THE ROLE OF THE FORESTS, CO 2 EMISSIONS



Documentos relacionados
Water Footprint of Bioenergy

Carbon stocks and changes across a network of Atlantic Forest plots. Simone Vieira (NEPAM/UNICAMP, Brazil)

A Aviação no Comércio Europeu de Licenças de Emissão Especificidades para pequenos emissores

Sustainability issues in the Brazilian automotive industry: electric cars and end-of-life vehicles

Energy Management: 2017/18

Tese / Thesis Work Análise de desempenho de sistemas distribuídos de grande porte na plataforma Java

Problemas ambientais urbanos

Mudanças climáticas e serviços ecossistêmicos. Jean Paul Metzger Instituto de Biociências, USP

Low Carbon Scenarios for Brazil. Amaro Pereira PPE/COPPE/UFRJ

UNIDADE DE PESQUISA CLÍNICA Centro de Medicina Reprodutiva Dr Carlos Isaia Filho Ltda. SAMPLE SIZE DETERMINATION FOR CLINICAL RESEARCH

EIA and SEA differences and relationship

Life Cycle Assessment

6 Só será permitido o uso de dicionário INGLÊS/INGLÊS. 8 Utilize para rascunhos o verso de cada página deste Caderno.

Estratégias para o controlo da qualidade do ar interior - Ventilação

Efficient Locally Trackable Deduplication in Replicated Systems. technology from seed

IKEA: A perspectiva p do fornecedor com preocupações ecológicas. Congresso LiderA Ana Teresa Fernandes.

Session 8 The Economy of Information and Information Strategy for e-business

Mitigation options and actions in Brazilian Agriculture

LiderA V1.02 Torre Verde (2007) nº 2 Indicadores / Indicators G F E D C B A. Área ocupada pelo edifício (Building Footprint)

Gestão de Energia: 2012/2013

Climate Change and Energy Security in Brazil: Understanding the Impact of Climate Change on the Energy Sector

Automatic machines for ladder and stepladder production

6 Não será permitido o uso de dicionário.

GESTÃO DE RECURSOS NATURAIS. Ano letivo 2011/2012. Exercício: Sistema de apoio à decisão para eucalipto (Aplicação de Programação Linear)

Comércio Europeu de Emissões:

Braskem Máxio. Maio / May 2015

Large Valorisation on Sustainability of Steel Structures

Martha Demertzi, Ana Cláudia Dias, Arlindo Matos, Luís Arroja. Universidade de Aveiro, Departamento de Ambiente & Ordenamento, CESAM, Portugal

Certificação ambiental de edifícios, um enquadramento

Air Quality for 2030 based on Emission Projection Scenarios: FUTURAR project. Alexandra Monteiro Joana Ferreira & many others

GHG missions in sugar cane ethanol production and avoided CO2

Gerenciamento de projetos SMART GRID

XIV Encontro Internacional de Energia

Solutions. Adição de Ingredientes. TC=0.5m TC=2m TC=1m TC=3m TC=10m. O Tempo de Ciclo do Processo é determinado pelo TC da operação mais lenta.

Conference Call 2Q13 and 1H13 Results

DEPARTAMENTO DE ENGENHARIA CIVIL E ARQUITETURA

Mestrado Integrado Engenharia da Energia e do Ambiente, Faculdade Ciências da Universidade de Lisboa, 1/12

Large Valorisation on Sustainability of Steel Structures DOCUMENTO DE BASE: METODOLOGIA DE ACV

AÇÃO AMBIENTAL FIRJAN: Painel 1 Visão Geral sobre Mudança do Clima e Perspectivas para a COP21

CENTRO UNIVERSITÁRIO METROPOLITANO DE SÃO PAULO CURSO ADMINISTRAÇÃO DE EMPRESAS A LOGISTICA REVERSA APLICADA NO ÓLEO LUBRIFICANTE E SEUS RESÍDUOS

Immobilized Volume Reduction in Pontoon Type Floating Roof for Petroleum Tank

João Paulo Cordeiro de Noronha Pessoa. Flex Cars and the Competitive Effect on Ethanol and Gasoline Retail Markets

Using Big Data to build decision support tools in

CPLP DA ENERGIA. que contributos a RELOP e os seus associados podem dar. Jorge Vasconcelos. NEWES, New Energy Solutions

Digital Patient Summary in the Wallet:

Active Ageing: Problems and Policies in Portugal. Francisco Madelino Berlin, 17 October 2006

Em direcção aos Edifícios de Balanço Energetico Zero

Energy Management: 2017/18

O Compromisso Crescimento Verde e a Sustentabilidade na Secil

NATIONAL VISION OF DEVELOPMENT

ACCESS TO ENERGY IN TIMOR-LESTE

Surface to Atmosphere Exchange at an Amazon Pasture/Agricultural Site

Multicriteria Impact Assessment of the certified reference material for ethanol in water

Impacto dos padrões de circulação nos recursos de energia renovável na Ibéria

Optimização integrada dos recursos energéticos no sector residencial. Carlos Henggeler Antunes Universidade de Coimbra + INESC Coimbra

Lucas de Assis Soares, Luisa Nunes Ramaldes, Taciana Toledo de Almeida Albuquerque, Neyval Costa Reis Junior. São Paulo, 2013

Climate Change - Coal Overview

Revised Refractive Index Formulae and Their Effect in Zenith Delay Prediction and Estimation

DevOps. Carlos Eduardo Buzeto IT Specialist IBM Software, Rational Agosto Accelerating Product and Service Innovation

Painel da Construção Civil FEIPLAR-2014

A MÁQUINA ASSÍNCRONA TRIFÁSICA BRUSHLESS EM CASCATA DUPLAMENTE ALIMENTADA. Fredemar Rüncos

5º Relatório do Painel Intergovernamental sobre Mudanças Climáticas (IPCC)

Relatório de Acção Action Report

T Ã O B O M Q U A N T O N O V O

UERJ Programa de Pós-graduação em Engenharia Mecânica (PPGEM) Seminary Class

Future Trends: Global Perspective. Christian Kjaer Chief Executive Officer European Wind Energy Association

Protective circuitry, protective measures, building mains feed, lighting and intercom systems

Challenges and lessons learned from the Surui Forest Carbon Project, Brazilian Amazon. Pedro Soares / IDESAM

Energia nos Edifícios

INTRODUÇÃO. Língua Inglesa. Prezado (a) Professor (a),

Buildings As Material Banks Edifícios como Banco de Materials. Ana Quintas BRE

Atividade extra. Questão 01. Lingua Estrangeira Inglês

Presentation Apresentação

INFORMATION SECURITY IN ORGANIZATIONS

REAL ESTATE MARKET IN BRAZIL

Agência de Vigilância Sanitária - ANVISA ITEM 8

Iniciação ao software SIG Open Source WinGRASS Maio 2010 Lisboa Cristina Catita, FCUL

Sistema Construtivo Tecverde A fábrica de Casas. José Márcio Fernandes Sócio Diretor Tecverde COMAT

CEMENT SUSTAINABILITY INITIATIVE - KEY PERFORMANCE INDICATORS AND TARGETS SELECTION OF KEY PERFORMANCE INDICATORS

System for Estimation of GHG Emissions

ANÁLISE COMPARATIVA ENTRE OS RESULTADOS DE SIMULAÇÕES TERMOENERGÉTICAS DE EDIFICAÇÕES SOB DIFERENTES CONDIÇÕES DE ENTRADA DAS PROPRIEDADES DOS VIDROS

Access to hospice care. James E. Mathews November 8, 2007

Prova de Seleção Mestrado LINGUA INGLESA 15/02/2016

Study to improve the screening process of bauxite at Votorantim Metals unit Miraí

10/17/2011. unesp. unesp. unesp. The Brazilian Forests Brazilian Biomas BRAZILIAN FOREST SOILS AND FORESTRY PRODUCTIVITY

Otimização geral de processos (OEE) Fabian Prehn Campinas Setembro 2014

Digital Cartographic Generalization for Database of Cadastral Maps

Society Changing Needs in Advanced Materials

Greenhouse Gas Protocol: Ferramentas para gestão de emissões na cadeia de valor

Modelos de Gestão de Estoques e Otimização do Sistema de Ressuprimento para uma rede de Drogarias

RELATÓRIO DE ATIVIDADES - CSR Centro de Sensoriamento Remoto IGC/UFMG

NEXT ENERGY REVOLUTION BioFUELS???; Electric Vehicles???? Carla Silva

Emissions of the Brazilian power sector in case of a low-hydrology scenario until 2030

Balance of supply and demand Cemig Geração e Transmissão

RELEMR WORKSHOP, Lisbon October Field Trip Notes on the building visited at Recolhimento Street, S. Jorge Castle area

LOJAS ECOEFICIENTES Palestrante Arqtª Elisabete Maria de Freitas Diretora de Obras

P O R T U G A L L I S B O A

BOLETIM DE NOVAS AQUISIÇÕES v.6 n. 1 - janeiro 2012

Gestão de Sistemas Energéticos 2017/2018

Transcrição:

Frank Werner THE ROLE OF THE FORESTS, CO 2 EMISSIONS AND CLIMATE CHANGE COMBAT

CO 2 -level in atmosphere highest in decades Source: CBC News Source: Spiegel online

CO 2 - effects of forests and wood products Forest as carbon pool Fossil emissions from production Wood Industrial Residual wood Buildings as carbon pool Fossil emissions from disposal Used wood Wood

on (partial) solutions

Overview Introduction The role of forests in mitigating climate change The tricky nature of GHG profiles of products GHG implications of different forest management and wood use scenarios Conclusions

Global carbon flows/rebound effects of climate change on forests/ of leverages in wood use /carbon pool dynamics and substitution THE ROLE OF FORESTS IN MITIGATING CLIMATE CHANGE

Increase in atmospheric CO 2 concentration

Human perturbations to the global carbon cycle

2000-2009: the warmest decade on record

Feedback to climate change Climate change will affect many processes (growth, decay, disturbances) with great differences between ecosystems and regions We are currently not in the position to estimate net impacts, but Asymmetry of risks: unlikely that increases in productivity can offset increased disturbance losses (Kunz et al. 2008)

of leverages + Biomass expansion factor (BEF): 1.3 (1.15 9.0) Commercial volume + C in litter + C in dead wood + Root:shoot ratio (R:S): 0.3 (0.23 0.46) + C as soil organic carbon > living biomass (factor 1 6) + Transformation losses (< 50%) (Sources: IPCC 2003, IPCC 2000)

of leverages Living biomass Commercial volume C in Product Total forest carbon pools Ecoresponse Management intensity??? 3.4 m 3 2 m 3 Resource efficiency 1 m 3

Carbon dynamics of carbon pools vs. substitution C in forest pools cumulated C emissions Less use baseline t baseline t More use Carbon pools strive for steady state flow equilibrium Substitution effects are cumulative Cascade use allows for double substitution

Carbon dynamics of carbon pools vs. substitution C effects Substitution C pools in forest Less use baseline time More use C pools in forest Substitution

Use of wood from sustainably managed sources is always the better option than forest conservation with regard to mitigating climate change It is only a question of Time! and of what sustainably managed means

Comparison of GHG profiles/influence of geographical reference/influence of methodological issues/variances THE TRICKY NATURE OF GHG PROFILES OF PRODUCTS

Life cycle assessment for GHG-emission profiles Raw materials Aux. materials Energy carriers Disposal/ Recycling Dismantling Use phase 1 Window Raw material extraction Semifabricates Window prod. Mounting Wastes Emissions Co-products

Comparison of GHG-emission profiles Exterior walls Door frames Solid wood Brick wall (2-layers) Particleboard Steel Floorings Insulation materials (u-value = 0.2) Parquet (3-layers) Ceramic tiles Wood fibreboard Mineral wool (Werner et al. 2006, own calculations)

Choice of the geographical reference Exterior walls Door frames Solid wood Brick wall (2-layers) Particleboard Steel Floorings Substitution abroad Substitution in Switzerland Parquet (3-layers) Ceramic tiles (Werner et al. 2006)

Basis for comparison? Insulation materials (u-value = 0.2) Insulation materials (phase shift) Wood fibreboard Mineral wool Wood fibreboard Mineral wool Insulation materials (u-value = 0.2) Wood fibreboard Mineral wool (own calculations)

Variance between producers? IBU-EPD, Hersteller 1: IBU-EPD, Hersteller 2: + 40%

Selection of product for comparison? Parquet (life cycle) + 30% Glued single-layer 3 layered ready-made (Werner 1997)

Within-company variance? Wood-based board (life cycle) (Werner 2008)

Essence GHG profiles of wood products are usually lower than of comparative non-wooden products. Great variability of GHG profiles from both wooden/nonwooden products, Geographical scope matters, also for strategic decisions in national politics, Consideration of material substitution for semi-finished products does not make sense.

Modelling approach/scenarios/impact factors/results GHG IMPLICATIONS OF DIFFERENT FOREST MANAGEMENT AND WOOD USE SCENARIOS

Model-based approach Forest Technosphere Forest management scenarios Wood use scenarios Forest carbon model Wood flow model Model on C-stocks and substitution effects GHG relevance of different forest and wood use scenarios

Model of wood products carbon pools Wood pools in-country and abroad (without forest) Recovered wood (3 y.) Recovered wood (3 y.) Exports (50/50/50/30 y.) Used wood particle board (25 y.) Industrial residual w. (2 y.) Imports (50/50/50/30 y.) Abroad In-country Construction (80 y.) Interior works (30 y.) Recovered wood (3 y.) Wood products (10 y.) Industrial residual w. (2 y.) Energy wood for forest (2 y.) System boundary of civilisational cycle

Substitution on a building element level Building element Construction Wood elements/products Competing product/substitute Exterior wall Laminated timber board 2-layered brick wall Pillar Gluelam pillar Steel pillar Ceiling Ceiling of wood beams Ceiling of reinforc. concrete Insulation Wood fibre insulation panel Mineral wool Roofing Unlined joist construction Porous concrete pitched r. Underground engineer. Wood palisade Concrete palisade Interior works Coverings of wall Profiled board, spruce Interior plasterwork Staircase Wooden staircase, oak Ready-made concrete staircase Flooring 3-layered parquet flooring Ceramic tiles, enamelled Facade Wood panels incl. supporting bars Exterior plasterwork Furnishing Doorframe, particleboard Doorframe, steel Furniture Wood furniture, particleboard Steel furniture

Average substitution factors ( increment optimized ) kg CO 2 /m 3 wood (920 kg CO 2 ) Switzerland Abroad Total Material substitution -320-410 -730 Energetic substitution < -480 > -120-600 Total < -800 > -530-1'330 (Werner et al.2010)

Scenarios The scenarios reflect realistic policy options. Wood extraction Increment optimized Kyoto optimized Reduced forest m. Baseline Wood extraction Switzerland + 90% + 75% - 40% + 20% Consumption Construction, interior works, wood products Construction Energy Construction + 80% + 0% + 80% - 24% + 20% Forest energy wood + 122% + 344% + 67% - 81% + 20% Foreign trade balance

/year Mio. t CO 2 -equiv. Comparison of scenarios Annual effects: global 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 8 6 4 Adjustment of parameters 2 0-2 -4-6 -8-10 -12 Optimized increment, building Baseline Reduced tending Optimized increment, energy Kyoto optimized (Werner et al.2010)

/year -emissions Scenario Increment optimized, buildings Annual effects in Switzerland Percent of annual swiss CO 2 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 8% 6% 4% 2% 0% -2% -4% -6% -8% -10% -12% -14% Substitutional effects material Stock change in civ. Circle Sum of effects Substitutional effects energy Stock change in forests (Werner et al.2010)

CONCLUSIONS

Conclusions (I) The strategies that provide the best carbon balance on the longterm strive for an as high as possible wood use in domestic construction based on domestic wood supply. The material use of wood and subsequent energetic recovery is undoubtably the better option than direct energetic use (cascade use of wood). A pure sink carbon strategy in forest may seem promising in the short-term. Potential carbon gains of sink strategies will however not off-set impact of increased disturbances. Such strategies are not sustainble, also not from a resource perspective.

Conclusions (II) The climate effect of material substitution from wood use can be significant (positive). The substitution effect from material (and energetic) use of wood instead of non-wooden material is unlimited in time (cumulative). Increase of C-pools leads to a new steady-state flow equilibrium = no further net storage effect in equilibrium. Uncertainties and data variability in such models, e.g. related to forest dynamics, substitution effects, scenarios, etc. Interpretation is crucial!

Conclusions (III) Strategies for an optimized use of forests and wood to mitigate climate change can only reasonably assessed in an integral way, including transsectoral effects (e.g. substitution effects). For the assessment of these strategies, clear geographical and temporal preferences have to be stated.

Muito obrigado! frank@frankwerner.ch