INTRODUÇÃO DO RACIOCÍNIO FUNCIONAL PARA ESTUDANTES DO 5º ANO DO ENSINO FUNDAMENTAL

Documentos relacionados
A INTRODUÇÃO DO RACIOCÍNIO FUNCIONAL NO 5º ANO DO ENSINO FUNDAMENTAL: UMA INTERVENÇÃO

Pensamento Algébrico. Vinicius Carvalho Beck 2016

Early Algebra: Uma análise de livros didáticos

A PROPORCIONALIDADE E O PENSAMENTO ALGÉBRICO

Palavras-chave: Comparação Multiplicativa. Estruturas multiplicativas. Estratégias.

RESOLUÇÃO DE SITUAÇÃO PROBLEMA ENVOLVENDO ESTRUTURA ADITIVA: UM ESTUDO REFLEXIVO COM ESTUDANTES DO 5º ANO DO ENSINO FUNDAMENTAL

Mostra do CAEM a 21 de outubro, IME-USP

DESEMPENHO DE ALUNOS DO ENSINO FUNDAMENTAL EM SITUAÇÕES- PROBLEMA DAS ESTRUTURAS MULTIPLICATIVAS

Problemas aditivos de ordem inversa: uma proposta de ensino

43 x 2 = = (40 x 2) + (3 x 2) = = 86

A ÁLGEBRA DA EDUCAÇÃO BÁSICA VISTA POR ALUNOS CONCLUINTES DO ENSINO MÉDIO. Maria de Fátima Costa Sbrana

ESTRUTURA MULTIPLICATIVA: UM ESTUDO COMPARATIVO ENTRE O QUE A PROFESSORA ELABORA E O DESEMPENHO DOS ESTUDANTES

! XVIII Encontro Baiano de Educação Matemática A sala de aula de Matemática e suas vertentes

ANÁLISE DE ERROS E DIFICULDADES DOS ALUNOS DO 9º ANO EM QUESTÕES DE ÁLGEBRA DO SARESP DE 2008 A 2011

ESTRUTURAS MULTIPLICATIVAS: TEORIA E PRÁTICA ENVOLVENDO PROPORÇÃO DUPLA E MÚLTIPLA

Livro didático do 8º ano: conversões, tratamentos e equações

E.E. SENADOR LUIZ NOGUEIRA MARTINS ATPC 11 DE AGOSTO 2017 PC: ANA LUCIA FAZANO PARTE 2

É POSSÍVEL SE TER RACIOCÍNIO FUNCIONAL NO NÍVEL DOS ANOS INICIAIS? UMA INVESTIGAÇÃO COM ESTUDANTES DO 5º ANO DO ENSINO FUNDAMENTAL

Matriz de Referência da área de Matemática Ensino Fundamental

Formação Continuada - Matemática AS OPERAÇÕES E SUAS DIFERENTES IDEIAS

UTILIZANDO A METODOLOGIA DE RESOLUÇÃO DE PROBLEMAS PARA O ENSINO DE PROGRESSÃO ARITMÉTICA

O CONHECIMENTO ALGÉBRICO DOS ALUNOS DA EDUCAÇÃO BÁSICA Ronaldo Vieira Cabral FACNORTE/IBEA

ANÁLISE DOCUMENTAL ACERCA DAS QUESTÕES DE ESTATÍSTICA DESCRITIVA ABORDADAS NO ENEM ( )

Problemas de Partilha nos Livros Didáticos de Matemática do 7º Ano no Brasil

Matriz de Referência da área de Matemática Ensino Médio

A HISTÓRIA DA MATEMÁTICA COMO FERRAMENTA AUXILIAR NA ATRIBUIÇÃO DE SIGNIFICADOS DE CONCEITOS MATEMÁTICOS

Conhecimento algébrico dos alunos da primeira série do ensino médio em escola pública da cidade de Feira de Santana-BA: relato de experiência

DISCIPLINA DE MATEMÁTICA 7.º Ano

Anais do XI Encontro Nacional de Educação Matemática ISSN X Página 1

CONHECIMENTOS NUMÉRICOS E ALGÉBRICOS DE ALUNOS DO 8º ANO DO ENSINO FUNDAMENTAL

PROPOSTA DE ATIVIDADES SOBRE CONCEITOS ALGÉBRICOS COM PADRÕES GEOMÉTRICOS E NUMÉRICOS PARA ALUNOS DO 7º ANO DO ENSINO FUNDAMENTAL

COMPARAÇÃO MULTIPLICATIVA: UMA ATIVIDADE DIAGNÓSTICA

Resumo. Palavras chave: livro didático; problemas de estrutura algébrica; problemas de partilha.

O PAPEL E A IMPORTÂNCIA DO LIVRO DIDÁTICO NO PROCESSO DE ENSINO APRENDIZAGEM

A PROVA BRASIL/2011: IDENTIFICANDO DIFICULDADES RELACIONADAS ÀS CONCEPÇÕES DE ÁLGEBRA POR MEIO DOS DESCRITORES

2ª Ana e Eduardo. Competência Objeto de aprendizagem Habilidade

USANDO JOGOS NA COMPREENSÃO DE EQUAÇÕES DO 1 GRAU

Planejamento Anual. Componente Curricular: Matemática Ano: 7º ano Ano Letivo: Professor(s): Eni e Patrícia

CONSENSOS E DISSENSOS NO EIXO DE ÁLGEBRA ENTRE A BASE NACIONAL COMUM CURRICULAR E OS PARÂMETROS CURRICULARES DO ESTADO DE PERNAMBUCO

Palavras-chave: Área do retângulo; Situações-problema; Malha quadriculada.

Caro(a) aluno(a), Coordenadoria de Estudos e Normas Pedagógicas CENP Secretaria da Educação do Estado de São Paulo Equipe Técnica de Matemática

OS PROBLEMAS E AS CONCEPÇÕES DE ÁLGEBRA EM UMA AULA DE MATEMÁTICA DO SÉTIMO ANO

PASSOS INICIAIS NOS CAMINHOS DA ÁLGEBRA

Texto produzido a partir de interações estabelecidas como bolsistas do PIBID/UNIJUÍ 2

ANÁLISE DE CONCEPÇÕES DA ÁLGEBRA COM ALUNOS DO 9º ANO

Equação, conversão de duas linguagens: da natural para algébrica

Sobre o Campo Conceitual das Estruturas Multiplicativas, os mesmos autores afirmam:

PLANO DE TRABALHO I GOVERNO DO ESTADO DO RIO DE JANEIRO SECRECTARIA ESTADUAL DE EDUCAÇÃO METROPOLITANA I

G6 - Ensino e Aprendizagem de Matemática nos anos finais do Ensino Fundamental e na EJA

Operações fundamentais: contribuições de Vergnaud e Duval Paulo Meireles Barguil

ESTRUTURA MULTIPLICATIVA: EXISTE RELAÇÃO ENTRE O QUE O PROFESSOR ELABORA E O DESEMPENHO DE SEUS ESTUDANTES?

Resumo: Palavras-chave: Equações do 1ª grau, Ensino Fundamental, Álgebra, Números e Operações, Elementos Didáticos. INTRODUÇÃO

Eduardo. Competência Objeto de aprendizagem Habilidade

DESENVOLVIMENTO E IMPLEMENTAÇÃO DE SOFTWARE EDUCACIONAL NA ÁREA DE ESTATÍSTICA PARA O ENSINO BÁSICO 1

SISTEMÁTICA PLANO DE ENSINO BIMESTRAL 2º Bimestre/2018

CONTRIBUIÇÕES DO PENSAMENTO RELACIONAL PARA A APRENDIZAGEM DA ÁLGEBRA ESCOLAR

ATIVIDADES LÚDICAS PARA O ENSINO DE ARITMÉTICA E ÁLGEBRA

Ensino e aprendizagem de números e álgebra

REGISTROS DE REPRESENTAÇÃO SEMIÓTICA E O ENSINO DE ÁLGEBRA: PROPOSIÇÕES DE UMA SITUAÇÃO DE ENSINO PROPOSTA NO LIVRO DIDÁTICO

3ª Gustavo Lopes. Competência Objeto de aprendizagem Habilidade

QUANTO AO ENSINO DE PROGRESSÃO ARITMÉTICA: UMA CONTRIBUIÇÃO DA METODOLOGIA RESOLUÇÃO DE PROBLEMAS

AS ORIENTAÇÕES CURRICULARES OFICIAIS PARA O ENSINO DA ÁLGEBRA NOS ANOS FINAIS DO ENSINO FUNDAMENTAL

DISCIPLINA DE MATEMÁTICA OBJETIVOS: 1ª Série

EDUCAR NA E PARA A DIVERSIDADE: UM CURRÍCULO DE MATEMÁTICA EM MOVIMENTO

A LEITURA E A ESCRITA NO PROCESSO DE RESOLUÇÃO DE PROBLEMAS NAS AULAS DE MATEMÁTICA

ATIVIDADES LÚDICAS PARA O ENSINO DE ARITMÉTICA E ÁLGEBRA

Amanda Maria da Silva; Flávia Gomes Silva do Nascimento.

Esquemas de estudantes antes e após um processo formativo de seus professores

Critérios de Avaliação de Matemática 7.ºano de escolaridade 2018/2019. Domínio cognitivo/ procedimental 80% Descritores de Desempenho

ATIVIDADES QUE ENVOLVEM O PENSAMENTO PROPORCIONAL SUSCITAM O PENSAMENTO MATEMÁTICO AVANÇADO? GT7 - Ensino de Matemática no Ensino Médio e Superior

AGRUPAMENTO de ESCOLAS de PEDRÓGÃO GRANDE CONSELHO de DOCENTES 1.º CEB PLANIFICAÇÃO MENSAL - Matemática 2.º Ano /2016

O Raciocínio Algébrico no Ensino Fundamental: O debate a partir da visão de quatro estudos

UMA DISCUSSÃO SOBRE AS DIFICULDADES DOS ALUNOS DO 7º ANO NA COMPREENSÃO DO CONCEITO DE FRAÇÃO E SUAS OPERAÇÕES

Palavras-chave: congruência; representação semiótica; escrita natural; escrita algébrica; conversão.

ÁLGEBRA: PENSAR? CALCULAR? COMUNICAR?

ESTRATÉGIAS DE ENSINO DE COMPARAÇÃO MULTIPLICATIVA POR MEIO DE SITUAÇÕES-PROBLEMA

Ano Letivo 2018/2019 TEMAS/DOMÍNIOS CONTEÚDOS APRENDIZAGENS ESSENCIAIS Nº DE AULAS AVALIAÇÃO

PLANEJAMENTOS ANUAIS

Matemática PROFESSOR: Francisco Monteiro OBJETIVO GERAL

PROBLEMAS DE ESTRUTURA ALGÉBRICA NO ENSINO SUPERIOR: UMA ANÁLISE DAS ESTRATÉGIAS DE RESOLUÇÃO ADOTADAS PELOS ALUNOS

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO À DOCÊNCIA SUBPROJETO MATEMÁTICA

UM ESTUDO SOBRE O CÁLCULO RELACIONAL E O NUMÉRICO EM PROBLEMAS DE COMPARAÇÃO MULTIPLICATIVA

Geoplano: tarefas para o desenvolvimento do raciocínio no 7º ano do Ensino Fundamental

Eixo temático 1: Pesquisa em Pós-Graduação em Educação e Práticas Pedagógicas.

A construção do Sistema de Numeração Decimal SND e Testagem com criança de 6 a 9 anos

O DESENVOLVIMENTO DO PENSAMENTO ALGÉBRICO COM CRIANÇAS DOS ANOS INICIAIS. Palavras-chave: Educação Matemática; Pensamento Algébrico; Early Algebra.

O CAMPO CONCEITUAL DAS ESTRUTURAS MULTIPLICATIVAS: ANÁLISE COMPARATIVA ENTRE O PROGNÓSTICO DOS PROFESSORES E O DESEMPENHO DOS ESTUDANTES.

QUE CONCEPÇÕES DE ÁLGEBRA SURGEM NAS QUESTÕES DE MACROAVALIAÇOES: o caso do ENEM 2011.

FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ

PLANIFICAÇÃO ANUAL ANO LETIVO PRÁTICAS ESSENCIAIS DE APRENDIZAGEM

Poemas Problemas: Uma experiência de formação continuada para o Ciclo de Alfabetização

MÉDIA ARITMÉTICA E PONDERADA: UM ESTUDO SOBRE O DESEMPENHO DE ALUNOS DA EDUCAÇÃO DE JOVENS E ADULTOS

Miriam Criez Nobrega Ferreira(UFABC) Alessandro Jacques Ribeiro (UFABC)

Aprendizagem Significativa de Equações do 1 o Grau: um estudo de caso com alunos do sétimo ano do Ensino Fundamental

Curso de Educação e Formação Empregado de Restaurante/Bar 1º Ano. Planificação Anual de Matemática

Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira

VESTIBULAR UFSC/2019 RELATÓRIO DA PROVA DE INGLÊS (PROVA 1 AMARELA)

REPRESENTANDO DISTINTAS SITUAÇÕES COMBINATÓRIAS DE DIFERENTES NÚMEROS DE ETAPAS DE ESCOLHA

MARCELO CARLOS DA SILVA FUNÇÃO QUADRÁTICA: UMA PROPOSTA DE ATIVIDADE PARA O ESTUDO DOS COEFICIENTES

MATEMÁTICA ENSINO FUNDAMENTAL (ANOS INICIAIS)

Transcrição:

Sociedade na Contemporaneidade: desafios e possibilidades INTRODUÇÃO DO RACIOCÍNIO FUNCIONAL PARA ESTUDANTES DO 5º ANO DO ENSINO FUNDAMENTAL César Teixeira Universidade Estadual de Santa Cruz UESC cesinhascs@uol.com.br Sandra Magina Universidade Estadual de Santa Cruz UESC sandramagina@gmail.com Vera Merlini Universidade Estadual de Santa Cruz UESC vera.merlini@gmail.com Resumo: Esta pesquisa teve por objetivo a investigação da possibilidade de se introduzir o raciocínio funcional para estudantes do 5º ano do Ensino Fundamental em uma escola pública de um município da Bahia, por intermédio de uma intervenção de ensino, baseada em situaçõesproblemas de multiplicação e sequências. A questão de pesquisa que norteou o estudo foi: É possível iniciar a introdução do raciocínio funcional com estudantes do 5º ano do Ensino Fundamental? Escolhido como procedimento metodológico o da pesquisa quase experimental, pois, envolvemos apenas um grupo de estudantes, com as seguintes fazes: pré-teste, intervenção de ensino e pós-testes 1 e 2. O estudo foi baseado na Teoria dos Campos Conceituais de Vergnaud e também nos estudos da Early Algebra. Como resultado apontamos o crescimento estatisticamente significativo nos percentuais de sucesso dos estudantes entre o pré-teste e o pós-testes. Portanto, percebe-se que os estudantes começam a compreender as estruturas algébricas polinomiais. Palavras-chave: Anos Iniciais. Sequência. Early Algebra. Diagnóstico. 1. Introdução Este estudo, que é um recorte de uma dissertação de Mestrado, tem por objetivo investigar o raciocínio funcional de 21 estudantes do 5º ano do Ensino Fundamental em uma escola pública do sul da Bahia, da análise de dois problemas, sendo um envolvendo uma sequência pictórica e o outro uma sequência numérica. Desse modo, álgebra é o objeto matemático de nossa pesquisa, visto que trabalhamos o raciocínio funcional dos estudantes. Com o intento de contextualizar nosso objeto de estudo, iniciamos este artigo trazendo a visão de Lima (2006) a respeito da álgebra, quando este afirma que trata-se de um campo da matemática preocupado em estudar as generalizações dos conceitos e as operações de aritmética. Destacamos, ainda, que a álgebra é responsável pelos estudos da manipulação de 1

na Contemporaneidade: desafios e possibilidades Sociedade Brasileira d Matemátic equações, operações matemáticas, polinômios e estruturas algébricas. Assim, temos que o termo álgebra engloba uma gama diferente de ramos da, de maneira que cada um possui suas especificidades próprias. Trazendo esse objeto para a sala de aula, encontramos House (1995, p. 1) que faz alusão ao lugar que a álgebra goza atualmente na : Há muito tempo a álgebra desfruta de um lugar de destaque no currículo de matemática, representando para muitos alunos tanto a culminação de anos de estudo de aritmética como o início de mais anos de estudo de outros ramos da matemática. Concordamos com essa ideia de House e julgamos viável uma revisão no currículo a fim de que possa ser analisada a possibilidade de se antecipar o ensino da álgebra, em nosso caso, propomos a antecipação da introdução do raciocínio funcional. Ainda pensando sobre currículo, nosso estudo está emparelhado ao pensamento de Usiskin (1995), quando este afirma que o papel das ideias de função no estudo da álgebra está no ponto de vista de relações entre quantidades, em um meio para a resolução de certos problemas, fornecendo também condições para o desenvolvimento e análise das relações. Chama-nos a atenção, Yamanaka e Magina (2008) ao ponderar que a nos anos iniciais baseia-se em aritmética e na fluência calculatória, constituindo-se puramente em uma abordagem procedimental e que essa abordagem aponta para um cenário de insucessos em termos das realizações estudantis. Ainda referente à aprendizagem da álgebra, Post; Behr e Lesh (1995, p. 92) afirmam que o raciocínio e o conhecimento algébricos muitas vezes envolvem modos diferentes de representação. Tabelas, gráficos, símbolos (equações), desenhos e diagramas são maneiras importantes pelas quais se podem representar as idéias algébricas. De fato, do nosso ponto de vista a é mais do que fluência calculatória ou procedimentos repetidos, ela tem a função de levar o estudante a ser reflexivo, pensar e analisar qual a melhor forma de representar e solucionar uma situação-problema. Para tanto fomos buscar subsídios em autores cujos estudos estão focados na Early Algebra, que discutimos a seguir. 2. Early Algebra Esse termo, Early Algebra, surgiu no ano de 1998, no início da implantação de um projeto que estudava a possibilidade de se introduzir o ensino da álgebra nos anos iniciais do sistema educacional norte americano. Esse projeto teve a denominação de Early Algebra. Desde então, esse termo foi moldado para expressar conceitos elementares da álgebra nos quais são 2

Sociedade na Contemporaneidade: desafios e possibilidades envolvidos desde situações da aritmética até as situações funcionais, perpassando pelas sequências lógicas. Em nosso entendimento, neste trabalho, Early Algebra é aquela álgebra que pode ser tratada desse os primeiros anos de escolaridade. Iniciamos a discussão sobre a álgebra nos anos iniciais, com Carraher e Schliemann (Prelo) que destacam quatro pontos importantes na matemática, denominados por ideias poderosas, sendo que A primeira ideia poderosa é que as operações aritméticas são literalmente definidas como funções. Na verdade, eles são os primeiros exemplos de funções que os estudantes encontram em matemática. [...] A segunda ideia poderosa destaca que funções e relações merecem uma mais proeminente Função. Estes conceitos são fundamentais para a expansão do conhecimento dos estudantes do conceito de números elementares além dos números naturais e para a introdução de variáveis como espaços reservados para elementos de conjuntos. A terceira ideia poderosa diz respeito ao papel das funções em unir aritmética, álgebra, e geometria. [...] A quarta ideia poderosa baseia-se no fato de que equações e inequações podem ser consideradas como a comparação entre os domínios de duas funções. [...] (CARRAHER; SCHLIEMANN, p 192-193, tradução nossa). Essas ideias, tidas como poderosas, vêm ao encontro desse estudo, em especial, as três primeiras, no que se refere às funções e relações que dizem respeito às questões de sequência que analisamos. Kaput (1999) defende que o ensino da solicita estratégias diferentes, ou seja, levar o estudante a refletir, com o objetivo que este se aprofunde nas estruturas subjacentes. Com base nesta perspectiva temos que, já nos anos iniciais, seja implantada esse pensamento de forma longitudinal e não como uma abordagem direta. Nesse sentido, a Early Algebra solicita estratégias diferentes do ensino da, aquelas que levem o estudante a refletir. Para Blanton et al. (2007), a Early Algebra tem os seguintes objetivos: (1) generalização, ou identificação, expressando e justificando estruturas, propriedades e relações matemáticas e (2) raciocínio e ações baseadas em formas de generalizações. O foco da pesquisa em Early Algebra, conforme os mesmos autores acima referidos estão estruturados da seguinte forma: (a) a aritmética é usada como um domínio para expressar e formalizar generalizações (aritmética generalizada) e (b) generalização de padrões numéricos ou geométricos para descrever relações funcionais. 3

na Contemporaneidade: desafios e possibilidades Sociedade Brasileira d Matemátic Defendemos que essas relações funcionais podem ser entendidas como o ato de estabelecer relações entre grandezas. Caracterizamos tal ato como consequência de um raciocínio funcional. Assim, definimos raciocínio funcional como a capacidade de estabelecer a relação entre grandezas. Isto pode aparecer, por exemplo, em situações multiplicativas, quando a quantidade de rodas está relacionada a quantidade de carro, sendo a primeira quantidade uma variável dependente da segunda quantidade. Dessa forma, se 1 carro tem 4 rodas, 10 carros têm 40 rodas e n carros tem 4n rodas. Esta situação poderia ser matematicamente escrita no âmbito de uma função linear: f(n) = 4n. 3. Procedimentos metodológicos O presente estudo é de caráter descritivo, no qual, segundo Rudio (2001), o pesquisador busca conhecer e interpretar a realidade, sem a intenção de interferir para modificá-la. A pesquisa foi desenvolvida em uma escola pública do sul da Bahia, que funciona nos turnos matutino e vespertino que atende estudantes do 1º ao 5º ano do Ensino Fundamental. Como já fora mencionado, esse estudo é um recorte de uma dissertação de mestrado. Esta envolveu uma pesquisa dividida em duas etapas: diagnóstica e intervenção. A etapa diagnóstica, por sua vez, teve três momentos: o inicial, quando foi aplicado um teste para avaliar o conhecimento espontâneo desses estudantes ao lidar com situações que envolviam sequências pictóricas e numéricas e, ainda, situações envolvendo relações funcionais entre duas grandezas chamamos esse momento de pré-teste. O segundo momento foi a aplicação desse mesmo teste (só mudando a ordem de apresentação dos problemas) 15 dias após esses estudantes terem passado pela intervenção de ensino chamamos esse momento de pós-teste 1. Por fim o terceiro momento, foi novamente a aplicação do teste, agora 65 dias após a segunda aplicação, tendo havido transcorrido inclusive as férias de final de ano pós-teste 2. Para efeito deste artigo, será apresentado e discutido a resolução dos 21 sujeitos participantes de uma turma do 5º ano, ao resolverem dois dos quatro problemas contidos no pré-teste, o qual doravante chamaremos apenas de teste. Esse pré-teste foi aplicado coletivamente, com os estudantes respondendo de forma individual. Foi-lhes entregue um caderno do tamanho de meia folha de papel A4, contendo os quatros problemas, sendo uma em cada página. Lemos em voz alta cada um dos problemas, por duas vezes, para garantir que mesmo que o estudante não tivesse capacidade leitora, fosse capaz de compreendê-lo. Quando percebíamos que todos, ou grande parte, já havia terminado, 4

Sociedade na Contemporaneidade: desafios e possibilidades pedíamos para virar a página e fazíamos a leitura do próximo problema. Não respondíamos a nenhum questionamento dos estudantes, a não ser aqueles relacionados especificamente a não compreensão de alguma palavra contida no texto. Cabe ressaltar que, dos quatro problemas que compunham a etapa diagnóstica, estamos analisando dois, os que tratavam de sequência e que foram elaborados com a finalidade de investigar se o estudante conseguia perceber a continuidade e a sua lógica. Cada problema, por sua vez, era composto por três itens. É importante ressaltar que estamos considerando sequência como números (ou figuras geométricas) apresentados numa certa ordem, seguindo um padrão ou lei de formação (IMENES; LELLIE, 1998, p. 290). A seguir os dois problemas, seguido por uma análise de cada um deles. Quadro 1: Problemas de sequências que foram analisadas 1. Observe essa sequência de figuras: P1 a) Desenhe no espaço ao lado qual é a figura da 8ª posição b) Desenhe no espaço ao lado como poderia ser a figura da 14ª posição? c) Escreva no espaço abaixo qual é a próxima posição em que aparecerá novamente a figura que você desenhou no item (b)... 2. Observe abaixo a sequência de números e de suas posições: Posição 1ª 2ª 3ª Números 2 4 6 P2 a) Qual poderia ser o número correspondente a 8ª posição? b) Imagine que seu colega errou o item (a) e a professora pediu para você explicar para ele como você encontrou o número da 8ª posição. Escreva abaixo a sua explicação. c) Escreva no espaço abaixo a expressão matemática para que uma pessoa possa encontrar o número referente a qualquer posição. Fonte: Dados da pesquisa Como podemos observar P1 traz uma sequência icônica enquanto P2 uma numérica. Os objetivos de ambos são semelhantes, contudo P2 contém um passo a mais, qual seja solicita do estudante uma generalização. Após descrevermos os procedimentos metodológicos, no capítulo a seguir faremos a análise dos dados, considerando as respostas dadas pelos estudantes no pós-teste. 4. Análise dos dados 5

na Contemporaneidade: desafios e possibilidades Sociedade Brasileira d Matemátic A análise dos dados foi realizada sob dois aspectos: (i) o desempenho e (ii) as estratégias de resolução utilizadas pelos estudantes no pré-teste. A Tabela 1 nos mostra a quantidade de acerto em cada um dos itens das duas questões. Acertos N = 21 Tabela 1: Quantidade de acertos (porcentagem) na Q1 e Q2 P1a P1b P1c P2a P2b P2c 19 19 16 10 9 1 (90%) (90%) (76%) (48%) (43%) (5%) Fonte: Dados da Pesquisa Iniciamos a análise salientando que dentre as 126 respostas possíveis (produto entre 6 itens de dois problemas respondidos por 21 estudantes), tivemos apenas quatro respostas em branco (ambas no P2). Julgamos esse dado importante, na medida que demonstra empenho e a seriedade dos estudantes em tentar encontrar a solução. Quanto ao desempenho dos estudantes no P1, os dados da Tabela indicam que, de maneira geral, foi positivo, uma vez que eles atingiram patamares acima de 76% de acerto, demonstrando que eles compreenderam a lógica da sequência pictórica proposta. Quanto ao P2, nos itens P2a e P2b, quase metade dos estudantes acertaram compreenderam a lógica da sequência numérica (48% e 43%, respectivamente). No entanto, no item P2c, em que se pedia a generalização da sequência, encontramos apenas uma resposta correta. Ao compararmos a P1 com a P2 percebemos que os estudantes tiveram menor desempenho na segunda, em especial no item c, em que era solicitado a expressão matemática, generalização, que representasse a sequência numérica. O desempenho dos estudantes apresentado nessas duas questões, leva-nos a supor que os estudantes do 5º ano do ensino fundamental já trazem consigo conhecimentos que poderão ser explorados, uma vez que segundo Blanton et al. (2007), eles conseguiram atingir os objetivos da Early Algebra apresentando raciocínio e ações baseadas em formas de generalizações. Quanto às estratégias utilizadas pelos estudantes, iniciamos também com o P1 que apresentou, nos itens a e b, a representação icônica, pois era essa a solicitação indicada. Segundo Post, Behr e Lesh (1995), o desenho é uma das representações que envolve o raciocínio e o conhecimento algébrico. Destacamos o protocolo do estudante S7 para ilustrar a maioria das respostas dadas pelos estudantes em cada um de seus itens. 6

Sociedade na Contemporaneidade: desafios e possibilidades Figura 1: Extrato do protocolo da Q1 do estudante S7 Com relação ao item P2a, destacamos quatro estratégias utilizadas pelos estudantes que demonstram que eles entenderam a lógica da sequência, como nos seguintes casos: (i) ao utilizar a estrutura aditiva (8 + 8 = 16); (ii) ao utilizar a estrutura multiplicativa (2 x 8 = 16); (iii) ao completar a tabela até chegar na 8ª posição, sendo que nessa última, só tivemos acertos. Tivemos também a (iv) estratégia em que havia apenas a resposta, corretas ou não, sem registrar como se chegou a tal resultado, o que nos leva a supor que ele usou o cálculo mental, ou ainda ter resolvido escrevendo o cálculo na carteira, como pode ser observado durante a aplicação do teste. Quanto ao item P2b, encontramos respostas que indicam entendimento de generalização, contudo os estudantes utilizaram a linguagem natural. Observe algumas respostas dadas pelos estudantes: S01 Eu olhei bem e percebi que era multiplicando por 2 ; S09 Eu vi que tinha 3 que valia 6 e entendi que 4 valia 8 e daí eu percebi que era de 2 em 2. Essas respostas vêm ao encontro das ideias poderosas destacadas por Carraher e Schliemann (no Prelo) em especial que as operações aritméticas são literalmente definidas como funções. Conforme os dados da Tabela 1, tivemos um acerto no item P2c, do estudante S15, que resolveu os três itens utilizando, como estratégia, a estrutura aditiva, conforme pode ser observado no extrato de seu protocolo: 7

na Contemporaneidade: desafios e possibilidades Figura 2: Extrato do protocolo da Q2 do estudante S15 Ao responder o item Q2c, o estudante generaliza, justifica a estrutura identificando a relação matemática, ao afirmar que poderia chegar a qualquer posição somando o numero em que eu escolher, conforme os objetivos da Early Algebra destacados por Blanton et al. (2007). 5. Considerações Finais Retomando o objetivo desse artigo que é o de investigar o raciocínio funcional de 21 estudantes do 5º ano do Ensino Fundamental em uma escola pública do sul da Bahia, em duas questões relacionadas a sequência pictórica e numérica. Temos ciência que esse estudo foi com um público muito restrito, uma turma de 5º ano com 21 estudantes, e não temos a pretensão de generalizar esse resultado, contudo, de acordo com a análise feita, é fato que esses já trazem consigo conhecimentos intuitivos relativos à Álgebra. Nesse sentido, fazemos nossas palavras aquela proferidas por Thompson (1995) que estudantes muito jovens são capazes de aprender álgebra se forem ensinadas por meio de sequências. Além disso, o ensino da solicita estratégias diferentes, qual seja, o de levar o estudante a refletir, sendo assim, acreditamos que o trabalho com atividades compostas 8 Sociedade

Sociedade na Contemporaneidade: desafios e possibilidades por situações que explorem sequências ainda nos anos iniciais pode ser um terreno fértil para a introdução do ensino da Álgebra. 6. Referências BLANTON, M. et al. Early Algebra. In: VICTOR, J. K. (Ed.) Algebra: Gateway to a Technological Future, Columbia/USA, The Mathematical Association of America, 2007, p. 7 14. CARRAHER, D. W; SCHLIEMANN, A. D. Powerful Ideas in Elementary School Mathematics. No prelo. HOUSE, P. A. Reformular a álgebra da escola média: por que e como?. In: COXFORD, A. F.; SHULTE, A. P. (Org.). As idéias da álgebra. (Hygino H. Domingues, trad.). São Paulo: Atual, 1995. p. 1 8. IMENES, L. M.; LELLIS, M. Microdicionário de. São Paulo: Scipione, 1998. 351 p. KAPUT, J. J. (1999). Teaching and Learning a New Algebra With Understanding. Disponível em <http://www.cimm.ucr.ac.cr/eudoxus/algebra%20teaching/pdf/kaput,%20j.,%20running %20head,%20teaching%20and%20learning%20a%20new%20algebra.%20Teaching%20an d%20learning%20a%20new%20algebra%20with%20understanding..pdf>. Consultado em 23 de julho de 2015. LIMA, Elon Lajes. Álgebra Linear. Rio de Janeiro: Ed. IMPA, 2006. POST, T. R.; BEHR, M. J.; LESH, R. A proporcionalidade e o desenvolvimento de noções pré-álgebra. In: COXFORD, A. F.; SHULTE, A. P. (Org.). As idéias da álgebra. (Hygino H. Domingues, trad.). São Paulo: Atual, 1995. p. 89 103. RUDIO, F. V. Introdução ao projeto de pesquisa científica. 29 ed. Petrópolis: Vozes. 2001. THOMPSON, F. M. O ensino de álgebra para a criança mais nova. In: COXFORD, A. F.; SHULTE, A. P. (Org.). As idéias da álgebra. (Hygino H. Domingues, trad.). São Paulo: Atual, 1995. p. 79 103. USISKIN, Z. Concepções sobre a álgebra da escola média e utilizações das variáveis. In: COXFORD, A. F.; SHULTE, A. P. (Org.). As idéias da álgebra. (Hygino H. Domingues, trad.). São Paulo: Atual, 1995. p. 9 22. 9

na Contemporaneidade: desafios e possibilidades Sociedade Brasileira d Matemátic YAMANAKA, O.; MAGINA, S. Um estudo da Early Algebra sob a luz da Teoria dos Campos Conceituais de Gerard Vergnaud. In: ENCONTRO PAULISTA DE EDUCAÇÃO MATEMÁTICA, 9. 2008, Bauru. Anais... São Paulo: SBEM/SBEM-SP, 2008. 10