ORGÂNICO INJEÇÃO DE SOLVENTE PARA REMOÇÃO DE DANO ORGÂNICO Rafael Ruan Serrão Miranda 1 ; Rebeca do Nascimento Pinto Lima 1 ; Cláudio Regis dos Santos lucas 2, Yanne Katiussy Pereira Gurgel Aum 3, Pedro Tupã Pandava

Leia mais

Errata da Tese de Doutorado

Errata da Tese de Doutorado UNIVERSIDADE DE SÃO PAULO INSTITUTO DE QUÍMICA Uso do Reagente de Fenton como Oxidante Secundário em Sistemas de Destruíção de Resíduos Através de Oxidação Térmica. Carlos Augusto Blasques Tooge Errata

Leia mais

ANÁLISE DE QUALIDADE DA ÁGUA PRODUZIDA DESCARTADA A PARTIR DE PLATAFORMAS PRODUTORAS DE PETRÓLEO

ANÁLISE DE QUALIDADE DA ÁGUA PRODUZIDA DESCARTADA A PARTIR DE PLATAFORMAS PRODUTORAS DE PETRÓLEO ANÁLISE DE QUALIDADE DA ÁGUA PRODUZIDA DESCARTADA A PARTIR DE PLATAFORMAS PRODUTORAS DE PETRÓLEO Daniele Drumond Neves (1) Engenheira Ambiental pela Faculdades Integradas Espirito-Santenses FAESA Gustavo

Leia mais

Petróleo. Petróleo. Prof: Alex

Petróleo. Petróleo. Prof: Alex Petróleo Petróleo O petróleo é um líquido escuro, oleoso, formado por milhares de compostos orgânicos, com grande predominância de hidrocarbonetos. A origem está ligada a pequenos seres vegetais e animais

Leia mais

PROMOVE NOÇÕES DA CADEIA DE PETRÓLEO 1 - INTRODUÇÃO AO PETRÓLEO

PROMOVE NOÇÕES DA CADEIA DE PETRÓLEO 1 - INTRODUÇÃO AO PETRÓLEO 1.a HISTÓRIA: Petróleo: palavra de origem latina (Petrus, pedra; Oleum, óleo) As primeiras civilizações e o uso do petróleo 1º marco: utilização do petróleo para iluminação A revolução industrial o Petróleo

Leia mais

Combustíveis Derivados do Petróleo

Combustíveis Derivados do Petróleo Ana Catarina Bárbara Martins Mafalda Silva Bruno Castro Nuno Dias Inês Lima Silvana Ferreira Jorge Lata Supervisor: João Bastos Monitor: Cláudio Rocha Equipa: 8011 Combustíveis Derivados do Petróleo Objetivos

Leia mais

Prof: Francisco Sallas

Prof: Francisco Sallas Prof: Francisco Sallas Classificado como hidrocarboneto aromático. Todos os aromáticos possuem um anel benzênico (benzeno), que, por isso, é também chamado de anel aromático. É líquido, inflamável, incolor

Leia mais

4 Apresentação e Discussão dos Resultados

4 Apresentação e Discussão dos Resultados 4 Apresentação e Discussão dos Resultados 4.1. Biodegradação Os primeiros ensaios de tratabilidade foram realizados apenas com o uso de lodo ativado, visando promover a degradação biológica dos compostos

Leia mais

EFEITO DE DIFERENTES FORMAS DE PREPARO DO INÓCULO E DE CONCENTRAÇÕES DOS NUTRIENTES NA PRODUÇÃO DE ETANOL POR Saccharomyces cerevisiae UFPEDA 1238

EFEITO DE DIFERENTES FORMAS DE PREPARO DO INÓCULO E DE CONCENTRAÇÕES DOS NUTRIENTES NA PRODUÇÃO DE ETANOL POR Saccharomyces cerevisiae UFPEDA 1238 EFEITO DE DIFERENTES FORMAS DE PREPARO DO INÓCULO E DE CONCENTRAÇÕES DOS NUTRIENTES NA PRODUÇÃO DE ETANOL POR Saccharomyces cerevisiae UFPEDA 1238 Lima, D. A. (1), Luna, R. L. N. (1), Rocha, J. M. T. S.

Leia mais

PROJETO DE PESQUISA SOBRE ANÁLISE FÍSICO-QUÍMICA DA ÁGUA DE MINAS UTILIZADAS PARA CONSUMO HUMANO

PROJETO DE PESQUISA SOBRE ANÁLISE FÍSICO-QUÍMICA DA ÁGUA DE MINAS UTILIZADAS PARA CONSUMO HUMANO PROJETO DE PESQUISA SOBRE ANÁLISE FÍSICO-QUÍMICA DA ÁGUA DE MINAS UTILIZADAS PARA CONSUMO HUMANO BUDGILA, L.; MIKALOUSKI,U. RESUMO Através de análises físico-químicas da água de minas buscou avaliar a

Leia mais

RESPIRAÇÃO MICROBIANA NO SOLO CONTENDO TORTA DE MAMONA EM FUNÇÃO DA VARIAÇÃO DA UMIDADE. Algodão,

RESPIRAÇÃO MICROBIANA NO SOLO CONTENDO TORTA DE MAMONA EM FUNÇÃO DA VARIAÇÃO DA UMIDADE. Algodão, RESPIRAÇÃO MICROBIANA NO SOLO CONTENDO TORTA DE MAMONA EM FUNÇÃO DA VARIAÇÃO DA UMIDADE Maria José Vieira Tavares 1, Joab Josemar Vitor Ribeiro do Nascimento 2, Liv Soares Severino 3, Ricardo Pereira Veras

Leia mais

Ciências do Ambiente

Ciências do Ambiente Universidade Federal do Paraná Engenharia Civil Ciências do Ambiente Aula 25 O meio aquático IV: Autodepuração Prof.ª Heloise Knapi Balanço de massa Vazão de diluição Sentido do escoamento Montante Jusante

Leia mais

CONTAMINAÇÃO DO SOLO POR BENZENO EM POSTOS DE COMBUSTÍVEIS NA REGIÃO DE CAICÓ-RN.

CONTAMINAÇÃO DO SOLO POR BENZENO EM POSTOS DE COMBUSTÍVEIS NA REGIÃO DE CAICÓ-RN. CONTAMINAÇÃO DO SOLO POR BENZENO EM POSTOS DE COMBUSTÍVEIS NA REGIÃO DE CAICÓ-RN. Raoni Batista dos Anjos (1); Wagner Alan Pinheiro Borges (2); Tarcila Maria Pinheiro Frota (3); Evelyne Nunes de Oliveira

Leia mais

RECURSOS ORGÂNICOS RENOVÁVEIS NÃO RENOVÁVEIS

RECURSOS ORGÂNICOS RENOVÁVEIS NÃO RENOVÁVEIS RECURSOS ORGÂNICOS RECURSOS ORGÂNICOS ORIGEM RENOVABILIDADE BIÓTICOS ABIÓTICOS RENOVÁVEIS NÃO RENOVÁVEIS Carvão Carvão mineral: combustível fóssil natural extraído pelo processo de mineração; Séc XVIII:

Leia mais

PROAMB RECUPETRO. Projeto Cooperativo PROAMB. Protocolos de Avaliação e Recuperação de Ambientes Impactados por Atividades Petrolíferas

PROAMB RECUPETRO. Projeto Cooperativo PROAMB. Protocolos de Avaliação e Recuperação de Ambientes Impactados por Atividades Petrolíferas Protocolos de Avaliação e Recuperação de Ambientes Impactados por Atividades Petrolíferas Projeto Cooperativo Coordenação Geral Prof. Dr. Joil José Celino UFBA UFBA Instituto de Geociências Núcleo de Estudos

Leia mais

2 Revisão Bibliográfica

2 Revisão Bibliográfica 2 Revisão Bibliográfica Neste capítulo será feita uma breve revisão bibliográfica sobre os temas de maior relevância para o desenvolvimento desta dissertação de mestrado. 2.1. Água no Solo Os poros do

Leia mais

ULISSES NUNES DA ROCHA TRANSPORTE ELETROCINÉTICO E DINÂMICA DOS EFEITOS DA DESNUTRIÇÃO SOBRE A SUPERFÍCIE CELULAR E ADESÃO DE BACTÉRIAS

ULISSES NUNES DA ROCHA TRANSPORTE ELETROCINÉTICO E DINÂMICA DOS EFEITOS DA DESNUTRIÇÃO SOBRE A SUPERFÍCIE CELULAR E ADESÃO DE BACTÉRIAS ULISSES NUNES DA ROCHA TRANSPORTE ELETROCINÉTICO E DINÂMICA DOS EFEITOS DA DESNUTRIÇÃO SOBRE A SUPERFÍCIE CELULAR E ADESÃO DE BACTÉRIAS Tese apresentada à Universidade Federal de Viçosa, como parte das

Leia mais

Microbilogia de Alimentos I - Curso de Engenharia de Alimentos Profª Valéria Ribeiro Maitan

Microbilogia de Alimentos I - Curso de Engenharia de Alimentos Profª Valéria Ribeiro Maitan 32 PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PUC Goiás ESCOLA DE ENGENHARIA CURSO DE ENGENHARIA DE ALIMENTOS Aula nº 7 e 8 Quantificação de Microrganismos: Diluição e Plaqueamento Spreader Plate e Pour

Leia mais

EDITAL POSPETRO 05/2019 PROCESSO SELETIVO PARA BOLSA DE DOUTORADO DAI/CNPq

EDITAL POSPETRO 05/2019 PROCESSO SELETIVO PARA BOLSA DE DOUTORADO DAI/CNPq EDITAL 05/2019 PROCESSO SELETIVO PARA BOLSA DE DOUTORADO DAI/CNPq O Programa de Pós-Graduação em Geoquímica: Petróleo e Meio Ambiente (Pospetro) da Universidade Federal da Bahia (UFBA), no uso de suas

Leia mais

Petróleo. O petróleo é um líquido oleoso, menos denso que a água, cuja cor varia segundo a origem, oscilando do negro ao âmbar.

Petróleo. O petróleo é um líquido oleoso, menos denso que a água, cuja cor varia segundo a origem, oscilando do negro ao âmbar. Petróleo e Carvão Petróleo O petróleo é um líquido oleoso, menos denso que a água, cuja cor varia segundo a origem, oscilando do negro ao âmbar. É encontrado no subsolo, em profundidades variáveis e é

Leia mais

5 ESTUDOS EM LABORATÓRIO SOBRE A INFLUÊNCIA DO CALOR NA MICROBIOTA DO SOLO

5 ESTUDOS EM LABORATÓRIO SOBRE A INFLUÊNCIA DO CALOR NA MICROBIOTA DO SOLO Capítulo 5 ESTUDOS EM LABORATÓRIO SOBRE A INFLUÊNCIA DO CALOR NA 5 ESTUDOS EM LABORATÓRIO SOBRE A INFLUÊNCIA DO CALOR NA 5.1. Introdução Os ensaios relacionados ao estudo da microbiota foram realizados

Leia mais

Biologia 12º Ano Preservar e Recuperar o Ambiente

Biologia 12º Ano Preservar e Recuperar o Ambiente Escola Secundária com 2º e 3º Ciclos Prof. Reynaldo dos Santos Biologia 12º Ano Preservar e Recuperar o Ambiente 1. Há alguns dias atrás um geólogo austríaco alertava para um potencial impacto da erupção

Leia mais

3 Materiais e Métodos

3 Materiais e Métodos 3 Materiais e Métodos Neste capítulo serão apresentados os materiais e os métodos utilizados na avaliação de dois processos para tratamento de efluentes de sistemas de remediação, que foram testados tanto

Leia mais

Técnicas Microbiológicas

Técnicas Microbiológicas IX Semana de Biologia da UFPB Técnicas Microbiológicas e Rotina Laboratorial Laboratório de Genética de Microrganismos - DBM Conjunto de procedimentos, ações, técnicas, metodologias, equipamentos e dispositivos

Leia mais

Projeto Cooperativo BAPPD

Projeto Cooperativo BAPPD BIORREMEDIAÇÃO DE AMBIENTE POLUÍDO POR PETRÓLEO OU SEUS DERIVADOS Projeto Cooperativo Coordenação Profª. Dra. Maria de Fátima Vieira. de Queiroz Sousa Vice-Coordenação Profª. Dra. Janete Magali de Araújo

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA CÂMPUS DE JABOTICABAL FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS DEPARTAMENTO DE FITOSSANIDADE

UNIVERSIDADE ESTADUAL PAULISTA CÂMPUS DE JABOTICABAL FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS DEPARTAMENTO DE FITOSSANIDADE unesp UNIVERSIDADE ESTADUAL PAULISTA CÂMPUS DE JABOTICABAL FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS DEPARTAMENTO DE FITOSSANIDADE DISCIPLINA - ECOTOXICOLOGIA 3a. Aula - Conceitos de ecotoxicologia,

Leia mais

Gerenciamento de Áreas Contaminadas. Emanuel L Apiccirella - Hidrogeólogo Dezembro, 2013

Gerenciamento de Áreas Contaminadas. Emanuel L Apiccirella - Hidrogeólogo Dezembro, 2013 Gerenciamento de Áreas Contaminadas Emanuel L Apiccirella - Hidrogeólogo Dezembro, 2013 Gerenciamento de Áreas Contaminadas O controle de fontes é o meio mais correto e eficaz de reduzir problemas de contaminação

Leia mais

Prof. Rafael Gomes Dionello Departamento de Fitossanidade Faculdade de Agronomia - UFRGS. Panambi, RS, de agosto de 2017.

Prof. Rafael Gomes Dionello Departamento de Fitossanidade Faculdade de Agronomia - UFRGS. Panambi, RS, de agosto de 2017. Prof. Rafael Gomes Dionello Departamento de Fitossanidade Faculdade de Agronomia - UFRGS Panambi, RS, 24-25 de agosto de 2017. O que são HPAs? Constituem uma família de compostos caracterizada por possuírem

Leia mais

INVESTIGAÇÃO DE SOLO E ÁGUAS SUBETERRÂNEAS EM ÁREA CONTAMINADA POR ÓLEO DIESEL NO MUNICÍPIO DE PASSO FUNDO - RS

INVESTIGAÇÃO DE SOLO E ÁGUAS SUBETERRÂNEAS EM ÁREA CONTAMINADA POR ÓLEO DIESEL NO MUNICÍPIO DE PASSO FUNDO - RS INVESTIGAÇÃO DE SOLO E ÁGUAS SUBETERRÂNEAS EM ÁREA CONTAMINADA POR ÓLEO DIESEL NO MUNICÍPIO DE PASSO FUNDO - RS Luis Adriel Pereira luisadrielp@gmail.com Universidade de Passo Fundo, Faculdade de Engenharia

Leia mais

COMPLETE SOLUTIONS FOR WATER POLLUTION

COMPLETE SOLUTIONS FOR WATER POLLUTION COMPLETE SOLUTIONS FOR WATER POLLUTION Tratamento de Água e Solo Contaminado Proposta de Serviços Para Áreas Contaminadas (postos de gasolina, fábricas antigas, terminais, refinarias, oleodutos, etc)

Leia mais

6 Metodologia experimental

6 Metodologia experimental 6 Metodologia experimental 6.1 Geração de efluentes e plano de amostragem As amostras de efluente foram cedidas por uma empresa petroquímica situada no município de Duque de Caxias, RJ. O efluente foi

Leia mais

Monitoramento e avaliação dos processos abióticos atuantes na remediação de solo impactado com petróleo

Monitoramento e avaliação dos processos abióticos atuantes na remediação de solo impactado com petróleo Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Química Monitoramento e avaliação dos processos abióticos atuantes na remediação de solo impactado com petróleo Aluna: Daniele

Leia mais

Funções e Importância da Água Regulação Térmica Manutenção dos fluidos e eletrólitos corpóreos Reações fisiológicas e metabólicas do organismo Escassa

Funções e Importância da Água Regulação Térmica Manutenção dos fluidos e eletrólitos corpóreos Reações fisiológicas e metabólicas do organismo Escassa Aspectos Higiênicos da Água Prof. Jean Berg Funções e Importância da Água Regulação Térmica Manutenção dos fluidos e eletrólitos corpóreos Reações fisiológicas e metabólicas do organismo Escassa na natureza

Leia mais

TRATAMENTO DE SOLO ARENOSO CONTAMINADO COM DIESEL UTILIZANDO MÉTODO INOVADOR DE ATIVAÇÃO PARA O PERÓXIDO DE HIDROGÊNIO

TRATAMENTO DE SOLO ARENOSO CONTAMINADO COM DIESEL UTILIZANDO MÉTODO INOVADOR DE ATIVAÇÃO PARA O PERÓXIDO DE HIDROGÊNIO TRATAMENTO DE SOLO ARENOSO CONTAMINADO COM DIESEL UTILIZANDO MÉTODO INOVADOR DE ATIVAÇÃO PARA O PERÓXIDO DE HIDROGÊNIO A. R. de SOUZA 1, A. G. da CÂMARA 1, S. S. O. da SILVA 1, C. K. O. SILVA 2 ; M. M.

Leia mais

TEOR DE ETANOL ANIDRO DE DIFERENTES PROCEDÊNCIAS NA REGIÃO DE RONDONÓPOLIS-MT

TEOR DE ETANOL ANIDRO DE DIFERENTES PROCEDÊNCIAS NA REGIÃO DE RONDONÓPOLIS-MT TEOR DE ETANOL ANIDRO DE DIFERENTES PROCEDÊNCIAS NA REGIÃO DE RONDONÓPOLIS-MT José Libério do Amaral 1 Gustavo Adolpho Rodrigues Ajala 2 Quênia Cristina O. Rodrigues do Amaral 3 Bruna Angélica Rodrigues

Leia mais

MICROBIOLOGIA BÁSICA ENZIMAS, DESIDROGENASE, CARBONO DA BIOMASSA MICROBIANA, ATIVIDADE RESPIRATÓRIA MICROBIANA E QUOCIENTE METABÓLICO

MICROBIOLOGIA BÁSICA ENZIMAS, DESIDROGENASE, CARBONO DA BIOMASSA MICROBIANA, ATIVIDADE RESPIRATÓRIA MICROBIANA E QUOCIENTE METABÓLICO MICROBIOLOGIA BÁSICA ENZIMAS, DESIDROGENASE, CARBONO DA BIOMASSA MICROBIANA, ATIVIDADE RESPIRATÓRIA MICROBIANA E QUOCIENTE METABÓLICO MARCELO DE ANDRADE BARBOSA Doutorando em Agronomia (Ciência do Solo)

Leia mais

CAPÍTULO. Santos, Rafaela Souza ¹ *; Romualdo, Lincoln Lucílio ¹

CAPÍTULO. Santos, Rafaela Souza ¹ *; Romualdo, Lincoln Lucílio ¹ 3 CAPÍTULO IDENTIFICAÇÃO DE COMPOSTOS ORGÂNICOS VOLÁTEIS NA CIDADE DE CATALÃO-GO EM UM MÊS DE INVERNO Santos, Rafaela Souza ¹ *; Romualdo, Lincoln Lucílio ¹ 1 Programa de Pós-Graduação em Química. Departamento

Leia mais

DOCENTES: Prof. Ana Barbosa

DOCENTES: Prof. Ana Barbosa DOCENTES: TEÓRICA 15 DOCENTES: Prof. Helena Galvão Prof. David Montagnes (responsável componente University teórico) of Liverpool, U.K. Prof. Ana Barbosa (componente prático) Profª Helena Galvão F.C.M.A.,

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE LORENA CARLA CRISTINA ALMEIDA LOURES

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE LORENA CARLA CRISTINA ALMEIDA LOURES UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE LORENA CARLA CRISTINA ALMEIDA LOURES Estudo da Aplicação de UV/F ENTON (Fe 2+ /H 2 O 2 ) no Tratamento de Efluentes de Laticínio Lorena SP 2011 CARLA CRISTINA

Leia mais