Universidade do Vale do Paraíba. Metodologia Científica Física Experimental

Documentos relacionados
Universidade do Vale do Paraíba. Metodologia Científica: Física Experimental

Universidade do Vale do Paraíba Faculdade de Engenharias, Arquitetura e Urbanismo. Física Experimental I

O Sistema Internacional de Unidades - SI

O SISTEMA INTERNACIONAL DE UNIDADES - SI

DETROIT Circular informativa Eng. de Aplicação

Tópico 3. Estudo de Erros em Medidas

Tópico 8. Aula Prática: Pêndulo Simples

Física Aplicada A Aula 1. Profª. Me. Valéria Espíndola Lessa

Unidades básicas do SI

Comprimento metro m Massa quilograma kg Tempo segundo s. Temperatura termodinâmica Kelvin K

Como você mediria a sua apostila sem utilizar uma régua? Medir é comparar duas grandezas, utilizando uma delas como padrão.

Universidade Federal do Maranhão - Campus Imperatriz Centro de Ciências Sociais, Saúde e Tecnologia Licenciatura em Ciências Naturais - LCN

Ismael Rodrigues Silva Física-Matemática - UFSC. cel: (48)

Prof. Paulo Vitor de Morais

Sistema Internacional de Unidades (SI) e Medida

Unidades de Medidas - Parte I

EXPERIMENTO I MEDIDAS E ERROS

Tabela I - As sete unidades de base do SI, suas unidades e seus símbolos.

Universidade do Vale do Paraíba. Metodologia Científica Física Experimental

Densidade de um Sólido

Figuras: ALVARENGA, Beatriz, MÁXIMO, Antônio. Curso de Física-Vol. 1, Editora Scipione, 6a Ed. São Paulo (2005) Comprimento metro m

Universidade do Vale do Paraíba Faculdade de Engenharias, Arquitetura e Urbanismo - FEAU. Física Experimental I Prof. Dra. Ângela Cristina Krabbe

ALGARISMOS SIGNIFICATIVOS E TRATAMENTO DE DADOS

Medição. Os conceitos fundamentais da física são as grandezas que usamos para expressar as suas leis. Ex.: massa, comprimento, força, velocidade...

MEDIDAS E ALGARISMOS SIGNIFICATIVOS

Eletricidade Aula ZERO. Profª Heloise Assis Fazzolari

Tópico 2. Conversão de Unidades e Notação Científica

Unidades de Medidas e as Unidades do Sistema Internacional

Escrita correta de resultados em notação

Medição em Química e Física

Inspeção de Sistemas de. Módulo 4 Medição de Vazão

DEPARTAMENTO DE MECÂNICA PROF. JOSÉ EDUARDO. Grandezas. De base Derivada

Múltiplos e submúltiplos

Avaliação Prática Seleção Final 2016 Olimpíadas Internacionais de Física 11 de Abril 2016

Fundamentos de Física. Vitor Sencadas

Em seguida são apresentadas as principais unidades do Sistema Internacional, com sua unidade e símbolo.

Prof. Dr. Ederio D. Bidoia Monitor: Lucas Balduino Departamento de Bioquímica e Microbiologia, IB

Pesquisa em Engenharia

INTRODUÇÃO À ENGENHARIA

ELABORAÇÃO DE RELATÓRIOS UNIDADES, MÚLTIPLOS E SUBMÚLTIPLOS

CAPÍTULO 1 INTODUÇÃO. O DESENVOLVIMENTO DE BIOPROCESSOS. INTRODUÇÃO AOS CÁLCULOS DE ENGENHARIA

UNIMONTE, Engenharia Laboratório de Física Mecânica ESTUDO TEÓRICO SOBRE PREFIXOS E MUDANÇAS DE UNIDADES

Determinação experimental de

Matemática Régis Cortes SISTEMA MÉTRICO

EXPERIÊNCIA M018-TE CONSTANTE ELÁSTICA DA MOLA

Teoria de Erros, Medidas e Instrumentos de Medidas

INSTITUTO FEDERAL DO PARANÁ CAMPUS FOZ DO IGUAÇU LICENCIATURA EM FÍSICA. Pêndulo Simples. Brunna Arrussul. Deborah Rezende.

MEDIÇÃO DE GRANDEZAS. Ana Maria Torres da Silva Engenharia Civil Rafael Santos Carvalho- Engenharia Civil

REVISÃO DE CONCEITOS BÁSICOS

MÓDULO 1. Os Métodos da Física:

Experimento científico para a determinação da aceleração da gravidade local empregando materiais de baixo custo

NOTA I MEDIDAS E ERROS

UNIDADE 15 OSCILAÇÕES

MEDIDAS LINEARES. Um metro equivale à distância linear percorrida pela luz no vácuo, durante um intervalo de 1/ segundo.

Medidas Físicas. 1. Introdução

Lista de Exercícios - OSCILAÇÕES

CAPÍTULO 1 INTRODUÇÃO À FÍSICA

Potências de dez, ordens de grandeza e algarismos significativos

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um

Diretoria de Ciências Exatas. Laboratório de Física. Roteiro 04. Física Geral e Experimental I (2011/01) Experimento: Queda Livre e Anamorfose

UFRPE: Física 11 Márcio Cabral de Moura 1. 2 aulas, 5 horas Capítulos 1 e 3 do Fundamentos de Física 1, de D. Halliday e R. Resnick, 3ª edição.

SISTEMA INTERNACIONAL DE UNIDADES E ALGARISMOS SIGNIFICATIVOS

Desenho e Projeto de Tubulação Industrial. Módulo I. Aula 01

CONTEÚDO FISICANDO AULA 01 CHARLES THIBES

Grandezas, Unidades de. Alex Oliveira. Medida e Escala

VESTIBULAR UFPE UFRPE / ª ETAPA

Matéria: Matemática Assunto: Sistema Métrico Decimal Prof. Dudan

Física Geral e Experimental I (2015/01)

Amostras grátis deverão seguir regras do medicamento original 27 de novembro de 2009

Lista de revisão para a prova

BASES FÍSICAS PARA ENGENHARIA 3: Med. Grandezas, Unidades e Representações

Departamento de Física - ICE/UFJF Laboratório de Física II

Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T2 FÍSICA EXPERIMENTAL I /08 FORÇA GRAVÍTICA

Física para Engenharia II - Prova P a (cm/s 2 ) -10

Aula 4: Gráficos lineares

BC Fenômenos Mecânicos. Experimento 1 - Roteiro

Em Laboratório de Física Básica fenômenos ou propriedades físicas são estudados à luz de grandezas

unidades das medidas para as seguintes unidades: km 2, hm 2, dam 2, m 2, dm 2,

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ

QMC 5119 II Semestre de 2014 EXPERIÊNCIA Nº1 MEDIDAS E TRATAMENTO DE DADOS

CURSO: Engenharia Civil Disciplina: Mecânica da Partícula Professor: MSc. Demetrius Leão1

Prof. Renato M. Pugliese. EME Prof. Vicente Bastos SESI Vila Carrão - CE379. Física 1º ano. Aula 1. Apresentação

SISTEMA DE UNIDADES A ESTRUTURA DO SISTEMA INTERNACIONAL

Aula Medição ph, condutividade, elétricas e SI

1- Medidas Simples e Diretas

MEDIDAS: ERROS E INCERTEZAS

Medidas em Laboratório

CIÊNCIAS 9 ANO PROF.ª GISELLE PALMEIRA PROF.ª MÁRCIA MACIEL ENSINO FUNDAMENTAL

MEDIÇÃO NO LABORATÓRIO

Prática II INSTRUMENTOS DE MEDIDA

Parte A FÓRMULAS Spiegel_II_01-06.indd 11 Spiegel_II_01-06.indd :17: :17:08

Física Geral - Agronomia

Introdução e Conceitos básicos. Laboratório de Fenômenos Mecânicos

Verificar as equações para a constante de mola efetiva em um sistema com molas em série e outro com molas em paralelo.

Apostila de Metrologia (parcial)

Mecânica experimental Lima Junior, P.; Silva, M.T.X.; Silveira, F.L.

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Exercícios de Física Movimento Harmônico Simples - MHS

O QUE É ESTUDADO? Matéria Conceito de massa Partícula Cinética escalar/vetorial

Noções Básicas de Física Arquitectura Paisagística PRINCÍPIO DE ARQUIMEDES (1)

Transcrição:

Universidade do Vale do Paraíba Metodologia Científica Física Experimental São José dos Campos 2010 1

ÍNDICE Tópico 1 Tópico 2 Tópico 3 Tópico 4 Tópico 5 Tópico 6 Tópico 7 Tópico 8 Tópico 9 Tópico 10 Tópico 11 Tópico 12 Tópico 13 Coerência de Dimensões e Unidades Coerência Dimensional Coerência de Unidades Conversão de Unidades e Notação Científica Fatores de Conversão de Comprimento Fatores de Conversão de Tempo Notação Científica Algarismos Significativos Critérios de Arredondamento Operações com Algarismos Significativos Estudo de Erros em Medidas Erros de uma Medida Propagação de Erro Erro Propagado nas Operações Básicas Como elaborar um relatório Como formatar gráficos Paquímetro e Micrômetro O Paquímetro O Micrômetro Prática Tempo de reação Humana Prática Pêndulo Simples Prática Empuxo Prática Sistema Massa-Mola (Papel Milimetrado) Prática Mínimos Quadrados em Papel Milimetrado Decaimento da Temperatura (Papel MonoLog) Prática Mínimos Quadrados em Papel MonoLog Bibliografia Utilizada 2

1. COERÊNCIA DIMENSIONAL E DE UNIDADES É de extrema importância em engenharia e ciências físicas que saibamos obedecer a coerência de unidades e dimensões de uma equação qualquer. Uma equação deve sempre possuir coerência dimensional. Você não pode somar automóvel com maça, por exemplo; dois termos só podem ser somados caso eles possuam a mesma unidade.por isso, faz-se necessário o aprendizado destes conceitos. Coerência Dimensional Começando com a equação do movimento retilíneo uniforme: x=x 0 +vt (1) onde x representa a posição, no eixo x, de qualquer objeto, x 0 representa a posição inicial, v é a velocidade do móvel e t, o tempo. No lado esquerdo da equação 1 temos somente o termo referente a posição do móvel, ou seja, um comprimento qualquer que pode estar em metros, quilômetros e etc. Agora, no lado direito da equação temos a soma de dois termos, x 0 e vt. Para que ocorra a soma de ambos os termos, há a necessidade de que ambos possuam a mesma dimensão, ou seja, comprimento, caso contrário, a equação acima estaria errada. Portanto, somente é possível somar grandezas físicas que tenham as mesmas dimensões. Traduzindo a frase acima, notamos que as dimensões de um membro da equação devem ser iguais às dimensões do outro membro. Seria completamente errada a expressão: 80 quilogramas = 30 metros + x metros Para facilitar a análise das dimensões presentes em uma equação, adotaremos os seguintes símbolos: Comprimento Massa Tempos [L] [M] [T] 3

Aplicando a fórmula dimensional na equação (1) teremos: x posicao= [ L ] t tempo=[t ] v posição L] =[ tempo [T ] x=x 0 +vt [ L]=[ L ] [ L] [T ] [ L]=[ L ] [ L ] [T ] Note que finalmente a equação (1) é uma equação que possui uma coerência de unidades. Na mecânica, adotam-se a massa (M), o comprimento (L) e o tempo (T) como grandezas fundamentais. Pode-se expressar qualquer grandeza física G, de natureza mecânica, em função de M, L e T, obtendo-se, assim, a equação dimensional da grandeza G. Desse modo, a equação dimensional de G, que é indicada pela notação [G], será dada por Os expoentes, e são chamados dimensões físicas da grandeza G em relação às grandezas fundamentais M, L e T. Assim, pode-se escrever todas as grandezas da mecânica em função de L, M e T variando os valores de, e. Esta análise dimensional nos permite obter a dimensão de certas constantes em equações, como por exemplo, a seguinte equação da lei de Hooke: F= kx (2) No lado esquerdo da equação temos a força F, enquanto que no lado direito temos uma constante k, que queremos determinar sua dimensão, multiplicada pela posição x. Então, realizando a análise dimensional: F=massa aceleraçao aceleraçao= comprimento tempo tempo = [ L ] [T ][T ] = [ L ] [T ] 2, logo F=massa aceleraçao= [ M ] [ L ] [T ] 2 Aplicando na equação (2) os resultados acima, teremos [ M ] [ L ] [T ] 2 =k [ L ] [ M ] [ L ] [ M ] =k k= [ L ] 2 [T ] [T ] 2 4

Note que a constante k tem que ter dimensão de massa ([M]) por tempo ao quadrado, ou seja, g/ s 2 ou kg/s 2. A seguir alguns exemplos de análise dimensional: 1. Velocidade: se [ s] = L e [ t] = T 2. Aceleração: 3. Força: F = m a [F] = M 1 M 0 L 1 T 2 4. Trabalho e Energia: = F d [ ] = M 1 L 1 T 2 L 5. Potência: 5

6. Quantidade de movimento: Q = m v Q] = M 1 M 0 L 1 T 1 EXERCÍCIOS PROPOSTOS 1) Faça a análise dimensional das equações abaixo e verifique quais estão dimensionalmente incorretas, onde: v 0 é a velocidade inicial do objeto; a é a aceleração do corpo; x 0 é a posição inicial do objeto; Δx=x x 0 é o deslocamento; g é a aceleração da gravidade; r é o raio de uma circunferência; v é a velocidade t é o tempo W é o trabalho realizado a) x=x 0 +v 0 t+ 1 2 at 2 b) v=v 0 +at 2 c) v=v 0 2 2a Δx d) t= v 0 sen θ g e) a= v r f) W=F Δx cosθ 2) Nas equações abaixo, determine as dimensões das constantes G, μ, c e d: a) F=G M m r 2 b) f a =μ N, onde f a é a força de atrito e N é a força normal c) F=c a 3 d) F=d v, onde v é a velocidade 6

Coerência de Unidades O Sistema Internacional de Unidades - SI Todo o conhecimento que não pode ser expresso por números é de qualidade pobre e insatisfatória". (Lorde Kelvin, grande cientista britânico). As informações aqui apresentadas irão ajudar você a compreender melhor e a escrever corretamente as unidades de medida adotadas no Brasil. A necessidade de medir é muito antiga e remota à origem das civilizações. Por longo tempo cada país, cada região, teve o seu próprio sistema de medidas, baseado em unidades arbitrárias e imprecisas, como por exemplo, aquelas baseadas no corpo humano: palmo, pé, polegada, braça, côvado. Isso criava muitos problemas para o comércio, porque as pessoas de uma região não estavam familiarizadas com o sistema de medida das outras regiões. Imagine a dificuldade em comprar ou vender produtos cujas quantidades eram expressas em unidades de medida diferentes e que não tinham correspondência entre si. Em 1789, numa tentativa de resolver o problema, o Governo Republicano Francês pediu à Academia de Ciências da França que criasse um sistema de medidas baseado numa "constante natural". Assim foi criado o Sistema Métrico Decimal. Posteriormente, muitos outros países adotaram o sistema, inclusive o Brasil, aderindo à "Convenção do Metro". O Sistema Métrico Decimal adotou, inicialmente, três unidades básicas de medida: o metro, o litro e o quilograma. Entretanto, o desenvolvimento científico e tecnológico passou a exigir medições cada vez mais precisas e diversificadas. Por isso, em 1960, o sistema métrico decimal foi substituído pelo Sistema Internacional de Unidades - SI, mais complexo e sofisticado, adotado também pelo Brasil em 1962 e ratificado pela Resolução nº 12 de 1988 do Conselho Nacional de Metrologia, Normalização e Qualidade Industrial - Conmetro, tornando-se de uso obrigatório em todo o Território Nacional. As unidades SI podem ser escritas por seus nomes ou representadas por meio de símbolos. Exemplos: Unidade de comprimento Unidade de tempo Unidade de massa nome: metro nome: segundo nome: quilograma símbolo: m símbolo: s símbolo: kg Os nomes das unidades SI são escritos sempre em letra minúscula. Exemplos: quilograma, newton, metro cúbico. As exceções ocorrem somente no início da frase e "grau Celsius" O símbolo é um sinal convencional e invariável utilizado para facilitar e universalizar a escrita e a leitura das unidades SI. Por isso mesmo não é seguido de ponto. 7

Certo Errado segundo s s. ou seg. metro m m. ou mtr. kilograma kg kg. ou kgr. hora h h. ou hr. O símbolo não tem plural, invariavelmente não é seguido de "s". Certo Errado cinco metros 5 m 5 ms dois kilogramas 2 kg 2 kgs oito horas 8 h 8 hs Toda vez que você se refere a um valor ligado a uma unidade de medir, significa que, de algum modo, você realizou uma medição. O que você expressa é, portanto, o resultado da medição, que apresenta as seguintes características básicas: Ao escrever uma unidade composta, não misture nome com símbolo. Certo quilômetro por hora km/h metro por segundo m/s Errado quilômetro/h km/hora metro/s m/segundo O prefixo quilo (símbolo k) indica que a unidade está multiplicada por mil. Portanto, não pode ser usado sozinho. Certo quilograma; kg Use o prefixo quilo da maneira correta. Certo quilômetro quilograma quilolitro Errado quilo; k Errado kilômetro kilograma kilolitro Principais Unidades Fundamentais do SI Grandeza Nome Plural Símbolo 8

comprimento metro metros m tempo segundo segundos s massa quilograma quilogramas kg corrente elétrica ampère ampères A tensão elétrica volt volts V temperatura grau Celsius graus Celsius ºC Celsius temp. termodinâmica kelvin kelvins K Unidades Derivadas Grandeza Nome Plural Símbolo área metro quadrado metros quadrados m² volume metro cúbico metros cúbicos m³ ângulo plano radiano radianos rad velocidade metro por segundo metros por segundo m/s aceleração metro por segundo metros por segundo m/s² por segundo por segundo massa específica quilograma por metro quilogramas por kg/m³ cúbico metro cúbico vazão metro cúbico por metros cúbicos por m³/s segundo segundo força newton newtons N pressão pascal pascals Pa joule joules J trabalho, energia, quantidade de calor potência, fluxo de energia watt watts W 9

2. CONVERSÃO DE UNIDADES E NOTAÇÃO CIENTÍFICA Fatores de Conversão de Comprimento Unidade km hm dam m dm cm mm 1 kilômetro 1 10 100 1000 10000 100000 1000000 1 hectômetro 0,1 1 10 100 1000 10000 100000 1 decâmetro 0,01 0,1 1 10 100 1000 10000 1 metro 0,001 0,01 0,1 1 10 100 1000 1 decímetro 0,0001 0,001 0,01 0,1 1 10 100 1 centímetro 0,00001 0,0001 0,001 0,01 0,1 1 10 1 milímetro 0,000001 0,00001 0,0001 0,001 0,01 0,1 1 Embora a tabela seja útil, convém aprender a forma clássica de efetuar a conversão de unidades, conforme segue no exemplo: Converter de km/h para m/s 10 km h x1000 m 1km x 1h 60min x1min 60seg =10x1000 =2,77m/s 60x60 EXERCÍCIOS PROPOSTOS 1) Converta as seguintes medidas de comprimento para cm a) 2,5 m b) 1,3 km c) 200 dam d) 10500 mm Exemplos de conversão de unidades. Converter as seguintes medidas de áreas para km 2. a) 100 m 2 1 m = 0,001 km, então 1 m 2 = (0,001 km) 2 1 m 2 = 0,000001 km 2 Logo: 100 m 2 = 100 x 0,000001 km 2 100 m 2 = 0,0001 km 2 b) 150 hm 2 1 hm = 0,1 km, então 1 hm 2 = (0,1 km) 2 Logo: 150 hm 2 = 150 x 0,01 km 2 150 hm 2 = 1,5 km 2 1 hm 2 = 0,01 km 2 c) 100000 dm 2 1 dm = 0,0001 km, então 1 dm 2 = (0,0001 km) 2 1 dm 2 = 0,00000001 km 2 10

Logo: 100000 dm 2 = 100000 x 0,00000001 km 2 100000 dm 2 = 0,001 km 2 EXERCÍCIOS PROPOSTOS 2) Converta as seguintes medidas de áreas para m 2 a) 1 km 2 b) 5 dam 2 c) 2,5 mm 2 d) 3 cm 2 3) Converta as seguintes medidas de volume para m 3 a) 1,85 cm 3 b) 11,5 mm 3 c) 3,2 dam 3 d) 0,1 km 3 Fatores de Conversão de Tempo Unidade s min h dia ano 1 segundo 1 0,01667 0,0002778 0,00001157 0,00000003169 1 minuto 60 1 0,01667 0,0006994 0,000001901 1 hora 3600 60 1 0,04167 0,0001141 1 dia 86400 1140 24 1 0,002738 1 ano 31536000 525900 8766 365,2 1 EXERCÍCIOS PROPOSTOS 4) Converta as seguintes medidas de tempo em segundos a) 1h10min b) 1semana c) 48h d) 2h26min 5) Converta: e) 300 dias em segundos f) 89000 segundos em dia, hora, minutos e segundos g) 35 km/h em m/s h) 100 m/s em km/h 1km = 1000m 1dia = 24h 1N.m = 1J 1m = 100cm 1h = 60min 1cal 4,2J 1cm = 10mm 1min = 60s 1kWh = 3,6x10 6 J pol (in) = 2,54cm 1h = 3600s pé (ft) = 30,48cm 1m 3 = 10 3 l milha (mi) = 1609m 1ton = 10 3 kg 1ml = 1cm 3 jarda (Yd) 0,91m 1kg = 10 3 g 1000ml = 1l onça (oz) = 28,7g galão (gal) = 4,55 l 11

1kg/m 3 = 10 3 g/m 3 libra (lb) = 454g 1kg/l = 10 3 kg/m 3 1A = 1C/s 1 g/cm 3 = 10 3 kg/m 3 1m/s = 3,6km/h 1V = 1J/C 1mph 1,6 km/h 1J/s = 1W 1Pa = 1N/m 2 1cv 735W 1Kgf = 9,8N 1atm = 760mmHg 1HP 746W 1atm 10 5 N/m 2 1N/m 2 10-5 kgf/cm 2 6) Converta: a) 600 W em HP b) 35 Hp em cv c) 3,5 cv em J/s d) 500mmHg em kgf/cm 2 e) 15 m/s em km/h f) 1000 pol em km g) 10 jardas em milhas h) 3500 ml em galões EXERCÍCIOS PROPOSTOS Conversão de Temperatura Conversão de para Fórmula Celsius Fahrenheit F = C 1,8 + 32 Fahrenheit Celsius C = ( F 32) / 1,8 Celsius Kelvin K = C + 273,15 Kelvin Celsius C = K 273,15 7) Converta a) 109 F em K b) -50 C em K c) 300 K em C Notação Científica Como visto anteriormente, o trabalho em laboratório exige que se trabalhe com números de diversas ordens de grandezas, ficando difícil o manuseio de números muito pequenos ou grandes. Para isso, a notação científica supre a necessidade do uso de números com tamanhos mais coerentes e fáceis de trabalhar. 12

A notação científica possui algumas regras simples de serem utilizadas, são elas: 1. Utilizar apenas um algarismo significativo antes da vírgula; 2. Este número não pode ser menor do que 1 (um) e nem maior que 9 (nove). 3. Escrever os algarismos após a vírgula seguido do número 10 n onde, a potência n é o número de casas em que se andou com a virgula até ficar apenas um número a esquerda da vírgula. Exemplos: 3563, 2m 3,5632 10 3 m 0,000001234mm 1,234 10 6 mm 0,02m 0,13 m=2,0 10 2 m 1,3 10 1 m=2,0 1,3 10 2 1 =2,6 10 3 m 6,31 10 5 m 3 = 6,31 3 10 5 3 m 3 =251, 2396 10 15 m 3 =2,512396 10 13 m 3 A questão de poder arredondar os números acima faz a necessidade de algumas regras especiais que veremos no tópico seguinte. Devido ao uso da notação científica, o Bureau Internacional de Pesos e Medidas recomendou os seguintes prefixos: Ordem de Grandeza Prefixo Abreviatura 10 18 atto a 10 15 femto f 10 12 pico p 10 9 nano n 10 6 micro µ 10 3 mili m 10 2 centi c 10 1 deci d 10 1 deca da 10 2 hecto h 10 3 quilo k 10 6 mega M 10 9 giga G 10 12 tera T 10 15 peta P 10 18 exa E EXERCÍCIOS PROPOSTOS 8) Escreva em notação científica as seguintes medidas: a) 0,00005 b) 300,2 c) 0,00000000198 d) 230120,2 13

Algarismos Significativos Suponha que estejamos realizando a medida de alguma peça como mostrado na figura 1. Pode-se observar que o comprimento da peça está entre 7 e 8 centímetros. Qual seria o algarismo que viria após o 7? Apesar da menor divisão da régua ser 1cm, é razoável fazer uma subdivisão mental do intervalo compreendido entre 7 e 8cm. Desta maneira, representa-se o comprimento da peça como sendo 7,3cm. O algarismo 7 desta medida foi lido com certeza, porém o 3 não. Não se tem certeza do algarismo, por isso, ele é denominado como algarismo duvidoso. Figura 1: Desenho esquemático de medida de um objeto qualquer. A regra geral, portanto, é que se deve apresentar a medida com apenas os algarismos de que se tem certeza mais um único algarismo duvidoso. Estes algarismos são denominados algarismos significativos da medida. É importante salientar que, em uma medida, os zeros à esquerda do número, isto é, que posicionam a vírgula, não são algarismos significativos. Exemplos: 1. a medida 0,023cm tem somente dois algarismos significativos, o 2 e o 3; 2. a medida 0,348cm tem três algarismos significativos; 3. a medida 0,0040000cm tem cinco algarismos significativos, o número 4 e os quatro zeros a sua direita. Critérios de Arredondamento Quando se tem que trabalhar com várias medidas com diferentes números de algarismos significativos, é necessário exprimir estas medidas segundo a norma de que deve se ter apenas um algarismo duvidoso. Então, os critérios (Portaria 36 de 06/07/1965 - INPM - Instituto Nacional de Pesos e Medidas) adotados são: 1. Se o primeiro algarismo após aquele que formos arredondar for de 0 a 4, conservamos o algarismo a ser arredondado e desprezamos os seguintes. Ex.: 7,34856 7,3 2. Se o primeiro algarismo após aquele que formos arredondar for de 6 a 9, acrescentase uma unidade no algarismo a ser arredondado e desprezamos os seguintes. Ex.: 1,2734 1,3 14

3. Se o primeiro algarismo após aquele que formos arredondar for 5, seguido apenas de zeros, conservamos o algarismo se ele for par ou aumentamos uma unidade se ele for ímpar desprezando os seguintes. Ex.: 6,2500 6,2 12,350 12,4 Se o 5 for seguido de outros algarismos dos quais, pelo menos um é diferente de zero, aumentamos uma unidade no algarismo e desprezamos os seguintes. Ex.: 8,2502 8,3 8,4503 8,5 Operações com Algarismos Significativos Este assunto é de grande importância devido ao fato de necessitar envolver em uma equação matemática, como a cálculo do volume, várias grandezas físicas medidas com diferentes algarismos diferentes, obtidas com aparelhos de classe de precisão diferentes. Por isso, iremos aprender as quatro operações básicas com as medidas. Adição O resultado da adição de várias medidas é obtido arredondando-se a soma na casa decimal da parcela mais pobre em decimais, após efetuar a operação.o. Ex: 12,56 + 0,1236 = 12,6836 = 12,68 Subtração A subtração é um caso particular da adição, adotando-se, dessa forma o mesmo critério da adição. Ex: 18,2476 16,72=1,5276 = 1,53 Multiplicação O produto de duas ou mais medidas deve possuir, em geral, o mesmo número de algarismos significativos da medida mais pobre em algarismos significativos. Ex: 3,1415x180 = 5,65x10 2 Divisão A divisão é simplesmente um caso particular do produto, portanto aplica-se a regra anterior. Ex: 63,72 / 23,1 = 2,758441558 = 2,76 15

EXERCÍCIOS PROPOSTOS 9) Efetue as operações abaixo e represente o resultado em notação científica a) 3.45 m+123.47 m 0.0354 m b) 3.12 10 5 cm+2.69cm c) 50.7 2m+7200. 0cm d) 5.24 mm 0.73m 16

3. ESTUDO DE ERROS EM MEDIDAS A medida de uma grandeza é obtida, em geral, através de uma experiência, na qual o grau de complexidade do processo de medir está relacionado com a grandeza em questão e também com o processo de medição. Por isso, este tópico visa introduzir conceitos importantes sobre erros de medidas. Erros de uma Medida A determinação do erro de medida não é simples, pois há na maioria dos casos uma combinação de inúmeros fatores que influem, de forma decisiva, no resultado da medição. Portanto, o erro verdadeiro de uma medida é sempre impossível de conhecer, sendo possível apenas uma estimativa do erro máximo aceitável. Nesta seção irar-se-á dar uma pequena introdução sobre tipos de erros e o cálculo do erro aleatório provável. Existem diversas classificações de erros na literatura especializada, entretanto, há três principais que são: 1. Erro de escala: é o erro associado ao limite de resolução da escala do instrumento de medida; 2. Erro sistemático: é o erro em que o medidor sofre, de maneira constante, em todo o processo de medição. No momento da descoberta da sua origem, o erro é possível de ser sanado; 3. Erro aleatório: é o erro que decorre de perturbações estatísticas impossíveis de serem previstas, sendo assim, difícil de evitá-los. O erro aleatório pode ser calculado utilizando-se os postulados de Gauss, que por motivo de brevidade não será citado aqui, entretanto, aos estudantes interessados neste assunto consulte o livro Introdução ao Laboratório de Física. O valor mais provável de uma grandeza é a média aritmética das diversas medidas da grandeza, sendo representado por x : x 1 +x 2...+x n x= = 1 n n n x i i=1 onde n é o número de medidas. Devido à natureza estatística do erro aleatório, é possível estimar apenas seu valor provável, dado pelo cálculo do desvio padrão : σ= x 1 x 2 x 2 x 2... x i x 2 n 1 17

Como exemplo da teoria acima proposta, dada a seguinte tabela abaixo, com valores de medidas de comprimento de um corpo de prova qualquer, iremos calcular o seu valor mais provável (média) e o seu desvio padrão. Medida Comprimento (m) 1 1.42 2 1.40 3 1.38 4 1.41 5 1.43 6 1.42 7 1.39 8 1.40 Utilizando o símbolo C para o valor mais provável da medida (média), obtida através de: C= 1 1.42 1.40 1.38 1.41 1. 43 1.42 1.39 1.40 =11.25 =1. 4 0625 m 8 8 C=1.4 1m O desvio padrão será dado por σ= 1.42 1.41 2 1.40 1.41 2 1.38 1.41 2 1.41 1.41 2 1.43 1.41 2 1.42 1.41 2 1.3 8 1 0.0001 0.0001 0. 0009 0 0.0004 0.0001 0.0004 0.0001 σ= 7 σ= 0.0 1 732m σ= 0.02m Portanto, o modo correto de representar o valor mais provável do corpo de prova e o seu respectivo erro é o seguinte: 1.41±0.02 m Note que o número de casas após a virgula para ambos os valores têm que ser compatíveis. 18

Propagação de Erros Este assunto é de grande relevância em todas as áreas de atividade onde são realizadas medidas experimentais. O objetivo deste assunto é justamente estudar a propagação de erros associados a cada medida em particular. Seja uma grandeza y que depende de outras grandezas x 1, x 2,. Então, a grandeza y pode ser escrita da seguinte forma: y=f x 1,x 2, A variação infinitesimal de qualquer uma das variáveis x i provoca também uma variação infinitesimal em y. Podemos expressar essa variação através da diferencial exata abaixo dy= f x 1 dx 1 f x 2 dx 2 Realizando uma analogia entre variações infinitesimais e os desvios (erros) das variáveis, uma vez que ambos representam variações tem-se Δy= f x 1 Δx 1 f x 2 Δx 2 Com a equação acima, considera-se a situação na qual os erros, atuando no mesmo sentido, somam-se. Isto é possível tomando-se o modulo das derivadas parciais da equação acima. Exemplo: Calcularemos o volume de um cilindro de comprimento L= 4,00±0,1 mm e diâmetro D= 2,00±0,2 mm. O volume do cilindro é V= π D2 L 4 = π 2,00 2 4,00 =12,566 mm 3 =12.6 mm 3 4 Agora iremos utilizar os erros das medidas com comprimento e diâmetro do cilindro V=f D,L ΔV= V D ΔD+ V DL D2 ΔL ΔV= π ΔD+ π L 2 4 ΔL ΔV= π 2,00 4,00 π 2,00 2 0.2 0.1=2.513mm 3 0.3141 mm 3 2 4 ΔV= 2. 8 273mm 3 ΔV= 2. 8 mm 3 19

O resultado final deve ser expresso da seguinte maneira: V= 12.6±2. 8 mm 3 Erro Propagado nas Operações Básicas Abaixo estão listadas as equações do erro propagado para as operações mais utilizadas. Adição: Subtração: Multiplicação: Divisão: Potenciação: x± Δx y± Δy = x+y ± Δx+Δy x± Δx y± Δy = x y ± Δx+Δy x± Δx. y±δy = x. y ± x. Δy+y. Δx x. Δy+y. Δx x± Δx y± Δy = x y ± y 2 x± Δx n =x n ±n. x n 1. Δx Logaritmação natural: ln x±δx =ln x ± Δx x Logaritmação decimal: log x±δx =log x ±0.4343. Δx x EXERCÍCIOS PROPOSTOS 1) Mediram-se, experimentalmente, o período e o comprimento de um pêndulo simples, obtendo-se os seguintes resultados: L= 59, 90±0,05 cm e T= 1,555±0,001 s. Utilizando a equação do pêndulo simples T=2π L g gravidade (g)., calcule o valor da aceleração da 2) Em uma mola de constante elástica k= 2,256±0,003 10 4 dyn/cm colocou-se a oscilar uma massa m= 249, 86±0,01 g. Calcule o período do oscilador para os valores dados acima, sabendo que ele está relacionado com a massa e a constante elástica através da equação T=2π m k. 20

4. COMO ELABORAR UM RELATÓRIO Como elaborar um relatório Um bom relatório depende de uma boa tomada de dados. Procure organizar-se de maneira a anotar durante a prática todas as informações relevantes de uma forma posteriormente intelígvel. Use um caderno apropriado para essas anotações, ao invés de usar folhas avulsas. O seu relatório deve descrever, nas suas palavras, a experiência efetuada, justicar o procedimento escolhido, apresentar e discutir os dados medidos e finalmente tirar conclusões. O relatório pode ser dividido em várias partes. Por exemplo: Introdução: Resumo teórico para situar a experiência. Exposição dos conceitos teóricos que vai usar. Referências à literatura pertinente (Livros texto, livros de referência, internet, etc...). Objetivos: Descrição concisa do que se pretende obter da experiência. Equipamento e Procedimento Experimental: Descrição do equipamento e/ou diagrama do arranjo experimental. Descrição do procedimento seguido em aula. Descreva o que você fez, não necessariamente o procedimento proposto, justicando e discutindo a escolha. Avaliação ou estimativa dos erros nos dados devido aos aparelhos e procedimentos usados. Dados Experimentais e Análise: Apresentação dos dados coletados, através de tabelas, gráficos etc. Tratamento dos dados brutos (usando algum modelo teórico) chegando a valores finais, junto com a avaliação final do erro. Não e necessário e nem deve ser indicada cada conta efetuada, mas deve ficar claro como chegou ao resultado. Conclusões: Discussão dos resultados obtidos. Sempre que possível, comparar os resultados com os conhecidos ou esperados teoricamente, discutindo as diferenças e as possíveis fontes de erro. Se usou vários métodos, comparar os métodos. Para experiências simples, os itens Introdução e Objetivos podem muito bem ser tratados em uma única seção. Em todos os itens, deve-se fazer referência aos livros texto, apostilas, sites na internet, etc. Mais alguns detalhes que devem ser levados em conta durante a confecção do relatório: Unidades para cada grandeza. Avaliação de erros nas suas medidas (e, se for o caso, propagar os erros nos resultados finais). 21

Legendas das figuras. Numerar as figuras e gráficos e se referir neles no texto. Mencionar a data da realização da experiência. Se usar textos ou figuras de outras fontes (esta apostila, internet, livros, artigos, relatórios de colegas...), deixe isto claro, colocando entre aspas", e dê a referência! 22

5. COMO FORMATAR GRÁFICOS Nas atividades experimentais, muitas vezes, precisamos estudar como uma propriedade ou quantidade depende ou varia com relação a outra. Por exemplo, para medir o poder de aceleração de um carro, medimos como a sua velocidade se modica em função do tempo. Dados desse tipo são apresentados na Tabela abaixo t (s) v (km/h) 0 42±7 5 67±7 10 101±7 15 134±7 20 161±7 25 183±7 30 196±7 35 200±7 O gráfico desses dados (Figura 1) permite visualizar imediatamente o comportamento da velocidade em relação ao tempo. Uma imagem vale mil palavras, e um gráfico é uma maneira muito eficiente de resumir e apresentar os seus dados. É importante que o gráfico se conforme a certas convenções ou regras que todo mundo conhece. Assim outras pessoas podem interpretar os seus resultados imediatamente. Em seguida vamos apresentar as regras para produzir gráficos em um formato profissional. Figura 2: Velocidade de um automóvel acelerando. 23

Regras práticas para construção de gráficos Conforme o exemplo da Figura 1.1, um gráfico contém os seguintes elementos: 1. Eixos com nome da variavel representada, escala e unidade. 2. Os dados e, se apropriado, as barras de erro. 3. Legenda e ttulo. Os eixos Cada um dos eixos deve conter o nome (ou símbolo) da variável representada, a escala de leitura e a unidade correspondente. Escolha uma escala conveniente para a qual o gráfico represente bem o intervalo medido para cada variável. A regra prática para esta denição é dividir a faixa de variação de cada variável pelo número de divisões principais disponíveis. Toma-se então um arredondamento a valor superior e de fácil leitura. Estes valores de fácil leitura são: 1, 2 ou 5 unidades ou qualquer múltiplo ou submúltiplo de 10 delas. Por exemplo, no papel milimetrado, se a faixa de variação dos dados for de 35 unidades e o número de cm disponíveis for de 10 cm, chegamos ao valor ideal de 5 unidades para cada divisão do gráfico No caso da Figura 2, a variável tempo varia 35s e temos mais ou menos 10 divisões principais, o que daria 3,5 s por divisão, o que não e conveniente. Portanto escolhemos 5s por divisão. Da mesma maneira foi escolhido 20km/h por divisão no eixo y. As escalas dos eixos não precisam comecar na origem (zero, zero). Elas devem abranger a faixa devariação que você quer representar. É conveniente que os limites da escala correspondam a um número inteiro de divisões principais. Indique os valores correspondentes as divisões principais abaixo do eixo-x e a esquerda do eixo-y usando números grandes. As unidades devem ser escolhidas de maneira a minimizar o número de dígitos nos valores que indicam o valor da divisão principal. Uma regra prática é tentar usar no máximo três dígitos nestes valores, fazendo uso de potências de 10 na expressão das unidades para completar a informação. Ao traçar os eixos no papel milimetrado, não use a escala marcada no papel pelo fabricante. É você que define a sua escala, baseando-se nos seus dados. Também não use os eixos nas margens do papel. Desenhe os seus próprios, porque você precisará de espaço para a identicação das variáveis e para a legenda. Por fim, abaixo ou à esquerda dos números da escala, conforme o caso, escreva o nome (ou símbolo) da variável correspondente e a unidade para leitura entre parênteses (km, 105N/cm 2, etc.). Os dados Assinale no gráfico a posição dos pontos experimentais: use marcas bem visíveis (em geral círculos pequenos). Nunca indique as coordenadas dos pontos graficados no eixo. Coloque barras de erros nos pontos se for o caso. Se os erros são menores que o tamanho dos pontos, indique isso na legenda. As vezes ajuda a visualização traçar a melhor curva média dos pontos, ignorando alguns pontos que fogem demasiadamente do comportamento médio. Em outras palavras, pode-se dizer que a curva média deve ser traçada de maneira a 24

minimizar os deslocamentos da curva em relação aos pontos experimentais ao longo do traçado. Use o seu juízo. Não é correto simplesmente ligar os pontos experimentais. A legenda e o título Todo gráfico deve ter um título, pelo qual é referido no texto (Figura 1.1, no nosso exemplo). Geralmente, o título do gráfico é colocado na legenda, abaixo do gráfico. A legenda deve conter também uma descrição suscinta do que é apresentado no gráfico. Note que uma legenda tipo velocidade vs. tempo" é redundante pois esta informação já está contida nos rótulos dos eixos. Na Figura 3, ilustramos os erros mais comuns, que devem ser evitados na construção de graáfico. Figura 3: Ilustração dos erros mais comuns que devem ser evitados na construção de gráficos. 25

6. PAQUÍMETRO E MICRÔMETRO O PAQUÍMETRO O paquímetro é um instrumento utilizado para medir diâmetros internos e externos de pequenos orifícios, anéis e esferas, pois este instrumento tem como sua escala principal o milímetro. Um aspecto importante deste instrumento é que este possui uma escala auxiliar denominada de nônio, cuja leitura na escala principal só pode ser efetuada utilizando-se como referência o zero do nônio. A leitura no nônio é dada diretamente pelo traço do nônio que coincidir com algum traço da escala principal. É importante notar que a precisão deste instrumento é de 0.05 milímetros. Figura 4. Elementos do paquímetro. 1: encostos, 2: orelhas, 3: haste de profundidade, 4: escala inferior (graduada em centímetros), 5: escala superior (graduada em polegadas), 6: nônio ou vernier inferior (cm), 7: nônio ou vernier superior (polegada), 8: trava. O MICRÔMETRO O micrômetro é um instrumento utilizado para medir apenas diâmetros externos como anéis e esferas de pequenas proporções. Este instrumento também tem como sua escala principal o milímetro. É importante notar que a precisão deste instrumento é de 0.01 milímetros, portanto, bem mais preciso do que o paquímetro. Figura 5. Elementos do micrômetro 26

PRÁTICA PAQUÍMETRO E MICRÔMETRO OBJETIVO A finalidade desta experiência é familiarizar o aluno com algumas técnicas de medidas, cuidados experimentais no laboratório, algarismos significativos, desvios avaliados e propagação de erros, utilizando instrumentos de medida muito simples (paquímetro e micrômetro). MATERIAIS UTILIZADOS 1. Esferas, cilindros e cubo metálicos; 2. Paquímetro e Micrômetro. PROCEDIMENTO EXPERIMENTAL 1. Realizar 10 medições, usando o paquímetro e micrômetro, para o diâmetro da esfera, a altura e o diâmetro do cilindro, e a aresta do cubo; 2. Calcular o valor mais provável e o erro padrão da média, para cada uma das medidas (para ambos os instrumentos); 3. Calcular o volume e o erro do volume para cada uma das peças, para ambos os instrumentos. CONCLUSÕES Através das seguintes questões, monte suas conclusões: 1. De quanto é a diferença entre os volumes obtidos através do paquímetro e micrômetro? 2. Como você explicaria esta diferença encontrada? 3. Qual dos instrumentos você utilizaria para outras medidas? 27

7. TEMPO DE REAÇÃO HUMANA O que é o tempo de reação humana? Vamos defini-lo como o tempo necessário para que uma pessoa reaja a um determinado estímulo externo (visual, sonoro etc). O tempo de reação é muito importante para o sucesso em atividades que exigem respostas rápidas, principalmente atividades esportivas (goleiro de futebol, corredor, piloto de corrida etc). Um exemplo: quando o corredor Donovan Bailey bateu o recorde dos 100 m na Olimpíada de 1996, atrasou 0,17s (tempo de reação) na largada, e bateu o recorde por uma diferença de apenas 0,01s em relação ao recorde anterior. No caso das corridas automobilísticas, uma diferença de alguns centésimos de segundo no tempo de reação ao sinal de largada pode significar uma diferença de duas ou três posições na prova. A seguir vamos propor uma experiência para medir o tempo de reação humana. Embora seja um experimento bastante simples, que não fornece um resultado muito preciso, ele permite uma avaliação aproximada do tempo de reação. A idéia é medir o tempo que uma pessoa leva para perceber que um objeto está caindo e reagir a isso fechando a mão para interromper a queda do objeto. O tempo de reação será determinado a partir do quanto o objeto andou, desde o momento em que foi largado pelo experimentador até o instante em que a pessoa fechou os dedos e o segurou. Um experimentador deve segurar o objeto pela extremidade superior, deixando sua extremidade inferior exatamente entre os dedos (abertos) da pessoa que terá o tempo de reação medido. Em um determinado instante, sem avisar, o experimentador solta o objeto e a pessoa deve fechar os dedos para segurá-la. Recomendamos o uso de uma régua de 30 cm ou maior, pois assim pode-se medir quanto o objeto andou diretamente pela escala da régua. A conversão desta distância em tempo, para saber o tempo de reação, pode ser feita partindo-se da equação horária da posição de um movimento uniformemente variado (a queda de um objeto é um movimento uniformemente variado, certo? Por quê?) 28

Equação do movimento uniformemente variado: x = x 0 + v 0.t + a.t 2 /2 (I) No caso da queda livre de um objeto, x é a posição do corpo no tempo t e x 0 é a posição inicial do corpo. A distância que o objeto percorreu na queda é exatamente x - x 0, que chamaremos de Δx. Em nosso caso, a velocidade inicial do corpo (v 0 ) é zero porque o experimentador apenas soltou o objeto. O que faz o objeto cair é a ação da gravidade; assim, a aceleração a que o objeto tem durante a queda é igual à aceleração da gravidade (9,8 m/s 2 ). Colocando estas informações na equação I, chega-se à expressão que permite calcular o tempo de reação: t REAÇÃO (s) ~ Δx (m) / 4,9 Exercício: obtenha a equação acima. Você pode fazer este experimento com diversas pessoas e descobrir o tempo de reação humana típico. Repita o experimento 10 vezes com cada pessoa, para chegar a uma conclusão mais confiável, pois os valores obtidos através deste experimento apresentam uma imprecisão natural (dispersão). Tente mudar de experimentador (quem solta a régua) e verifique se isto também influencia o resultado. Esta forma de medir o tempo de reação mede na verdade o tempo de reação à estimulo visual, pois a pessoa detecta visualmente que o objeto foi largado. Você também pode medir o tempo de reação à estimulo sonoro com o mesmo experimento, bastando para isso falar JÁ no instante em que se solta o objeto. Neste caso, há diferença se a pessoa estiver de olhos abertos ou fechados? E se estiver olhando para outro lado? Por quê? Repita o experimento várias vezes. Outra questão que podemos colocar a respeito deste experimento é a seguinte: será que, em horários diferentes do dia, o tempo de reação para uma determinada pessoa varia? Em caso de resposta afirmativa, como poderíamos explicar isso?objetivo 29

8. PÊNDULO SIMPLES OBJETIVO O objetivo deste experimento é obter a aceleração da gravidade fazendo-se uso de um pêndulo simples. Iremos ver que, basta realizar apenas as medidas do tempo de oscilação deste pêndulo para o cálculo da aceleração. Em vista dessa simplicidade, iremos aprender a seguir como isso é possível. TEORIA Um pêndulo é um sistema composto por uma massa acoplada a um pivô que permite sua movimentação livremente. A massa fica sujeita à força restauradora causada pela gravidade. Existem inúmeros pêndulos estudados por físicos, já que estes descrevemno como um objeto de fácil previsão de movimentos e que possibilitou inúmeros avanços tecnológicos, alguns deles são os pêndulos físicos, de torção, cônicos, de Foucalt, duplos, espirais, de Karter e invertidos. Mas o modelo mais simples, e que tem maior utilização é o Pêndulo Simples. Este pêndulo consiste em uma massa presa a um fio flexível e inextensível por uma de suas extremidades e livre por outra. Quando afastamos a massa da posição de repouso e a soltamos, o pêndulo realiza oscilações. Ao desconsiderarmos a resistência do ar, as únicas forças que atuam sobre o pêndulo são a tensão com o fio e o peso da massa m. Desta forma: 30

A componente da força Peso que é dado por P.cosθ se anulará com a força de Tensão do fio, sendo assim, a única causa do movimento oscilatório é a P.senθ. Então: No entanto, o ângulo θ, expresso em radianos que por definição é dado pelo quociente do arco descrito pelo ângulo, que no movimento oscilatório de um pêndulo é x e o raio de aplicação do mesmo, no caso, dado por l, assim: Onde ao substituirmos em F: Assim é possível concluir que o movimento de um pêndulo simples não descreve um MHS, já que a força não é proporcional à elongação e sim ao seno dela. No entanto, para ângulos pequenos, este ângulo., o valor do seno do ângulo é aproximadamente igual a Então, ao considerarmos os caso de pequenos ângulos de oscilação: Como P=mg, e m, g e l são constantes neste sistema, podemos considerar que: Então, reescrevemos a força restauradora do sistema como: Sendo assim, a análise de um pêndulo simples nos mostra que, para pequenas oscilações, um pêndulo simples descreve um MHS. Como para qualquer MHS, o período é dado por: 31

e como Então o período de um pêndulo simples pode ser expresso por: E a aceleração da gravidade pode ser obtida da seguinte relação: g= 4π2 t 2. r 32

PRÁTICA PÊNDULO SIMPLES OBJETIVO Determinar a aceleração da gravidade local fazendo uso de um pêndulo simples. MATERIAIS UTILIZADOS Para a realização deste experimento, iremos utilizar os seguintes materiais: Um cronômetro, para medidas do tempo de oscilação do pêndulo; Uma trena para medida do comprimento do barbante; Um paquímetro para medir o diâmetro da esfera; Uma haste com um barbante de comprimento a ser determinado, ligando a haste até uma esfera metálica; Um transferidor. PROCEDIMENTO EXPERIMENTAL Para atender ao objetivo deste experimento, faz-se necessário seguir os seguintes procedimentos abaixo: 1. Ajuste o comprimento do fio do pêndulo de modo que tenha uma medida prédeterminada da ponta do fio ao centro de massa do pêndulo. Meça o comprimento, em metros, do pêndulo; 2. Para a realização do experimento, desloca se a esfera da posição de equilíbrio, até um ângulo θ, obedecendo a relação de que este ângulo não deve ser maior do que 15º. 3. Após ter deslocado a massa e determinado uma posição inicial de lançamento, solta se a massa e marca se o tempo de 10 oscilações completas, repetindo esta operação 10 vezes para cada comprimento L do fio; 4. Calcular a média e o erro padrão da média do tempo; 5. Calcular a aceleração da gravidade local, em metros por segundo ao quadrado ( m/s 2 ). 6. Comparar a medida da aceleração gravitacional obtida experimentalmente em sala de aula (aceleração determinada pela equação do período utilizando os dados experimentais) com o valor existente na literatura científica e determine o desvio percentual; 7. Discuta os desvios encontrados entre os valores de g (valor obtido em sala de aula com o da literatura); 8. Comente sobre a variação do período com a massa do pêndulo. Há dependência? Justifique. 33

9. EMPUXO OBJETIVO O objetivo deste experimento é calcular o volume de um sólido utilizando o Princípio de Arquimedes e também através do cálculo geométrico. TEORIA O empuxo é uma força que atua nos corpos quando imersos total ou parcialmente em um fluído. Sua descrição segue o princípio de Arquimedes segundo o qual ele é uma força igual ao peso do fluído deslocado e atuando na mesma direção e sentido contrário ao peso. Matematicamente, o empuxo (E) pode ser escrito em termos das densidades e do volume do fluído deslocado: onde m l é a massa do fluído deslocado, V l é seu volume, d é a densidade do fluído (d = massa/volume) e g é a aceleração da gravidade. Um corpo imerso em um fluído está sujeito, pelo menos, a força peso (P) e ao empuxo ( E ), como ilustrado abaixo. Figura 7. Um corpo imerso em um fluído O sistema segue a lei de Newton, portanto: se P > E o corpo afunda; se P < E ele sobe; se P = E ele flutua. Conhecendo o princípio de Arquimedes podemos estabelecer o conceito de peso aparente (P a ), que é o responsável, no exemplo dado da piscina, por nos sentirmos mais leves ao submergir. 34

Peso aparente é o peso efetivo, ou seja, aquele que realmente sentimos. No caso de um fluido: E= P P a m l.g=m c. g m a. g m l =m c m a ρ l.v =m c m a V= m c m a ρ l onde P é o peso do corpo, m l é massa do líquido deslocada (água), m c é a massa do corpo e m a é a massa aparente do corpo 35

PRÁTICA EMPUXO Lista de Materiais Para a realização deste experimento, iremos utilizar os seguintes materiais: 1. Uma balança de pratos; 2. Pesos graduados, em gramas; 3. Um corpo de prova; 4. Um béquer com água Experimento 1. Meça a massa do corpo de prova com o uso da balança, m c ; 2. Meça a massa aparente do corpo, m a, utilizando o seguinte esquema abaixo: Figura 8. Esquema do experimento do empuxo 3. Calcule o volume do corpo de prova através da equação: V= m c m a ρ áqua 4. Calcule agora o volume do corpo através da seguinte equação: 36

V= π D 2 L 4 5. Responda a seguinte pergunta: Houve diferença no volume obtido por ambos os métodos? Se houve, como explicaria isso? 37

10. SISTEMA MASSA-MOLA (PAPEL MILIMETRADO) OBJETIVO O objetivo deste experimento é calcular a constante elástica da mola, k, através de um experimento simples com um sistema massa-mola e com o auxilio de um papel milimetrado. TEORIA Iremos utilizar a lei de Hooke que relaciona força com o deslocamento da massa, através da seguinte equação: F= k x (1) onde F é a força em newtons, x é o deslocamento em metros e, k é a chamada constante elástica da mola. É importante salientar que, o sinal negativo presente na equação acima indica que esta força é restauradora, ou seja, é uma grandeza vetorial sempre no sentido contrário a grandeza vetorial do deslocamento x. Supondo um sistema massa-mola na vertical, como mostrado na Figura 1, a força F passará ser a força peso da massa, com isso teremos : Figura 9: Balança de Joly. F= k x 38

P=mg P F=0 m g- k x=0 k= m x g m g=k x onde m é a massa e g a gravidade. Note que podemos obter a constante k através das quantidades m, x e g. É com essa relação que iremos obter a constante elástica da mola, k, na prática seguinte, onde a relação m/x será o coeficiente angular da reta obtida através do gráfico em papel milimetrado, ou seja: k=a.g (3) onde a é o coeficiente angular da reta obtida experimentalmente. 39

PRÁTICA SISTEMA MASSA-MOLA Lista de Materiais Para a realização deste experimento, iremos utilizar os seguintes materiais: 4. Uma balança de Joly; 5. Fichas graduadas, em gramas; Experimento 3. Verifique se o prato da balança está em zerada na régua graduada em centimentros; 4. Acrescente uma ficha graduada e anote o deslocamento do prato na régua. Acrescente mais fichas, uma de cada vez e sem tirar as já colocadas, e anote o deslocamento: 5. Preencha a tabela abaixo com os valores massa (gramas) por deslocamento (centimentros): Massa (g) Deslocamento (cm) 6. Coloque os pares de pontos da tabela acima em um papel milimetrado. Utilize o eixo y para os pontos relativos a massa e, o eixo x para os pontos relativos ao deslocamento; 7. Passe uma única reta de tal modo a cobrir todos os pontos experimentais no gráfico. Note que não será possível fazer com que a reta atinja todos os pontos; 8. Calcule o coeficiente angular da reta obtida escolhendo para isso, dois pares de pontos não consecutivos, através da relação abaixo: a= m 2 m 1 d 2 d 1 9. Calcule a constante elástica da mola, k, utilizando a equação (3). Cuidado, o coeficiente angular e a aceleração da gravidade, g, estão com as unidades incompatíveis. 40

11. MÍNIMOS QUADRADOS (PAPEL MILIMETRADO) Ao se obter uma sucessão de pontos experimentais que representados em um gráfico apresentam comportamento linear, diferentes experimentadores poderão traçar diferentes retas, encontrando diferentes valores para os coeficientes linear e/ou angular. Um método para determinar a reta correta é dado pelo método dos mínimos quadrados. Este método consiste em determinar o coeficiente angular a e o coeficiente linear b da equação da reta: y=ax+b através das seguintes equações: e a= N x. y x y N x 2 x 2 b= y x 2 x x. y N x 2 x 2 onde N é o número de pontos experimentais. Uma observação importante é que, caso o conjunto de pontos experimentais corresponda a uma equação não linear, deve-se primeiro linearizá-la e, como decorrência, refazer a tabela dos pontos experimentais, antes da utilização das relações acima. 41

12. DECAIMENTO DA TEMPERATURA (PAPEL MONOLOG) OBJETIVO O objetivo deste experimento é obter a equação matemática que gerou os dados da tabela abaixo. Para isso, é necessário fazer um gráfico em papel monolog de modo a linearizar os dados da referida tabela. TEORIA Diversos fenômenos físicos como o decaimento radioativo segue uma lei matemática que é uma função de uma exponencial negativa. Outro fenômeno mais próximo é o decréscimo de temperatura de uma xícara de café. Dada uma temperatura inicial de 205 graus Celcius (exagerando obviamente), podemos ver que o seu decréscimo será uma exponencial negativa até atingir uma temperatura ambiente, 1 grau por exemplo (exagerando novamente). Utilizando então os dados da tabela abaixo, vemos o comportamento na figura 10: tempo Temperatura (horas) (Celcius) 0 250 1 152 2 92 3 56 4 33 5 20 6 12 7 7 8 4 9 2 10 1 Tabela: Valores de temperatura por tempo de uma hipotética xícara de café. 42

Figura 10: Temperatura em função do tempo de uma hipotética xícara de café. O cálculo do coeficiente angular da reta no gráfico monolog é feito da seguinte maneira: a= ln152 ln12 = 0.51 1 6 O coeficiente linear da reta é facilmente obtido pelo gráfico, ou seja, b=250. Logo, a equação da reta será: y=ax+b Como a temperatura, T, é uma função do tempo, t, então a equação da reta acima torna-se: T=at+b. Entretanto, a temperatura, T, e o coeficiente linear, b, estão no eixo logarítmico do gráfico, assim: T= 0.51t+250 ln T= 0.51 t+ ln250 ln T ln250= 0. 51 t ln T 250 = 0.51t Aplicando a função exponencial em ambos os lados da última equação, teremos: 43

exp ln T T 250 =exp 0.51t 250 =e 0. 51t T=250 e 0.51 t Esta foi à equação utilizada para gerar os dados da tabela anterior. Figura 11: Temperatura em função do tempo de uma hipotética xícara de café 44

13. MÍNIMOS QUADRADOS EM PAPEL MONOLOG Dada a seguinte tabela abaixo: Tempo Temperatura 0 215 1 101 2 54 3 22 4 12 5 6 6 2 7 1 8 0.7 9 0.3 10 0.2 11 0.1 A primeira tarefa é aplicar o logaritimo neperiano nos dados acima a fim de linearizar os dados. A tabela a seguir mostra o resultado: Tempo Ln(Temperatura) 0 5.3706 1 4.6151 2 3.9890 3 3.0910 4 2.4849 5 1.7918 6 0.6931 7 0 8-0.3567 9-1.2040 10-1.6094 A tabela acima gera o seguinte gráfico linear: 45

Figura 12: Temperatura em função do tempo Agora, o objetivo é calcular a reta que melhor se ajusta aos dados. Para isso, é necessário utilizar a seguinte equação: Coeficiente angular da reta: a= N XY X Y N X 2 X 2 reta: Com a equação acima, calcula-se agora os novos valores de y a partir da equação da y=ax+b 46

BIBLIOGRAFIA UTILIZADA Piacentini, J. J.; Grandi, B. C. S.; Hofmann, M. P.; Lima, F. R. R.; Zimmermann, E. Introdução ao Laboratório de Física, 2 a. edição, Editora da UFSC, Florianópolis, 2001. Helene, O. A. M.; Vanin, V. R. Tratamento Estatístico de Dados em Física Experimental, 2 a. edição, editora Edgard Blücher Ltda, São Paulo, 1991. Fonte: http://webfis.df.ibilce.unesp.br/cdf/roem/mec/empu/empu.html 47