Lista 09: Estimação de Parâmetros



Documentos relacionados
Universidade Federal Fluminense

Disciplinas: Cálculo das Probabilidades e Estatística I

CAPÍTULO 9 Exercícios Resolvidos

Tecido A B

7Testes de hipótese. Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno. H 0 : 2,5 peças / hora

Hipótese Estatística:

Cláudio Tadeu Cristino 1. Julho, 2014

CAP4: Distribuições Contínuas Parte 1 Distribuição Normal

Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos

Distribuições de Probabilidade Distribuição Binomial

Distribuição Uniforme Discreta. Modelos de distribuições discretas. Distribuição de Bernoulli. Distribuição Uniforme Discreta

Probabilidades e Estatística

DESENVOLVIMENTO DE UM SOFTWARE NA LINGUAGEM R PARA CÁLCULO DE TAMANHOS DE AMOSTRAS NA ÁREA DE SAÚDE

Descreve de uma forma adequada o

Teorema Central do Limite e Intervalo de Confiança

LISTA DE INTERVALO DE CONFIANÇA E TESTE DE HIPÓTESES

Aula de Exercícios - Testes de Hipóteses

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Monitor Giovani Roveroto

CAPÍTULO 5 - Exercícios

PÓS GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS-PG-CFT INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA-INPA. 09/abril de 2014

A finalidade dos testes de hipóteses paramétrico é avaliar afirmações sobre os valores dos parâmetros populacionais.

Introdução à Análise Química QUI 094 ERRO E TRATAMENTO DE DADOS ANALÍTICOS

Instituto Politécnico de Viseu Escola Superior de Tecnologia

Probabilidade. Distribuição Normal

PROVA ESCRITA DE ESTATÍSTICA VERSÃO A. 04 As classes de uma distribuição de freqüência devem ser mutuamente exclusivas para que

Teste de hipóteses com duas amostras. Estatística Aplicada Larson Farber

Inferência Estatística

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder

Exemplos de Testes de Hipóteses para Médias Populacionais

Teorema do Limite Central e Intervalo de Confiança

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo

CURSO ON-LINE PROFESSOR GUILHERME NEVES 1

UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI NÚCLEO DE EDUCAÇÃO À DISTÂNCIA CURSO DE GRADUAÇÃO EM ADMINISTRAÇÃO PÚBLICA GABARITO

Introdução à análise de dados discretos

Introdução à Inferência Estatística

UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL LISTA DE EXERCÍCIOS 3

Teste de Hipótese para uma Amostra Única

Distribuições de Probabilidade Distribuição Normal

Distribuições: Binomial, Poisson e Normal. Distribuição Binomial

DISTRIBUIÇÕES DE PROBABILIDADE

LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS

Escola Básica e Secundária de Alfandega da Fé

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES. Comentários sobre as provas de estatística e financeira ICMS RJ

Histogramas. 12 de Fevereiro de 2015

Intervalos Estatísticos para uma Única Amostra

Primeira Lista de Exercícios de Estatística

ESTRUTURANDO O FLUXO PUXADO

O que é a estatística?

Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán. Teste de Hipóteses

UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2

A presente seção apresenta e especifica as hipótese que se buscou testar com o experimento. A seção 5 vai detalhar o desenho do experimento.

Aula 10 Testes de hipóteses

MÓDULO 6 INTRODUÇÃO À PROBABILIDADE

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO LISTA DE EXERCÍCIOS (VARIÁVEIS ALEATÓRIAS) ALUNO(A):

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

Escola de Engenharia de Lorena EEL USP Departamento de Engenharia Química - DEQUI Disciplina: Normalização e Controle da Qualidade NCQ

LISTA DE EXERCÍCIOS 3

Aula 11 Esperança e variância de variáveis aleatórias discretas

Universidade Federal de Pernambuco Mestrado em Estatística

Disciplina Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE DSITRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DISCRETAS

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS

Processos Estocásticos

Lista de Exercícios - Distribuição Normal

Lista IV - Curva Normal. Professor Salvatore Estatística I

Probabilidade. Distribuição Binomial

Estatística Aplicada para Engenharia Inferência para Duas Populações

(b) Qual a probabilidade de ter sido transmitido um zero, sabendo que foi recebido um (1.0) zero?

1 Axiomas de Probabilidade

Epidemiologia. Profa. Heloisa Nascimento

Trabalhando com Pequenas Amostras: Distribuição t de Student

Receptores elétricos

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal

Estatística II Antonio Roque Aula 9. Testes de Hipóteses

4. σ 2 Var X p x q e σ Dp X Podemos escrever o modelo do seguinte modo:

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG EPPGG

Elementos de Estatística (EST001-B)

Estatística Aplicada

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

AULAS 13, 14 E 15 Correlação e Regressão

CI202 - Métodos Numéricos

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE

Atividade 4 - Acerte no alvo

Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá

CAP5: Amostragem e Distribuição Amostral

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

Exercícios Resolvidos da Distribuição Binomial

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea

1. Registou-se o número de assoalhadas da população de 100 apartamentos vendidos num bairro residencial

ULTRA-SOM MEDIÇÃO DE ESPESSURA PROCEDIMENTO DE END PR 036

Florianópolis, 17 de agosto de 2011.


Exercícios. Exercício 1

Qualificação de Procedimentos

UNIVERSIDADE DO ALGARVE

Bom serviço dentro da garantia Serviço deficiente dentro da garantia Vendedores de determinada marca de pneus 64 16

Premium até 10 S.M a 20 S.M a 30 S.M mais de 30 S.M

a) Suponha que na amostra de 20 declarações foram encontrados 15 com dados incorrectos. Construa um

Simulação Transiente

Proposta de Nota Técnica Cgcre. Verificação intermediária das balanças utilizadas por laboratórios que realizam ensaios químicos e biológicos

Transcrição:

INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA MECÂNICA-AERONÁUTICA MB-210: Probabilidade e Estatística Lista 09: Estimação de Parâmetros Prof. Denise Beatriz Ferrari denise@ita.br 2 o Sem/2013 1. Seja X 1, X 2,..., X n uma a.a. de uma população uniforme no intervalo [ θ, θ], com θ desconhecido. (a) Mostre que a estatística a seguir é um estimador não-viesado de θ 2 : T = 3 n (X2 1 + X 2 2 +... + X 2 n) (b) T é um estimador não-tendencioso de θ? Em caso negativo, o viés é positivo ou negativo? Nota: Desigualdade de Jensen: ϕ(e[x]) E[ϕ(X)], para qualquer função ϕ convexa. 2. Considere a seguinte massa de dados contendo a vida útil de esferas de rolamentos (em horas). 6278 3113 5236 11584 12628 77725 8604 14266 6125 9350 3212 9003 3523 12888 9460 13431 17809 2812 11825 2398 Deseja-se estimar a vida útil mínima deste tipo de esfera de rolamento. Os dados são modelados como a realização de uma a.a. X 1, X 2,..., X n, em que cada v.a. X i é representada como X i = δ + Y i, em que Y i tem distribuição Exp(λ) e δ > 0 é um parâmetro desconhecido que modela a vida útil mínima. O objetivo é construir um estimador não-tendencioso para δ. Sabe-se que: E[M n ] = δ + 1 nλ e E[ X n ] = δ + 1 λ, em que M n = mínimo de X 1, X 2,..., X n e X n = (X 1 + X 2 +... + X n )/n. (a) Mostre que a seguinte estatística é um estimador não-tendencioso de 1/λ: T = (b) Construa um estimador não-viesado para δ. n n 1 ( X n M n ) (c) Utilize a massa de dados para calcular uma estimativa para a vida útil mínima, δ. 1

3. Sejam T e W dois estimadores para o parâmetro θ. Sabe-se que Var[T ] = 4 e Var[W ] = 40. (a) Suponha que E[W ] = θ e E[T ] = θ + 3. Qual estimador é preferível? Por quê? (b) Suponha que E[W ] = θ e E[T ] = θ + a, para algum número positivo a. Para cada valor de a, qual estimador é preferível? Por quê? 4. No experimento realizado por Michelson em 1879 para determinar a velocidade da luz (µ), a média amostral (aqui representada por T ) de um grande número de repetições foi utilizada como estimador. Os dados coletados resultaram na estimativa t = 299.852,4km/s. Suponha que o desvio-padrão do estimador vale σ T = 100km/s. (a) Mostre que, a partir da desigualdade de Chebyshev, é possível obter: P [ T θ < 3σ T ] 8 9 (b) Com base no resultado do item (a), qual o intervalo de confiança obtido para a velocidade da luz e o nível de confiança associado? (c) Qual a interpretação deste intervalo de confiança? (d) Por que este IC pode ser considerado conservador? (e) Suponha que 40 IC 95% serão construídos. Quantos destes podemos esperar que não contenham a média populacional? Seria surpreendente se 10 deles não contivessem a média populacional? Utilize argumentos probabilísticos. 5. Considere a a.a. X 1, X 2,..., X n i.i.d. N(0,1). Sejam as estatísticas U n = g(x 1, X 2,..., X n ) e V n = h(x 1, X 2,..., X n ), tais que P [U n < µ < V n ] = 0,95, µ. Suponha que para uma determinada a.a., o IC 95% correspondente seja (u n, v n ) = ( 2, 5). (a) Suponha que θ = 3µ+7. Seja Ũn = 3U n +7 e Ṽn = 3V n +7. Mostre que P [Ũn < µ < Ṽn] = 0,95. (b) Escreva o IC 95% para θ em termos de u n e v n. (c) Seja θ = 1 µ. Determine Ũn e Ṽn, bem como o IC correspondente para θ. (d) Seja θ = µ 2. É possível construir um IC para θ? Justifique. 6. Um determinado IC 95% para o valor esperado de uma certa distribuição contém o número 0. (a) O IC 98% é construído com base na mesma amostra. Este novo intervalo conterá o número 0? (b) Uma nova amostra de mesmo tamanho é coletada e um novo IC 95% é construído para o valor esperado desconhecido. Este novo intervalo conterá o número 0? 7. Seja Z 1, Z 2,..., Z n i.i.d. N(0,1). Definamos X i = µ + σz i, para i = 1, 2,..., n e σ > 0. Sejam X e Z as médias amostrais e S X e S Z os devios-padrão amostrais para as v.a. s X i e Z i, respectivamente. (a) Mostre que X 1, X 2,..., X n é uma a.a. de uma população N(µ, σ 2 ). (b) Escreva X e S X em termos de Z, S Z, µ e σ. X µ Z S Z / n (c) Mostre que S X / n = e explique por que este resultado mostra que a distribuição da média padronizada não depende de µ e σ. 2

8. Considere um intervalo de confiança (1 α)100% para a média de uma distribuição normal com variância conhecida σ 2, baseado em uma amostra aleatória contendo n observações. Explique como a largura do intervalo se altera quando: (a) n aumenta, mantendo-se σ 2 e α constantes; (b) σ 2 aumenta, mantendo-se n e α constantes; (c) α diminui, mantendo-se n e σ 2 constantes. 9. Mostre que MSE[ Θ] = V ar[ Θ] + (E[ Θ] θ) 2. 10. Seja S 2 = n i=1 (X i X) 2 /n. (a) Mostre que E[S 2 ] = [(n 1)/n]σ 2 e, portanto S 2 é um estimador viesado de σ 2 ; (b) Qual o viés de S 2? (c) Mostre que o viés de S 2 tende a zero conforme n ; (d) Compare as variâncias dos estimadores S 2 e S 2 e determine qual deles é mais eficiente; Nota: A variância de uma v.a. χ 2 ν vale 2ν. (e) Compare os estimadores em termos de MSE a fim de determinar qual deles é mais eficiente. Nota: Analise MSE[S 2 ]/MSE[S 2 ]. 11. Explique o significado das afirmações abaixo: (a) Y é uma estatística. (b) A estatística Y é um estimador não-viesado de θ. (c) Nas condições do item (b), suponha que Y tenha variância kθ 2. Calcule o erro médio quadrático de cy e determine o valor da constante c que tornam MSE[cY ] mínimo. (d) Se S 2 é um estimador não-viesado da variância σ 2 de uma certa distribuição, explique por que S não necessariamente também é um estimador não-viesado do desvio-padrão σ, correspondente. 12. Seja X uma v.a. binomial. Mostre que: (a) P = X/n é um estimador não-tendencioso de p; (b) P = (X + n/2)/(n + n) é um estimador viesado de p; (c) Mostre que o estimador P se torna não tendencioso quando n. 13. (a) Sejam X 1 e X 2 os números de sucessos em dois experimentos binomiais independentes, com n 1 e n 2 tentativas e com mesma probabilidade de sucesso p em cada tentativa. Mostre que ˆp, dado abaixo, é um estimador não-viesado para p. ˆp = ˆp 1 + ˆp 2 ; ˆp i = X i, i = 1,2. 2 n i (b) Determine as condições para a razão n 1 /n 2 para as quais V ar[ˆp] < V ar[ˆp 1 ] e V ar[ˆp] < V ar[ˆp 2 ]. (c) Mostre que, se n 1 n 2, então existe um estimador não-viesado de p da forma p = wˆp 1 + (1 w)ˆp 2, com 0 < w < 1, cuja variância é menor que a de ˆp. 14. Uma companhia produz lâmpadas cuja vida útil é aproximadamente normalmente distribuída com desvio-padrão 40h. Uma a.a. de 30 lâmpadas foi observada e resultou em vida útil média de 780h. 3

(a) Construa um IC 96% para a vida média populacional de todas as lâmpadas produzidas pela companhia; (b) Qual deve ser o tamanho da a.a. se desejarmos 96% de certeza de que a média amostral diste no máximo 10h da média real? 15. Uma a.a. de 100 motoristas em SJC mostrou que estes percorrem, em média, 23.500km por ano com desvio padrão de 3.900km. Considere distribuição normal. (a) Construa um IC 99% para a distância média percorrida por ano em SJC; (b) O que se pode dizer com 99% de confiança sobre o erro cometido ao estimar a distância média percorrida por ano em SJC como sendo 23.500km? 16. Estudos mostram que o consumo regular de refrigerantes contribui para a ocorrência de cáries, doenças coronarianas e outras doenças degenerativas. A quantidade de açúcar foi medida em uma a.a. de 20 porções de refrigerante, resultando em uma média de 11,3g e desvio-padrão de 2,45g. Considere a população normalmente distribuída. (a) Construa um IC 95% para a quantidade de açúcar em um porção de refrigerante; (b) Construa um IC 95% para σ 2. 17. Tanques de aço inoxidável são comumente utilizados em plantas de produção de químicos para armazenar fluidos corrosivos. Estes aços são especialmente suceptíveis a ruptura por fadiga corrosiva em certas condições. Em uma a.a. de 295 falhas em aço que ocorreram em refinarias de petróleo no Japão, 118 foram causadas por fadiga corrosiva. Construa um IC 95% para a proporção verdadeira de falha por fadiga corrosiva nas ligas de aço. 18. Um novo sistema lançador de foguetes está sendo considerado para uso no lançamento de foguetes de baixo alcance. O sistema atual possui probabilidade p = 0,8 de lançamento bem-sucedido. Em uma amostra de 40 lançamentos experimentais com o novo sistema, 34 foram realizados com sucesso. (a) Construa um IC 95% para p; (b) É possível concluir que o novo sistema é melhor que o atual? 19. Um certo fornecedor produz tapetes emborrachados para automóveis. Por questões de segurança, o material utilizado para a confecção dos tapetes deve ter certas características de dureza e tapetes defeituosos devem ser descartados. O fabricante afirma que a proporção de tapetes defeituosos é de 0,05. Um experimento foi conduzido com o intuito de avaliar a afirmação do fabricante. Sendo assim, 400 tapetes foram testados e 17 foram considerados defeituosos. (a) Construa um IC 95% bicaudal para a proporção de tapetes defeituosos; (b) Calcule um IC 95% unicaudal apropriado para a proporção de tapetes defeituosos; (c) Como podem ser interpretados os IC s dos itens acima? O que se pode dizer a respeito da afirmação do fabricante? 20. Sejam X 1 e X 2 as médias de duas amostras de tamanhos n 1 e n 2, cujas populações são N(µ 1, σ1) 2 e N(µ 2, σ2), 2 independentes. Se σ1 2 e σ2 2 são conhecidas, mostre que um IC 100(1 α)% para µ 1 µ 2 é dado por P ( X 1 X 2 ) z α/2 σ 2 1 n 1 + σ2 2 n 2 < µ 1 µ 2 < ( X 1 X 2 ) + z α/2 σ 2 1 + σ2 2 = 1 α. n 1 n 2 21. Um estudo foi realizado a fim de investigar se um determinado tratamento superficial exerce algum 4

efeito na quantidade de metal removido de peças mergulhadas em um banho químico. Para tanto, uma a.a. de 100 peças não-tratadas foi mergulhada em um banho por 24h, resultando em uma média de 12,2mm de metal removido, com desvio padrão amostral de 1,1mm. Uma segunda amostra de 200 peças tratadas foi submetida ao mesmo banho por um período de 24h, resultando em uma média de 9,1mm de metal removido, com desvio padrão amostral de 0,9mm. (a) Construa o IC 98% para a diferença entre as médias populacionais. (b) Podemos concluir que o tratamento parece reduzir a quantidade de metal removido? Por quê? 22. Agências de fomento conferiram bolsas para que 9 grupos de pesquisa investiguem a capacidade produtiva de duas novas variedades de soja. Cada variedade foi plantada pelos grupos em lotes de mesma área. A produção resultante (em kg/lote) é dada na tabela a seguir: Grupo de Pesquisa Variedade 1 2 3 4 5 6 7 8 9 1 38 23 35 41 44 29 37 31 38 2 45 25 31 38 50 33 36 40 43 Construa um IC 95% para a diferença das médias de produção entre as duas variedades de soja, assumindo que as diferenças sejam aproximadamente normalmente distribuídas. É necessário utilizar emparelhamento? Por quê? 23. Um estudo clínico foi conduzido para investigar se um determinado tipo de vacina tem efeito na incidência de uma certa doença. Uma amostra de 1000 ratos foi mantida em ambiente controlado por um período de 1 ano e a 500 deles foi administrada a vacina. No grupo que não recebeu o tratamento, houve 120 casos de manifestação da doença. Do grupo que recebeu o tratamento, 98 ratos contraíram a doença. Sejam p 1 a probabilidade de incidência da doença nos ratos sem tratamento e p 2, a probabilidade de contrair a doença após a vacinação. (a) Construa um IC 90% para p 1 p 2. (b) Podemos concluir que a vacina afeta a incidência da doença? 24. Um arquiteto considera duas marcas de tinta para uso em um projeto. 15 latas de cada tipo de tinta foram selecionadas de maneira aleatória e independente e o tempo de secagem (em horas) foi observado para cada espécime: Tinta A AAAAAAAA Tinta B 3,5 2,7 3,9 4,2 3,6 4,7 3,9 4,5 5,5 4,0 2,7 3,3 5,2 4,2 2,9 5,3 4,3 6,0 5,2 3,7 4,4 5,2 4,0 4,1 3,4 5,5 6,2 5,1 5,4 4,8 Considere que o tempo de secagem das tintas seja normalmente distribuído, com σ A = σ B. (a) Construa um IC 95% para µ B µ A. (b) O que se pode dizer sobre os tempos de secagem das duas tintas? (c) Construa um IC 95% comparando as duas variâncias. (d) A hipótese da igualdade das variâncias poderia, de fato, ter sido utilizada? 25. Um fabricante de um certo aparelho eletrodoméstico mantem linhas de produção para este aparelho em duas plantas. Ambas as plantas possuem os mesmos fornecedores de componentes. O fabricante pode economizar se comprar um determinado componente para os aparelhos produzidos na planta B de um fornecedor local. Um único lote foi comprado do fornecedor local e foi submetido a testes a fim de determinar se estes componentes têm mesma acurácia que os componentes do fornecedor atual. 5

Os componentes foram ajustados para o nível 550 e medidas foram tomadas com um instrumento com precisão 0,1. Os dados obtidos encontram-se nas tabelas abaixo: (a) Construa um IC 95% para σ 2 1/σ 2 2. (b) Construa um IC 95% para σ 1 /σ 2. Fornecedor Local 530,3 559,3 549,4 544,0 551,7 566,3 549,9 556,9 536,7 558,8 538,8 543,3 559,1 555,0 538,6 551,1 565,4 554,9 550,0 554,9 554,7 536,1 569,1 Fornecedor Atual 559,7 534,7 554,8 545,0 544,6 538,0 550,7 563,1 551,1 553,8 538,8 564,6 554,5 553,0 538,4 548,3 552,9 535,1 555,0 544,8 558,4 548,7 560,3 (c) Existe diferença significativa na qualidade do componente do fornecedor local? 6