Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Documentos relacionados
Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

... GABARITO 2 NOME DO CANDIDATO: UEM Comissão Central do Vestibular Unificado

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

... GABARITO 4 NOME DO CANDIDATO: UEM Comissão Central do Vestibular Unificado

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Vestibular de Inverno Prova 3 Matemática

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Vestibular de Verão Prova 3 Matemática

PROVA 3 conhecimentos específicos

... GABARITO 1 NOME DO CANDIDATO: UEM Comissão Central do Vestibular Unificado

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova Vestibular ITA 2000

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova Objetiva - Matemática

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 - Matemática

Prova 3 - Matemática

Prova 3 - Matemática

NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo.

NOTAÇÕES. Obs.: São cartesianos ortogonais os sistemas de coordenadas considerados

Prova 3 Matemática. N ọ DE INSCRIÇÃO:


1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2}

UPE/VESTIBULAR/2002 MATEMÁTICA

Prova 3 Matemática ... RASCUNHO PARA ANOTAÇÃO DAS RESPOSTAS PROVA 3 INVERNO 2018 GABARITO 1 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA NOME DO CANDIDATO:

NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

MATEMÁTICA SARGENTO DA FAB

TD GERAL DE MATEMÁTICA 2ª FASE UECE

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos

Exercícios de Revisão

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

1 35. b) c) d) 8. 2x 1 8x 4. 3x 3 8x 8. 4 tgα ˆ MAN é igual a 4. . e) Sendo x a medida do segmento CN, temos a seguinte figura:

Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0

Prova 3 Matemática ... GABARITO 1 NOME DO CANDIDATO:

Prova 3 Matemática ... GABARITO 2 NOME DO CANDIDATO:

01. (UFRGS/2003) Se n é um número natural qualquer maior que 1, então n! + n 1 é divisível por. (A) n 1. (B) n. (C) n + 1. (D) n! - 1. (E) n!.

Questão 03 Sejam os conjuntos: A) No conjunto A B C, existem 5 elementos que são números inteiros.

MATEMÁTICA. Questão 01. Questão 02 PROVA 3 - CONHECIMENTOS ESPECÍFICOS RESPOSTA: 24 - NÍVEL MÉDIO 01) INCORRETA. RESPOSTA: 25 - NÍVEL MÉDIO

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3

P (A) n(a) AB tra. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

AFA Sabe-se que o isótopo do carbono, C 14, tem uma meia vida de 5760 anos, isto é, o número N de átomos de C 14 na substância é

{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2

REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO

MATEMÁTICA CONCURSO VESTIBULAR ª FASE - 11/12/ Confira, abaixo, seu nome e número de inscrição. Assine no local indicado.

Observação: Os sistemas de coordenadas considerados são cartesianos ortogonais. n(a B) = 23, n(b A) = 12, n(c A) = 10, n(b C) = 6 e n(a B C) = 4,

MATEMÁTICA FORMULÁRIO 11) A = onde. 13) Para z = a + bi, z = z = z (cosθ + i senθ) 14) (x a) 2 + (y b) 2 = r 2

UECEVEST - ESPECÍFICA Professor: Rikardo Rodrigues

COLÉGIO PEDRO II SECRETARIA DE ENSINO CONCURSO PARA PROFESSORES DE ENSINO FUNDAMENTAL E MÉDIO 2007 PROVA ESCRITA DISCURSIVA

x Júnior lucrou R$ 4 900,00 e que o estoque por ele comprado tinha x metros, podemos afirmar que 50

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

Questão 1. Considere os conjuntos S = {0, 2, 4, 6}, T = {1, 3, 5} e U = {0, 1} e as. A ( ) apenas I. B ( ) apenas IV. C ( ) apenas I e IV.

A Matemática no Vestibular do ITA. Material Complementar: Coletânea de Questões Isoladas ITA 1970

Se tgx =, então cosx =. 3 3 O valor máximo de y = senx cos 60 + sen 60 cosx é 2.

Prova Vestibular ITA 1995

Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.

QUESTÕES OBJETIVAS. N ọ DE INSCRIÇÃO:

NOTAÇOES A ( ) 2. B ( ) 2^2. C ( ) 3. 7 D ( ) 2^ 3- E ( ) 2. Q uestão 2. Se x é um número real que satisfaz x3 = x + 2, então x10 é igual a

CONCURSO PÚBLICO DE PROVAS E TÍTULOS EDITAL ESPECÍFICO 92/ CAMPUS FORMIGA PROVA OBJETIVA - PROFESSOR EBTT ÁREA DE MATEMÁTICA EDUCAÇÃO MATEMÁTICA

NOTAÇOES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares. A ( ) 0. B ( ) 1. C ( ) 2. D ( ) 3. E ( ) 4.

Matemática 41 c Resolução 42 b Resolução 43 e OBJETIVO 2001

04) 4 05) 2. ˆ B determinam o arco, portanto são congruentes, 200π 04)

TD GERAL DE MATEMÁTICA 2ª FASE UECE

TIPO-A. Matemática. 03. Considere os números naturais a = 25, b = 2, c = 3, d = 4 e analise as afirmações seguintes:

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. Questão 5. alternativa C. alternativa B. alternativa A.

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

Assinale as proposições verdadeiras some os resultados e marque na Folha de Respostas.

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 (

TD segunda fase UECE A) [0, 1]. B) [2, 3]. C) [3, 4]. D) [-1, 0]. 2, 2 é igual a A) 4. B) 10. C) 8. D) 6. A) p 2 - x 2 ou. B) p 2 + x 2 ou.

Caderno 1: 35 minutos. Tolerância: 10 minutos. É permitido o uso de calculadora.

MATEMÁTICA COMENTÁRIO DA PROVA DE MATEMÁTICA

Teste de Avaliação. Nome N. o Turma Data /mar./2019. Avaliação E. Educação Professor. Duração (Caderno 1 + Caderno 2): 90 minutos. MATEMÁTICA 9.

Universidade Federal dos Vales do Jequitinhonha e Mucuri.

Colégio Militar de Porto Alegre 2/11

UFBA / UFRB a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08

Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Transcrição:

Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta fixada em sua carteira.. Confira se o número do gabarito deste caderno corresponde ao constante na etiqueta fixada em sua carteira. Se houver divergência, avise, imediatamente, o fiscal.. É proibido folhear o Caderno de Provas antes do sinal, às 9 horas. 4. Após o sinal, confira se este caderno contém 40 questões objetivas (0 de cada matéria) e/ou qualquer tipo de defeito. Qualquer problema, avise, imediatamente, o fiscal. 5. O tempo mínimo de permanência na sala é de horas após o início da resolução da prova. 6. No tempo destinado a esta prova (4 horas), está incluído o de preenchimento da Folha de Respostas. 7. Transcreva as respostas deste caderno para a Folha de Respostas. A resposta correta será a soma dos números associados às alternativas corretas. Para cada questão, preencha sempre dois alvéolos: um na coluna das dezenas e um na coluna das unidades, conforme o exemplo ao lado: questão, resposta 09 (soma das alternativas 0 e 08). 8. Ao término da prova, levante o braço e aguarde atendimento. Entregue ao fiscal este caderno, a Folha de Respostas e o para Anotação das Respostas. 9. Se desejar, transcreva as respostas deste caderno no para Anotação das Respostas, constante abaixo, e destaque-o, para retirá-lo hoje, nesta sala, no horário das h5min às h0min, mediante apresentação do documento de identificação do candidato. Após esse período, não haverá devolução. Corte na linha pontilhada.... RASCUNHO PARA ANOTAÇÃO DAS RESPOSTAS N ọ DE ORDEM: NOME: 0 0 0 04 05 06 07 08 09 0 4 5 6 7 8 9 0 0 0 0 04 05 06 07 08 09 0 4 5 6 7 8 9 0 UEM Comissão Central do Vestibular Unificado

MATEMÁTICA Questão 0 Sabendo que a, b e c são números inteiros e que o número complexo + i é zero (raiz) do polinômio x + ax + bx + c, assinale o que for correto. 0) Esse polinômio possui outra raiz complexa, cujo módulo é 5. 0) O argumento de + i é superior a π rad. 4 04) Todas as raízes reais desse polinômio são inteiras. 08) Se é raiz desse polinômio, então a = c. 6) É possível escolher os inteiros ab, e c, de modo que o polinômio não possua raízes reais. Questão 0 Considere, em um sistema ortogonal de coordenadas cartesianas, duas circunferências λ e λ, tangentes entre si, com respectivos centros C(,0) e C (0,) e o raio de λ sendo o dobro do raio de λ. Com relação a essas circunferências, assinale o que for correto. 0) A reta de equação x y = 0 é tangente a ambas as circunferências. 0) O eixo das abscissas é secante a ambas as circunferências. 04) O ponto de tangência comum das circunferências dista 5 da origem do sistema de coordenadas. 08) A reta de equação x+ y= contém o ponto de tangência comum das circunferências. 6) A equação de λ é x + y 6x+ 7= 0. Vestibular de Verão/0 Prova

Questão 0 Seja r um número inteiro positivo fixado. Considere a a = r sequência numérica definida por a = a + a n+ n e assinale o que for correto. 0) A soma dos 50 primeiros termos da sequência ( a, a, a, a, a, ) é.500 r. 4 5 0) A sequência ( a, a, a, a, a, ) é uma progressão geométrica. 04) A sequência 4 8 6 ( a, a, a, a, a, ) é uma progressão 5 7 9 aritmética. 08) O vigésimo termo da sequência ( a, a, a, a, a, ) é 0 r. 4 8 6 6) A soma dos 0 primeiros termos da sequência ( a, a, a, a, a, ) é 90 r. 4 6 8 0 Questão 04 Considere uma esfera, um cilindro circular reto e um cone, todos com o mesmo volume. Além disso, a altura do cilindro é igual à metade da altura do cone, e a altura do cone é igual ao raio da esfera. Assinale o que for correto. 0) O raio da base do cone é menor do que o raio da base do cilindro. 0) O raio da base do cone é igual ao dobro do raio da esfera. 04) A altura do cilindro é igual ao diâmetro da esfera. 08) A área da superfície da esfera é igual ao triplo da área da base do cilindro. 6) Se o raio da esfera mede 5 cm, a geratriz do cone mede 5 cm. Vestibular de Verão/0 Prova

Questão 05 Considere o seguinte sistema linear: x y+ az = bx + y z = 0, 4x y+ z = 6 em que a e b são coeficientes reais. A respeito desse sistema e de seus conhecimentos sobre o assunto, assinale o que for correto. 0) Se a tripla (,,) é uma solução do sistema linear, então o sistema é possível e indeterminado. 0) Se a = b= 0, o sistema linear é impossível. 04) Existem ab, reais, tais que a tripla (,0,) é uma solução do sistema linear. 08) Se a = e b =, o sistema linear é impossível. 6) Se y = z e b = 0, o sistema linear é possível para qualquer valor de a. Questão 06 Sobre funções reais (domínio e contradomínio real), assinale o que for correto. 0) Uma função constante é sempre injetora. 0) Uma função de segundo grau é sempre sobrejetora. 04) Sejam f e g funções, tais que gx ( ) = f( x) +, para todo x real. Então o gráfico da função g corresponde sempre ao gráfico da função f, transladado de uma unidade para baixo no plano cartesiano. 08) Toda função do primeiro grau é injetora e sobrejetora e, portanto, possui inversa. 6) A imagem da função f, tal que, para todo x real, f ( x) = sen x, é o intervalo fechado [,]. Questão 07 A respeito das definições e propriedades de figuras geométricas planas, assinale a(s) alternativa(s) correta(s). 0) Dois triângulos com áreas iguais devem ter perímetros iguais. 0) Dois quadrados com áreas iguais devem ter perímetros iguais. 04) Quaisquer triângulos semelhantes têm áreas iguais. 08) Quadrados com perímetros iguais têm áreas iguais. 6) Se um círculo tem área igual à de um quadrado, então o comprimento da circunferência é maior do que o perímetro do quadrado. Vestibular de Verão/0 Prova 4

Questão 08 Assinale o que for correto. 0) 0 ( ) log ( ) >. 9 0) 0 >. 04) A equação log x = x não tem solução inteira. 08) log 0 = + log 5. 6) < log 5. 5 5 Questão 09 Seja A o seguinte conjunto de números naturais: A={,,4,6,8}. Assinale o que for correto. 0) Podem ser formados exatamente 4 números ímpares com 4 algarismos escolhidos dentre os elementos do conjunto A. 0) Existem exatamente 96 números de 5 algarismos formados com elementos distintos de A e terminados com um algarismo par. 04) Podem ser formados exatamente 64 números pares de algarismos com elementos do conjunto A. 08) Existem exatamente.5 números menores do que 00.000 formados com elementos do conjunto A. 6) Podem ser formados exatamente 49 números menores do que 50 com elementos distintos do conjunto A. Vestibular de Verão/0 Prova 5

Questão 0 No espaço tridimensional, considere um plano π e as retas r, s e t, distintas duas a duas, de modo que r e s são perpendiculares ao plano π e a reta t não possua qualquer ponto em comum com o plano π e seja concorrente com as retas s e r. Sobre a situação descrita, assinale o que for correto. 0) As retas r e s são paralelas. 0) As retas s e t são reversas. 04) A reta t é paralela ao plano π. 08) A reta s é perpendicular a qualquer reta do plano π concorrente a ela. 6) Se A e B são pontos distintos de r, e P e Q são pontos distintos de s, então os triângulos APQ e BPQ possuem a mesma área. Questão Sejam A uma matriz e B e C matrizes, de modo que AB = e AB ( + C) =. Assinale o que for correto. 0) AC = 0. 0) Necessariamente det A 0. 04) Se B 0 = 0 e C =, então A =. 08) Se A for a matriz identidade, então C =. 6) Se CAB= t 0, os dois elementos de C são iguais. Questão Assinale o que for correto. 0) Se x é um número real positivo e menor do que, x > x. 0) 7 ( 5 )( + 4 ) =. 8 04) 5 4 >. 08),80808... < 7. 5 6) >. Vestibular de Verão/0 Prova 6

Questão Considere um triângulo ABC com medidas AB=5 cm, AC= cm e BC=4 cm. Sejam D o ponto médio de BC e E o ponto médio de AB. Assinale o que for correto. 0) Os triângulos ABC e EBD são congruentes. 0) A área do triângulo ABC é menor do que 4cm. 04) O triângulo EBD é obtusângulo. 08) O centro da circunferência circunscrita ao triângulo ABC está no interior desse triângulo. 6) A área do quadrilátero AEDC é o triplo da área do triângulo EBD. Questão 4 Sejam f e g funções quadráticas definidas por: = e f ( x) 5x x gx ( ) = x + x 0. Assinale o que for correto. 0) As raízes positivas de f( x ) = 0 e gx= ( ) 0, ordenadas de modo crescente, formam uma progressão geométrica. 0) Existe um único x real, tal que f ( x) = g( x). 04) O máximo da função f ocorre em x = 5. 08) O valor máximo de f ( x) + g( x) é. 6) A função h definida por hx ( ) = f( x) gx ( ) também é uma função quadrática. Vestibular de Verão/0 Prova 7

Questão 5 Considere uma circunferência de centro O e raio u.c. Sejam ABCD,,, e E pontos sobre essa circunferência, nesta ordem, e tais que AD e BE sejam diâmetros. Assinale o que for correto. 0) Os triângulos ABD e ACD são triângulos retângulos. 0) O quadrilátero ABDE é um retângulo. 04) A área do triângulo ACD é maior do que 4 u.a. 08) A medida do ângulo AEB ˆ é a metade da medida do ângulo EOD ˆ. 6) A área do quadrilátero ABDE é maior do que 4 da área do círculo. Questão 6 Sobre a cônica de equação x + 4y = 9, assinale o que for correto. 0) Trata-se de uma elipse. 0) A cônica intercepta o eixo das abscissas em (,0) e (,0). 04) Se A e B são pontos da cônica que não são colineares com os focos D e E da cônica, os triângulos ADE e BDE possuem o mesmo perímetro. 08) A circunferência centrada na origem e de raio tangencia essa cônica., pertence à cônica. 6) O ponto ( ) Vestibular de Verão/0 Prova 8

Questão 7 Com relação aos conceitos e às propriedades de funções e equações trigonométricas, assinale o que for correto. 0) A equação tg( x) = sen( x) não tem soluções. 0) Se f é definida por f ( x) = sen( x) cos( x), então a equação f( x ) = 0 tem como conjunto solução { x x= k π, k }. 04) A função f ( x) = cos( x) é crescente no intervalo 0, π. 08) O gráfico da função f, definida por f ( x) = sen( x) sen( x)cos( x), coincide com o gráfico da função g, definida por g( x) = sen ( x). 6) Para qualquer a, existe x, tal que tg( x) > a. Questão 8 Em determinado concurso vestibular de uma Universidade há 5.000 inscritos, concorrendo a.000 vagas. Chamando os cursos mais concorridos de A, B e C, temos as seguintes concorrências: - A: 00 candidatos/vaga; - B: 70 candidatos/vaga; - C: 40 candidatos/vaga. Sabendo que o número de vagas para o curso A é 0 e para os cursos B e C é 40, para cada um, e que um candidato só pode concorrer à vaga em um único curso, assinale o que for correto. 0) Escolhido, ao acaso, um dos inscritos, a probabilidade de ele não estar concorrendo a uma das vagas dos cursos A, B e C é maior do que 0,6. 0) A probabilidade de um candidato, concorrendo ao curso A, passar é de 0,005. 04) A probabilidade de escolher, ao acaso, entre os inscritos, um candidato aos cursos A ou C é de 0,. 08) Escolhido, ao acaso, um dos inscritos, a probabilidade de ele estar concorrendo a uma vaga para o curso B é de 0,. 6) Escolhido, ao acaso, um dos inscritos, a probabilidade de ele ser um dos aprovados para o curso C é de 0,006. Vestibular de Verão/0 Prova 9

Questão 9 Considere dois prismas retos de mesma altura, h = 6 cm, e com bases sendo hexágonos regulares, de modo que um seja inscrito no outro. Os vértices do prisma inscrito são os pontos médios das arestas das bases do outro prisma, e as arestas da base do prisma inscrito medem cm. Com relação a esses prismas, assinale o que for correto. 0) As arestas das bases do prisma maior medem 4 cm. 0) A área lateral do prisma maior mede 48 cm. 04) O volume do prisma menor é 6 cm. 08) A diferença entre os volumes dos prismas é de cm. 6) O quociente entre os volumes do prisma maior e do menor é 4. Questão 0 Sobre a reta r de equação x y+ 5 = 0, assinale o que for correto. 0) O ponto (, 5 ) pertence a r. 0) Se ( x, y ) pertence a r, então x e y não podem ser ambos racionais. 04) O menor ângulo que a reta r faz com o eixo das abscissas é superior a 45 o. 08) A reta de equação 6x y+ 5 =0 é paralela à reta r. 6) A reta r intercepta o eixo das ordenadas no ponto 0, 5. Vestibular de Verão/0 Prova 0

MATEMÁTICA Formulário Trigonometria Geometria Plana e Espacial cos(x ± y) = cos(x)cos(y) sen(x)sen(y) (sen x) + (cos x) = Comprimento da circunferência: C= π R Área do triângulo: bh A = Área do retângulo: A = bh Área do círculo: A = πr Área lateral do cilindro: A = πrh Área do setor circular: A = R α Área da superfície esférica: A = 4πR A Â c b ˆB Ĉ B a C Volume do prisma: V = B h Volume do cilindro: V = πr h Volume da esfera: V = 4 πr Lei dos cossenos: a = b + c bc cos(â) Progressões Geometria Analítica Progressão Aritmética (P. A.): an = a + (n )r (a a )n S + = n n Área do triângulo de vértices P(x, y ), Q(x, y ) e R(x, y ) : A = D, onde x D = x x y y y Distância de um ponto P(x, y ) à reta r: ax + by + c = 0 : 0 0 ax + by + c d 0 0 P,r = a + b Vestibular de Verão/0 Prova