AVALIAÇÃO DOS COMPOSTOS BIOATIVOS APÓS A SECAGEM DE ALGUNS RESÍDUOS DE FRUTAS POR RADIAÇÃO INFRAVERMELHA

Documentos relacionados
AVALIAÇÃO DO TEOR DE COMPOSTOS BIOATIVOS DO RESÍDUO DE ACEROLA (Malpighia emarginata D.C.) APÓS SECAGEM EM LEITO FIXO

COMPARAÇÃO DO TEOR DE COMPOSTOS BIOATIVOS ANTES E APÓS A SECAGEM DE RESÍDUO DE ACEROLA EM UM SECADOR DE LEITO FIXO (CAMADA ESPESSA)

ANÁLISE DA DESIDRATAÇÃO DE RESÍDUOS DE PROCESSAMENTO DE MARACUJÁ (Passiflora Edulis) UTILIZANDO AR QUENTE

X Congresso Brasileiro de Engenharia Química Iniciação Científica

ANÁLISE DA DESIDRATAÇÃO DE RESÍDUOS DE PROCESSAMENTO DE MARACUJÁ (Passiflora Edulis) UTILIZANDO INFRAVERMELHO

ANÁLISE DA DESIDRATAÇÃO DE RESÍDUOS DE PROCESSAMENTO DO MARACUJÁ UTILIZANDO UM MICROONDAS DOMÉSTICO

CINÉTICA DE SECAGEM DA FRUTA PHYSALIS POR IRRADIAÇÃO INFRAVERMELHA

ANÁLISE DA DESIDRATAÇÃO DE RESÍDUOS DE PROCESSAMENTO DE MARACUJÁ (Passiflora Edulis) POR LIOFILIZAÇÃO

ANÁLISE DA DESIDRATAÇÃO DE RESÍDUOS DE PROCESSAMENTO DO MARACUJÁ UTILIZANDO UM MICROONDAS DOMÉSTICO

X Congresso Brasileiro de Engenharia Química Iniciação Científica

SECAGEM DE RESÍDUOS DE ACEROLA EM SECADOR ROTO-AERADO COM REALIMENTAÇÃO

AVALIAÇÃO DO TEMPO DE TRATAMENTO EM ULTRASSOM SOBRE A SECAGEM EM INFRAVERMELHO

TÍTULO: COMPARAÇÃO DE MODELOS MATEMÁTICOS PARA DESCRIÇÃO DA CINÉTICA DE SECAGEM DE CASCAS DE CENOURA (DAUCUS CAROTA L.) E BETERRABA (BETA VULGARIS).

CINÉTICA DE SECAGEM DE DISCOS CARTONADOS EM CAMADA FINA

ESTUDO DA DESIDRATAÇÃO DE RESÍDUOS DE ACEROLA EM TAMBOR ROTATIVO ACOPLADO A MICRO-ONDAS

X Congresso Brasileiro de Engenharia Química Iniciação Científica

CINÉTICA DE SECAGEM DE RESÍDUOS DE Artocarpus heterophyllus Lam

DETERMINAÇÃO DO CALOR ESPECÍFICO DO RESÍDUO DE ACEROLA

AVALIAÇÃO DA CINÉTICA DE SECAGEM EM LEITO FIXO E CAMADA FINA DE BAGAÇO DE LARANJA E SEMENTES DE MAMÃO PAPAIA COM MUCILAGEM

DETERMINAÇÃO EXPERIMENTAL DA CINÉTICA DE SECAGEM DO MORANGO.

Por que razão devemos comer fruta? Determinação da capacidade antioxidante da pêra abacate.

SECAGEM DA ABÓBORA (CUCRBITA MOSCHATA, L.) EM SECADOR DE LEITO FIXO

EFEITO DO PRÉ-TRATAMENTO ULTRASSÔNICO SOBRE A SECAGEM EM LEITO DE JORRO DE MISTURA CONSTITUÍDA POR RESÍDUO DE ACEROLA E SOJA

ESTUDOS PRELIMINARES PARA OBTENÇÃO DE BEBIDA ALCOÓLICA DE UMBÚ SEMELHANTE A VINHO

COMPOSIÇÃO PROXIMAL DO RESÍDUO DO CUPUAÇU (THEOBROMA GRANDIFLORUM) PARA OBTENÇÃO DA RAÇÃO ANIMAL

AVALIAÇÃO DE PARÂMETROS DE QUALIDADE FÍSICO- QUÍMICOS DE SUCOS TROPICAIS

AVALIAÇÃO DAS CONDIÇÕES DE EXTRAÇÃO DE COMPOSTOS FENÓLICOS DA POLPA DE PEQUI

Avaliação da aceitação e da intensidade da acidez de casca de laranja desidratada osmoticamente submetida à diferentes tratamentos

AVALIAÇÃO DE COMPOSTOS BIOATIVOS PRESENTES NO SUCO MISTO DE JUÇARA E FALSO GUARANÁ

ESTABILIDADE DOS COMPOSTOS FENÓLICOS PRESENTES NA FARINHA DO BAGAÇO DE UVA TINTA VITIS VINÍFERA E VITIS LABRUSCA

CINÉTICA DE DEGRADAÇÃO DOS COMPOSTOS BIOATIVOS DA AMORA-PRETA DURANTE O PROCESSO DE SECAGEM CONVECTIVA

CINÉTICA DE DEGRADAÇÃO DA VITAMINA C DURANTE A PRODUÇÃO DE SUCO CONCENTRADO DE ABACAXI COM HORTELÃ

AVALIAÇÃO DOS TEORES COMPOSTOS BIOATIVOS APÓS A SECAGEM DE RESÍDUO DE ACEROLA EM MICRO-ONDAS A VÁCUO RESUMO

DETERMINAÇÃO DA SOLUBILIDADE DE UREIA EM MISTURAS ETANOL-ÁGUA EM TEMPERATURAS DE 278,15 A 333,15 K

EFEITO DO PRÉ-TRATAMENTO ULTRASSÔNICO SOBRE A SECAGEM DE RESÍ- DUOS DA ACEROLA EM LEITO DE JORRO

QUALIDADE FÍSICO-QUÍMICA E COMPOSTOS BIOATIVOS EM POLPA DE MARACUJÁ CONGELADA E APLICAÇÃO DE QUIMIOMETRIA PARA ANÁLISE DOS DADOS

PROCESSAMENTO E CARACTERIZAÇÃO QUÍMICA E FÍSICA DE FRUTOS DE MURICI-PASSA (Byrsonima verbascifolia)

CINÉTICA DE SECAGEM DE ABACAXI CV PÉROLA EM FATIAS RESUMO

Redução da viscosidade da polpa de acerola

ESTUDO CINÉTICO DE DESIDRATAÇÃO E CARACTERIZAÇÃO DO BAGAÇO DE MALTE RESÍDUO DA INDÚSTRIA

INTENÇÃO DE COMPRA DE BISCOITOS TIPO COOKIE SABOR CHOCOLATE COM DIFERENTES TEORES DE FARINHA DE UVA

ELABORAÇÃO DE FARINHA DE UVA UTILIZANDO BAGAÇO DA INDÚSTRIA VITIVINÍCOLA: EFEITO SOB OS COMPOSTOS FENÓLICOS

PROGRAMA DE DISCIPLINA

Efeito da Embalagem e Corte na Manutenção da Qualidade Química de Mamão Formosa Minimamente Processado e Armazenado à 8 C

Modelos matemáticos na secagem intermitente de arroz

CARACTERIZAÇÃO CENTESIMAL DAS PARTES COMPONENTES DOS FRUTOS DE LICHIA EM FUNÇÃO DO CLIMA

OBTENÇÃO E CARACTERIZAÇÃO DE VINAGRE TIPO BALSÃMICO A PARTIR DE PIMETA DE DO DE MOÇA

2. Resultados de pesquisa em grãos de canola

USO DE PLANEJAMENTO COMPOSTO CENTRAL NA AVALIAÇÃO DAS VARIÁVEIS TEMPERAURA E CONCENTRAÇÃO DE SOLVENTES NO ESTUDO DA SOLUBILIDADE DA UREIA

ANÁLISE DA DESIDRATAÇÃO DE RESÍDUOS DE PROCESSAMENTO DE MARACUJÁ-AMARELO (Passiflora edulis Flavicarpa) POR MICRO-ONDAS

I SEMINÁRIO DE INICIAÇÃO CIENTÍFICA DA EMBRAPA ACRE ACEITAÇÃO SENSORIAL DE BOLO ELABORADO COM FARINHAS DE CASTANHA- DO-BRASIL E BANANA VERDE

Pâmella de Carvalho Melo¹, Arlindo Modesto Antunes¹, Paulo Henrique Ribeiro Dias Alves², Jéssica Antônia Andrade Alves³, Ivano Alessandro Devilla 4

AVALIAÇÃO TÉRMICA DO PROCESSO DE SECAGEM DE MISTURAS DE GRAVIOLA E LEITE EM SECADOR DE LEITO DE JORRO

COMPOSIÇÃO FÍSICO-QUIMICA E DE COMPOSTOS FENÓLICOS EM MORANGO LIOFILIZADO

INFLUÊNCIA DOS PROCESSOS DE DESIDRATAÇÃO NOS COMPOSTOS BIOATIVOS EM POLPA DE NONI (MORINDA CITRIFOLIA)

USO DE SECADOR ROTO-AERADO COM PRÉ-TRATAMENTO NA DESIDRATAÇÃO DE RESÍDUOS DE ACEROLA

AVALIAÇÃO TECNOLÓGICA E QUÍMICA DAS FOLHAS (RAMAS) DE NABO PARA USO NA ALIMENTAÇÃO HUMANA

CINÉTICA DE SECAGEM DE MASSA ALIMENTÍCIA INTEGRAL. Rebeca de L. Dantas 1, Ana Paula T. Rocha 2, Gilmar Trindade 3, Gabriela dos Santos Silva 4

SECAGEM CONVECTIVA DA BANANA PACOVAN NO ESTÁDIO DE MATURAÇÃO VERDE

CINÉTICA DE SECAGEM DA BORRA DE CAFÉ EM ESTUFA COM CIRCULAÇÃO DE AR

Discente do curso de Ciência e Tecnologia de Alimentos Instituto Federal de Educação, Ciência e

CINÉTICA DE SECAGEM DO ESPINAFRE (Tetragonia tetragonoides)

INFLUÊNCIA DA TEMPERATURA DE SECAGEM SOBRE OS COMPOSTOS FENÓLICOS EM RESÍDUOS DE UVAS

Avaliação Cinética da Gaseificação com CO 2 do Bagaço de Maçã

CINÉTICA DE SECAGEM DA CASCA DE MANGA TOMMY ATKINS

CAMPUS DE BOTUCATU PROGRAMA DE PÓS-GRADUAÇÃO EM AGRONOMIA ENERGIA NA AGRICULTURA PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA

CARACTERIZAÇÃO FÍSICO-QUÍMICA DE POLPA DE ACEROLA IN NATURA E LIOFILIZADA PARA PREPARAÇÃO DE SORVETES

CARACTERIZAÇÃO DO ÓLEO DAS SEMENTES DE MAMÃO, VARIEDADE FORMOSA, COMO APROVEITAMENTO DE RESÍDUOS

Isotermas de sorção de tâmaras: determinação experimental e avaliação de modelos matemáticos 1

ELABORAÇÃO DE LICOR DE FRUTAS NATIVAS E TROPICAIS

Efeito do ultrassom na transferência de massa em manga Tommy Atkins imersa em água

PROPRIEDADES FÍSICAS DOS FRUTOS DE MAMONA DURANTE A SECAGEM

COMPARAÇÃO DE MODELOS FENOMENOLÓGICOS PARA A HIDRATAÇÃO DE GRÃOS DE SOJA

CARACTERÍSTICAS FÍSICO-QUÍMICAS DO SUCO DE AMORA-PRETA (Rubus sp.) PASTEURIZADO

CINÉTICA DE SECAGEM E MODELAGEM MATEMÁTICA DO FRUTO DE BURITI (Mauritia flexuosa)

ANÁLISE DA SECAGEM DE PARTÍCULAS DE ALUMINA EM SECADOR DE LEITO VIBROFLUIDIZADO RESUMO

XIX CONGRESSO DE PÓS-GRADUAÇÃO DA UFLA 27 de setembro a 01 de outubro de 2010

ESTUDO DA EXTRAÇÃO DO ÓLEO DE SEMENTE DE UVA DA VARIEDADE BORDÔ POR PRENSAGEM

Análise bromatológica da cana-de-açúcar armazenada e hidrolisada com óxido de cálcio

SECAGEM DE POLPA DE BARU (Dipteryx alata Vog.) Alunas do Curso de Química Industrial, UnUCET - UEG.

ELABORAÇÃO E ACEITAÇÃO DE PÃO COM REDUÇÃO DE CLORETO DE SÓDIO E CARACTERÍSTICAS FUNCIONAIS

AJUSTE DE DADOS EXPERIMENTAIS DA SOLUBILIDADE DA UREIA EM SOLUÇÕES DE ISOPROPANOL+ÁGUA COM O USO DE EQUAÇÕES EMPÍRICAS

DETERMINAÇÃO E MODELAGEM MATEMÁTICA DA SECAGEM DE ARROZ AROMÁTICO

UTILIZAÇÃO DE MODELOS PARA CORRELACIONAR DADOS EXPERIMENTAIS DE SOLUBILIDADE DO FERTILIZANTE NITROGENADO UREIA EM MISTURAS HIDRO-ALCOÓLICAS

X Congresso Brasileiro de Engenharia Química Iniciação Científica

CARACTERIZAÇÃO FÍSICO-QUÍMICA DE BAGAÇO DE UVA CHARDONNAY PROVENIENTE DO PROCESSO DE VINIFICAÇÃO

SECAGEM DE QUIABO (Abelmoschus esculentus L. Moench) EM ESTUFA

ELABORAÇÃO DE GELEIA TRADICIONAL E LIGHT DE GUABIROBA BRUNA NAPOLI¹; DAYANNE REGINA MENDES ANDRADE²; CRISTIANE VIEIRA HELM³

APLICAÇÃO DE RECOBRIMENTOS À BASE DE CARBOIDRATOS CONTENDO DIFERENTES FONTES LIPÍDICAS EM MANGA TOMMY ATKINS

CINÉTICA DE EXTRAÇÃO DE LIPÍDIOS DE MICROALGA SPIRULINA

MODELAGEM MATEMÁTICA DA CINÉTICA DE SECAGEM DE MANGA TOMMY ATKINS

CARACTERÍSTICAS FÍSICAS E QUÍMICAS DE ABACATES DAS VARIEDADES MARGARIDA E BREDA

CARACTERIZAÇÃO DE ACESSOS DE ACEROLEIRA COM BASE EM DESCRITORES DO FRUTO MATERIAL E MÉTODOS

DETERMINAÇÃO DE VIDA DE PRATELEIRA DA FARINHA OBTIDA A PARTIR DAS CASCAS DE ABACAXI (Ananas comosus L. Merril)

PARÂMETROS DE IDENTIDADE E QUALIDADE E COMPOSTOS BIOATIVOS EM NÉCTARES DE CAJU COMERCIAIS E ANÁLISE POR COMPONENTES PRINCIPAIS

CONTRAÇÃO VOLUMÉTRICA DOS FRUTOS DE MAMONA DURANTE A SECAGEM

PARÂMETROS DE QUALIDADE DA POLPA DE LARANJA

X Congresso Brasileiro de Engenharia Química Iniciação Científica

ESTUDO DA CINÉTICA DE SECAGEM DAS CASCAS DE BANANAS DAS VARIEDADES NANICA E PRATA

AVALIAÇÃO DE MODELOS NA SECAGEM DO RESIDUO DE MARACUJA EM SECADOR ROTATÓRIO COM LEITO FIXO ADAPTADO

Transcrição:

AVALIAÇÃO DOS COMPOSTOS BIOATIVOS APÓS A SECAGEM DE ALGUNS RESÍDUOS DE FRUTAS POR RADIAÇÃO INFRAVERMELHA L. G. MENDES 1, F. GARDUSI 1, G. ULLMANN 1, D. I. S. SILVA 1, M. A. S. BARROZO 1 1 Universidade Federal de Uberlândia, Departamento de Engenharia Química E-mail para contato: disegalen@hotmail.com, masbarrozo@ufu.br RESUMO Assim como a maioria dos resíduos provenientes do processamento de frutas, o resíduo de acerola as cascas do abacate e da mexerica são ricas fontes de vitaminas e do complexo B, além de muitos princípios ativos, que têm forte poder antioxidante auxiliando na prevenção de doenças degenerativas. Uma operação utilizada no processo de aproveitamento deste material é a secagem, facilitando o seu transporte e diminuindo a sua atividade microbiana. O presente trabalho teve por objetivo quantificar os teores dos compostos bioativos: ácido ascórbico, fenólicos e flavonoides, além do teor de acidez do resíduo de acerola e das cascas da mexerica e do abacate quando submetidos à desidratação pela emissão de luz infravermelha. As variáveis estudadas foram o tempo e a temperatura do ar, visando preservar o teor dos compostos bioativos. 1. INTRODUÇÃO As frutas tropicais são comumente consumidas in natura, uma vez que suas características de cor, textura, aroma e propriedades nutricionais podem ser melhor apreciadas nestas condições. Entretanto, por serem extremamente perecíveis, são, em sua grande maioria, processadas e tornam-se produtos como sucos, néctares, polpas, geleias e doces. Desta maneira, o processamento colabora com o aumento da vida útil, além de facilitar o transporte e agregar valor ao produto (BARRET et al., 25). Após o processamento, as frutas geram subprodutos, e estes representam perdas econômicas no processo produtivo e se não receberem destinação adequada podem proporcionar problemas ambientais, devido a sua carga poluidora. Através de vários estudos realizados, constatou-se que após o processamento das frutas para elaboração de sucos e polpas, são obtidos quantia significativa destes resíduos (BÁRTHOLO, 1994). Entretanto, estudos recentes têm demonstrado que as frutas são ricas em muitos nutrientes e compostos antioxidantes, e que esses constituintes podem estar concentrados majoritariamente nas cascas e sementes, que são na maioria das vezes descartadas (COSTA et al., 2; MELO et al., 28;). O consumo destes alimentos está relacionado a efeitos benéficos à saúde, tais como redução do risco de câncer, Alzheimer, catarata e Parkinson. Estes efeitos são atribuídos às propriedades antioxidantes dos compostos bioativos, os quais inibem a oxidação de moléculas, evitando o início ou propagação das reações de oxidação em cadeia (AYALA-ZAVALA et al., 211). Área temática: Engenharia e Tecnologia de Alimentos 1

Uma alternativa para viabilizar o uso destes resíduos de frutas na alimentação de animais e do ser humano é a operação de desidratação, para que possa ser armazenada por um longo período de tempo, reduzindo tambémos custos de transporte (JESUS, 22). Sendo assim, o presente trabalho teve como objetivo caracterizar e quantificar quatro diferentes compostos: ácido ascórbico total, acidez total titulável, fenólicos totais e flavonoides totais antes e após a desidratação, por radiação infravermelha, do resíduo de acerola e das cascas do abacate e da mexerica. 2. MATERIAIS E MÉTODOS 2.1. Material As cascas de abacate e de mexerica utilizadas nos experimentos foram obtidas em um estabelecimento de hortifruti próximo a Universidade Federal de Uberlândia, no campus Santa Mônica, na cidade de Uberlândia - MG. O resíduo de acerola foi obtido na empresa Frutpres, loalizada em Presidente Olegário MG. 2.2. Condições de Secagem O estudo da secagem foi realizado em um equipamento com o fornecimento de calor através de luz infravermelha.. As temperaturas avaliadas para a fonte de calor do equipamento foram 7, 8 e 9 C. Figura 1 Esquema do medidor de umidade utilizado para a secagem. Procedimento experimental: Inicialmente, pesou-se o material para a secagem. Após ligar o equipamento, o mesmo foi aquecido até a temperatura previamente estabelecida o prato foi tarado, o sólido depositado e a secagem iniciada. No visor do equipamento era informado o tempo e a porcentagem de água que estava sendo retirada da amostra. A secagem se estendeu até que em um intervalo de 1 minuto a porcentagem não aumentasse mais que,1%. 2.3. Umidade A umidade das amostras antes e após a secagem foi determinada pelo método gravimétrico em estufa a 15 C por 24 horas. Após esse período, as amostras foram retiradas, colocadas em um dessecador durante aproximadamente 4 min e, posteriormente, pesadas em balança analítica. A umidade de equilíbrio (método dinâmico) utilizada para o cálculo do adimensional de umidade (MR) foi obtida no final de cada experimento. Área temática: Engenharia e Tecnologia de Alimentos 2

2.4. Teor de Acidez Total Titulável, de Ácido Ascórbico de Fenólicos Totais e de Flavonoides Totais A acidez total titulável (expressa em mg de ácido cítrico/1 g amostra) das amostras foi realizada de acordo com os métodos da Association of Official Analytical Chemists. O conteúdo de ácido ascórbico, por sua vez, foi determinado por titulometria, método que se baseia na redução do 2,6-diclorofenol-indofenol pelo ácido ascórbico, e os resultados expressos em mg de ácido ascórbico em 1 g de amostra (base seca) (AOAC, 1995). O teor de fenólicos totais foi determinado pelo método espectrofotômetro desenvolvido por Folin Ciocalteu (SINGLETON E ROSSI, 1965). Os resultados foram expressos em mg equivalente de ácido gálico em 1 g de amostra (base seca). O solvente utilizado para a extração dos flavonoides foi o metanol. O conteúdo de flavonoides totais foi determinado pelo método colorimétrico segundo Zhishen et al., (1999). Os resultados foram expressos em mg equivalente de rutina em 1 g de amostra (base seca). 2.5. Tratamento Estatístico Todas as análises dos compostos antioxidantes foram realizadas em triplicata e os resultados expressos em média ± desvio padrão (SD). As médias dos valores obtidos foram submetidas a um teste de hipótese por diferença de médias (teste t-student). Na seleção da melhor equação para predizer a cinética de secagem foram considerados: a significância dos parâmetros dos modelos, a magnitude do coeficiente de determinação (R²) e a distribuição dos resíduos que deve ser de forma independente e aleatória. As equações de cinética de secagem que foram analisadas quanto a adequação aos dados experimentais são apresentados na Tabela 1. 3. RESULTADOS E DISCUSSÕES 3.1. Cinética de Secagem Tabela 1 Equações de cinética de secagem Equação Referência Lewis (1921) Brooker et al. (1974) Henderson & Henderson (1968) Page (1949) Overhults et al. (1973) Na discriminação estatística de equações rivais (Tabela 1), considerando-se todos os aspectos estatísticos, a equação cinética que apresentou melhores resultados foi a de Overthults. Perazzini et al. (213) também concluíram que a equação de Overhults foi a que melhor descreveu a secagem dos resíduos sólidos orgânicos da indústria suco de frutas cítricas. Na Tabela 2 são apresentados os parâmetros estimados pela melhor equação para os materiais estudados neste trabalho Área temática: Engenharia e Tecnologia de Alimentos 3

Na Figura 2 são apresentados os resultados de cinética de secagem juntamente com a previsão da equação de Overhults do resíduo de acerola e das cascas de mexerica e de abacate, respectivamente MR 1,,8,6,4 (A) 7 C 8 C 9 C Overhults MR 1,,8,6,4 (B) 7 C 8 C 9 C Overhults MR 1,,8,6,4 (C) 7 C 8 C 9 C Overhults,2,2,2, 4 8 12 16 2 24 2 6 1 14 18 22 Tempo (s), 4 8 12 16 2 24 2 6 1 14 18 22 26 Tempo (s), 4 8 12 16 2 24 2 6 1 14 18 22 26 Tempo (s) Figura 2 Cinética de secagem do resíduo de acerola (A) e das cascas de mexerica (B) e de abacate (C) com a predição da equação de Overhults. As cinéticas de secagem destes materiais ocorrem, como pode ser observado nas Figura 2, principalmente no período de taxa decrescente, conforme também observado em gengibre por Gouveia et al. (1997) e para o kiwi por Simal et al. (25). Observa-se também que a casca de abacate foi o material que secou mais rápido (1398 s) na temperatura de 9 C, quando comparada com a casca de mexerica (1776 s) e com o resíduo de acerola (1518 s). Porém, na temperatura de 7 C o tempo de secagem obtido para a casca de abacate (2586 s) foi maior que o tempo obtido para a casca de mexerica (2454 s) e para o resíduo de acerola (2466 s). Tabela 2 Parâmetros calculados pela equação de Overhults T Casca de Abacate Casca da Mexerica ( C) k n k n k n 7,12 1,6674,11 1,25343,124 1,1192 8,17 1,166481,131 1,273591,144 1,113813 9,27 1,15992,142 1,319135,195 1,19723 R² (média),9989,9991,9983 Na Tabela 3 estão apresentados os valores de umidade dos materiais in natura e após a secagem (7, 8 e 9 C). Observa-se nestes resultados que a redução do teor de umidade foi bastante significativa Tabela 3 Umidade (%) antes e após a secagem Casca de Abacate Casca da Mexerica In natura 77,6 75,7 79,2 7 C 4,4 9,6 7, 8 C 3, 6,9 4, 9 C 2,1 4,4 3,2 Área temática: Engenharia e Tecnologia de Alimentos 4

Ácido Cítrico (mg Ácido Cítrico/1 g amostra) 3.2. Análises Físico-Químicas Avaliou-se neste trabalho a influência que a temperatura e que o tempo de secagem exercem nos teores de ácido cítrico, ácido ascórbico, fenólicos totais e flavonoides totais presentes na amostra após a secagem. Nas Figuras 3 estão apresentados os teores de ácido cítrico e de ácido ascórbico, respectivamente, dos materiais in natura e secos (7 C, 8 C e 9 C). 2,8 2,4 2, 1,6 1,2,8,4, (A) Casca de Abacate Casca de Mexerica In natura 7 C 8 C 9 C Ácido Ascórbico (mg Ácido Ascórbico/1 g amostra) 35 3 25 2 15 1 5 (B) Casca de Abacate Casca de Mexerica In natura 7 C 8 C 9 C Figura 3 - Teor de ácido cítrico (A) e de ácido ascórbico (B) presente nos materiais estudados frescos e secos. O ácido cítrico é o ácido mais comumente adicionado em bebidas, especialmente aqueles à base de suco, para o controle do ph, estabilização da cor. Entretanto alguns estudos indicam que o ácido cítrico não fornece um gosto agradável quando adicionado em bebidas (LANTON, 24). O teor de ácido cítrico (Figura 3A) foi reduzido após a secagem para o resíduo de acerola e para a casca de abacate, porém, para a casca de mexerica observa-se que o teor foi estatisticamente igual nas temperaturas de 7 e 8 C e um pouco maior na temperatura de 9 C, quando comparado com os teores dos materiais in natura. O teor de ácido ascórbico (Figura 3B) aumentou significativamente para o resíduo de acerola e para a casca de mexerica após a secagem. O teor de ácido ascórbico obtido para o resíduo de acerola in natura foi igual a 21,47 ± 1,91 mg de ácido ascórbico/1 g de amostra enquanto que após a secagem na temperatura de 8 C foi igual a 39,74 ± 28,83 mg de ácido ascórbico/1 g de amostra. Para a casca de mexerica o aumento foi de 5,56 ± 1,89 (in natura) para 141,7 ± 5, (seco a 9 C) mg de ácido ascórbico/1 g de amostra. O aumento do teor de ácido ascórbico após a secagem foi explicado por Dorta et al. (212) pela inativação de enzimas, que ocorre durante a secagem, que degradam alguns compostos bioativos. Esse comportamento foi encontrado para outros tipos de frutas e resíduos reportados na literatura (DUZZIONI et al., 212; OZGUR et al., 211). Em contrapartida, para a casca de abacate o teor foi reduzido na secagem a 8 C (12,12 ±,94 mg de ácido ascórbico/1 g amostra) e também a 9 C, quando comparado ao teor encontrado para a casca de abacate in natura (24,15 ± 3,15 mg de ácido Área temática: Engenharia e Tecnologia de Alimentos 5

Fenól icos (mg Ácido Gáli co/1 g amostra) 16 14 12 1 8 6 4 2 (A) In natura 7 C 8 C 9 C Casc a de Abacate Casc a de Mexerica ascórbico/1 g amostra). Comportamento similar foi obtido por Silva et al. (213) para o resíduo de abacaxi. Isto pode ser devido a degradação térmica, que ocoore em temperaturas mais elevadas. Nas Figuras 4 estão apresentados os teores de fenólicos totais e de flavonoides totais, respectivamente, antes (in natura) e após a secagem (7 C, 8 C e 9 C). Fenólicos (mg Ácido Gálico/1 g amostra) 16 14 12 1 8 6 4 2 (A) Casca de Abacate Casca de Mexerica Flavonoides (mg Rutina/1 g amostra) 5, 4,5 4, 3,5 3, 2,5 2, 1,5 1,,5 (B) Casca de Abacate Casca de Mexerica In natura 7 C 8 C 9 C, In natura 7 C 8 C 9 C Figura 4 - Teor de fenólicos totais (A) e de flavonoides totais (B) presente nos materiais estudados frescos e secos. O teor de fenólicos (Figura 4A) obtido para o resíduo de acerola in natura (1425,27 ± 111,2 mg ácido gálico/1 g amostra) reduziu após a secagem. Para a casca de mexerica após a secagem a 9 C o valor obtido (526,14 ± 2,15 mg ácido gálico/1 g amostra) foi estatisticamente igual ao valor para o material in natura (51,61 ± 32,72 mg ácido gálico/1 g amostra). Porém, para a casca de abacate in natura (36, 83 ± 22,12 mg ácido gálico/1 g amostra) o teor de fenólicos aumentou após a secagem a 8 C (445, ± 14,3 mg ácido gálico/1 g amostra). Possivelmente, esse aumento é devido a liberação de compostos fenólicos acumulados nos vacúolos das células que possuem suas fibras rompidas após a secagem (CHISM E HAARD, 1996). Comportamento similar ao encontrado neste trabalho para a casca de abacate foi encontrado para o resíduo de abacaxi por Silva et al. (213). O teor de flavonoides totais (Figura 4B) para o resíduo de acerola foi estatisticamente igual após a secagem na temperatura de 9 C (,912 ±,4 mg rutina/1 g amostra), quando comparado com o teor do resíduo in natura (,885 ±,1 mg rutina/1 g amostra). Para a casca de mexerica o maior teor de flavonoides foi após a secagem a 7 C (4,6 ±,34 mg rutina/1 g amostra), enquanto que na casca de mexerica in natura foi encontrado um teor igual a 3,7 ±,29 mg de rutina/1 g de amostra. Silva et al. (213) estudaram o resíduo de abacaxi e observaram um aumento no teor de flavonoides após a secagem. Por fim, o teor de flavonoides para a casca de abacate diminuiu com o aumento da temperatura da secagem. Vale ressaltar que a diminuição dos teores de compostos bioativos para alguns materiais após a secagem não torna o material um rejeito, pois ainda se encontram teores em índices consideráveis nesses materiais. Área temática: Engenharia e Tecnologia de Alimentos 6

5. CONCLUSÃO Neste trabalho avaliou-se o teor de compostos bioativos após a secagem por radiação infravermelha do resíduo de acerola e das cascas de abacate e de mexerica em temperaturas e tempos diferentes. A equação de Overhults foi a que melhor representou os dados da cinética de secagem obtidos experimentalmente dentre as equações estudadas. Houve comportamentos diferentes para o mesmo composto bioativo e materiais diferentes levando a concluir que possivelmente a degradação/liberação desses compostos varia de acordo com o material, da temperatura e do tempo de secagem avaliado. Enfim, a partir dos teores encontrados nos materiais estudados observou-se a importância desses para a produção de um subproduto com o objetivo de prevenir doenças e reduzir os impactos ambientais. 6. AGRADECIMENTOS À Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) pelos recursos concedidos para esta pesquisa e também no Projeto de Participação Coletiva em Eventos Técnicos-Científicos (PCE-82-14). À Universidade Federal de Uberlândia e ao CNPq pelo apoio concedido para a execução do projeto. À empresa Frutpres pela doação do resíduo de acerola. 7. REFERÊNCIAS AOAC. Official methods of analysis. Association of Official Analytical Chemists, Gaithersburg, MD., 1995. AYALA-ZAVALA, J. F. et al. Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Res. Int., v. 44, p. 1866-1874, 211. BARRET, D. M.; SOMOGYI, L. P.; RAMASWAMY, H. S. Processing fruits: Science and Technology. 2nd ed. Boca Raton: CRC, 25. 841p. BÁRTHOLO, G. F. Perdas e qualidade preocupam. Inf. Agropec.,v. 17, n. 179, p. 3, 1994. BROOKER, D.B., BAKKER-ARKEMA, F.W., HALL, C.W. Drying Cereal Grains. AVI,Westport, CT., 1974. CHISM, G.W. & HAARD, N.F. Characteristics of edible plant tissues. Food Chemistry (edited byo.r. Fennema) Pp. 943 111. New York: Marcel Dekker, Inc, 1996. COSTA, R.P.; MENENDEZ, G.; BRICARELLO, L.P.; ELIAS, M.C.; ITO, M. Óleo de peixe, fitosteróis, soja e antioxidantes: impactos nos lipídios e aterosclerose. Revista da Sociedade de Cardiologia, São Paulo, v.1, n.1, p.819-832, 2. DORTA,E., LOBO,M.G. & GONZALEZ,M. Using drying treatments to stabilise mango peel and seed: effect on antioxidant activity. LWT- Food Science and Technology, v. 45, p.261 268, 212. DUZZIONI, A. G., LENTON, V. M., SILVA, D. I. S.; BARROZO, M. A. S. Effect of drying kinetics on main bioactive compounds and antioxidant activity of acerola (Malpighia Área temática: Engenharia e Tecnologia de Alimentos 7

emarginata D.C.) residue. International Journal of Food Science & Techonology, v. 48, p.141-147, 213. GOUVEIA,J.P.G., FERNANDEZ, F.R., MURR, F.E.X., PRADO, M.E.T. Ginger desorptionrate. Inter-American Drying Conference, Anais, São Paulo, Proceedings, p. 26, 1997. HENDERSON, J.M., HENDERSON, S.M. A computational procedure for deep-beddrying analysis. Journal of Agricultural Engineering Research, v.13, p.87 95, 1968. JESUS, S. S. de. Desenvolvimento e análise do processo de secagem de α-amilase por microondas a vácuo.173 f. Dissertação Universidade Estadual de Campinas, Campinas, 22. LANTON, B., Beyond citric acid. South African Food Review, vol. 31 n.4, p.13, 24. LEWIS, W.K. The rate of drying of solid materials. Indian Chemical Engineer, v.13, p.427,1921. MELO, E.A.; MACIEL, M.I.S.; LIMA, V.A.G.L.; NASCIMENTO, R.J. Capacidade antioxidante de frutas. Revista Brasileira de Ciências Farmacêuticas, v.44, n.2, p.193-21, 28. OVERHULTS, D.G., WHITE, G.M., HAMILTON, H.E., ROSS, I.J. Drying soybeans withheated air. Transactions of the ASAE, v. 16 (1), p.112 113, 1973 OZGUR, M., OZCAN, T., AKPINAR-BAYIZIT, A. & YILMAZ-ERSAN, L. Functional compounds and antioxidant properties of dried green and red peppers. African Journal of Agricultural Research, 6, 5638 5644, 211. PAGE, G.E. Factors Influencing the Maximum Rates of Air Drying Shelled Cornin Thin-Layer. Purdue University, West Lafayette, IN, 1949. PERAZZINI, H., FREIRE, F.B., FREIRE, J.T., 213. Drying kinetics prediction of solid wasteusing semi-empirical and artificial neural network models. Chemical Engineer-ing and Technology, v. 36 (7), p.1193 121,213. PODSEDEK, A. Natural antioxidant and antioxidant capacity of Brassica vegeta-bles: a review. LWT: Food Science and Technology, v. 4 (1), p.1 11,27. SILVA, D. I. S.; NOGUEIRA, G. D. R.; DUZZIONI, A. G. Changes of antioxidante constituents in pineapple (Ananas comosus) residue during process. Industrial Crops and Products SD. p. 557-562, 213. SIMAL, S., FEMENIA, A., GARAU, M.C., ROSELLO, C. Use of exponential page s and diffusional models to simulate the drying kinetics of kiwi fruit. Journal of Food Engineering, v.66, p.323 328, 25. SINGLETON,V.L.,ROSSI,J.A. Colorimetry of total phenolics withphosphomolibidic phosphotungistic acid reagents. American Journal of Enology and Viticu, v.16, p,144 158, 1965. ZHISHEN, J.,MENGCHENG, T.,JIANMING, W. The determination of flavonoidcontents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, v.64, p.555 559, 1999. Área temática: Engenharia e Tecnologia de Alimentos 8