Semana 13 Leonardo Gomes (Caio Rodrigues) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados.
CRONOGRAMA 03/05 Energia mecânica 15:00 08/05 Exercícios de energia mecânica 13:30 10/05 Impulso e quantidade de movimento 15:00 15/05 Conservação da quantidade de movimento e colisões 13:30
17/05 Exercícios de impulso e quantidade de movimento, conservação e colisões 15:00 22/05 Hidrostática (pressão) 13:30 24/05 Hidrostática (teorema de Arquimedes) 15:00 29/05 Equilíbrio de corpos extensos 13:30 31/05 Exercícios de equilíbrio de corpos extensos 15:00
10 Impulso e mai quantidade de movimento 01. Resumo 02. Exercícios de Aula 03. Exercícios de Casa 04. Questão Contexto
RESUMO Definição de quantidade de movimento: Logo: Módulo: Q=m v Direção: a mesma da velocidade. Sentido: a mesma da velocidade. Unidade no SI: kg.m/s. Teorema do Impulso A partir da 2ª Lei de Newton: Ou ainda: Dessa maneira, podemos afirmar: o Impulso é a variação da quantidade de movimento de um corpo, que se dá pelo produto entre a força média e o intervalo de tempo que esta foi aplicada sobre o corpo. Na prática Considerando o intervalo de tempo da interação: Podemos reescrever a equação: Definimos Impulso como a grandeza que mede a variação da quantidade de movimento. Ou seja, a equação acima nos dá duas formas de escrever a fórmula do Impulso. Assim, podemos definir: Ou ainda: Assim: Aplicando a distributiva: Imaginemos duas situações: Na primeira situação você solta seu celular de uma altura de cinco metros sobre uma almofada. Neste caso, a queda do celular será amortecida pela almofada e ele ficará ileso. Na segunda situação, você solta seu celular de uma altura de cinco metros (sem nada para amortecer a queda). O celular irá se espatifar pelo chão em pedacinhos. Então você pensa: Ué, se a altura é a mesma, e a velocidade inicial nos dois casos é nula, a velocidade final também é a mesma... Então a variação da quantidade de movimento é a mesma, então o impulso é o mesmo... A Força também não deveria ser a mesma? Por que meu celular quebrou no segundo caso se no primeiro caso ele havia ficado ileso? Não, a Força não é a mesma em ambos os casos! O Impulso sim, é igual. Mas o que acontece é que, no primeiro caso o tempo de interação entre o celular e a almofada ( t 1 ) é bem maior que o tempo de interação entre o celular e o chão ( t 2 ). Logo, se t 1 > t 2 e a variação da quantidade de movimento é a mesma, a força média em módulo no primeiro caso é menor do que a força média em módulo no segundo caso. Por isso, o celular irá quebrar: porque sobre ele atua uma força maior. De fato, podemos escrever a força como: 67 Mas sabemos que:
EXERCÍCIOS DE AULA 1. (UFRN) Alguns automóveis dispõem de um eficiente sistema de proteção para o motorista, que consiste de uma bolsa inflável de ar. Essa bolsa é automaticamente inflada, do centro do volante, quando o automóvel sofre uma desaceleração súbita, de modo que a cabeça e o tórax do motorista, em vez de colidirem com o volante, colidem com ela. A figura a seguir mostra dois gráficos da variação temporal da intensidade da força que age sobre a cabeça de um boneco que foi colocado no lugar do motorista. Os dois gráficos foram registrados em duas colisões de testes de segurança. A única diferença entre essas colisões é que, na colisão I, se usou a bolsa e, na colisão II, ela não foi usada. Da análise desses gráficos, indique a alternativa que melhor conclui a explicação para o sucesso da bolsa como equipamento de proteção: a) A bolsa diminui o intervalo de tempo da desaceleração da cabeça do motorista, diminuindo, portanto, a intensidade da força média que atua sobre a cabeça. b) A bolsa aumenta o intervalo de tempo da desaceleração da cabeça do motorista, diminuindo, portanto, a intensidade da força média que atua sobre a cabeça. c) A bolsa diminui o módulo do impulso total transferido para a cabeça do motorista, diminuindo, portanto, a intensidade da força máxima que atua sobre a cabeça. d) A bolsa diminui a variação total do momento linear da cabeça do motorista, diminuindo, portanto, a intensidade da força média que atua sobre a cabeça. e) A bolsa aumenta a variação total do momento linear da cabeça do motorista, diminuindo, portanto, a intensidade da força média que atua sobre a cabeça. 68 2. 3. (UNICAMP-SP) As histórias de super-heróis estão sempre repletas de feitos incríveis. Um desses feitos é o salvamento, no último segundo, da mocinha que cai de uma grande altura. Considere a situação em que a desafortunada garota caia, a partir do repouso, de uma altura de 81m e que nosso super-herói a intercepte 1,0m antes de ela chegar ao solo, demorando 5,0.10 2 s para detê-la, isto é, para anular sua velocidade vertical. Considere que a massa da mocinha é de 50kg e despreze a influência do ar. a) Calcule a força média aplicada pelo super-herói sobre a mocinha para detê-la. Adote g=10m/s2. b) Uma aceleração 8 vezes maior que a da gravidade (8g) é letal para um ser humano. Determine quantas vezes a aceleração à qual a mocinha foi submetida é Um brinquedo consiste em um fole acoplado a um tubo plástico horizontal que se encaixa na traseira de um carrinho, inicialmente em repouso. Quando uma criança pisa no fole, comprimindo-o até o final, o ar expelido impulsiona o carrinho.
Considere que a massa do carrinho seja de 300 g, que o tempo necessário para que a criança comprima completamente o fole seja de 0,2 s e que, ao final desse intervalo de tempo, o carrinho adquira uma velocidade de 8 m/s. Admitindo desprezíveis todas as forças de resistência ao movimento do carrinho, o módulo da força média aplicada pelo ar expelido pelo tubo sobre o carrinho, nesse intervalo de tempo, é igual a: a) 10 N b) 14 N c) 12 N d) 8 N e) 16 N 4. EXERCÍCIOS PARA CASA 1. Qual o valor da quantidade de movimento de um disco homogêneo que gira ao redor do seu eixo fixo? Uma bola de bilhar com massa 250,0g atinge a parede lateral da borda da mesa de sinuca com velocidade de módulo igual a 3,0 m/s e é rebatida com velocidade de mesmo módulo. Sabendo que, antes de a bola ser rebatida, o ângulo, no plano horizontal, entre o vetor velocidade e a superfície é de 45 e que a rebatida dura 0,01 s, a força média aplicada pela parede lateral da borda da mesa da sinuca sobre a bola tem intensidade igual, em newtons, a: 69 a) 75 2 b) 25 2 c) 75 2 d) 15 2 e) 75 2/2 2. Mateus, um canoeiro, sabendo que sua massa é de 80 kg, quer descobrir a massa de Marcos sem usar balança. Então ele faz o seguinte: fica em uma canoa e Marcos, em outra canoa, distante 70 m de sua posição. Uma corda muito leve é amarrada na canoa de Marcos, então Mateus exerce um puxão na corda, trazendo a canoa de Marcos em sua direção, de forma que ambos se encontram a 30 m da posição inicial de Mateus. Sabendo-se que cada canoa possui massa de 10 kg e desprezando o peso da corda, após alguns cálculos Mateus conclui que a massa de Marcos é: a) 51kg b) 52kg c) 52,5kg d) 53,3kg e) 50kg
3. A energia de um fóton é diretamente proporcional a sua frequência, com a constante de Planck, h, sendo o fator de proporcionalidade. Por outro lado, pode- se associar massa a um fóton, uma vez que ele apresenta energia (E = mc²) e quantidade de movimento. Assim, a quantidade de movimento de um fóton de frequência f propagando-se com velocidade c se expressa como: a) c²/hf b) hf/c² c) hf/c d) c/hf e) cf/h 4. Dada a figura a seguir, em que o eixo vertical representa a força no sentido do movimento de uma partícula de massa m, que percorre uma trajetória retilínea e o eixo horizontal representa o tempo, quanto vale a velocidade no tempo t2? 70 a) [(F1+ F2) t1 - F2 t2] / m b) [(F1 - F2) t1 - F2 t2] / m c) [(F1- F2) t1 + F2 t2] / m d) [(F1 t1 - F2 t2] / m e) [(F1 t1 + F2 t2] / m 5. Dado um corpo de massa M que respeita a seguinte equação horária (no S.I.): S= 30-8t+t 2, quais os possíveis valores para sua quantidade de movimento quando ele passar pela posição S = 15m? a) -5M e 3M b) -3M e 5M c) -3M e -5M d) 8M e 5M e) 8M e 0 6. Uma rã de massa m está parada no extremo de uma prancha de massa M e comprimento L. A prancha está flutuando sobre a superfície tranquila de um lago. A rã salta, formando um ângulo α em relação à horizontal na direção da prancha. Qual deve ser a velocidade inicial da rã para que, depois do salto, a rã encontre- -se exatamente no outro extremo da prancha?
QUESTÃO CONTEXT0 No mundo inteiro, uma das principais causas de morte por acidente é o trânsito. Por isso, são desenvolvidos, diariamente, diversos dispositivos que pretendem diminuir o número de mortes causadas por acidentes no trânsito. Um exemplo de dispositivo que tem evitado inúmeras mortes é o airbag, também conhecido como bolsa de ar, inventado há 30 anos em 1987 na Alemanha. Basicamente ele funciona assim: ao acontecer a colisão do carro com algum objeto, uma corrente elétrica aquece pastilhas de azida de sódio que se encontram depositadas na bolsa (representado pela equação: NaN3 2 Na + 3N2), liberando o gás nitrogênio, que inflará a bolsa de ar. Esse mecanismo faz com que a pessoa que se encontra dentro do carro não sofra grandes impactos devido à colisão do carro. Isso se deve principalmente porque o airbag modifica três principais grandezas diretamente, são estas: a) o intervalo de tempo de colisão entre o passageiro e o carro, a força de impacto e a quantidade de movimento relacionada à pessoa. b) a velocidade inicial que terá o passageiro, a força do impacto e o impulso relacionado à pessoa. c) o intervalo de tempo de colisão entre o passageiro e o carro, a força do impacto e a massa do passageiro. d) a aceleração inicial do passageiro, a velocidade inicial do passageiro e a força de impacto. e) a variação de momento linear do carro, a força de reação imprimida no carro e a velocidade do passageiro. 71
GABARITO 01. Exercícios para aula 1. b 2. a) 40,5kN b) 10 vezes 3. c 4. 0 03. Questão contexto a 02. Exercícios para casa 1. c 2. e 3. c 4. c 5. c 6. 72