ENERGIA TÉRMICA: A Energia Térmica de um corpo é a energia cinética de suas moléculas e corresponde à sua temperatura.



Documentos relacionados
Aula 11 Mudança de Estado Físico Questões Atuais Vestibulares de SP

CALORIMETRIA Calor. CALORIMETRIA Potência ou Fluxo de Calor

ROTEIRO DE ESTUDOS 2015 Disciplina: Ciências Ano: 9º ano Ensino: FII Nome: Atividade Regulação do 3º Bimestre Ciências

PROBLEMAS DE TERMOLOGIA

Calorimetria Sensível, latente e potência (sem equilíbrio térmico)

Data: / /2013 Bateria de Exercícios de Física

Calorimetria e Mudança de fases

FÍSICO-QUÍMICA TERMOQUÍMICA Aula 1

Nome: Nº: Turma: Calorimetria

A transferência de calor ocorre até o instante em que os corpos atingem a mesma temperatura (equilíbrio térmico).

LISTA DE EXERCÍCIOS de TERMOMETRIA E CALORIMETRIA PARA P1 DE FÍSICA 1 BIMESTRE 2 ANO.

ALUNO: Nº SÉRIE: DATA: / / PROF.: VICTOR GERMINIO EXERCÍCIO DE REVISÃO I UNIDADE FÍSICA 2º ANO B ENSINO MÉDIO

Unidade VI - Temperatura, Calor e Transferência de Calor

TERMOQUÍMICA EXERCÍCIOS ESSENCIAIS 1. O CALOR E OS PROCESSOS QUÍMICOS

Aula 8 CONSERVAÇÃO DE ENERGIA I - CAPACIDADE CALORÍFICA DO CALORÍMETRO. Menilton Menezes

Dados: calor latente do gelo Lg = 80cal/g, calor específico da água c(h O) = 1,0 cal g C, calor específico do alumínio c(aø) = 0,22 cal g C.

Propagação do Calor e Calorimetria

Física 2 - Termodinâmica

Considere que, no intervalo de temperatura entre os pontos críticos do gelo e da água, o mercúrio em um termômetro apresenta uma dilatação linear.

Lista de Exercícios. Estudo da Matéria

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 2 o ano Disciplina: Física - Calorimetria Mudanças de fase. Pré Universitário Uni-Anhanguera

Aulas Multimídias Santa Cecília Profº Rafael Rodrigues Disciplina: Física Série: 1º Ano EM

Água na atmosfera. Capítulo 5 - Ahrens

Lista de Exercícios - CALORIMETRIA, MUDANÇA DE FASE E TROCA DE CALOR

Química Prof. Rogério Química. Professor Rogério. Imagens meramente ilustrativas, domínio público sites diversos/internet

física caderno de prova instruções informações gerais 13/12/2009 boa prova! 2ª fase exame discursivo

CALORIMETRIA. 1) Um bloco de zinco de capacidade igual a 20 Cal/ o C recebe 100 Cal. Calcule a variação de temperatura do bloco.

Fís. Professor: Leo Gomes Monitor: Arthur Vieira. Fís

Lista de Exercícios de Revisão Prova 04

UNIVERSIDADE CATÓLICA DE GOIÁS. Departamento de Matemática e Física Coordenador da Área de Física

LISTA DE EXERCÍCIOS FÍSICA - 1º EM CAPÍTULO 20 CALORIMETRIA PROF. BETO E PH

C o l é g i o R i c a r d o R o d r i g u e s A l v e s

Dados: - calor latente de vaporização da água: 540cal/g - calor específico da água: 10cal/g C

Propriedades da Matéria Folha 05- Prof.: João Roberto Mazzei

Colégio FAAT Ensino Fundamental e Médio

Aula 01 QUÍMICA GERAL

Aulas: 1, 2 e Qual será a massa de uma amostra de 150 ml de urina, sabendo-se que sua densidade é 1,085 g.ml -1?

Exercícios Gases e Termodinâmica

COMPORTAMENTO DOS GASES - EXERCÍCIOS DE FIXAÇÃO E TESTES DE VESTIBULARES

4. (Mackenzie 2010) Uma placa de alumínio (coeficiente de dilatação linear do alumínio =

Introdução à Psicrometria. Parte1

Termologia. Ramo da física que estuda o. relacionados.

Sala de Estudos FÍSICA - Lucas 1 trimestre Ensino Médio 2º ano classe: Prof.LUCAS Nome: nº

b) Qual é a confusão cometida pelo estudante em sua reflexão?

Termologia Parte 1. . Se sua temperatura fosse medida por um termômetro graduado na escala Fahrenheit, qual seria a leitura?

UNIVERSIDADE CATÓLICA DE GOIÁS. Departamento de Matemática e Física Coordenador da Área de Física

Universidade Federal do Pampa UNIPAMPA. Temperatura, calor e 1ª Lei da Termodinâmica

EXERCÍCIOS PARA ESTUDOS DILATAÇÃO TÉRMICA

Lista 6 Exercícios de Calorimetria

Sala de Estudos FÍSICA - Lucas 1 trimestre Ensino Médio 2º ano classe: Prof.LUCAS Nome: nº CALORIMETRIA:

Aula 16 A Regra das Fases

LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas

2. Considere um bloco de gelo de massa 300g á temperatura de 20 C, sob pressão normal. Sendo L F

CALORIMETRIA - EXERCÍCIOS E TESTES DE VESTIBULARES

Resoluções dos exercícios propostos

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN CAMPUS: CURSO: ALUNO:

Átomos & Moléculas. Definição: é uma porção de matéria que tem propriedades bem definidas e que lhe são característica.

b) Calcule o calor específico, por unidade de massa da substância, se a massa de água utilizada em (a) for de 1,0 kg.

MUDANÇA DE ESTADO FÍSICO

TRANSFORMAÇÕES GASOSAS

2. (G1 - ifpe 2016) No preparo de uma xícara de café com leite, são utilizados

CALORIMETRIA. 1 cal = 4,2 J.

Unidade 10 Estudo dos Gases. Introdução Equação dos gases Transformação Isotérmica Transformação Isobárica Transformação Isocórica Diagrama de Fases

Propriedades térmicas em Materiais

CALORIMETRIA (CONTINUAÇÃO)

Turma: 2301 Turno: Manhã Professor: Douglas Baroni

Testes gerais

TC 3 Revisão UECE 1 a. fase Física Prof. João Paulo

PROPRIEDADES COLIGATIVAS PARTE 2

CALORIMETRIA Calor. CALORIMETRIA Potência ou Fluxo de Calor

COMPORTAMENTO TÉRMICO DOS GASES

MODELO 1 RESOLUÇÃO RESOLUÇÃO V1 V2 T2 330 K = V2 = V1 V1 V2 = 1,1.V1 T1 T2 T1 300 K

ROTEIRO DE ORIENTAÇÃO DE ESTUDOS Ensino Médio

Diagrama de Fases e Estudo dos gases perfeitos

Aprofundamento Profº. JB

Física Térmica Exercícios. Dilatação.

O trabalho (estudo) espanta três males: o vício, a pobreza e o tédio.

INSTALAÇÕES PREDIAIS DE ÁGUA QUENTE - Dimensionamento

c B = 25 g/l m soluto = 200 g V solução = 2,5 L ; V esfera = πr 3 F I C H A N. o 2 T E R R A E M T R A N S F O R M A Ç Ã O

Questão 1. Como podemos explicar a dilatação dos corpos ao serem aquecidos?

PROVA DE FÍSICA - 2º TRIMESTRE

Propriedades coligativas: são propriedades que dependem da concentração de partículas (solutos) dissolvidas, mas não da natureza dessas partículas.

III. Pode-se afirmar que é(são) correta(s) apenas: a) I. b) I e II. c) I e III. d) II e III. e) Todas estão corretas.

Sua prova deve ser feita à caneta azul ou preta. Não rasure e não use corretivo. Entregue no dia da prova.

Suponha que a velocidade de propagação v de uma onda sonora dependa somente da pressão P e da massa específica do meio µ, de acordo com a expressão:

A) condensação do vapor de água dissolvido no ar ao encontrar uma superfície à temperatura mais baixa.

Avalia os teus conhecimentos

GERAL I. Fonte de consultas: Telefone:

BALANÇO ENERGÉTICO NUM SISTEMA TERMODINÂMICO

LISTA DE EXERCÍCIOS FENÔMENOS DE TRANSPORTE - ESTÁTICA DOS FLUIDOS -

BANCO DE QUESTÕES - FÍSICA - 9º ANO - ENSINO FUNDAMENTAL

FÍSICA MÓDULO 16 CALOR E A SUA PROPAGAÇÃO. Professor Ricardo Fagundes

FÍSICA QUANTIDADE DE CALOR CALORIMETRIA. Prof. Rangel M. Nunes

CURSINHO TRIU QUÍMICA FRENTE B

1. Suponha que em uma escala linear de temperatura X a água ferva a 53,3 o X e congele a -170 o X. Qual a temperatura de 340K na escala X?

Calor Específico. 1. Introdução

TERMOLOGIA. Calorimetria:

Lista de Exercícios Química Geral Entropia e energia livre

Energia: Capacidade de realizar trabalho.

LOQ Físico-Química Capítulo 4: A Segunda Lei: Conceitos

Transcrição:

CALOR 1

ENERGIA: É a capacidade de se realizar um trabalho. Ela se apresenta sob várias formas: cinética (de movimento), gravitacional, elástica (de molas), elétrica, térmica, radiante e outras. Mede-se em Joules, mas as companhias elétricas medem em kwh e a energia térmica se mede em Calorias. ENERGIA TÉRMICA: A Energia Térmica de um corpo é a energia cinética de suas moléculas e corresponde à sua temperatura. CALOR: É a energia térmica que se transfere de um corpo mais quente para outro mais frio. Dois corpos na mesma temperatura não trocam energia e são ditos em equilíbrio térmico. O Calor se mede em calorias - cal. Ela vale 4,186 Joules. Uma caloria é a quantidade de energia necessária para esquentar um grama de água de um grau Celsius. TROCAS DE CALOR: Quando dois corpos com temperaturas diferentes são postos em contacto, um cede calor para o outro. Se não houver perdas o calor ganho é igual e contrário ao calor perdido. Q G = Calor ganho é positivo. Q G + Q P = 0 Q P = Calor perdido é negativo. Dois corpos na mesma temperatura não trocam calor. AQUECIMENTO OU RESFRIAMENTO DE UM CORPO: Coloquemos 100g de gelo à temperatura de -20 o C em uma panela fechada. Esquentemos a panela fornecendo-lhe mil calorias por minuto. Vamos supor que a energia não se perde indo toda para o gelo. Há cinco etapas: I: Inicialmente o gelo esquenta a vinte graus por minuto. Depois de um minuto o gelo chega a zero grau. II: Então, o gelo para de esquentar e começa a fundir transformando-se em água. A cada minuto 12,5 g de gelo tornam-se água. Em 8 minutos todo gelo se funde e temos somente água. III: A água começa a aquecer. Ela aquece a dez graus por minuto. Em dez minutos ela chega a cem graus. IV: Neste ponto a água para de esquentar e começa a ferver transformando-se em vapor. Depois de 54 minutos toda a água torna-se vapor. V: Finalmente, o vapor começa a esquentar a dez graus por minuto. Depois de dois minutos o vapor chega a 120 o C. CALOR SENSÍVEL: Quando um corpo recebe calor e aumenta a temperatura, ou perde calor e a temperatura diminui, este calor chama-se Calor Sensível. CALOR LATENTE: Quando um corpo recebe ou perde calor e não muda de temperatura, mas muda de fase, este calor chama-se Calor Latente. Equação fundamental da Calorimetria (para calor sensível): Q = calor trocado em calorias, m = massa do corpo em gramas, T = mudança de temperatura em graus Celsius ou Kelvin, c = calor específico do material. Se T > 0, Q > 0, isto significa calor recebido. Se T < 0, Q < 0, isto significa calor cedido. Q = m c T 2

Cada material tem o seu calor específico. Veja alguns valores na tabela abaixo. Calores específicos em cal/g. o C = cal/g.k Chumbo: 0,0305 Latão: 0,092 Álcool: 0,58 Tungstênio: 0,0321 Alumínio: 0,215 Água do mar: 0,93 Prata: 0,0564 Mercúrio: 0,033 Água doce: 1,00 Ouro: 0,032 Granito: 0,19 Gelo(-10 o C) 0,53 Cobre: 0,0923 Vidro: 0,20 Capacidade Térmica: C = mc Q = C T Equação do Calor Latente (para mudança de fase): Q = m L Q = calor trocado em calorias, m = massa da substância em gramas, L = calor latente da substância em cal/g sólido líquido ou líquido gasoso; L > 0, Q > 0 líquido sólido ou gasoso líquido; L < 0, Q < 0 A tabela a seguir mostra o valor de Calor Latente de algumas substâncias: Calor Latente de algumas substâncias em cal/g na fusão na ebulição Hidrogênio: 13,9 109 Oxigênio: 3,3 51 Mercúrio: 2,7 71 Água: 80,0 540 Chumbo: 5,6 205 Prata: 25,1 559 Cobre: 49,5 1132 MUDANÇAS DE FASE: Solidificação Condensação SÓLIDO LÍQUIDO GASOSO Fusão Vaporização Sublimação ou Cristalização Sublimação Sólidos têm formas e volumes bem definidos. Líquidos têm volumes definidos e formas indefinidas. Gases não têm nem volumes nem formas definidas. EXERCÍCIOS DE VESTIBULAR UFF 2010 primeira fase. Uma bola de ferro e uma bola de madeira, ambas com a mesma massa e a mesma temperatura, são retiradas de um forno quente e colocadas sobre blocos de gelo. Marque a opção que descreve o que acontece a seguir. (A) A bola de metal esfria mais rápido e derrete mais gelo. (B) A bola de madeira esfria mais rápido e derrete menos gelo. (C) A bola de metal esfria mais rápido e derrete menos gelo. (D) A bola de metal esfria mais rápido e ambas derretem a mesma quantidade de gelo. (E) Ambas levam o mesmo tempo para esfriar e derretem a mesma quantidade de gelo. 3

Solução: Q = m c T, as massas e as temperaturas são iguais, o que varia é o calor específico. O calor específico dos metais é baixo então a bola de metal gera menos calor que a de madeira e derrete menos água. O metal é bom condutor e esquenta e esfria mais rápido que a madeira. (C). UFRJ- 2010. O gráfico a seguir assinala a média das temperaturas mínimas e máximas nas capitais de alguns países europeus, medidas em graus Celsius. Considere a necessidade de aquecer 500 g de água de 0 o C até a temperatura média máxima de cada uma das capitais. Determine em quantas dessas capitais são necessárias mais de 12 kcal para esse aquecimento. Solução: Q = m c T 12000 = 500 1 T T = 12000/500 = 24, a temperatura final deve ser maior que 24º, isto ocorre nas capitais F, G, H, J e K. PUC 2010 grupo 2. Uma quantidade de água líquida de massa m = 200 g, a uma temperatura de 30 o C, é colocada em uma calorímetro junto a 150 g de gelo a 0 o C. Após atingir o equilíbrio, dado que o calor específico da água é c a = 1,0 cal/(g. o C) e o calor latente de fusão do gelo é L = 80 cal/g, calcule a temperatura final da mistura gelo + água. Solução: Calor necessário para todo gelo derreter: Q = m L = 150 80 = 12000 cal, Calor perdido pela água para chegar a zero grau: Q = m c T = 200 1 (-30) = -6000 cal A água não tem calor suficiente para derreter todo o gelo, então a temperatura final é 0 o C. PUC 2010 grupo 3. Um cubo de gelo dentro de um copo com água resfria o seu conteúdo. Se o cubo tem 10 g e o copo com água tem 200 ml e suas respectivas temperaturas iniciais são 0 o C e 24 o C, quantos cubos de gelo devem ser colocados para baixar a temperatura da água para 20 o C? Considere que o calor específico da água é c = 1,0 cal/(g o C), o calor latente de fusão do gelo L = 80 cal/g, e = 1 g/ml. Solução: Calor perdido pela água: Q = 200 1 (20-24) = -800 cal. Calor ganho por um cubo de gelo: Q = m L + m c T = 10 80 + 10 1 20 = 800 + 200 = 1000 cal. Um cubo é mais que suficiente. UERJ 2010 segunda prova. Considere os seguintes valores: - densidade absoluta da água: 1,0 g/cm 3 - calor específico da água: 1,0 cal.g -1 o C -1-1 cal = 4,2 J - custo de 1 kwh = R$0,50 No inverno, um aquecedor elétrico é utilizado para elevar a temperatura de 120 litros de água em 30 o C. Durante 30 dias do inverno, o gasto total com este dispositivo, em reais, é cerca de: Solução: Q = m c T, 120 litros = 120 kg, Q = 120.000 1 30 = 3.600.000 cal por dia = 3.600.000 x 30 cal em 30 dias = 3.600.000 x 30 / 4,2 J = 3.600.000 x 30 / 4,2 / 3.600.000 KWh = 30/4,2 = 7 kwh R$3,50. 4

DIAGRAMA DE FASES O estado de um corpo depende das condições de pressão e de temperatura. Podemos representar estes estados em um gráfico de pressão x temperatura que mostra os estados sólido, líquido e gasoso. Este gráfico é o Diagrama de Fases Vemos a seguir dois Diagramas de Fases, o da esquerda é o do CO 2 e o da direita é o da água. Neles vemos três curvas que separam os estados sólido, líquido e gasoso. A curva 1 é a curva de fusão ou solidificação. A curva 2 é a curva de vaporização ou condensação. A curva 3 é a curva de sublimação. As três curvas se encontram em um ponto que é chamado ponto triplo ou ponto tríplice. Para a água o ponto tríplice ocorre na pressão de 4,58 mm Hg ou 0,006 atm e na temperatura de 0,01 o C. Nesta situação há gelo, água e vapor d água juntos. Para o CO 2 este ponto se dá a 5atm e a 56,6 o C. P Sólido 1 Líquido P 1 3 Gasoso 2 Sólido 3 Líquido 2 Gasoso T T 5

Resolva: UERJ 2005 discursiva. O supermercado necessita diariamente de gelo em escamas. A potência P dissipada pela máquina empregada para fabricá-lo é de 360 cal/s. Sabendo que a temperatura da água ao entrar na máquina é de 20 o C, determine: A) o calor liberado por 150 kg de água ao ser transformada integralmente em gelo a -3 o C; B) a energia dissipada pela máquina, em joules, em 5 h de funcionamento. Dados: calor específico do gelo = 0,5 cal/g o C; calor específico da água = 1,0 cal/g o C; calor latente de solidificação da água = 80 cal/g; Uma caloria = 4 J. UFF 2005 segunda fase. Um sistema básico de aquecimento de água por energia solar está esquematizado na figura abaixo. A água flui do reservatório térmico para as tubulações de cobre existentes no interior das placas coletoras e, após captar a energia solar, volta ao reservatório pelo outro trecho do encanamento. A caixa de água fria alimenta o reservatório, mantendo-o sempre cheio. Suponha que em um determinado instante o reservatório tenha em seu interior 200 litros de água em equilíbrio térmico. Dados: massa especifica da água: r = 1,0 kg/litro; calor específico da água: c = 1,0 cal/g o C; 1,0 cal = 4,2 J Determine a quantidade de calor absorvida por esse volume de água para que sua temperatura aumente 20 0 C, supondo que não haja renovação da água do reservatório. UFRJ 2004 não especifica. Em um calorímetro de capacidade térmica desprezível há 200 g de gelo a -20 0 C. Introduz-se, no calorímetro, água a 20 0 C. O calor latente de solidificação da água é 80 cal/g e os calores específicos do gelo e da água (liquida) valem, respectivamente, 0,50 cal/g o C e 1,0 cal/g o C. Calcule o valor máximo da massa da água introduzida, a fim de que, ao ser atingido o equilíbrio térmico, haja apenas gelo no calorímetro. PUC 2003 grupo 1. Um cubo de gelo de massa m = 100 g e temperatura de 0 C é colocado num copo contendo 200 ml de água. (Despreze a capacidade térmica do copo e as trocas de calor com o ambiente). a) Se a temperatura inicial da água é de 10 C e apenas ¼ do gelo derreteu, qual a temperatura final de equilíbrio da mistura? b) Se as temperaturas inicial e final da água são, respectivamente, de 40 C e 0 C, qual a fração do gelo derretida? Dados: densidade da água ρ = 1 g/cm 3 ; calor latente de fusão do gelo L = 80 cal/g, calor específico da água c = 1cal/g C, g = 10 m/s 2. 6