Método de Otsu. Leonardo Torok 1
|
|
|
- Danilo Benevides Botelho
- 7 Há anos
- Visualizações:
Transcrição
1 Método de Otsu Leonardo Torok 1 1 Instituto de Computação Universidade Federal Fluminense (UFF) Av. Gal. Milton Tavares de Souza, s/nº Niterói RJ Brasil [email protected] Resumo. O método de Otsu é um dos mais populares algoritmos de limiarização, utilizado para buscar um threshold ideal para separação dos elementos na frente e no fundo de uma imagem. 1. Introdução O método de Otsu é um algoritmo de limiarização, proposto por Nobuyuki Otsu [Otsu, 1975]. Seu objetivo é, a partir de uma imagem em tons de cinza, determinar o valor ideal de um threshold que separe os elementos do fundo e da frente da imagem em dois clusters, atribuindo a cor branca ou preta para cada um deles. Devido à essa característica, funciona especialmente bem para casos de imagens com histogramas bimodais, podendo ser divididas adequadamente com um único valor. Existe ainda uma variação para limiarização multinível, proposta por Liao (2001). 2. Conceito O conceito proposto é de iterar por todos os valores possíveis para o threshold em ma imagem (ou seja, o intervalo dinâmico da imagem), buscando aquele que minimiza a soma da variância intraclasses da imagem. Esse valor irá corresponder ao melhor threshold para o caso, separando frente e fundo e atribuindo uma cor para cada classe. A variância intraclasse para um threshold possível t pode ser calculada com: Aonde: W é o peso para cada classe. Essa medida corresponde à probabilidade que um pixel possui de pertencer a classe b (background) ou f (foreground). Esse cálculo será realizado para todos os thresholds possíveis. O valor que minimizar a variância intraclasse será o threshold selecionado para a binarização da imagem. Porém, o cálculo da variância, que exige os valores das médias e pesos correspondentes para cada classe, é computacionalmente custoso. Otsu demonstrou que é possível substituir a fórmula acima pelo cálculo da variância interclasse, diminuindo o custo do algoritmo:
2 Aonde: Logo: A diferença na aplicação desse caso é que o algoritmo deve buscar maximizar a variância interclasse. O valor que atinge esse objetivo é o mesmo threshold que minimiza a variância intraclasse e, portanto, resulta na limiarização ideal. Figura 1. Fluxograma da execução do algoritmo de Otsu. A figura 1 ilustra o funcionamento do algoritmo em um fluxograma. Inicialmente, é necessário calcular o histograma da imagem em tons de cinza de entrada. A partir daí, para cada valor possível de um threshold, serão calculados os pesos e médias para as classes da frente e fundo da imagem. Esse valores serão utilizados no cálculo da variância interclasses. Após todas as iterações, o threshold escolhido é aquele que apresentou o maior valor para a variância interclasses. O
3 algoritmo irá iterar cada pixel na imagem e verificar seu valor. Caso esse valor seja igual ou superior ao threshold, a cor do pixel será redefinida como branca. Caso o tom do pixel seja inferior ao threshold, sua nova cor será preta. Com isso, a saída agora será uma imagem binária em dois tons. 3. Exemplos Figura 2. Exemplos de imagens em tons de cinza (esquerda) e seus resultados após a limiarização pelo método de Otsu. A figura 2 mostra exemplos de imagens segmentadas pelo método de Otsu. A análise do histograma dos exemplos (figura 3) indica o ponto da divisão do algoritmo. É interessante observar que ambas as imagens não representavam casos perfeitamente bimodais e, com isso, não existe uma distinção clara entre todos os elementos do fundo e da frente de cada imagem. Figura 3. Histogramas para as imagens superior (esquerda) e inferior (direita) na figura 2.
4 A figura 4 mostra a aplicação do método de Otsu em um dos casos das amostras do estudo de análise de anomalias na mama [Lincoln, 2015]. mostra exemplos de imagens segmentadas pelo método de Otsu. A análise do histograma dos exemplos (figura 3) indica o ponto da divisão do algoritmo. É interessante observar que o histograma nesse caso é bimodal, levando a uma divisão clara entre a frente e o fundo da imagem. Figura 4. Limiarização pelo método de Otsu aplicada a uma imagem do estudo de câncer de mama. A imagem original aparece no canto inferior esquerdo enquanto o histograma de encontra na parte inferior direita. 4. Conclusão A limiarização pelo método de Otsu apresenta resultados excelentes em imagens com histogramas bimodais, com resultados mais fracos à medida que a imagem em questão se afasta desse padrão. Uma vantagem é a simplicidade do algoritmo após a compreensão de sua base matemática, podendo ser implementado com poucas linhas de código. Referências Otsu, N. (1975) A threshold selection method from gray level histograms. Automatica, 11( ), pp Liao, P. S., Chen, T. S. e Chung, P. C. (2001) A fast algorithm for multilevel thresholding. J. Inf. Sci. Eng., 17(5), pp
5 Lincoln, F. S. (2015) Uma Análise Híbrida para Detecção de Anomalias da Mama usando Séries Temporais de Temperatura. Niterói, Tese (Doutorado em Computação) Universidade Federal Fluminense Greensted, A. (2010) Otsu Thresholding. Disponível em: k/software/imgproc/otsuthreshold.html Gazziro, M. (2013) Método de Otsu. Universidade de São Paulo São Carlos. Instituto de Ciências Morse, B. (2000) Lecture 4: Thresholding. Brigham Young University
SEL-0339 Introdução à Visão Computacional. Aula 5 Segmentação de Imagens
Departamento de Engenharia Elétrica - EESC-USP SEL-0339 Introdução à Visão Computacional Aula 5 Segmentação de Imagens Prof. Dr. Marcelo Andrade da Costa Vieira Prof. Dr. Adilson Gonzaga Segmentação de
Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto
Processamento de Imagem Prof. MSc. André Yoshimi Kusumoto [email protected] Amostragem e Quantização Amostragem refere-se ao número de pontos amostrados de uma imagem digitalizada (resolução).
Estudo comparativo de métodos de segmentação das bordas de lesões em imagens dermatoscópicas
Estudo parativo de métodos de segmentação das bordas de lesões em imagens dermatoscópicas Pedro Vinícius Macêdo de Araújo, Geraldo Braz Junior Curso de Ciência da Computação Universidade Federal do Maranhão
Realce de imagens parte 1: operações pontuais SCC0251 Processamento de Imagens
Realce de imagens parte 1: operações pontuais SCC0251 Processamento de Imagens Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2013/1 Moacir Ponti Jr.
Extração de objetos de interesse em imagens digitais utilizando a biblioteca de Visão Computacional OpenCV
Extração de objetos de interesse em imagens digitais utilizando a biblioteca de Visão Computacional OpenCV Izadora Aparecida RAMOS 1,3,4 ; Servílio Souza de ASSIS 1,3,4 ; Bruno Alberto Soares OLIVEIRA
Trabalho 2 Fundamentos de computação Gráfica
Trabalho 2 Fundamentos de computação Gráfica Processamento de Imagens Aluno: Renato Deris Prado Tópicos: 1- Programa em QT e C++ 2- Efeitos de processamento de imagens 1- Programa em QT e C++ Para o trabalho
Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto
Processamento de Imagem Prof. MSc. André Yoshimi Kusumoto [email protected] Prof. André Y. Kusumoto [email protected] Amostragem e Quantização Amostragem refere-se ao número de pontos
SEL-0339 Introdução à Visão Computacional. Aula 2 Processamento Espacial
Departamento de Engenharia Elétrica - EESC-USP SEL-0339 Introdução à Visão Computacional Aula 2 Processamento Espacial Prof. Dr. Marcelo Andrade da Costa Vieira Prof. Dr. Adilson Gonzaga [email protected]
[2CTA121] Processamento de Imagens em Alimentos: Conceitos e Aplicações
[2CTA121] Processamento de Imagens em Alimentos: Conceitos e Aplicações Dr. Sylvio Barbon Junior PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DE ALIMENTOS - UEL 2016 Assunto Aula 4 Segmentação de Imagens 2 de
Processamento digital de imagens
Processamento digital de imagens Agostinho Brito Departamento de Engenharia da Computação e Automação Universidade Federal do Rio Grande do Norte 6 de outubro de 2016 Segmentação de imagens A segmentação
Aula 3 Processamento Espacial
SEL 0449 - Processamento Digital de Imagens Médicas Aula 3 Processamento Espacial Prof. Dr. Marcelo Andrade da Costa Vieira [email protected] EESC/USP Processamento Espacial Transformações ponto a ponto
PMR2560 Visão Computacional Conversão e Limiarização. Prof. Eduardo L. L. Cabral
PMR2560 Visão Computacional Conversão e Limiarização Prof. Eduardo L. L. Cabral Objetivos Processamento de imagens: Conversão de imagens; Histograma; Limiarização. Imagem digital Uma imagem é uma matriz
Processamento Digital de Imagens
Ciência da Computação Processamento Digital de Imagens Prof. Sergio Ribeiro Tópicos Técnicas de Modificação do Histograma Compressão de Histograma 2 Veremos a definição e utilização do conceito de histograma.
SEL Visão Computacional. Aula 2 Processamento Espacial
Departamento de Engenharia Elétrica - EESC-USP SEL-5895 - Visão Computacional Aula 2 Processamento Espacial Prof. Dr. Adilson Gonzaga Prof. Dr. Evandro Linhari Rodrigues Prof. Dr. Marcelo Andrade da Costa
Desenvolvimento de um método para segmentação de imagens histológicas da rede vascular óssea
Desenvolvimento de um método para segmentação de imagens histológicas da rede vascular óssea Pedro Henrique Campos Cunha Gondim Orientador: André Ricardo Backes Coorientador: Bruno Augusto Nassif Travençolo
DEFEITOS EM IMAGENS RADIOGRÁFICAS DE JUNTAS SOLDADAS EM TUBULAÇÕES: SEGMENTAÇÃO E EXTRAÇÃO DE DEFEITOS
DEFEITOS EM IMAGENS RADIOGRÁFICAS DE JUNTAS SOLDADAS EM TUBULAÇÕES: SEGMENTAÇÃO E EXTRAÇÃO DE DEFEITOS * Aluno do curso Tecnologia em Sistemas de Telecomunicações da UTFPR [email protected] ** Aluno
Morfologia Matemática: algumas aplicações. Rosana Gomes Bernardo Universidade Federal Fluminense
Morfologia Matemática: algumas aplicações Rosana Gomes Bernardo Universidade Federal Fluminense Introdução Aplicações Motivadoras - Consumo de Gás Natural Roteiro - Placas de Veículos Referências - Cartografia
MouseCam: aplicação de controle do mouse via câmera
MouseCam: aplicação de controle do mouse via câmera Introdução ao Processamento de Imagens COS756 PESC/COPPE/UFRJ 2013 1 Renan Garrot [email protected] 1. Introdução O processo de tracking por vídeo consiste
Algoritmos Genéticos
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Algoritmos Genéticos Aluno: Fabricio Aparecido Breve Prof.: Dr. André Ponce de Leon F. de Carvalho São Carlos São Paulo Maio
Mapeamento do uso do solo para manejo de propriedades rurais
1/28 Mapeamento do uso do solo para manejo de propriedades rurais Teoria Eng. Allan Saddi Arnesen Eng. Frederico Genofre Eng. Marcelo Pedroso Curtarelli 2/28 Conteúdo programático: Capitulo 1: Conceitos
Processamento Digital de Imagens Aula 06
exatasfepi.com.br Processamento Digital de Imagens Aula 06 André Luís Duarte A sabedoria oferece proteção, como o faz o dinheiro, mas a vantagem do conhecimento é esta: a sabedoria preserva a vida de quem
Capítulo 3 VISÃO COMPUTACIONAL
Capítulo 3 VISÃO COMPUTACIONAL Capítulo 3 3.1. Principais Etapas de um Sistema de Visão Computacional 3.2. Visão Humana X Computacional 3.3. A Imagem Digital 3.4. Histograma de imagem digital 3.5. Sistemas
Aula 8: Complemento a Um e Complemento a Dois
Aula 8: Complemento a Um e Complemento a Dois Diego Passos Universidade Federal Fluminense Fundamentos de Arquiteturas de Computadores Diego Passos (UFF) Complemento a Um e Complemento a Dois FAC 1 / 40
RECONHECIMENTO FACIAL UTILIZANDO EIGENFACES
Universidade Federal do Rio de Janeiro Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Engenharia de Sistemas e Computação Rio de Janeiro, RJ Brasil RECONHECIMENTO
Processamento de Imagens Segmentação
Processamento de Imagens Segmentação 1 Segmentação Segmentação Análise de Imagem Divisão da imagem em partes fortemente relacionadas aos objetos e áreas do mundo real contidos na imagem Completa: regiões
3 Processamento e Análise Digital de Imagens
41 3 Processamento e Análise Digital de Imagens O Processamento Digital de Imagens (PDI) é em um conjunto de técnicas que utiliza operações matemáticas para alterar os pixels de imagens digitais. O PDI
Radiométricas. Alexandre Xavier Falcão. Instituto de Computação - UNICAMP
Operações Matemáticas e Transformações Radiométricas Instituto de Computação - UNICAMP [email protected] Operações Matemáticas Sejam Î = (D I, I ) e Ĵ = (D J, J) duas imagens cinzas de mesmo domínio,
Aprendizado de Máquina (Machine Learning)
Ciência da Computação (Machine Learning) Aula 02 Representação dos dados Pré-processamento Max Pereira Tipo de Dados Os atributos usados para descrever objetos de dados podem ser de diferentes tipos: Quantitativos
Por que atributos irrelevantes são um problema Quais tipos de algoritmos de aprendizado são afetados Abordagens automáticas
Por que atributos irrelevantes são um problema Quais tipos de algoritmos de aprendizado são afetados Abordagens automáticas Wrapper Filtros Muitos algoritmos de AM são projetados de modo a selecionar os
Processamento Digital de Imagens
Ciência da Computação Processamento Digital de Imagens Prof. Sergio Ribeiro Tópicos Transformações de Intensidade Transformações Logarítmicas Comparação entre Diversas Técnicas 2 Transformações de Intensidade
Métodos de Segmentação de Imagem para Análise da Marcha
Métodos de Segmentação de Imagem para Análise da Marcha Maria João M. Vasconcelos, João Manuel R. S. Tavares [email protected], [email protected] 3º Congresso Nacional de Biomecânica 11-12 Fevereiro
PSI2651 PROCESSAMENTO, ANÁLISE E SÍNTESE DE IMAGENS. 1 o período de 2005 LISTA DE EXERCÍCIOS
PSI PROCESSAMENTO, ANÁLISE E SÍNTESE DE IMAGENS o período de LISTA DE EXERCÍCIOS ) Considerando imagens do tipo da figura abaixo. Descreva um procedimento que identifique quantas células com furo e quantas
Processamento de Imagens. Segmentação por regiões
Processamento de Imagens Segmentação por regiões Inúmeros Métodos Clusterização Baseados em histograma Detecção de bordas Crescimento de regiões Level Set Particionamento de grafos Watershed Baseados em
APLICAÇÃO DE TÉCNICAS DE PROCESSAMENTO DE IMAGENS DIGITAIS EM IMAGENS GERADAS POR ULTRA-SOM
VIII ERMAC 8 o Encontro Regional de Matemática Aplicada e Computacional 0- de Novembro de 008 Universidade Federal do Rio Grande do Norte Natal/RN APLICAÇÃO DE TÉCNICAS DE PROCESSAMENTO DE IMAGENS DIGITAIS
ESTUDO DE TÉCNICAS PARA SOLUÇÃO DE PROBLEMAS DE PROCESSAMENTO DE IMAGENS UTILIZANDO A LINGUAGEM PYTHON
ESTUDO DE TÉCNICAS PARA SOLUÇÃO DE PROBLEMAS DE PROCESSAMENTO DE IMAGENS UTILIZANDO A LINGUAGEM PYTHON Marcus Vinícius Teodoro Silva, Marcos William da Silva Oliveira Instituto Federal de Educação, Ciência
Face Detection. Image Processing scc moacir ICMC/USP São Carlos, SP, Brazil
Face Detection Image Processing scc0251 www.icmc.usp.br/ moacir [email protected] ICMC/USP São Carlos, SP, Brazil 2011 Moacir Ponti Jr. (ICMCUSP) Face Detection 2011 1 / 24 Agenda 1 Detectando faces 2
Classificadores Lineares
Universidade Federal do Paraná (UFPR) Bacharelado em Informática Biomédica Classificadores Lineares David Menotti www.inf.ufpr.br/menotti/ci171-182 Hoje Funções Discriminantes Lineares Perceptron Support
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Francisco A. Rodrigues Departamento de Matemática Aplicada e Estatística - SME Conceitos básicos Classificação não-supervisionada:
LOCALIZAÇÃO AUTOMÁTICA DE PLACAS DE VEÍCULOS UTILIZANDO VARIÂNCIA TONAL
LOCALIZAÇÃO AUTOMÁTICA DE PLACAS DE VEÍCULOS UTILIZANDO VARIÂNCIA TONAL Guilherme B. da Cunha 1, Adriano A. Pereira 1, Keiji Yamanaka 1, Edna L. Flores 1, Fábio J. Parreira 1 1 Universidade Federal de
Processamento de Imagem. Histograma da Imagem Professora Sheila Cáceres
Processamento de Imagem Histograma da Imagem Professora Sheila Cáceres Histograma É a distribuição de frequência dos níveis de cinza da imagem onde cada entrada no eixo x representa o nível de cinza específico
Agentes de Procura Procura Estocástica. Capítulo 3: Costa, E. e Simões, A. (2008). Inteligência Artificial Fundamentos e Aplicações, 2.ª edição, FCA.
Agentes de Procura Procura Estocástica Capítulo 3: Costa, E. e Simões, A. (2008). Inteligência Artificial Fundamentos e Aplicações, 2.ª edição, FCA. AGENTES DE PROCURA ESTOCÁSTICA 1 Procura Aleatória O
Universidade Federal do Rio de Janeiro COPPE. Trabalho de Processamento de Imagens Reconhecimento de Símbolos de Componentes Eletrônicos
Universidade Federal do Rio de Janeiro COPPE Trabalho de Processamento de Imagens Reconhecimento de Símbolos de Componentes Eletrônicos Nome: Fernanda Duarte Vilela Reis de Oliveira Professores: Antonio
INF Fundamentos da Computação Gráfica Professor: Marcelo Gattass Aluno: Rogério Pinheiro de Souza
INF2608 - Fundamentos da Computação Gráfica Professor: Marcelo Gattass Aluno: Rogério Pinheiro de Souza Trabalho 02 Visualização de Imagens Sísmicas e Detecção Automática de Horizonte Resumo Este trabalho
Distribuições Amostrais
Estatística II Antonio Roque Aula Distribuições Amostrais O problema central da inferência estatística é como fazer afirmações sobre os parâmetros de uma população a partir de estatísticas obtidas de amostras
Complemento a Um e Complemento a Dois
Complemento a Um e Complemento a Dois Cristina Boeres (baseado no material de Fernanda Passos) Instituto de Computação (UFF) Fundamentos de Arquiteturas de Computadores Cristina Boeres (IC/UFF) Complemento
Propriedades da Imagem Amostragem & Quantização (Quantificação) Histograma Imagem Colorida x Imagem Monocromática. Propriedades da Imagem
Proc. Imagem Prof. Júlio C. Klafke [1] TÓPICOS DESENVOLVIDOS NESTE MÓDULO PROCESSAMENTO DE IMAGEM #02 Propriedades da Imagem Amostragem & Quantização (Quantificação) Histograma Imagem Colorida x Imagem
Visão Computacional. Alessandro L. Koerich. Programa de Pós-Graduação em Engenharia Elétrica Universidade Federal do Paraná (UFPR)
Visão Computacional Alessandro L. Koerich Programa de Pós-Graduação em Engenharia Elétrica Universidade Federal do Paraná (UFPR) Processamento da Informação Capturei uma Imagem! E agora? Assumindo que
Excel INTERMEDIÁRIO Estatística. Prof. Cassiano Isler Turma 3
Excel INTERMEDIÁRIO Prof. Cassiano Isler 2017.1 - Turma 3 s s Prof. Cassiano Isler Excel INTERMEDIÁRIO - Aula 4 2 / 29 s COSTA NETO, P. L. O.. 2. ed. São Paulo: Edgard Blücher (2002). GÓMEZ, Luis Alberto.
MÉTODOS NEWTON E QUASE-NEWTON PARA OTIMIZAÇÃO IRRESTRITA
MÉTODOS NEWTON E QUASE-NEWTON PARA OTIMIZAÇÃO IRRESTRITA Marlon Luiz Dal Pasquale Junior, UNESPAR/FECILCAM, [email protected] Solange Regina dos Santos (OR), UNESPAR/FECILCAM, [email protected]
3 Aprendizado por reforço
3 Aprendizado por reforço Aprendizado por reforço é um ramo estudado em estatística, psicologia, neurociência e ciência da computação. Atraiu o interesse de pesquisadores ligados a aprendizado de máquina
Extração de atributos usando o método LBP - Local Binary Pattern
Extração de atributos usando o método LBP - Local Binary Pattern Lia Nara Balta Quinta. 2 de maio de 2006 1 Antecedentes e Justificativa O Brasil possui, atualmente, um grande rebanho bovino, porém em
Davidson Rodrigo Boccardo
Gerenciamento de processos Davidson Rodrigo Boccardo [email protected] Revisão Critérios de alocação: Utilização da CPU Produtividade (Throughput) Número de processos finalizados por unidade de tempo
Exame de Aprendizagem Automática
Exame de Aprendizagem Automática 2 páginas com 11 perguntas e 3 folhas de resposta. Duração: 2 horas e 30 minutos DI, FCT/UNL, 5 de Janeiro de 2016 Nota: O exame está cotado para 40 valores. Os 20 valores
Processamento digital de imagens para a detecção e classificação de nódulos em mamografias
Revista Eletrônica da Faculdade Metodista Granbery http://re.granbery.edu.br - ISSN 1981 0377 Curso de Sistemas de Informação - N. 9, JUL/DEZ 2010 Processamento digital de imagens para a detecção e classificação
Instituto Superior de Engenharia do Porto Departamento de Engenharia Informática Engenharia Informática Algoritmia e Programação 2005/2006
Instituto Superior de Engenharia do Porto Departamento de Engenharia Informática Engenharia Informática Algoritmia e Programação 2005/2006 Nome Número Turma Exercício de Avaliação n o 1 Considere um parque
CARACTERIZAÇÃO DE CROMOSSOMOS DE TARTARUGAS DA ESPÉCIE PHRYNOPS GEOFFROANUS (TESTUDINES: PLEURODIRA)
CARACTERIZAÇÃO DE CROMOSSOMOS DE TARTARUGAS DA ESPÉCIE PHRYNOPS GEOFFROANUS (TESTUDINES: PLEURODIRA) Ivan Botacini Zanon Rua Lourenço Manzano, 218 Neves Paulista - SP (17) 3271-1398 [email protected]
MC102 Aula 26. Instituto de Computação Unicamp. 17 de Novembro de 2016
MC102 Aula 26 Recursão Instituto de Computação Unicamp 17 de Novembro de 2016 Roteiro 1 Recursão Indução 2 Recursão 3 Fatorial 4 O que acontece na memória 5 Recursão Iteração 6 Soma em um Vetor 7 Números
Métodos de Extração de Características
1. Introdução Métodos de Extração de Características A Interpretação ou entendimento de uma cena demanda o reconhecimento de seus objetos. Reconhecimento de objetos ou padrões contidos em uma cena -> é
Motivação Por que estudar?
Aula 04 Imagens Diogo Pinheiro Fernandes Pedrosa Universidade Federal Rural do Semiárido Departamento de Ciências Exatas e Naturais Curso de Ciência da Computação Motivação Por que estudar? Imagens digitais
Aprendizado de Máquina. Combinando Classificadores
Universidade Federal do Paraná (UFPR) Departamento de Informática (DInf) Aprendizado de Máquina Combinando Classificadores David Menotti, Ph.D. web.inf.ufpr.br/menotti Introdução O uso de vários classificadores
Clóvis de Araújo Peres Cargo: Professor Titular de Estatística da USP UNIFESP Formação: PhD em Estatística pela Universidade WISCONSIN - USA
TÍTULO: ESTUDO ESTATÍSTICO PARA DETERMINAÇÃO DO ERRO DE MICROMEDIÇÃO DAS ÁREAS PILOTO DE CONTROLE E REDUÇÃO DE PERDAS DO SISTEMA DE ABASTECIEMNTO DE ÁGUA DO MUNICÍPIO DE GUARULHOS. TEMA DO TRABALHO: ABASTECIMENTO
(a) Use cinco intervalos e construa um histograma e o polígono de frequência. (b) Determine uma medida de posição central e uma medida de dispersão.
Universidade Federal Fluminense Instituto de Ciências Exatas Departamento de Matemática 1 a Lista de Exercícios de Probabilidade e Estatística Prof a : Marina Sequeiros 1. Contou-se o número de erros de
Aula 3: Algoritmos: Formalização e Construção
Aula 3: Algoritmos: Formalização e Construção Fernanda Passos Universidade Federal Fluminense Programação de Computadores IV Fernanda Passos (UFF) Algoritmos: Formalização e Pseudo-Código Programação de
O EFEITO DA CORREÇÃO DO EFEITO HEEL EM IMAGENS RADIOGRÁFICAS DA MÃO
Artigo Original O EFEITO DA CORREÇÃO DO EFEITO HEEL EM IMAGENS RADIOGRÁFICAS DA MÃO C. Olivete Jr., E. L. L. Rodrigues e M. Z. do Nascimento Escola de Engenharia de São Carlos, Departamento de Engenharia
3 + =. resp: A=5/4 e B=11/4
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 3º ENSINO MÉDIO - PROF. CARLINHOS BONS ESTUDOS! ASSUNTO : POLINÔMIOS 1) Identifique as expressões abaixo que são
CORRELAÇÃO E REGRESSÃO. Modelos Probabilísticos para a Computação Professora: Andréa Rocha. UNIVERSIDADE FEDERAL DA PARAÍBA Dezembro, 2011
CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Modelos Probabilísticos para a Computação Professora: Andréa Rocha UNIVERSIDADE FEDERAL DA PARAÍBA Dezembro, 2011 CORRELAÇÃO Introdução Quando consideramos
