Redação selecionada e publicada pela Olimpíada de Química SP-2011 PILHAS E BATERIAS: O HOMEM À PROCURA DE ENERGIA

Documentos relacionados
pilha de Volta pilha Galvânica pilha voltaica rosário

Eletroquímica PROF. SAUL SANTANA

01) (CESGRANRIO-RJ) Considere a pilha representada abaixo. Cu(s) Cu 2+ Fe 3+, Fe 2+ Pt(s) Assinale a afirmativa falsa.

ELETROQUÍMICA Profº Jaison Mattei

Oxirredução IDENTIFICAÇÃO O QUE SOFRE ENTIDADE O QUE FAZ. Oxidante ganha e - ( NOX) oxida o redutor redução

O que esses dispositivos tem em comum? São dispositivos móveis. O que faz os dispositivos móveis funcionarem?

QUÍMICA. Transformações Químicas e Energia. Prof ª. Giselle Blois

Redação selecionada e publicada pela Olimpíada de Química SP Pilha ou Bateria: um quase eterno dilema

PILHAS ELETROQUÍMICAS

REAÇÕES QUÍMICAS PRODUZINDO CORRENTE ELÉTRICA CORRENTE ELÉTRICA PRODUZINDO REAÇÃO QUÍMICA PROF. RODRIGO BANDEIRA

Eletroquímica: Pilha e Eletrólise

ELETROQUÍMICA. paginapessoal.utfpr.edu.br/lorainejacobs. Profª Loraine Jacobs DAQBI

O que são pilhas? Pilhas são sistemas em que a energia química se transforma espontaneamente em energia elétrica.

3º Trimestre Sala de Estudo - Química Data: 28/09/17 Ensino Médio 2º ano classe: A_B_C Profª Danusa Nome: nº

PILHAS, BATERIAS E CÉLULAS DE COMBUSTÍVEL

Exercícios de Eletroquímica

SOLUÇÃO PRATIQUE EM CASA

Aula 13 Fontes de tensão

RESOLUÇÃO DE EXERCÍCIOS PROPOSTOS AULA 28 TURMA ANUAL

RESOLUÇÃO DE EXERCÍCIOS PROPOSTOS AULA 09 TURMA INTENSIVA

Resposta Capítulo 17: Eletroquímica: Pilhas

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Curitiba

Colégio FAAT Ensino Fundamental e Médio

Aluno (a): Data: / / Obs: Data de entrega: 12/11 (Todas as respostas devem apresentar justificativa) Resposta à caneta, organizada e completa.

Exercício 3: (PUC-RIO 2007) Considere a célula eletroquímica abaixo e os potenciais das semi-reações:

É a perda de elétrons. É o ganho de elétrons

REAÇÕES QUÍMICAS PRODUZINDO CORRENTE ELÉTRICA CORRENTE ELÉTRICA PRODUZINDO REAÇÃO QUÍMICA

51ª-53ª AULAS PILHAS E BATERIAS Pilhas electroquímicas Pilhas recarregáveis (baterias) Pilhas de combustível (fuel cells)

QUÍMICA - 2 o ANO MÓDULO 27 ELETROQUÍMICA: ÍGNEA E AQUOSA

b) Os elétrons fluem do ânodo para o cátodo, ou seja, do eletrodo de crômio para o eletrodo de estanho.

Departamento de Química Inorgânica IQ / UFRJ IQG 128 / IQG ELETRÓLISE

Ciências da Natureza e Matemática

Corrosão de peças metálicas à atmosfera Condições para que ocorra:

Pilha de Daniell. Sentido dos elétrons

MSPC INFORMAÇÕES TÉCNICAS

ÓXIDO-REDUÇÃO REAÇÕES REDOX : CONCEITO E IMPORTÂNCIA PILHAS E BATERIAS POTENCIAL DE ELETRODO CORROSÃO E PROTEÇÃO ELETRÓLISE

CH 4(g) 3F 2(g) CHF 3(g) 3HF(g).

PRÉ-VESTIBULAR QUÍMICA PROF. EMANUEL

Regras do Jogo Trilha da Eletroquímica

QUIMICA: Eletroquimica Prof. Douglas_10/10/2018 1

PILHAS E BATERIAS COMERCIAIS. Química II Professora: Raquel Malta 3ª série Ensino Médio

QUÍMICA - 3 o ANO MÓDULO 30 ELETROQUÍMICA EXERCÍCIOS DE PILHA

ELETROQUÍMICA: PILHAS GALVÂNICAS

ELETRODO OU SEMIPILHA:

INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA LEIA COM MUITA ATENÇÃO

Assunto: Eletroquímica Folha 4.1 Prof.: João Roberto Mazzei

PROFESSORA: Núbia de Andrade. DISCIPLINA: Química SÉRIE: 3º. ALUNO(a): Ba 0 / Ba 2+ // Cu + / Cu 0

e - Zinco ZnSO 4 Zn(s) Zn 2 Zn(s) Zn 2+ (aq) + 2 e - + 0,76 V Cu(s) Cu 2+ (aq) + 2 e - - 0,34 V

Redação selecionada e publicada pela Olimpíada de Química SP Do Marca-passo ao Carro Elétrico: O Mundo das Baterias

PROFESSORA: CLAUDIA BRAGA. SEMINÁRIO DE FÍSICO QUÍMICA II Célula de Níquel e Cádmio. João Pessoa, 31 de julho de 2009

Motivos da Conexão A) positivo fornecer elétrons, acelerando a oxidação

AULA 18 Eletroquímica

Quí. Allan Rodrigues Monitor: João Castro

ELETROQUÍMICA OU. Profa. Marcia M. Meier QUÍMICA GERAL II

REVISÃO DE QUÍMICA CEIS Prof. Neif Nagib

PILHAS RECARREGÁVEIS 2014/2015 MIEEC02_3

02/10/2017 ELETRÓLISE AQUOSA

QUÍMICA - 2 o ANO MÓDULO 25 ELETROQUÍMICA: PILHAS

Estudo das reações químicas para geração de energia.

GOVERNO DO ESTADO DO RIO DE JANEIRO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA FUNDAÇÃO DE APOIO À ESCOLA TÉCNICA ESCOLA TÉCNICA ESTADUAL REPÚBLICA

Resumo de Química: Pilhas e eletrólise

08/04/2016. Aulas 8 12 Setor B

FÍSICO QUÍMICA AULA 5 - ELETRÓLISE

3º Tri TB Recuperação de Química Data: 14/12/17 Ensino Médio 2º ano classe: A_B_C Profª Danusa Nome: nº

EleELETROQUÍMICA (Parte I)

Química. Eletroquímica

QUESTÕES. 1. Complete a tabela com os Números de Oxidação das espécies químicas: Espécie Química

ESTUDO E CONSTRUÇÃO DE UMA PILHA ELETROQUÍMICA UTILIZANDO MATERIAIS DO COTIDIANO

Exercícios sobre eletrólise em solução aquosa - Eletroquímica

Quí. Quí. Monitor: Diego Gomes

01) O elemento X reage com o elemento Z, conforme o processo: Nesse processo: Z 3 + X Z 1 + X 2. b) X ganha elétrons de Z. d) X e Z perdem elétrons.

QUÍMICA. Transformações Químicas e Energia. Eletroquímica: Oxirredução, Potenciais Padrão de Redução, Pilha, Eletrólise e Leis de Faraday - Parte 3

GABARITO COMENTADO 2 ANO ELETROQUIMICA EXERCÍCIOS DE APROFUNDAMENTO. Serão aqueles que possuem menos força redutora que o cobre

AULA DE RECUPERAÇÃO PROF. NEIF NAGIB

PRÉ-VESTIBULAR QUÍMICA PROF. EMANUEL

INTRODUÇÃO À ELETROQUÍMICA Prof. Dr. Patricio R. Impinnisi Departamento de engenharia elétrica UFPR

Potencial Elétrico e Pilhas

QUÍMICA - 2 o ANO MÓDULO 29 ELETROQUÍMICA - EXERCÍCIOS

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE QUIMICA DISCIPLINA: FÍSICO-QUÍMICAII

Experiência 11 PILHA DE DANIELL PILHA DE DANIELL

Redação selecionada e publicada pela Olimpíada de Química SP-2011

Reacções de Redução/Oxidação. Redox

LCS E P U S P. Baterias. PTC2527 Anteprojeto de Formatura. Guido Stolfi 05 / Guido Stolfi 1 / 87

PROMILITARES 20/09/2018 QUÍMICA. Professora Caroline Azevedo ELETROQUÍMICA. Eletroquímica. Você precisa saber o que é oxidação e redução!

Química A Extensivo V. 7

No cátodo: 1O 2 g 2H2O 4e 4OH aq

Eletroquímica. Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química

QUÍMICA - 2 o ANO MÓDULO 28 ELETROQUÍMICA: LEIS DE FARADAY

Professor: Alfênio. 06- A ilustração a seguir ilustra a eletrólise de uma solução aquosa de cloreto de cobre (II).

Pb 2e Pb E 0,13 v. Ag 2e Ag E +0,80 v. Zn 2e Zn E 0,76 v. Al 3e Al E 1,06 v. Mg 2e Mg E 2,4 v. Cu 2e Cu E +0,34 v

Resoluções de Exercícios

Eletroquímica. Eletroquímica: Pilhas Galvânicas. Potencial de redução. Força eletromotriz. Equação de Nernst. Electrólise.

FUVEST 1981 Primeira fase e Segunda fase

Quí. Monitor: Thamiris Gouvêa

Carga total transportada por um mol de elétrons, denominada constante de Faraday (F)

RESUMO DE ELETROQUÍMICA.

Físico-Química Eletroquímica

QUÍMICA. c) hexaclorobenzeno. d) percloroetileno.

Físico-Química. Eletroquímica Prof. Jackson Alves

Transcrição:

Autor: Luis Gustavo Lapinha Dalla Stella Série: Primeira do Ensino Médio Redação selecionada e publicada pela Olimpíada de Química SP-2011 Profs. : Antonio A. Mondragon e Alcides B. Dias Junior Colégio: Presbiteriano Mackenzie Cidade: Barueri, SP PILHAS E BATERIAS: O HOMEM À PROCURA DE ENERGIA Desde o início da civilização humana, o homem tem observado a natureza e suas diversas transformações. Ao verificar os diferentes tipos de solo, as mais variadas espécies vegetais e a grande biodiversidade de animais, foi possível perceber as propriedades fundamentais do que hoje é chamado de matéria: massa e volume. Além disso, puderam-se verificar alterações sofridas pela matéria sob determinadas condições. Tomando conhecimento disso, o ser humano aproveita-se dos fenômenos materiais para o desenvolvimento e, consequentemente, o avanço da civilização. Esse progresso se dá, em grande parte, na busca por novos meios de obtenção de energia, dos quais se sobressai a conversão de energia química em elétrica, intensamente desenvolvida a partir do início do século XIX, no qual foi criada a primeira pilha da História. As pilhas são, por definição, dispositivos portáteis que convertem energia química em elétrica através de reações químicas de oxirredução. Composta por dois eletrodos metálicos (terminais utilizados para conectar um circuito elétrico a uma substância não metálica), o cátodo (eletrodo positivo e agente oxidante) e o anodo (eletrodo negativo e agente redutor), e por um eletrólito (solução que envolve ambos), a primeira pilha foi criada pelo físico italiano Alexandre Volta em 1800. Para isso, utilizou discos de cobre e zinco empilhados alternadamente e separados por pedaços de tecido preenchidos por ácido sulfúrico, produzindo eletricidade em fluxo contínuo. Com pensamento semelhante ao de Volta, o químico inglês John Frederic Daniell formulou outra pilha em 1836, a qual substituía o ácido por uma substância salina. Nela, os eletrodos de cobre e zinco são posicionados em cubas com solução aquosa de sulfato, separados por uma porcelana porosa e ligados por um fio externo contendo um voltímetro. O circuito é fechado, possibilitando a passagem de elétrons do anodo (Zn 0 ) ao cátodo (Cu 0 ) através do fio externo, e a passagem de íons Zn 2+ 2- e SO 4 através da porcelana porosa. Dessa forma, uma corrente elétrica externa deposita elétrons nos cátions Cu 2+ contidos no sulfato de cobre, reduzindo-os a Cu 0, enquanto uma corrente elétrica interna deposita íons Zn 2+ no sulfato de cobre, corroendo o anodo até entrar em equilíbrio, indicado pela

anulação voltagem. Em equilíbrio, é possível verificar-se a realização completa da reação de oxirredução dada por: Zn 0 + CuSO 4 ZnSO 4 + Cu 0. Ainda no século XIX, George Leclanché desenvolveu a pilha seca comum, utilizada em diversos aparelhos, como lanternas, brinquedos, relógios de parede, alarmes, entre outros. Com uma força eletromotriz de 1,5 V, as pilhas secas possuem um preço relativamente baixo em relação às outras fontes energéticas disponíveis. São formadas essencialmente de uma barra de grafite central (pólo positivo para condução de corrente elétrica), um recipiente de zinco (pólo negativo) próximo à blindagem de aço, uma pasta externa contendo ZnCl 2, NH 4 Cl (eletrólito aquoso), H 2 O e amido, e uma pasta interna contendo também NH 4 Cl, H 2 O e amido, além de MnO 2 (pólo positivo) e grafite. Na pilha descrita, o dióxido de manganês (MnO 2 ) se mistura com o grafite triturado e reage com o hidrogênio, o qual se combina com o oxigênio formando água e impedindo a polarização do dispositivo. Assim, o MnO 2, como substância despolarizante da pilha, proporciona o aumento da duração das reações, que podem ser simplificadas em: Zn Zn 2+ + 2e - (oxidação do anodo Zn); 2MnO 2 + 2NH + 4 + 2e - Mn 2 O 3 + 2NH 3 + H 2 O (redução do cátodo MnO 2 ); Zn + 2MnO 2 + 2NH 4 Cl ZnCl 2 + Mn 2 O 3 + 2NH 3 + H 2 O (reação global). Como a umidade das pastas e seus péssimos condutores eletrolíticos atrapalham a migração de íons dentro da pilha, é necessária a intercalação entre períodos de uso e de repouso, que permite a despolarização dessa. Recentemente, a pilha seca tem sido muito substituída pela pilha alcalina, formulada e desenvolvida pelo cientista Samuel Ruben, fundador da atual empresa Duracell. O aspecto básico a difere da pilha seca é a composição alcalina e básica de seu eletrólito, em comparação à composição ácida presente na pilha seca. O eletrólito encontrado na maioria das pilhas alcalinas de hoje em dia é o hidróxido de potássio (KOH). As semirreações dos eletrodos e a reação completa são dadas por: Zn + 2OH - Zn(OH) 2 + 2e - (oxidação do zinco); 2MnO 2 + H 2 O + 2e - Mn 2 O 3 + 2OH - (redução do dióxido de manganês); Zn + 2MnO 2 +H 2 O Zn(OH) 2 + Mn 2 O 3 (reação global). Pelo fato de possuirem um melhor condutor eletrolítico que as pilhas secas e, portanto, uma resistência interna menor, as pilhas alcalinas mantêm a voltagem constante por mais tempo e produzem aproximadamente 50% de energia a mais. Outro tipo de pilha alcalina, muito comum em aparelhos pequenos, como calculadoras portáteis e relógios de pulso, devido ao seu formato cilíndrico extremamente pequeno é a pilha de mercúrio. Possue longa duração de funcionamento, boa capacidade de armazenamento de energia química e elétrica e de manter sua voltagem (1,35 V) constante por longos intervalos de tempo. Sua reação global, envolvida em hidróxido de potássio, é: Zn + HgO + H 2 O Zn(OH) 2 + Hg. Há, ainda, pilhas que substituem o óxido de mercúrio (HgO) por óxido de prata (Ag 2 O) na composição do

cátodo, e o hidróxido de potássio por hidróxido de sódio (NaOH) na composição da solução eletrolítica, fornecendo 1,5 V de voltagem. Além das pilhas não recarregáveis já citadas anteriormente, existem associações de pilhas em série ou em paralelo que se caracterizam pela voltagem relativamente maior que a das pilhas comuns e pela capacidade de serem facilmente recarregadas por meio de uma ligação a um gerador de corrente elétrica contínua. São frequentemente chamadas de baterias ou de acumuladores, tendo como seu primeiro grande inventor o francês Gaston Planté, que em 1860 construiu a bateria de chumbo-ácido, amplamente utilizada em automóveis. Essa bateria de 12 V de ddp é constituída de seis pilhas que possuem placas de chumbo (anodo) e de chumbo com PbO 2 (cátodo), isoladas por paredes de plástico e envolvidas por uma solução aquosa de ácido sulfúrico (H 2 SO 4 ). Durante sua descarga ocorrem as seguintes reações: Pb + SO 2-4 PbSO 4 + 2e - (oxidação do anodo); PbO 2 + SO 2-4 + 4H + + 2e - PbSO 4 + 2H 2 O (redução do cátodo); Pb + PbO 2 + 2H 2 SO 4 2PbSO 4 + 2H 2 O (reação global). Acumulam-se depósitos de sulfato de chumbo, formando uma película que recobre as placas, ao mesmo tempo em que a produção de energia elétrica diminui e a solução de ácido sulfúrico fica mais diluída. Ao serem recarregadas, suas pilhas sofrem a decomposição do sulfato de chumbo, invertendo o seu processo natural e proporcionando a sua reutilização. Ao longo do processo de recarga, a água é eletrolisada e se decompõe em gás hidrôgenio e gás oxigênio (2H 2 O 2H 2 + O 2 ), sendo extremamente perigosa a utilização da bateria próxima de faíscas ou de fogo. Depois de quase meio século da invenção de Planté, o cientista Thomas Alva Edison estruturou a bateria alcalina de níquel-cádmio. Com 1,4 V de ddp para cada compartimento, essas baterias conseguem manter sua voltagem constante durante seu uso e podem ser recarregadas até aproximadamente 4000 vezes, sendo, por isso, muitas vezes empregadas em aparelhos elétricos sem fio, como barbeadores elétricos, telefones sem fio, câmeras e filmadoras, rádios portáteis e alguns tipos de telefones celulares. As reações de seu funcionamento, realizadas em meio alcalino (KOH), são: Cd + 2OH - Cd(OH) 2 + e - (oxidação do anodo de cádmio); 2NiO(OH) + 2H 2 O + 2e - 2Ni(OH) 2 + 2OH - (redução do cátodo de níquel); Cd + 2NiO(OH) + 2H 2 O Cd(OH) 2 + 2Ni(OH) 2 (reação global). Quando descarregadas, as baterias de Ni-Cd possuem hidróxido de níquel envolvendo seu anodo e hidróxido de cádmio envolvendo seu cátodo. Porém, quando carregadas, o anodo torna-se hidróxido de níquel e o cátodo, cádmio metálico. São desvantajosas para seus usuários, pois são mais caras que as baterias de chumbo-ácido, apresentam substâncias extremamente tóxicas para o meio-ambiente (cádmio) e desenvolvem em si o efeito memória (necessidade de descarregamento total antes de uma recarga, que por sua vez também deve ser completa; caso contrário, suas células armazenarão cada vez menos energia). Para sua substituição, foram desenvolvidas as baterias de níquel-hidreto metálico (NiMH), aceitáveis em termos ambientais e

livres do efeito memória, porém mais caras que as de Ni-Cd. Apresentam maiores taxas de energia armazenada por unidade de massa, força eletromotriz de 1,2 V por compartimento e construção similar às baterias de Ni-Cd, se diferindo somente pela composição do anodo que, no lugar de cádmio, é usado um hidreto metálico (liga metálica M com grande capacidade de absorção de hidrogênio). As reações são: NiO(OH) + H 2 O + e - Ni(OH) 2 + OH - (reação do cátodo); MH + OH - M + H 2 O + e - (reação do anodo); NiO(OH) + MH Ni(OH) 2 + M (reação global). Porém, mesmo com a eficácia das baterias de NiMH, em 1912, sob direção de G. N. Lewis, foram idealizadas as baterias de íon-lítio, sendo produzidas com sucesso somente a partir das décadas de 1970 e de 1980. Um dos tipos mais populares de baterias, usuais em aparelhos eletrônicos do dia-a-dia, tais como computadores pessoais, televisões, equipamentos de áudio, ipods e PDAs, são comumente compostas por carbono na forma de grafite (anodo), óxido de cobalto litiado (cátodo) e sais de lítio dissolvidos em solventes não-aquosos (eletrólito), apresentando cerca de 3,6 V de tensão a cada par de eletrodos. Durante sua descarga, os íons de lítio (Li + ) presentes nas camadas lamelares de carbono migram do anodo para o cátodo, ao mesmo tempo em que passa uma corrente elétrica, no mesmo sentido, em um circuito externo. Dessa forma, obtêm-se as reações: Li x C 6 C 6 + xli + + xe - (oxidação do anodo de grafite e liberação de cátions monovalentes de lítio); Li y CoO 2 + xli + + xe - Li x+y CoO 2 (redução do cobalto na estrutura do óxido, permitindo a entrada dos cátions de lítio); Li y CoO 2 + Li x C 6 Li x+y CoO 2 + C 6 (reação global). O fato de o lítio ser o mais leve e de possuir o maior potencial eletroquímico dentre os outros metais faz com que as baterias de lítio sejam capazes de fornecer alta voltagem e uma extraordinária densidade de energia por unidade de massa, além de não sofrerem do efeito memória. Entretanto, são extremamente sensíveis a altas temperaturas, apresentam grandes chances de se incendiarem após uma falha e se descarregadas por completo, perdem sua utilidade. Essas baterias conseguem suportar de 300 a 500 recargas, tendo vida útil de 2 a 3 anos. Dentre os vários tipos de pilha de lítio existentes, um dos mais importantes criados no campo da tecnologia medicinal foi a pilha de lítio-iodo. Ela é formada por um polímero contendo I 2 (cátodo), separado do metal Li 0 (anodo) por uma parede composta de iodeto de lítio (eletrólito). O conjunto possui um fio externo condutor de corrente elétrica e é blindado com um revestimento de níquel ou qualquer outro aço inoxidável, que o fecha hermeticamente. As pilhas, cujas ddps valem 2,8 V, funcionam com base nas reações: Li 0 Li + + e - (oxidação do lítio); I 2 + 2e - 2I - (redução do iodo); 2Li + I 2 2LiI (reação global). Destacam-se das demais pilhas e baterias por possuirem elevada resistência interna, longa duração de vida, extrema leveza e por não emitirem nenhum tipo de gás, preservando a saúde dos usuários de marca-passos e evitando frequentes cirurgias para a

troca dos mesmos. Entretanto, o elevado custo de pilhas e baterias compostas por lítio impede sua ampla utilização na sociedade atual. As baterias elétricas representam o grande futuro das fontes energéticas portáteis, sendo cada vez mais fabricadas com materiais ecologicamente corretos. O tipo mais promissor, recentemente criado para utilização em carros elétricos, é a célula de combustível, dispositivo característico de conversão contínua de energia química em energia elétrica, da baixa ddp e da obtenção apenas de água como produto das reações de oxirredução. Essas reações de combustão liberam energia, a qual é usada para acionar o motor do automóvel: H 2 + 2OH - 2H 2 O + 2e - (oxidação do anodo de gás hidrogênio); ½O 2 + H 2 O + 2e - 2OH - (redução do cátodo de gás oxigênio); H 2 + ½O 2 H 2 O (reação global de combustão). O hidrogênio é alimentado no anodo da célula e oxidado no catalisador de platina que o reveste, havendo a separação de dois elétrons e dois prótons (H + ) para cada molécula de H 2. Os elétrons são transportados através de um circuito elétrico, constituindo uma corrente que realizará trabalho. Por sua vez, os prótons são transportados para o ctodo através do eletrólito ácido presente no centro da célula. No cátodo, oxigênio proveniente do ar é alimentado e reage com os prótons provenientes do hidrogênio e com os elétrons em movimento da corrente, produzindo vapor d água. Como cada célula disponibiliza apenas 0,7 V, é necessária a associação de várias dessas, separando-as por pratos bipolares que sejam bons condutores de eletricidade e que possuam canais que permitam a entrada do combustível e do oxigênio em cada compartimento. Para os carros elétricos, considerados a melhor solução contra os problemas ambientais gerados por automóveis, a melhor alternativa de bateria é a pilha movida à combustão. Isso se dá ao fato de serem mais leves e de não produzirem substâncias poluentes como as demais, sobretudo as de chumbo-ácido. As células combustíveis possuem maior rendimento do que a gasolina (90% contra 20%) e um custo de recarga por quilômetro rodado cerca de sete vezes menor, além de seu preço relativamente baixo de manutenção. Porém, devido ao seu elevado custo no mercado, à sua longa duração de recarga (de 7 a 8 horas), e à difícil obtenção, armazenamento e distribuição de combustível hidrogênio, os veículos elétricos são desprezados pela maioria da população consumidora da atualidade. Mais empenhado do que nunca, o ser humano está constantemente desenvolvendo novas alternativas para o uso consciente e eficaz de baterias elétricas nas mais diferentes áreas, nos mais diferentes aparelhos simples, e principalmente na construção perfeita de veículos elétricos, os meios de transporte promissores do futuro. O homem necessitou de apenas uma ideia do passado, a de Volta, para inovar suas criações. A cada geração que passa, a humanidade se aproxima cada vez mais de um futuro tecnológico, baseado na utilização predominante de tecnologias eletrônicas.

BIBLIOGRAFIA FELTRE, RICARDO. Química; Química Geral. 6. ed. São Paulo, Moderna, 2004. FELTRE, RICARDO. Química; Físico-Química. 6. ed. São Paulo, Moderna, 2004. http://www.apilhas.com/ http://www.iq.ufrgs.br/aeq/html/publicacoes/matdid/livros/pdf/eletroquimica.pdf http://www.veiculoselectricospt.com/ http://www.portalsaofrancisco.com.br/alfa/energia/pilhas-baterias-e-energia.php http://www.electronica-pt.com/index.php/content/view/40/39/ http://www.guiadohardware.net/termos/nicad-niquel-cadmio http://www.mspc.eng.br/tecdiv/bat130.shtml http://www.estavira.com/pp/anabelasilva/pilhas_electroquimicas tipos.ppt http://efisica.if.usp.br/eletricidade/basico/pilha/polarizacao_pilhas/ http://efisica.if.usp.br/eletricidade/basico/pilha/seca/ http://educar.sc.usp.br/quimapoio/outros.html http://eletronicos.hsw.uol.com.br/baterias-ion-litium.htm http://carros.hsw.uol.com.br/carros-eletricos.htm http://carros.hsw.uol.com.br/celula-combustivel1.htm http://qnesc.sbq.org.br/online/qnesc11/v11a01.pdf http://celulasdecombustivel.planetaclix.pt/