Unidade V - Estática e Dinâmica dos Fluidos
|
|
|
- Raquel Eger Affonso
- 10 Há anos
- Visualizações:
Transcrição
1 49
2 Unidade V - Estática e Dinâmica dos Fluidos fig. V.. Atmosfera terrestre é uma camada essencialmente gasosa um fluido. Na segunda parte da figura podemos ver a um fluido em movimento escoando em um grande tubo.. Situando a Temática Os fluidos desempenham um papel muito importante em nossas vidas, desde o ar que respiramos à que bebemos. A matéria se encontra em três fases: líquido sólido e gasoso, os fluidos são gases e líquidos. Os fluidos circulam em nosso corpo e estão presentes na atmosfera terrestre, que junto com outros fatores ambientais são responsáveis pelo clima de nosso planeta. Nesta unidade temática daremos algumas ideias de mecânica dos fluidos.. Problematizando a Temática Nesta unidade discutiremos algumas propriedades dos fluidos. Iremos começar estudando conceitos básicos da estática dos fluidos, em situações que envolvem equilíbrio, ou seja, estudando os fluidos em repouso, conceitos tais como: densidade, pressão empuxo, tensão superficial, etc. Para tal estudo iremos usar como base as leis de Newton. Por outro lado, o estudo dos fluidos em movimento é muito mais complexo, a dinâmica dos fluidos na verdade é uma das partes da mecânica mais difíceis de estudar. Vamos utilizar alguns modelos idealizados e princípios tais como as leis de Newton, conservação de energia, para podermos visualizar um movimento de um fluido e suas propriedades em um caso realístico. Mesmo assim iremos tratar fluidos de uma forma conceitual, deixando para um curso mais avançado este tópico da mecânica. 3. Pressão em um Fluido Quando uma força age normal à área A da superfície de um fluido, a pressão sobre essa superfície é definida por F P eq. V. A 5
3 A pressão é medida em N/ m = pascal (Pa), ou em lb/in ou psi, isto é, libras por polegada quadrada, onde psi = 6,9 3 Pa e um milímetro de Hg ou torr, mmhg = torr ou milibar, mbar = Pa e torr = 33 Pa. A pressão da atmosfera ao nível do mar é medida em atm, 5 atm =, Pa = 4,7 psi. Note que a pressão é uma grandeza escalar, em um fluido em repouso a pressão é a mesma em todas as direções para um dado ponto. Definimos a densidade de massa por, m eq. V. V quando a massa m ocupa um pequeno volume V. A densidade da é kg/m 3. A pressão em um líquido pode ser calculada quando consideramos um recipiente aberto como da fig. V.. Considere um cilindro imaginário de fluido de altura h e área A. Temos a pressão atmosférica para baixo P e empurrando para cima do cilindro está a pressão P. Essa parte do fluido está em equilíbrio e assim Fbaixo F cima. O peso do fluido é mg, dessa forma, PA P A mg, onde m = ρv = ρah, onde V = Ah. Então, fig. V.. Cilindro imaginário de fluido dentro do recipiente. P P gh eq. V. 3 A pressão devido ao fluido somente é gh e ela depende unicamente da profundidade abaixo da superfície, não da forma ou tamanho do recipiente. Podemos ilustrar isto na fig. V. 3, A mudança de pressão ao longo da altura do cilindro é dada por P P. Notamos que se aumentarmos a pressão P, a pressão P aumenta de um valor igual. Esta conclusão nos leva ao princípio de Pascal: a pressão aplicada a um fluido no interior de um recipiente é transmitida sem diminuição a todos os pontos do fluido e para as paredes do recipiente. Líquidos são virtualmente incompressíveis, assim sua densidade não muda com a profundidade o que podemos usar esta hipótese na (eq. V. 3). A pressão em um gás pode ser deduzida usando o mesmo raciocínio. Mas como os gases são mais compressíveis a densidade é função da profundidade e nós devemos levar em conta isso no cálculo da massa do cilindro. Isso é feito por considerar finas camadas do gás e integrar para encontrar a massa total no cilindro. Como para líquidos a pressão cresce com a profundidade, mas não de forma linear. fig. V.3. A pressão P é a mesma em cada caso. 4. Empuxo Quando um objeto é imerso em um fluido ele sofre uma força de empuxo para cima já que a pressão no fundo do objeto é maior do que no 5
4 topo. Daí pode-se enunciar o principio de Arquimedes: Qualquer objeto parcialmente ou completamente imerso em um fluido sofre um empuxo para cima por uma força igual ou equivalente ao deslocamento de fluido. Considere uma porção de dentro de um recipiente contendo, como mostrado na fig. V. 4. A acima da porção atua para baixo sobre a porção com o seu peso. A em baixo do pedaço empurra para cima a porção. Como a porção de está em equilíbrio, F F W A força de empuxo, fig. V.4. Recipiente com e um volume selecionado. F E F F W eq. V. 4 Aqui W é o peso do fluido deslocado pelo objeto. Se o peso do objeto é maior do que W, o objeto afunda. Se o peso do objeto é menor do que W quando ele é totalmente imerso, ele flutuará na superfície. 5. Escoamento do Fluido Podemos visualizar o movimento de um fluido através das linhas de corrente. Uma linha de corrente descreve o caminho seguido por uma partícula do fluido. A velocidade do fluido em qualquer ponto é tangente à linha de corrente em um ponto. Quando as linhas de corrente estão mais juntas, o fluido segue mais rápido. Vamos considerar a seguir as seguintes hipóteses: - Escoamento é estacionário - a velocidade não depende do tempo. - Escoamento é laminar é aquele que se dá suavemente, contrariamente ao escoamento turbulento que se dá de forma caótica. Este último caso é muito complicado e estudamos o primeiro por enquanto. - O fluido é incompressível, como um líquido. - A temperatura do fluido é constante. - Atrito é desprezado, isto é, o fluido tem viscosidade zero. Suponha o escoamento de um fluido através de um tubo cuja área de secção transversal decresce de A para A, fig. V.5. Escoamento de um fluido em um tubo. como mostra a fig. V. 5, Nestas seções retas, as velocidades do fluido são v e v, respectivamente. Durante um pequeno intervalo de tempo dt, o fluido que estava em A se desloca a uma distância v dt de modo que um cilindro imaginário de fluido com altura v dt e volume dv A vdt se escoa para o interior do tubo através de A. Durante este mesmo intervalo de tempo, um cilindro com volume dv Av dt se escoa para fora do tubo através de A. Vamos supor o fluido incompressível, ρ constante. A massa dm A vdt flui para dentro do tubo e a massa dm Av dt flui para 5
5 fora do tubo. No escoamento estacionário, a massa total no tubo permanece constante. Assim teremos a equação de continuidade, A eq. V. 5 v Av A conservação de massa no escoamento de um fluido incompressível é expressa pela equação da continuidade, para duas seções retas A e A ao longo de um tubo de escoamento, as velocidades de escoamento são relacionadas pela eq. V. 5. O produto Av é a vazão volumétrica, a taxa com que o volume do fluido atravessa a seção reta do tubo 6. Equação de Bernoulli dv Av eq. V. 6 dt Podemos deduzir uma relação importante entre a pressão, a velocidade e a altura no escoamento de um fluido. Essa relação chama-se equação de Bernoulli. Vamos deduzir esta equação que relaciona a pressão p com a velocidade v e a altura h para um escoamento estacionário de um fluido. Considere um líquido escoando através de um tubo como mostra a fig. V. 6. Quando o líquido se move uma distância dx na parte mais baixa do tubo e um volume dv num tempo dt, o trabalho realizado pela pressão P sobre o fig. V.6. Tubo de escoamento e trabalho resultante líquido é dw F dx P A dx P dv. Nesse tempo a realizado sobre o líquido se movendo da região pressão P na parte superior do tubo realiza um trabalho mais baixa para uma região mais alta. dw P dv. O trabalho resultante é, dw dw dw P P ) dv. Por outro lado, levando em conta as ( forças conservativas que atuam numa massa dm do líquido, dw ( P P ) dv K U dm( v v ) dmg( h h ). Usando dm / dv obtemos, dw dv dm dm ( P P ) ( v v ) g( h h ) dv dv dv dv ( v v ) g ( h h ) ou seja, P v gh P v gh eq. V. 7 Como os pontos e são arbitrários no tubo, P v gh const. eq. V. 8 Esta é a chamada equação de Bernoulli. 53
6 Exercícios Resolvidos Exemplo V. Um submarino tem uma janela de área, m. Qual a força exercida sobre a janela pela do mar cuja densidade é 3 kg/m 3 a uma profundidade de 5 m? F PA gha 5,5 6 N Exemplo V. Calcule a velocidade média de sangue na aorta de raio cm quando a taxa de fluxo é 5 l/min. 3 fluxo = Av, fluxo 5cm v ( ) 7cm / s A 6s (cm ) Exemplo V. 3 Um balão de ar quente tem um volume de, 3 m 3. Ele está cheio de ar quente a uma densidade de,96 kg/m 3. Qual a carga máxima que ele pode elevar, quando ele está rodeado com ar frio de densidade,9 kg/m 3. A massa de ar frio deslocada pelo balão é,9 kg/m 3, 3 m 3 =,84 3 kg. O peso desse ar frio é g,84 3, a força de empuxo sobre o balão. Essa força deve suportar o peso do ar quente e a carga, notando que estamos desprezando as outras partes que compõem o balão. O peso do ar quente é g,96, 3 = g, 3. Logo o peso da carga pode ser no máximo g, g, 3 = g 73 = 754 N. A carga máxima é de 73 kg. Exemplo V. 4 Um recipiente é parcialmente preenchido com. Óleo de densidade 75 kg/m 3 é derramado no topo da e ele flutua sobre a sem se misturar. Um bloco de madeira de densidade 8 kg/m 3 é inserido no recipiente e ele flutua na interface dos dois líquidos. Qual a porcentagem do volume do bloco que está imerso na? O volume xv está dentro da e o volume 54 ( x) V está no óleo. Logo teremos, Vg xvg ( x) Vg, onde a densidade da é kg/m 3, x Exemplo V. 5 8 Um bloco de gelo de densidade 97 kg/m 3 flutua na do mar de densidade 3 kg/m 3. Se a área da superfície do gelo é de m e ele tem, m de espessura, qual é a massa de um urso pesado que pode permanecer sobre o gelo sem que ele vá para baixo da superfície da? mursog m gelo g m g, V, 4m 3 m V V 45 kg. urso gelo
7 Exemplo V. 6 Um sifão é um aparato para remover líquido de um reservatório. A saída C deve ser mais baixa que a entrada A e o tubo deve inicialmente ser cheio com líquido. A densidade do líquido é ρ. (a) Com que velocidade o fluido sai em C? (b) Qual é a pressão em B? Qual a altura máxima H que o sifão pode ascender? (a) Compare a superfície, onde a pressão atmosférica p e a velocidade é aproximadamente zero, com o ponto C. p g( h d) p (/ ) v v g( h d) (b) Compare a superfície com o ponto B: p g( h d) p (/ ) v g( h d H p p g( h d H De (a), ) (c) Quando H é máximo, a velocidade e pressão vão para zero, assim comparando a superfície e o ponto B vem, p g( h d) g( h d Ou H gh p 5 p, H =,3 m g 9,8 ) ) Exercícios Propostos Exercício V. 3 3 Qual a profundidade de ( kg / m ) e do mercúrio ( 3.6kg / m ) que é requerido para produzir uma pressão de atm? Resposta:,3 m e,76 m. Exercício V. Um macaco hidráulico consiste de um grande cilindro de área A conectado a um cilindro de área menor a. Ambos os cilindros são preenchidos com óleo. Quando a força f é aplicada ao cilindro menor, a pressão resultante é transmitida para o cilindro grande, aque então exerce uma força F para cima. Suponha um carro de peso. N respousando sobre o cilindro grande de área, m. Qual é a força que deve ser aplicada ao cilindro menor de área, m para suportar o carro? Resposta: f = 4 N Exercício V. 3 Qual é a força resultante agindo sobre uma superfície de uma barragem de altura h e largura? Resposta: gh F 55
8 Exercício V. 4 Um cientista deseja determinar a densidade de uma amostra de óleo extraída de uma planta. Coloca-se em um tubo de vidro em forma de U aberto em ambas as extremidades. Daí é derramada uma pequena quantidade de óleo sobre a em um dos lados do tubo e medidas as alturas mostradas no desenho. Qual é a densidade de óleo em termos da densidade da e alturas? Resposta: h h Exercício V. 5 A densidade do ouro é 3 3,3 kg / m 9,3 m 3 3 kg / e a densidade da do mar é. Enquanto o caçador de tesouros puxa para cima da um artefato de ouro, a tensão na linha é de N. Qual deverá ser a tensão no fio quando ele puxa o objeto fora da, isto é, no ar? Resposta: 7 N Exercício V. 6 Um bloco de madeira de peso específico,8 flutua na. Qual a fração do volume do bloco que está submerso? Resposta: Se V é o volume do bloco e xv é o volume submerso, x =,8. Exercício V. 7 Uma mangueira de jardim tem diâmetro interno de cm e joga a uma velocidade de, m/s. Qual será a velocidade que sai a em um bocal de mangueira de,5 cm? Resposta: 4,8 m/s. Exercício V. 8 Um grande reservatório é cheio com. Um pequeno buraco é feito no lado do tanque a uma profundidade h abaixo da superfície da. Qual a velocidade que a sai do buraco? Resposta: v gh Exercício V. 9 Um bombeiro usa uma mangueira de diâmetro interno de 6 cm para liberar L de por minuto. Um bocal é conectado a mangueira a fim de jogar para cima para alcançar uma janela 3 m acima do bocal. (a) Com que velocidade deve a deixar o bocal? (b) Qual é o diâmetro interno do bocal? (c) Qual a pressão dentro da mangueira é requerida? Resposta: 4, m/s;,3 m;,7 atm. 56
Física Parte 2. Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7.
Física Parte 2 Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7.Empuxo Introdução A memorização de unidades para as diversas grandezas existentes
1ª Lista de exercícios de Física 2 ( Fluidos)
Unesp UNIVERSIDADE ESTADUAL PAULISTA Campus de Sorocaba Engenharia Ambiental Profa. Maria Lúcia Antunes 1ª Lista de exercícios de Física 2 ( Fluidos) 1) Encontre o aumento de pressão de um fluido em uma
A Equação de Bernoulli
Aula 4 A equação de Bernoulli Objetivos O aluno deverá ser capaz de: Descrever a dinâmica de escoamento de um fluido. Deduzir a Equação de Bernoulli. Aplicar a Equação de Bernoulli e a Equação da Continuidade
Mecânica dos Fluidos Fundamentos da Cinemática dos Fluidos
Mecânica dos Fluidos Fundamentos da Cinemática dos Fluidos Prof. Dr. Gabriel L. Tacchi Nascimento O que estuda a Cinemática? A cinemática dos fluidos estuda o movimento dos fluidos em termos dos deslocamentos,
Disciplina : Termodinâmica. Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE
Curso: Engenharia Mecânica Disciplina : Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE Prof. Evandro Rodrigo Dário, Dr. Eng. Vazão mássica e vazão volumétrica A quantidade de massa que
Mecânica dos Fluidos PROF. BENFICA [email protected] www.marcosbenfica.com
Mecânica dos Fluidos PROF. BENFICA [email protected] www.marcosbenfica.com LISTA 2 Hidrostática 1) Um adestrador quer saber o peso de um elefante. Utilizando uma prensa hidráulica, consegue equilibrar
1. Nesta figura, está representada, de forma esquemática, a órbita de um cometa em torno do Sol:
1. Nesta figura, está representada, de forma esquemática, a órbita de um cometa em torno do Sol: Nesse esquema, estão assinalados quatro pontos P, Q, R ou S da órbita do cometa. a) Indique em qual dos
ESTÁTICA DE FLUIDOS. Introdução e Revisão de conceitos básicos
ESTÁTCA DE FLUDOS ntrodução e Revisão de conceitos básicos Em qualquer ponto da superfície de um corpo submerso, a força exercida pelo fluido estático é perpendicular à superfície do objecto. A pressão
II. MECÂNICA DOS FLUIDOS
FÍSICA APICADA 1. HIDROSTÁTICA II. MECÂNICA DOS FLUIDOS. 1 - Introdução Os fluidos estão presentes de maneira vital em nossa vida, basta lembrarmos que o nosso corpo é formado quase que exclusivamente
HIDROSTÁTICA PRESSÃO DENSIDADE RELATIVA. MASSA ESPECÍFICA (densidade absoluta) TEOREMA FUNDAMENTAL DA HIDROSTÁTICA (Teorema de Stevin)
Física Aula 05 Prof. Oromar UMA PARCERIA Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.BR Visite a loja virtual www.conquistadeconcurso.com.br MATERIAL DIDÁTICO EXCLUSIVO PARA ALUNOS DO
Movimento Harmônico Simples: Exemplos (continuação)
Movimento Harmônico Simples: Exemplos (continuação) O Pêndulo Físico O chamado pêndulo físico é qualquer pêndulo real. Ele consiste de um corpo rígido (com qualquer forma) suspenso por um ponto O e que
MÓDULO 03 - PROPRIEDADES DO FLUIDOS. Bibliografia
MÓDULO 03 - PROPRIEDADES DO FLUIDOS Bibliografia 1) Estática dos Fluidos Professor Dr. Paulo Sergio Catálise Editora, São Paulo, 2011 CDD-620.106 2) Introdução à Mecânica dos Fluidos Robert W. Fox & Alan
(pode ser qualquer edição, mas cuidado com as referências às seções do cronograma)
FIS1041 FLUIDOS e TERMODINÂMICA Livro Texto - Fundamentos de Física 2 Halliday, Resnick, Walker 8 a Edição (9ª Edição 2012) Outra Referência Sears e Zemansky Física II Young & Freedman 12ª Edição (pode
Os líquidos escoam sob a ação da gravidade até ocuparem as regiões mais baixas possíveis dos vasos que os contêm.
90 CAPÍTULO 6 6.1 Definição Os fluidos compreendem os líquidos e os gases. Os líquidos escoam sob a ação da gravidade até ocuparem as regiões mais baixas possíveis dos vasos que os contêm. Os gases se
Perguntas. UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II
UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II Perguntas Lista de Exercícios - FLUIDOS 1. A figura 1 mostra um tanque cheio de água.
LISTA DE EXERCÍCIOS ESTUDO DOS GASES
GOVERNO DO ESTADO DE PERNAMBUCO GRÉ MATA NORTE UNIVERSIDADE DE PERNAMBUCO CAMPUS MATA NORTE ESCOLA DE APLICAÇÃO PROFESSOR CHAVES LISTA DE EXERCÍCIOS ALUNO(A): Nº NAZARÉ DA MATA, DE DE 2015 2º ANO ESTUDO
Problemas de Fluidos
Problemas de Fluidos DADOS: ρ água = g cm 3 γ água = 0,073 N m ρ mercúrio = 3,6 g cm 3 γ mercúrio = 0,54 N m ρ glicerina =,6 g cm 3 ρ ar =,5 kg m 3 g = 9,8 m s Densidade; Pressão; Tensão Superficial; Capilaridade
Física Fascículo 06 Eliana S. de Souza Braga
Física Fascículo 06 Eliana S. de Souza Braga Índice Estática e hidrostática Resumo Teórico...1 Exercícios...2 Gabarito...5 Estática e hidrostática Resumo Teórico Estática do ponto material: Equilíbrio
grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?
Física 01. Um fio metálico e cilíndrico é percorrido por uma corrente elétrica constante de. Considere o módulo da carga do elétron igual a. Expressando a ordem de grandeza do número de elétrons de condução
LISTA de HIDROSTÁTICA PROFESSOR ANDRÉ
LISTA de HIDROSTÁTICA PROFESSOR ANDRÉ 1. (Unesp 013) Seis reservatórios cilíndricos, superiormente abertos e idênticos (A, B, C, D, E e F) estão apoiados sobre uma superfície horizontal plana e ligados
LISTA UERJ 2014 LEIS DE NEWTON
1. (Pucrj 2013) Sobre uma superfície sem atrito, há um bloco de massa m 1 = 4,0 kg sobre o qual está apoiado um bloco menor de massa m 2 = 1,0 kg. Uma corda puxa o bloco menor com uma força horizontal
Hidrodinâmica Equação de Torricelli
Hidrodinâmica Equação de Torricelli Objetivo Comprovar a equação de Torricelli para hidrodinâmica através do movimento parabólico de um jato de água. Introdução Seja um fluido escoando através de um tubo
Se um sistema troca energia com a vizinhança por trabalho e por calor, então a variação da sua energia interna é dada por:
Primeira Lei da Termodinâmica A energia interna U de um sistema é a soma das energias cinéticas e das energias potenciais de todas as partículas que formam esse sistema e, como tal, é uma propriedade do
Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ.
Leis de Conservação Em um sistema isolado, se uma grandeza ou propriedade se mantém constante em um intervalo de tempo no qual ocorre um dado processo físico, diz-se que há conservação d a propriedade
Universidade Estadual de Campinas. Instituto de Física Gleb Wataghin. F 609 Tópicos de Ensino da Física I
Universidade Estadual de Campinas Instituto de Física Gleb Wataghin F 609 Tópicos de Ensino da Física I Princípio de Pascal em um Experimento Auto-explicativo Relatório Final Aluno: João Paulo Cury Bergamim
A seguir será dada uma classificação ampla da Mecânica dos Fluidos baseada nas características físicas observáveis dos campos de escoamento.
Universidade Federal do Paraná Curso de Engenharia Industrial Madeireira MÁQUINAS HIDRÁULICAS AT-087 Dr. Alan Sulato de Andrade [email protected] A seguir será dada uma classificação ampla da Mecânica
Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx
Soluções das Questões de Física do Processo Seletivo de dmissão à Escola Preparatória de Cadetes do Exército EsPCEx Questão Concurso 009 Uma partícula O descreve um movimento retilíneo uniforme e está
CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES
CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 1 a QUESTÃO Valor: 1,00 A L 0 H mola apoio sem atrito B A figura acima mostra um sistema composto por uma parede vertical
Processos em Engenharia: Modelagem Matemática de Sistemas Fluídicos
Processos em Engenharia: Modelagem Matemática de Sistemas Fluídicos Prof. Daniel Coutinho [email protected] Departamento de Automação e Sistemas DAS Universidade Federal de Santa Catarina UFSC DAS 5101
Vazão ou fluxo: quantidade de fluido (liquido, gás ou vapor) que passa pela secao reta de um duto por unidade de tempo.
Medição de Vazão 1 Introdução Vazão ou fluxo: quantidade de fluido (liquido, gás ou vapor) que passa pela secao reta de um duto por unidade de tempo. Transporte de fluidos: gasodutos e oleodutos. Serviços
Módulo VII - 1ª Lei da Termodinâmica Aplicada a Volume de Controle: Princípio de Conservação da Massa. Regime Permanente.
Módulo VII - 1ª Lei da Termodinâmica Aplicada a Volume de Controle: Princípio de Conservação da Massa. Regime Permanente. Conservação da Massa A massa, assim como a energia, é uma propriedade que se conserva,
ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE
ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE Nome: Nº Série: 2º EM Data: / /2015 Professores Gladstone e Gromov Assuntos a serem estudados - Movimento Uniforme. Movimento Uniformemente Variado. Leis
Pressão Estática, de Estagnação e Dinâmica
Pressão Estática, de Estagnação e Dinâmica p V gz cte p 1 V z cte A pressão p que aparece na equação de Bernoulli é a pressão termodinâmica, comumente chamada de pressão estática. Para medirmos p, poderíamos
UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA ALUNA LENAMIRIA CRUZ
UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA DEPARTAMENTO DE FÍSICA DISCIPLINA - FÍSICA EXPERIMENTAL ІІ CURSO ENGENHARIA DE ALIMENTOS DOCENTE CALHAU ALUNA LENAMIRIA CRUZ PRINCÍPIO DE PASCAL FEIRA DE SANTANA-BA,
Mostrar os Objetos 10 Contar a história seguindo os slides (anexo1) 40
Aula 1: A história do banheiro Tema Mostrar ao aluno como era a vida das pessoas que não possuíam os recursos sanitários conhecidos hoje, a história de como surgiu à necessidade dos mesmos, sua origem
LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 14:17. Jason Alfredo Carlson Gallas, professor titular de física teórica,
Exercícios Resolvidos de Física Básica Jason Alfredo Carlson Gallas, professor titular de física teórica, Doutor em Física pela Universidade Ludwig Maximilian de Munique, Alemanha Universidade Federal
ANÁLISE DO ESCOAMENTO DE UM FLUIDO REAL: água
UFF Universidade Federal Fluminense Escola de Engenharia Departamento de Engenharia Química e de Petróleo Integração I Prof.: Rogério Fernandes Lacerda Curso: Engenharia de Petróleo Alunos: Bárbara Vieira
V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20.
11 FÍSICA Um bloco de granito com formato de um paralelepípedo retângulo, com altura de 30 cm e base de 20 cm de largura por 50 cm de comprimento, encontra-se em repouso sobre uma superfície plana horizontal.
Faculdade de Administração e Negócios de Sergipe
Faculdade de Administração e Negócios de Sergipe Disciplina: Física Geral e Experimental III Curso: Engenharia de Produção Assunto: Gravitação Prof. Dr. Marcos A. P. Chagas 1. Introdução Na gravitação
DATA: 17/12/2015 VALOR: 20,0 NOTA: NOME COMPLETO:
DISCIPLINA: FÍSICA PROFESSORES: Erich/ André NOME COMPLETO: I N S T R U Ç Õ E S DATA: 17/12/2015 VALOR: 20,0 NOTA: ASSUNTO: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 1 a EM Circule a sua turma: Funcionários:
Mecânica dos Fluidos. Aula 3 Estática dos Fluidos, Definição de Pressão. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues
Aula 3 Estática dos Fluidos, Definição de Pressão Tópicos Abordados Nesta Aula Estática dos Fluidos. Definição de Pressão Estática. Unidades de Pressão. Conversão de Unidades de Pressão. Estática dos Fluidos
p A = p B = = ρgh = h = Por outro lado, dado que a massa total de fluido despejada foi m, temos M 1 m = ρ(v 1 + V 2 ) = ρ 4 H + πd2 4 h = H = 4
Q1 (,5) Um pistão é constituído por um disco ao qual se ajusta um tubo oco cilíndrico de diâmetro d. O pistão está adaptado a um recipiente cilíndrico de diâmetro D. massa do pistão com o tubo é M e ele
PROJETO ENGENHOCAS- Plataforma Hidráulica
Engenharia Ambiental Laboratório de Física II PROJETO ENGENHOCAS- Plataforma Hidráulica Grupo Engenhetes : Amanda Pereira Beatriz Stadler Franchini Oliveira Maria Julia Battaglini Mariana Cássia Maio/2014
Curso Básico. Mecânica dos Fluidos. Unidade 3
164 Curso Básico de Mecânica dos Fluidos Curso Básico de Mecânica dos Fluidos Unidade 3 Raimundo Ferreira Ignácio 165 Curso Básico de Mecânica dos Fluidos Unidade 3 - Conceitos Básicos para o Estudo dos
Estudaremos aqui como essa transformação pode ser entendida a partir do teorema do trabalho-energia.
ENERGIA POTENCIAL Uma outra forma comum de energia é a energia potencial U. Para falarmos de energia potencial, vamos pensar em dois exemplos: Um praticante de bungee-jump saltando de uma plataforma. O
(Desconsidere a massa do fio). SISTEMAS DE BLOCOS E FIOS PROF. BIGA. a) 275. b) 285. c) 295. d) 305. e) 315.
SISTEMAS DE BLOCOS E FIOS PROF. BIGA 1. (G1 - cftmg 01) Na figura, os blocos A e B, com massas iguais a 5 e 0 kg, respectivamente, são ligados por meio de um cordão inextensível. Desprezando-se as massas
Um momento, por favor
Um momento, por favor A UU L AL A Outro domingo! Novo passeio de carro. Dessa vez foi o pneu que furou. O pai se esforça, tentando, sem sucesso, girar o parafuso da roda. Um dos filhos então diz: Um momento,
O trabalho realizado por uma força gravitacional constante sobre uma partícula é representado em termos da energia potencial U = m.
Referência: Sears e Zemansky Física I Mecânica Capítulo 7: Energia Potencial e Conservação da Energia Resumo: Profas. Bárbara Winiarski Diesel Novaes. INTRODUÇÃO Neste capítulo estudaremos o conceito de
Trabalho realizado por: Bento Rosa Nº1 João Matoso Nº9
Trabalho realizado por: Bento Rosa Nº1 João Matoso Nº9 Introdução Neste trabalho vamos falar sobre o Principio da Hidrostática (Onde surgiu, como surgiu e quem a inventou). Introdução da Hidrostática Hidrostática
Módulo 06 - VISCOSÍMETRO DE STOKES
Módulo 06 - VISCOSÍMETRO DE STOKES Viscosímetros são instrumentos utilizados para medir a viscosidade de líquidos. Eles podem ser classificados em dois grupos: primário e secundário. No grupo primário
HIDROSTÁTICA ESTUDA O COMPORTAMENTO DOS LÍQUIDOS E GASES EM EQUILÍBRIO.
ESTUDA O COMPORTAMENTO DOS LÍQUIDOS E GASES EM EQUILÍBRIO. Teorema de ARQUIMEDES Teorema de STEVIN Pressão atmosférica (Torricelli) Princípio de PASCAL Na construção de petroleiros num estaleiro espanhol,
APOSTILA TECNOLOGIA MECANICA
FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de
Um bloco de massa igual a 4 kg é arrastado, sobre uma superfície horizontal, por uma força constante, de
Atividade extra Fascículo 2 Física Unidade 4 Exercício 1 - Adaptado de CEJA - São Gonçalo Um bloco de massa igual a 4 kg é arrastado, sobre uma superfície horizontal, por uma força constante, de módulo
LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 14:26. Jason Alfredo Carlson Gallas, professor titular de física teórica,
Exercícios Resolvidos de Física Básica Jason Alfredo Carlson Gallas, professor titular de física teórica, Doutor em Física pela Universidade udwig Maximilian de Munique, Alemanha Universidade Federal da
FLUIDOS - RESUMO. A densidade de uma substância em um ponto P é definida como,
FLUIDOS - RESUMO Estática dos fluidos Densidade A densidade de uma substância em um ponto P é definida como, ρ = m V, () em que m é a quantidade de massa que ocupa o volume V, contendo o ponto P. Se a
CAPITULO 1 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS 1.1 CIÊNCIAS TÉRMICAS
CAPITULO 1 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS 1.1 CIÊNCIAS TÉRMICAS Este curso se restringirá às discussões dos princípios básicos das ciências térmicas, que são normalmente constituídas pela termodinâmica,
Lista B - Data da prova: 01/11/2011. 4. Calcular o momento de inércia de uma
Universidade Estadual do Centro-Oeste Campus Universitário Centro Politécnico - CEDETEG Setor de Ciências Exatas e de Tecnologia Departamento de Física Curso: Química Série: 1 o Ano de 2011 Disciplina:
APLICAÇÕES DA DERIVADA
Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,
( ) ( ) ( ( ) ( )) ( )
Física 0 Duas partículas A e, de massa m, executam movimentos circulares uniormes sobre o plano x (x e representam eixos perpendiculares) com equações horárias dadas por xa ( t ) = a+acos ( ωt ), ( t )
DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo.
DINÂMICA Quando se fala em dinâmica de corpos, a imagem que vem à cabeça é a clássica e mitológica de Isaac Newton, lendo seu livro sob uma macieira. Repentinamente, uma maçã cai sobre a sua cabeça. Segundo
1 a QUESTÃO Valor 1,0
1 a QUESTÃO Valor 1,0 Um esquimó aguarda a passagem de um peixe sob um platô de gelo, como mostra a figura abaixo. Ao avistá-lo, ele dispara sua lança, que viaja com uma velocidade constante de 50 m/s,
Universidade Federal do Pampa UNIPAMPA. Fluidos Hidrostática e Hidrodinâmica
Universidade Federal do Pampa UNIPAMPA Fluidos Hidrostática e Hidrodinâmica SUMÁRIO Fluido Força do fluido Pressão Lei de Stevin Sistemas de vasos comunicantes Princípio de Pascal Medições de pressão Princípio
Disciplina : Hidráulica e Pneumática Aula 1: Introdução
Curso: Técnico em Mecânica Disciplina : Hidráulica e Pneumática Aula 1: Introdução Prof. Evandro Rodrigo Dário, Dr. Eng. Estrutura da aula Introdução O circuito H&P quanto ao fluido Aplicações e exemplos
IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4
Lei de Gauss Considere uma distribuição arbitrária de cargas ou um corpo carregado no espaço. Imagine agora uma superfície fechada qualquer envolvendo essa distribuição ou corpo. A superfície é imaginária,
Pressão Atmosférica Empuxo
1 Pressão Atmosférica Empuxo Pressão Atmosférica 1. O que se entende por pressão atmosférica? A pressão atmosférica aumenta ou diminui com a altitude? Por quê? 2. É freqüente, em restaurantes, encontrar
As leis de Newton e suas aplicações
As leis de Newton e suas aplicações Disciplina: Física Geral e Experimental Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: O que significa o conceito de força
Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ
Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ º Exame de Qualificação 011 Questão 6 Vestibular 011 No interior de um avião que se desloca horizontalmente em relação ao
Mecânica dos Fluidos. Aula 10 Escoamento Laminar e Turbulento. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues
Aula 10 Escoamento Laminar e Turbulento Tópicos Abordados Nesta Aula Escoamento Laminar e Turbulento. Cálculo do Número de Reynolds. Escoamento Laminar Ocorre quando as partículas de um fluido movem-se
As forças atrativas entre duas moléculas são significativas até uma distância de separação d, que chamamos de alcance molecular.
Tensão Superficial Nos líquidos, as forças intermoleculares atrativas são responsáveis pelos fenômenos de capilaridade. Por exemplo, a subida de água em tubos capilares e a completa umidificação de uma
Olimpíada Brasileira de Física 2001 2ª Fase
Olimpíada Brasileira de Física 2001 2ª Fase Gabarito dos Exames para o 1º e 2º Anos 1ª QUESTÃO Movimento Retilíneo Uniforme Em um MRU a posição s(t) do móvel é dada por s(t) = s 0 + vt, onde s 0 é a posição
Universidade de São Paulo Departamento de Geografia FLG 0253 - Climatologia I. Pressão Atmosférica
Universidade de São Paulo Departamento de Geografia FLG 0253 - Climatologia I Pressão Atmosférica Prof. Dr. Emerson Galvani Laboratório de Climatologia e Biogeografia LCB Questão motivadora: Observamos
a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo.
(MECÂNICA, ÓPTICA, ONDULATÓRIA E MECÂNICA DOS FLUIDOS) 01) Um paraquedista salta de um avião e cai livremente por uma distância vertical de 80 m, antes de abrir o paraquedas. Quando este se abre, ele passa
9) (UFMG/Adap.) Nesta figura, está representado um bloco de peso 20 N sendo pressionado contra a parede por uma força F.
Exercícios - Aula 6 8) (UFMG) Considere as seguintes situações: I) Um carro, subindo uma rua de forte declive, em movimento retilíneo uniforme. II) Um carro, percorrendo uma praça circular, com movimento
n 1 L 1 n 2 L 2 Supondo que as ondas emergentes podem interferir, é correto afirmar que
QUESTÃO 29 QUESTÃO 27 Uma escada de massa m está em equilíbrio, encostada em uma parede vertical, como mostra a figura abaixo. Considere nulo o atrito entre a parede e a escada. Sejam µ e o coeficiente
Mecânica dos Fluidos. Aula 2 Propriedades dos Fluidos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues
Aula 2 Propriedades dos Fluidos Tópicos Abordados Nesta Aula Propriedades dos Fluidos. Massa Específica. Peso Específico. Peso Específico Relativo. Alfabeto Grego Propriedades dos Fluidos Algumas propriedades
UNIDADE III Energia: Conservação e transformação. Aula 10.2 Conteúdo:
UNIDADE III Energia: Conservação e transformação. Aula 10.2 Conteúdo: Estudo das forças: aplicação da leis de Newton. Habilidades: Utilizar as leis de Newton para resolver situações problemas. REVISÃO
PROVA DE FÍSICA 3 o TRIMESTRE DE 2012
PROVA DE FÍSICA 3 o TRIMESTRE DE 2012 PROF. VIRGÍLIO NOME N o 8 o ANO Olá, caro(a) aluno(a). Segue abaixo uma série de exercícios que têm, como base, o que foi trabalhado em sala de aula durante todo o
FÍSICA - Grupos H e I - GABARITO
1 a QUESTÃO: (,0 pontos) Avaliador Revisor Um sistema básico de aquecimento de água por energia solar está esquematizado na figura abaixo. A água flui do reservatório térmico para as tubulações de cobre
Capítulo 5: Aplicações da Derivada
Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f
Capítulo 4 Trabalho e Energia
Capítulo 4 Trabalho e Energia Este tema é, sem dúvidas, um dos mais importantes na Física. Na realidade, nos estudos mais avançados da Física, todo ou quase todos os problemas podem ser resolvidos através
Desenho e Projeto de Tubulação Industrial Nível II
Desenho e Projeto de Tubulação Industrial Nível II Módulo II Aula 05 1. Introdução A mecânica dos gases é a parte da Mecânica que estuda as propriedades dos gases. Na Física existem três estados da matéria
QUESTÃO 01. a) Qual a temperatura do forno? b) Qual a variação de energia interna do bloco do latão. QUESTÃO 02
Quando necessário considere: g = 10 m/s 2, densidade da água = 1 g/cm 3, 1 atm = 10 5 N/m 2, c água = 1 cal/g. 0 C, R = 8,31 J/mol.K, velocidade do som no ar = 340 m/s e na água = 1500 m/s, calor específico
CONSTRUINDO UMA PONTE TRELIÇADA DE PALITOS DE PICOLÉ
CONSTRUINDO UMA PONTE TRELIÇADA DE PALITOS DE PICOLÉ Objetivo do projeto. Neste projeto, você irá construir um modelo de ponte treliçada que já estará previamente projetada. Quando terminada a etapa construção,
Exercícios de Física Hidrostática
Exercícios de Física Hidrostática 01) Os chamados "Buracos Negros", de elevada densidade, seriam regiões do Universo capazes de absorver matéria, que passaria a ter a densidade desses Buracos. Se a Terra,
IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =
Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo
Tânia observa um lápis com o auxílio de uma lente, como representado nesta figura:
PROVA DE FÍSICA QUESTÃO 0 Tânia observa um lápis com o auxílio de uma lente, como representado nesta figura: Essa lente é mais fina nas bordas que no meio e a posição de cada um de seus focos está indicada
VENTILADORES INTRODUÇÃO: Como outras turbomáquinas, os ventiladores são equipamentos essenciais a determinados processos
Universidade Federal do Paraná Curso de Engenharia Industrial Madeireira MÁQUINAS HIDRÁULICAS AT-087 Dr. Alan Sulato de Andrade [email protected] INTRODUÇÃO: Como outras turbomáquinas, os ventiladores
Hidrostática Pascal Prensa Hidráulica
Hidrostática Pascal Prensa Hidráulica 1. (Espcex (Aman) 013) Um elevador hidráulico de um posto de gasolina é acionado por um pequeno êmbolo de área igual a 4 4 10 m. O automóvel a ser elevado tem peso
Plano de Aula 3 - Experimento: investigando a lei de Ohm
Plano de Aula 3 - Experimento: investigando a lei de Ohm Construção: Eduardo, David e Jorge. Objetivo Ilustrar o movimento das cargas em um condutor. Os alunos irão observar que o movimento das cargas
FÍSICA. Valores de algumas grandezas físicas:
Valores de algumas grandezas físicas: Aceleração da gravidade: 10 m/s Velocidade da luz no vácuo: 3,0 x 10 8 m/s. Velocidade do som no ar: 330 m/s Calor latente de fusão do gelo: 80 cal/g Calor específico
Física. Física Módulo 1 Leis de Newton
Física Módulo 1 Leis de Newton Cinemática x Dinâmica: A previsão dos movimentos Até agora apenas descrevemos os movimentos : cinemática É impossível, no entanto, prever movimentos somente usando a cinemática.
Sumário. Prefácio... xi. Prólogo A Física tira você do sério?... 1. Lei da Ação e Reação... 13
Sumário Prefácio................................................................. xi Prólogo A Física tira você do sério?........................................... 1 1 Lei da Ação e Reação..................................................
UNIDADES EM QUÍMICA UNIDADES SI COMPRIMENTO E MASSA
UNIDADES EM QUÍMICA O sistema métrico, criado e adotado na França durante a revolução francesa, é o sistema de unidades de medida adotada pela maioria dos paises em todo o mundo. UNIDADES SI Em 1960, houve
1 Analise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra.
FÍSIC 1 nalise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra. Esse circuito é composto por condutores ideais (sem
A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y
5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas
ɸ E = ΣE.A (5) 14/04/2015. Bacharelado em Engenharia Civil. Física III
Bacharelado em Engenharia Civil Física III Prof a.: M.Sc. Mariana de Faria Gardingo Diniz FLUXO DE CAMPO ELÉTRICO Imagine que as linhas de campo da figura abaixo representem um campo elétrico de cargas
Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:
Rumo ao ITA Física Análise Dimensional Ivan Guilhon Mitoso Rocha A análise dimensional é um assunto básico que estuda as grandezas físicas em geral, com respeito a suas unidades de medida. Como as grandezas
Provas Comentadas OBF/2011
PROFESSORES: Daniel Paixão, Deric Simão, Edney Melo, Ivan Peixoto, Leonardo Bruno, Rodrigo Lins e Rômulo Mendes COORDENADOR DE ÁREA: Prof. Edney Melo 1. Um foguete de 1000 kg é lançado da superfície da
3.2 Equilíbrio de Fases Vapor - Líquida - Sólida numa Substância Pura Consideremos como sistema a água contida no conjunto êmbolo - cilindro abaixo:
- Resumo do Capítulo 0 de Termodinâmica: Capítulo - PROPRIEDADES DE UMA SUBSTÂNCIA PURA Nós consideramos, no capítulo anterior, três propriedades familiares de uma substância: volume específico, pressão
