DESENVOLVIMENTO DE SIMULADORES DE MOVIMENTO PARA ANÁLISE E VISUALIZAÇÃO DA DINÂMICA DE VEÍCULOS

Documentos relacionados
DESENVOLVIMENTO DE SIMULADORES DE MOVIMENTO PARA ANÁLISE E VISUALIZAÇÃO DA DINÂMICA DE VEÍCULOS

DESENVOLVIMENTO DE SIMULADORES DE MOVIMENTO PARA ANÁLISE E VISUALIZAÇÃO DA DINÂMICA DE VEÍCULOS

3 Veículos Terrestres

DESENVOLVIMENTO DE UM SISTEMA DE OBTENÇÃO DE DADOS PARA CALIBRAÇÃO DE CENTRAIS INERCIAIS

MODELAGEM MATEMÁTICA E CONTROLE DE ATITUDE E POSIÇÃO DO QUADROTOR.

DESENVOLVIMENTO DE VEICULOS AUTONOMOS EM ESCALA EM AMBIENTE DE SIMULAÇÃO COMPUTACIONAL

Capítulo 11. Projeto por Intermédio da Resposta de Freqüência

DESENVOLVIMENTO DE VEICULOS AUTONOMOS EM ESCALA EM AMBIENTE DE SIMULAÇÃO COMPUTACIONAL

MODELAGEM MATEMÁTICA E SIMULAÇÃO DO MOTOR BRUSHLESS 1

Sistemas Mecatrônicos 1

2 Fundamentos teóricos

Desenvolvimento de Simuladores de Movimento em Escala para Análise e Visualização da Dinâmica de Veículos. Sistemas de Instrumentação e Controle.

Acionamentos e Sensores para Máquinas CNC

2 Equações do Sistema

Sistemas de Transmissão de Movimento

REPROJETO DE UM ROBÔ DO TIPO GANTRY COM ACIONAMENTO PNEUMÁTICO 1

8 Braço Mecânico. 8.1 Manipulador FEROS I

o desempenho do motorista, reconstruir pistas e trajetórias, e desenvolver controles autônomos, entre outros.

Sistemas de Controle (CON) Modelagem de Sistemas de Rotação e Eletromecânicos

DESENVOLVIMENTO DE UM SIMULADOR DE MOVIMENTOS VERTICAIS COM ATUAÇÃO PNEUMÁTICA

Grande precisão (posicionamento do atuador final); Carga inercial (momento) fixa, ao longo da área de trabalho;

Atuadores e Sistemas Pneumáticos

O que é uma cremalheira?

PME 2600 MODELAGEM, ANÁLISE DINÂMICA E CONTROLE EM UM VEÍCULO ARTICULADO VISANDO PREVENIR O EFEITO CANIVETE.

Robótica Industrial: Fundamentos, Tecnologias, Programação e Simulação

1. Introdução. 1.1.Objetivo

1 Introdução. 1.1 Tecnologia Kopelrot

EL 71D - Introdução à Engenharia Mecatrônica. Prof. Sérgio Leandro Stebel Prof. Gilson Yukio Sato

Efetuadores e Atuadores

Revisão II: Sistemas de Referência

ESTUDO E PROJETO DE UM ROBÔ ACIONADO PNEUMATICAMENTE PARA APLICAÇÃO INDUSTRIAL 1

Estabilidade de rolamento e estabilidade anti-capotamento no basculamento

DESENVOLVIMENTO DE UM DINAMÔMETRO PARA MOTORES ELÉTRICOS EMPREGADOS EM VEÍCULOS EM ESCALA

Aluno Data Curso / Turma Professor

1 RESUMO. Palavras-chave: Controle, encoders, motor CC. 2 INTRODUÇÃO

4 Bancada Experimental e Aquisição de Dados

4 Modelos para Válvulas de Alívio

Implementação de controlador PID fuzzy para otimização do controle de posição de um servomotor DC

3 Projetos experimentais

MANIPULAÇÃO E EQUIPAMENTOS

1 ESCOLA POLITÉCNICA DA USP Estrutura Mecânica Eduardo L. L. Cabral ESCOLA POLITÉCNICA DA USP

ESTUDO DA COMBUSTÃO DA OPERAÇÃO BICOMBUSTÍVEL DIESEL-ETANOL NUMA MÁQUINA DE COMPRESSÃO RÁPIDA

Atuadores em Robótica

Eduardo L. L. Cabral

Caminhões com bomba de concreto. Informações gerais sobre caminhões com bomba de concreto. Modelo

CNC VEGA EVO VÍDEO: Comércio de Máquinas e Assistência Técnica

2 Medição da oscilação dos geradores hidroelétricos do sistema FURNAS

4 DESENVOLVIMENTO E MONTAGEM DOS TESTES EXPERIMENTAIS

DESENVOLVIMENTO E CONSTRUÇÃO DE UMA BANCADA COM MOTOR HIDRÁULICO INSTRUMENTALIZADA PARA TESTES 1

CONTROLE E MOVIMENTAÇÃO DO HELICÓPTERO

INTRODUÇÃO A ROBÓTICA. Prof. MSc. Luiz Carlos Branquinho Caixeta Ferreira

A Exsto Tecnologia atua no mercado educacional, desenvolvendo kits didáticos para o ensino tecnológico.

Equipamentos. Linha Industrial

Figura 4.1: a)elemento Sólido Tetraédrico Parabólico. b)elemento Sólido Tetraédrico Linear.

Rede de Sensores Inerciais para Equilíbrio de um Robô Humanóide

CURSO: ENGENHARIA DE CONTROLE E AUTOMAÇÃO EMENTAS º PERÍODO

1 Introdução 1.1 Definição do Problema

ENSAIO DE CÉLULAS DE CARGA 1

TÍTULO: APERTO POR TORQUE CONTROLADO E O MONITORAMENTO DO ÂNGULO DE GIRO DO PARAFUSO.

ENGENHARIA E TREINAMENTO

ELETRICIDADE INDUSTRIAL. Introdução aos Acionamentos Elétricos

Medição de Força e Torque. Capítulo V

CONCEPÇÃO DE UM SISTEMA ELETROMECÂNICO DESENVOLVIDO PARA APOIO À PESQUISA 1

BOMBAS DE PISTÃO LINHA HPF

Conceitos Fundamentais de Mecânica

Capítulo 1. Introdução

1. Introdução Objetivo

DESENVOLVIMENTO DO PROTÓTIPO DE UM BRAÇO ROBÓTICO DE JUNTAS ROTATIVA-ELÉTRICA E PRISMÁTICA-PNEUMÁTICA 1

RASTREADOR SOLAR AUTÔNOMO

Estratégia para medição de orientação baseado em sensores MARG para aplicações Wearable PROPOSTA DE TRABALHO DE GRADUAÇÃO

Quadro de Organização Curricular

MODELAGEM DE UM SISTEMA DE DISTRIBUIÇÃO DE ENERGIA CONSIDERANDO A APLICAÇÃO EM REDES INTELIGENTES (SMART GRIDS) 1

8 ANÁLISE EXPERIMENTAL

SISTEMAS ROBOTIZADOS CAPÍTULO 7 CONTROLE INDEPENDENTE DAS JUNTAS

Disciplina: Sistemas Fluidomecânicos. Características de Desempenho 1ª Parte

Por que escolher a Rexnord?

Capítulo 2. Modelagem no Domínio de Freqüência

PLATAFORMA EXPERIMENTAL PARA ENSAIO DE PROPULSORES ELETROMECÂNICOS 1

PRINCÍPIOS DA CONVERSÃO ELETROMECÂNICA DA ENERGIA

Princípios de conversão eletromecânica de energia Processo de conversão eletromecânica de energia que utiliza, como meio, o campo

Lista de exercícios 2 Mecânica Geral III

Características do fuso de esferas

SIMULAÇÃO DINÂMICA DE UM TREM COM TRÊS VAGÕES RESUMO

Projeto e Controle de um Sistema Robótico Quadrúpede

Universidade Federal do Paraná Setor de Tecnologia Departamento de Engenharia Mecânica. Eixos e árvores

Características do fuso de esferas

2 Procedimentos para Análise de Colisão de Veículos Terrestres Deformáveis

4 Análise de Dados. 4.1.Procedimentos

Conjunto Lubrifil. Esteira Transportadora. Cilindros Pneumáticos. Sensor. Sensor. Motor CC. Módulo Sinaleiro. Módulo Chave e Botões.

CAPÍTULO 3 DINÂMICA DA PARTÍCULA: TRABALHO E ENERGIA

Válvulas de Controle 25/11/20122

Curso Tecnólogo em Mecatrônica Industrial GUILHERME K. POGAN HELENA F. DITTERT. Gerador Eólico

DESENVOLVIMENTO DE UM DINAMÔMETRO PARA MOTORES ELÉTRICOS EMPREGADOS EM VEÍCULOS EM ESCALA PARTE II

Automatismos para portas de correr

Ensaios de bancada no motor Zenoah 80GT utilizado no VANT do ITA

Modificação do sistema de escape

Modelagem e simulação de um motor CC simples usando solidthinking Activate

Transcrição:

DESENVOLVIMENTO DE SIMULADORES DE MOVIMENTO PARA ANÁLISE E VISUALIZAÇÃO DA DINÂMICA DE VEÍCULOS Aluna: Ingrid Moura Obeid Orientador: Mauro Speranza Neto 1. Introdução O projeto baseia-se no desenvolvimento de um simulador de movimento com três graus de liberdade (roll, pitch e yaw). Este projeto surgiu em 2010 com o intuito de motivar mais alunos para a habilitação em Engenharia de Controle e Automação, mas que por sua vez possui grande interseção com a Engenharia Mecânica. Foram construídos dois Simuladores desde o início do projeto. O simulador, apesar de não incluir todos os movimentos de um veículo real, emprega os mesmos conceitos básicos e dispositivos dos equivalentes com os seis graus de liberdade, com limitacoes, porém com amplitude suficiente de modo a possibilitar as principais sensacoes associadas ao veiculo. 2. Objetivo O objetivo do projeto é desenvolver a partir da integração dos componentes eletromecânicos e/ou pneumático-mecânicos um simulador para ser empregado em testes e demonstrações no Laboratório de Controle e Automação. Um ramo na indústria, especificamente a relacionada com os veículos terrestres, tem sido na atualidade foco de grandes desenvolvimentos e estudos com diversos fins, quer seja para fornecer veículos de corridas muito velozes e softificados, ou para brindar ao usuário de todos os dias com conforto e segurança no ato de conduzir ou ainda para permitir o transporte de mercadorias e outros bens que necessitam ser movimentados de um lugar para a outro. Este foi outro motivo pelo qual decidimos desenvolver este projeto. Os simuladores são sistemas mecatrônicos que produzem as principais atitudes e

movimentos de um veículo, comandado pelos mesmos elementos do sistema real, ou seja, conseguem reproduzir em laboratório as imperfeições das estradas pelas quais circulam diariamente os veículos, para desta maneira testá-los em condições semelhantes às encontradas em uma estrada real. As estruturas são acionadas por atuadores elétricos e controladas eletronicamente através de 3 servossistemas, sobre as quais são montadas as cabines, fuselagem, ou carroceria dos veículos, que passam a possuir os mesmos movimentos de um veículo real, sem riscos ou temor de acidentes, pois seus movimentos são limitados mecanicamente. Os mecanismos com diversos graus de liberdade são capazes de reproduzir os ângulos de atitude rolagem, arfagem e guinada (respectivamente roll, pitch e yaw), como pode ser visto na Figura 1 e os deslocamentos lineares lateral, vertical e longitudinal, com limitações, porém com amplitude suficiente de modo a possibilitar as principais características do veículo real em condições normais de operação, e até em algumas situações consideradas de risco, como a perda de sustentação em aeronaves, ou o início da capotagem em veículos terrestres. Figura 1 Graus de liberdade.

3. Metodologia Inicialmente foram estudados simuladores já desenvolvidos. Foram analisados diversos tipos de sistemas para a movimentação do simulador, como por exemplo atuadores, motores no eixo ou motores com atuação indireta a partir de correias. Após esse processo foi desenvolvida um concepção inicial em SolidWorks, que além disso simulou a estrutura em diversas situações, mostrando sua capacidade de movimentação. Adotou-se o sistema com motores atuando diretamente no eixo. Foi construído um primeiro simulador, em que sua estrutura era composta por tubos circulares de alumínio e conexões de PVC rigido, que apresentavam grandes folgas e flexões por conta da incompatibilidade das conexões com os tubos e da pouca rigidez dos tubos de alumínio. Este Simulador mostrou que apesar das folgas o conceito da estrutura é boa, o que fez o segundo simulador ter o mesmo esqueleto de estrutura. Com isso foi desenvolvido um segundo simulador que apresentava uma maior rigidez em sua estrutura, agora composta por perfis de alumínio da Bosch. (Figura 2) Este perfil Bosch é muito utilizado em indústrias como estrutura, pois apresenta alta resistência e facilidade de se fixar um ao outro. Sua movimentação é feita, como no primeiro simulador, por motores aplicados diretamente no eixo. As conexões de 90 graus são reforçadas com cantoneiras fornecidas também pela Bosch. As conexões angulares na estrutura do movimento de pitch foi reforçada com placas de alumínio. As Figuras 3 a 6 ilustram o segundo simulador completo e suas estruturas em um programa chamado solidworks, muito utilizado para modelar peças. Figura 2 Perfil Bosch

Figura 3 Simulador completo. Figura 4 Estrutura de movimento do Picht. Figura 5 Estrutura de movimento do Roll.

Figura 6 Estrutura de movimento do yaw. Após as estruturas modeladas, e os dois graus de liberdade (roll, pitch), já montados no laboratório, como mostra a Figura 7, foram feitos testes de torque com o motor magnético brushless, com potências entre 700W e 1750W de altíssima eficiência energética 97,6% - Mínima perda por atrito ou aquecimento, estes foram feitos em uma bancada de teste, como pode ser visto na Figura 8. Primeiramente acoplamos o motor à célula de carga e a leitura do torque foi feita a partir de um indicador de pesagem WE2107, cujo sinal de leitura é emitido em kg. Para ser feito essa leitura foi dividido em dois sentido, positivo e negativo e dentro de cada um desses foi separado em três níveis, que significam até que porcentagem pode-se chegar. Como mostra a Tabelas 1.1 e 1.2.

Figura 7 Simulador montado no laboratório. Figura 8 Bancada de Teste. Para que se tenha uma melhor precisão foi feito um estudo das curvas de calibração usando dois torquimetros (Draper 3000 e Gedore R100 n/s:4929). Estas foram montadas com a média da leitura do indicador de pesagem WE2107 e os valores do torque aplicado, como pode ser visto nas Tabelas 2.1 e 2.2 e no Gráfico 1.1 e 1.2. Com as curvas esboçadas foram calculados as médias, os desvios padrões e as incertezas para os dois torquimetros. Com os valores obtidos pode-se perceber que o melhor torquimetro a ser usado é o Gedore R100 n/s:4929. Os dados estão nas Tabelas 3.1 e 3.2. Feito o estudo do melhor torquimetro a ser utilizado, pode-se assim equacionar a equação da curva de calibração do torquimetro (Gedore R100 n/s:4929), como pode ser vista também nos Gráficos 1.1 e 1.2. Com a equação y = 0,126x - 0,0966 obtida pode-se calcular o f(máx) e o f(0) para cada sentido e níveis preestabelecidos pela Tabela 1.1 e 1.2. Esses resultados podem ser vistos nas Tabelas 3.1 e 3.2. Mas para comparar com a especificação dada pelo fabricante do máximo torque todos os resultados obtidos foram passados de N.m para kg.cm. O máximo torque obtido com os teste foi 129.46 kg*cm e o máximo torque obtido pelo fabricante é 42 kg.cm. Com o motor devidamente escolhido e testado, pode-se constatar um torque de pico, já que o torque encontrado é bem maior do que o dado pelo fabricante.

Tabela 1.2 Os níveis e sentido. Nível 1 30% Nível 2 60% Nível 3 90% Sentido 1 f(max) x f(0) x 50 0 60 0 54 9 65 0 62 1 71 0 65 11 47 15 39 27 Nível 1 30% Nível 2 60% Nível 3 90% Sentido 2 f(max) x f(0) x 50 0,8 68 0,6 86 0,6 96 0,2 80 0,3 79 0,2 100 0,1 80 0,2 79 0,3 Gráfico 1.1 Draper 300.

Tabela 2.1 Valores dos Torques - Draper 300 Gráfico 1.2 Gedore. Tabela 2.2 Valores dos Torques - Gedore Leituras no We (kg) (N.m) 100 14,0 90 13,8 80 13,6 70 13,5 60 13,2 50 12,2 40 10,8 30 9,7 20 8,1 10 6,8 0 5,9 0 4,1 10 0,1 20 0,5 30 0,9 40 2,9 50 3,3 60 4,5 70 5,6 80 6,6 90 7,0 100 7,6 Leituras no We (kg) (N.m) 100 11,0 90 10,1 80 9,2 70 8,2 60 7,2 50 6,7 40 5,6 30 5,1 20 5,0 10 4,7 0 3,9 0 2,9 10 4,1 20 4,5 30 4,9 40 5,6 50 6,6 60 7,8 70 8,8 80 9,8 90 11,8 100 13,4

Leituras no We (kg) Tabela 3.1 Dados completos da calibração - Draper 300. Leituras no Torquímetro (lbf ft) (lbf ft) (N.m) (N.cm) Desvio Padrão (lbf ft) Incerteza (lbf ft) 100 10,3 10,3 10,3 10,3 14,0 1396,5 0,00 0,01 90 10,2 10,2 10,2 10,2 13,8 1382,9 0,00 0,01 80 10,0 10,1 10,1 10,1 13,6 1364,9 0,06 0,01 70 9,9 10,0 10,0 10,0 13,5 1351,3 0,06 0,01 60 9,8 9,9 9,5 9,7 13,2 1319,7 0,21 0,05 50 9,5 9,5 8,0 9,0 12,2 1220,2 0,87 0,76 40 9,0 8,0 7,0 8,0 10,8 1084,7 1,00 1,01 30 8,0 7,0 6,5 7,2 9,7 971,7 0,76 0,59 20 6,0 6,0 6,0 6,0 8,1 813,5 0,00 0,01 10 5,0 5,0 5,0 5,0 6,8 677,9 0,00 0,01 0 5,0 4,0 4,0 4,3 5,9 587,5 0,58 0,34 0 3,0 3,0 3,0 3,0 4,1 406,7 0,00 0,01 10 0,0 0,1 0,1 0,1 0,1 9,0 0,06 0,01 20 1,0 0,0 0,0 0,3 0,5 45,2 0,58 0,34 30 2,0 0,0 0,1 0,7 0,9 94,9 1,13 1,28 40 3,0 1,5 2,0 2,2 2,9 293,8 0,76 0,59 50 3,0 2,0 2,2 2,4 3,3 325,4 0,53 0,28 60 4,0 3,2 2,7 3,3 4,5 447,4 0,66 0,44 70 4,5 4,0 4,0 4,2 5,6 564,9 0,29 0,09 80 5,0 4,5 5,0 4,8 6,6 655,3 0,29 0,09 90 5,5 4,8 5,2 5,2 7,0 700,5 0,35 0,13 100 6,0 5,0 5,9 5,6 7,6 763,8 0,55 0,31 da Incerteza 0,29

Tabela 3.2 Dados completos da calibração - Gedore. Leituras no We (kg) Leituras no Torquímetro (kgf.m) (kgf.m) (N.m) (N.cm) Desvio Padrão (kgf.m) Incerteza (kgf.m) 100 1,0 1,2 1,2 1,1 11,0 1095,1 0,10 0,0158 90 1,0 1,1 1,0 1,0 10,1 1013,4 0,06 0,0083 80 0,9 1,0 0,9 0,9 9,2 915,3 0,06 0,0083 70 0,8 0,9 0,8 0,8 8,2 817,2 0,06 0,0083 60 0,7 0,8 0,7 0,7 7,2 719,2 0,06 0,0083 50 0,7 0,7 0,7 0,7 6,7 666,9 0,03 0,0057 40 0,5 0,6 0,6 0,6 5,6 559,0 0,04 0,0063 30 0,5 0,5 0,5 0,5 5,1 509,9 0,01 0,0051 20 0,5 0,5 0,5 0,5 5,0 496,9 0,01 0,0050 10 0,5 0,5 0,5 0,5 4,7 467,5 0,03 0,0056 0 0,4 0,4 0,5 0,4 3,9 392,3 0,05 0,0075 0 0,3 0,3 0,3 0,3 2,9 294,2 0,00 0,0050 10 0,4 0,5 0,4 0,4 4,1 408,6 0,03 0,0058 20 0,5 0,5 0,5 0,5 4,5 454,4 0,02 0,0055 30 0,5 0,5 0,5 0,5 4,9 490,3 0,00 0,0050 40 0,6 0,6 0,6 0,6 5,6 555,7 0,03 0,0058 50 0,7 0,7 0,7 0,7 6,6 660,3 0,03 0,0056 60 0,8 0,8 0,8 0,8 7,8 784,5 0,00 0,0050 70 0,9 0,9 0,9 0,9 8,8 882,6 0,00 0,0050 80 1,0 1,0 1,0 1,0 9,8 980,7 0,00 0,0050 90 1,2 1,2 1,2 1,2 11,8 1176,8 0,00 0,0050 100 1,4 1,3 1,4 1,4 13,4 1340,2 0,06 0,0083 da Incerteza 0,0066 4. Conclusões Com as estruturas de pitch e roll montadas foram iniciados os testes de validação e integração com os elementos de controle. O motor escolhido teve comportamento satisfatório, porém, para melhorar seu desempenho, está sendo estudado o uso de outro controlador de velocidade. Além de poder trabalhar com maior potência, isto aprimorará a capacidade de inversão do motor para execução dos movimentos da simulação. O próximo passo será a montagem do ultimo grau de liberdade, o yaw.

Referências 1 - ALBUQUERQUE, A. N. Desenvolvimento de um simulador vertical com atuação pneumática. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. Seminário de Iniciação Científica. Orientadores: SPERANZA NETO, M. Agosto de 2009. 2 - ALBUQUERQUE, A. N. Modelagem e simulação de uma plataforma de Stewart controlada usando sensores inerciais. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. Dissertação de Mestrado. Orientador: MEGGIOLARO, M. A. Agosto de 2012. 3 MOSER, J. N. Desenvolvimento de simuladores de movimento para análise e visualização da dinâmica de ve. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. Seminário de Iniciação Científica. Orientadores: SPERANZA NETO, M. Agosto de 2012. 4 https://en.wikipedia.org/wiki/flight_dynamics, acessado em Julho de 2013.