Teste de Wilcoxon-Mann-Whitney
|
|
|
- Neusa Domingos Caldas
- 9 Há anos
- Visualizações:
Transcrição
1 ## Distribuição exata de U m <- 3 n <- 4 faixa <- 0:(m * n) d0 <- dwilcox(faixa, m, n) plot(faixa, d0, type = "h", xlab = "u", ylab = "P(U = u)", lwd = 3) Teste de Wilcoxon-Mann-Whitney m <- 7 n <- 9 faixa <- 0:(m * n) d0 <- dwilcox(faixa, m, n) plot(faixa, d0, type = "h", xlab = "u", ylab = "P(U = u)", lwd = 3) ## Dados # Ex. 21, p. 119 em Noether (1991) # Ganho de peso em ratos (em g) # Dieta nova é mais econômica. # Verifique se o ganho de peso justifica adotar a dieta nova. padrao <- c(22.5, 19.1, 11.4, 16.8, 23.5, 22.3, 19.7, 21.2, 16.0, 20.4, 25.3, 17.5) nova <- c(11.4, 13.7, 20.3, 14.7, 11.8, 17.7, 14.5, 12.3, 14.5, 13.0, 22.0, 13.6) cat("\ Tamanhos amostrais: m =", m <- length(padrao), ", n =", n <- length(nova)) Tamanhos amostrais: m = 12, n = 12 summary(padrao) Min. 1st Qu. Median Mean 3rd Qu. Max summary(nova) Min. 1st Qu. Median Mean 3rd Qu. Max # Amostra combinada comb <- c(nova, padrao) 1
2 # Gráfico de pontos dieta <- factor(rep(c("nova", "Padrão"), times = c(m, n))) stripchart(comb ~ dieta, method = "stack", pch = 20, cex = 2, xlab = "Ganho de peso (g)", col = c("red", "blue"), ylab = "Dieta") Os valores mínimos ( = 11,4) para as duas dietas são iguais. # Função distribuição empírica Sm <- ecdf(nova) Sn <- ecdf(padrao) plot(sm, main = "", pch = 20, xlim = range(comb), xlab = "Ganho de peso (g)", ylab = "Probabilidade", col = "red") lines(sn, col = "blue", pch = 20) legend("bottomright", c("nova", "Padrão"), lty = 1, col = c("red", "blue"), bty = "n") 2
3 ## Gráfico de quantis (QQ) faixa <- range(comb) qqplot(padrao, nova, pch = 20, xlim = faixa, ylim = faixa, xlab = "Ganho de peso - padrão (g)", ylab = "Ganho de peso - nova (g)", col = "blue") abline(0, 1, lty = 2) # Teste de Wilcoxon-Mann-Whitney wilcox.test(nova, padrao, alternative = "greater") Wilcoxon rank sum test with continuity correction data: nova and padrao W = 26.5, p-value = alternative hypothesis: true location shift is greater than 0 Warning message: In wilcox.test.default(nova, padrao, alternative = "greater") : cannot compute exact p-value with ties Adotando um nível de significância de 5%, com base nos dados coletados e utilizando o teste de Mann- Whitney, não há evidência de aumento no ganho de peso com a dieta nova (p = 0,9961). Neste exemplo, em que há empates, o valor-p é calculado com correção de continuidade (correct = TRUE é a opção por default). Nota 1. Como você justificaria a aplicação do teste de Mann-Whitney a estes dados? Uma estimativa do deslocamento entre as duas funções distribuição pode ser obtida com a opção conf.int = TRUE. result <- wilcox.test(nova, padrao, alternative = "greater", conf.int = TRUE) 3
4 A estimativa da diferença (= -5,20) está no componente result$estimate. Com esta estimativa podemos obter a função distribuição empírica do ganho de peso com a dieta nova após deslocamento e comparar com a função distribuição empírica do ganho de peso com a dieta padrão. # Função distribuição empírica com deslocamento Smloc <- ecdf(nova - result$estimate) plot(sn, main = "", pch = 20, xlim = range(nova, padrao - result$estimate), xlab = "Ganho de peso (g)", ylab = "Probabilidade", col = "blue") lines(smloc, col = "red", pch = 20) legend("bottomright", c("padrão", "Nova deslocada"), lty = 1, col = c("blue", "red"), bty = "n") Nota 2. Utilize o gráfico acima para responder à pergunta da Nota 1. Nota 3. Verifique se é apropriado utilizar o teste t de Student para amostras independentes. Um intervalo de confiança (IC) para a diferença de localização (diferença mediana) está no componente result$confint. 95 percent confidence interval: Inf A função wilcox_test do pacote coin permite obter inferências exatas para a diferença de localização, mesmo quando há empates. Havendo empates, a distribuição da estatística de teste é exata condicional. Esta função requer uma formula com a variável resposta do lado esquerdo e a variável de classificação (da classe factor) do lado direito. 4
5 library(coin) wilcox_test(comb ~ dieta, distribution = "exact", conf.int = TRUE, alternative = "greater") Exact Wilcoxon Mann-Whitney Rank Sum Test data: comb by dieta (Nova, Padrão) Z = , p-value = alternative hypothesis: true mu is greater than 0 95 percent confidence interval: -7.8 Inf sample estimates: difference in location -5.2 Neste exemplo a função wilcox_test efetua a comparação utilizando nova padrão respeitando a ordem alfabética dos níveis do fator dieta. Se for necessário, a ordem dos níveis de um fator pode ser modificada com o argumento levels na chamada da função factor. Nota 4. Procure refazer o exemplo utilizando outros pacotes estatísticos (SAS, SPSS, Minitab e Statistica, por exemplo). A obtenção manual das estimativas para a diferença de localização (θ) é apresentada abaixo. ## Estimação de teta alfa < # Nível de sig. De <- sort(outer(nova, padrao, FUN = "-")) # Diferenças ordenadas qalfa <- qwilcox(alfa, m, n) # Quantil alfa As diferenças ordenadas podem ser calculadas sem a função outer. De <- sort(nova[rep(1:m, each = n)] - padrao[rep(1:n, times = m)]) # Posição do limite inferior do IC if (pwilcox(qalfa, m, n) == alfa) k <- qalfa else k <- qalfa - 1 cat("\n Estimativa pontual de teta =", median(de)) Estimativa pontual de teta = -5.2 cat("\n Limite inferior do IC de", 100 * (1 - alfa), "% para teta =", De[k + 1]) Limite inferior do IC de 95 % para teta = -7.8 Nota 5. Apresente um IC bilateral para θ com coeficiente de confiança igual a 90%. 5
Coeficientes de correlação
Coeficientes de correlação ## Dados de Anscombe (1973), pacote datasets # Gráficos de dispersão par(mfrow = c(2, 2)) par(mai = c(1, 1, 0.1, 0.1)) plot(anscombe[, i], anscombe[, i + 4], pch = 20, xlab =
Teste de Cochran-Mantel-Haenszel
Teste de Cochran-Mantel-Haenszel Apresentamos um exemplo com a função mantelhaen.test do pacote stats em R. Os dados do exemplo podem ser encontrados na Tabela 3.3, p. 60, do livro Introduction to Categorical
Função discriminante linear de Fisher
Função discriminante linear de Fisher ## Biblioteca com a função discriminante linear de Fisher library(mass) ## Dados (?iris apresenta informações sobre o conjunto de dados) dados
Coeficientes de correlação e testes de independência
Coeficientes de correlação e testes de independência ## Dados de Anscombe (1973), pacote datasets # Gráficos de dispersão par(mfrow = c(2, 2)) par(mai = c(1, 1, 0.1, 0.1)) for (i in 1:4) { plot(anscombe[,
Curso R. Teste de Hipóteses. Alexandre Adalardo de Oliveira. Ecologia- IBUSP maio 2017
Curso R Teste de Hipóteses Alexandre Adalardo de Oliveira Ecologia- IBUSP maio 2017 1 Uso da Linguagem R : Teste de Hipóteses 2. 1 Uso da Linguagem R : Teste de Hipóteses 1. a lógica do teste 2. o significado
Análise de agrupamentos por métodos hierárquicos aglomerativos
Análise de agrupamentos por métodos hierárquicos aglomerativos ## Exemplo 1 (p = 2) dados
Análise fatorial em R
Análise fatorial em R 1. Dados Referem-se a n = 54 observações de p = 7 variáveis apresentadas na Tabela 1.9, p. 44 em Johnson and Wichern (2007, Applied Multivariate Statisitical Analysis, sixth ed. Upper
Introdução ao R. Anderson Castro Soares de Oliveira
Castro Soares de Oliveira Distribuição Normal Distribuição Normal dnorm(x,mean,sd) - calcula a densidade de probabilidade no ponto x; Distribuição Normal dnorm(x,mean,sd) - calcula a densidade de probabilidade
Estimação e Testes de Hipóteses
Estimação e Testes de Hipóteses 1 Estatísticas sticas e parâmetros Valores calculados por expressões matemáticas que resumem dados relativos a uma característica mensurável: Parâmetros: medidas numéricas
Função prcomp em R. 1. Introdução
Função prcomp em R 1. Introdução Apresentamos alguns exemplos de utilização da função prcomp do pacote stats em R. Esta função permite realizar uma análise de componentes principais a partir de uma matriz
Função prcomp. 1. Introdução
Função prcomp 1. Introdução Apresentamos alguns exemplos de utilização da função prcomp do pacote stats em R. Esta função permite realizar uma análise de componentes principais a partir de uma matriz de
Exame Final de Métodos Estatísticos
Exame Final de Métodos Estatísticos Data: de Junho de 26 Duração: 3h. Nome: Curso: Declaro que desisto N. Mec. Regime: As cotações deste exame encontram-se na seguinte tabela. Responda às questões utilizando
Testes qui-quadrado e da razão de verossimilhanças
Testes qui-quadrado e da razão de verossimilhanças 1. Simulações São apresentados os passos para a geração de amostras em linguagem R e, a partir destas, o teste da hipótese da distribuição multinomial
Estatística descritiva
Estatística descritiva Para que serve a estatística? Qual o seu principal objectivo? obter conclusões sobre a população usando uma amostra? População Amostragem Amostra Uma ou mais variáveis (X) são observadas
Trabalho 4. Simulações e exemplo
Trabalho 4. Simulações e exemplo 1. Simulações São apresentados os passos para a geração de amostras em linguagem R e, a partir destas, o teste da hipótese da questão 3(c) do terceiro trabalho. Para realizar
CE-003: Estatística II - Turma: K/O, 2 a Prova (22/06/2016)
CE-003: Estatística II - Turma: K/O, 2 a Prova (22/06/2016) GRR: Nome: Turma: 1. Calcule as medidas descritivas pedidas para o conjunto de dados, supondo que eles representam uma amostra. 83, 92, 100,
Notas de aula Testes de Hipóteses. Idemauro Antonio Rodrigues de Lara
Notas de aula Testes de Hipóteses Idemauro Antonio Rodrigues de Lara 1. Fundamentos O que é uma hipótese? HIPÓTESE GREGA PROPOSIÇÃO. PALAVRA DE ORIGEM BASE, FUNDAMENTO, Hipótese Pensamento indutivo Inferência
Testes de Hipóteses. : Existe efeito
Testes de Hipóteses Hipótese Estatística de teste Distribuição da estatística de teste Decisão H 0 : Não existe efeito vs. H 1 : Existe efeito Hipótese nula Hipótese alternativa Varia conforme a natureza
1. Conceitos básicos de estatística Níveis de medição Medidas características de distribuições univariadas 21
OS SABERES INDISPENSÁVEIS 7 Índice Prefácio 13 Capítulo 1 Os Saberes Indispensáveis 1. Conceitos básicos de estatística 17 1.1. Níveis de medição 18 1.2. Medidas características de distribuições univariadas
Apontamentos de Introdução às Probabilidades e à Estatística
i Índice 7. Estimação 1 7.1. Estimação pontual 1 7.1.1. Propriedades dos estimadores 1 7.1.2. Métodos de estimação 4 7.1.2.1. Método dos momentos 4 7.1.2.2. Método da máxima verosimilhança 5 7.1.3. Exemplos
Testes não paramétricos são testes de hipóteses que não requerem pressupostos sobre a forma da distribuição subjacente aos dados.
TESTES NÃO PARAMÉTRICOS Testes não paramétricos são testes de hipóteses que não requerem pressupostos sobre a forma da distribuição subjacente aos dados. Bioestatística, 2007 15 Vantagens dos testes não
Resolução dos exemplos da apostila Capítulo 5 - Teste de Hipóteses
Resolução dos exemplos da apostila Capítulo 5 - Teste de Hipóteses Exemplo 5.1 Imagine que seu amigo José lhe diga o seguinte: Possuo em meu bolso do paletó 16 bolas de gude, sendo que 10 bolas são brancas,
Teste de hipóteses. Testes de Hipóteses. Valor de p ou P-valor. Lógica dos testes de hipótese. Valor de p 31/08/2016 VPS126
3/8/26 Teste de hipóteses Testes de Hipóteses VPS26 Ferramenta estatística para auxiliar no acúmulo de evidências sobre uma questão Média de glicemia de um grupo de animais é diferente do esperado? Qual
Se a afirmação de João é verdadeira, temos o seguinte conjunto em seu bolso.
Capítulo 5 Testes de Hipóteses Capítulo 5 Exemplo 5.1 Imagine que seu amigo José lhe diga o seguinte: Possuo em meu bolso do paletó 16 bolas de gude, sendo que 10 bolas são brancas, 4 são verdes e 2 são
1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA
1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 010 Estatística Descritiva e Análise Exploratória Etapas iniciais. Utilizadas para descrever e resumir os dados. A disponibilidade de uma grande quantidade
Pesquisa Quantitativa. Comparações de Médias. Pesquisa Quantitativa Roteiro Geral. Roteiro do Módulo. Prof. Lupércio França Bessegato - UFJF 1
Pesquisa Quantitativa Comparações de Médias Lupércio França Bessegato Mestrado em Administração/UFJF 1. Introdução 2. Coleta de dados Roteiro Geral 3. Modelos probabilísticos 4. Distribuições amostrais
ANÁLISE DE SOBREVIVÊNCIA Teoria e aplicações em saúde. Caderno de Respostas Capítulo 4 Estimação não-paramétrica
ANÁLISE DE SOBREVIVÊNCIA Teoria e aplicações em saúde Caderno de Respostas Capítulo 4 Estimação não-paramétrica Exercício 4.1: Considere os dados de tempo de aleitamento de 15 crianças, descrito no exercício
Prof. a Dr. a Simone Daniela Sartorio de Medeiros. DTAiSeR-Ar
Teste de hipótese para a média de populações normais Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar Teste de hipóteses para média de populações normais Objetivo: avaliar afirmações sobre
Exame de Recorrência de Métodos Estatísticos. Departamento de Matemática Universidade de Aveiro
Exame de Recorrência de Métodos Estatísticos Departamento de Matemática Universidade de Aveiro Data: 6/6/6 Duração: 3 horas Nome: N.º: Curso: Regime: Declaro que desisto Classificação: As cotações deste
Módulo VII: Estatística elementar
Módulo VII: Estatística elementar 166 Revisão 167 Palavras-chave em estatística A estatística é composta por um conjunto de métodos destinados à coleta, à apresentação, à análise e à interpretação de dados,
Técnicas Computacionais em Probabilidade e Estatística I. Aula I
Técnicas Computacionais em Probabilidade e Estatística I Aula I Chang Chiann MAE 5704- IME/USP 1º Sem/2008 1 Análise de Um conjunto de dados objetivo: tratamento de um conjunto de dados. uma amostra de
Testes de significância com dados multivariados
Testes de significância com dados multivariados Hiron Pereira Farias e Talita T. Fernandes Wednesday, January 20, 2016 Hiron Pereira Farias e Talita T. Fernandes Testes de significância com dados multivariadoswednesday,
MLG gama em R. # Estatísticas descritivas by(dados$resist, dados[, c("volt", "temp")], function(x) c(length(x), mean(x), sd(x), sd(x) / mean(x)))
MLG gama em R Este exemplo refere-se a um experimento em que a resistência (em horas) de um determinado tipo de vidro foi avaliada segundo quatro valores de voltagem (200, 250, 300 e 350, em kilovolts)
Análise Estatística em Epidemiologia Utilizando o Ambiente R - I
Análise Estatística em Epidemiologia Utilizando o Ambiente R - I Análise exploratória de dados Ministrantes: Prof a Maria do Rosário D. O. Latorre Dr. Gabriel Z. Laporta Monitor: Alessandra C. G. Pellini
Por que testes não-paramétricos?
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Métodos Estatísticos Avançados em Epidemiologia Aula 3 Testes Não-Paramétricos: Wilcoxon Mann-Whitney Kruskal-Wallis
Prof. Lorí Viali, Dr.
Prof. Lorí Viali, Dr. http://www.mat.ufrgs.br/viali/ [email protected] Os testes O teste de Kruskal-Wallis (Análise de variância de uma classificação por postos) O teste qui-quadrado William Henry Kruskal
Comparando Duas Amostras (abordagem não-paramétrica)
Comparando Duas Amostras (abordagem não-paramétrica) Aula de hoje Estatística Não-Paramétrica Parâmetro: é medida usada para descrever uma característica de uma população Ponto estimativa por ponto (média,
1) Como vou comparar 3 grupos realizo uma Anova one way:
Gabarito aula anova e teste não-paramétrico: 1) Como vou comparar 3 grupos realizo uma Anova one way: One-way ANOVA: AREA versus VIRUS Analysis of Variance for AREA Source DF SS MS F P VIRUS 2 215,54 107,77
Capítulo 4 Inferência Estatística
Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a diferença de
Capítulo 6. Experimentos com um Fator de Interesse. Gustavo Mello Reis José Ivo Ribeiro Júnior
Capítulo 6 Experimentos com um Fator de Interesse Gustavo Mello Reis José Ivo Ribeiro Júnior Universidade Federal de Viçosa Departamento de Informática Setor de Estatística Viçosa 2007 Capítulo 6 Experimentos
Importação e Exportação de dados
Importação e Exportação de dados Cristiano de Carvalho Santos Departamento de Estatística, Universidade Federal de Minas Gerais (UFMG) Importação de dados Muitas vezes os dados que iremos utilizar já foram
Case Processing Summary
17. O ficheiro Banco.sav encerra informação relativa a 474 empregados contratados por um banco, entre 1969 e 1971. Este banco esteve envolvido num processo judicial no âmbito da Igualdade de Oportunidade
Uso de procedimentos de estatistica na obtenção de resultados de toxicidade
Uso de procedimentos de estatistica na obtenção de resultados de toxicidade Dean Leverett Senior Scientist UK Environment Agency Science Biological Effects Measures Plano Resultados dos testes de toxicidade
SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20
SUMÁRIO Prefácio, 1 3 1 CÁLCULO DAS PROBABILIDADES, 15 1.1 Introdução, 15 1.2 Caracterização de um experimento aleatório, 15 1.3 Espaço amostrai, 16 1.4 Evento, 17 1.5 Eventos mutuamente exclusivos, 17
Teoria da Estimação. Fabricio Goecking Avelar. junho Universidade Federal de Alfenas - Instituto de Ciências Exatas
Teoria da Estimação Fabricio Goecking Avelar Universidade Federal de Alfenas - Instituto de Ciências Exatas junho - 2018 Algumas distribuições importantes Sumário 1 Algumas distribuições importantes 2
ME613 - Análise de Regressão
ME613 - Análise de Regressão Parte 2 Propriedades dos estimadores Samara F. Kiihl - IMECC - UNICAMP Suposições do modelo de regressão linear simples Suposições do modelo de regressão linear simples Até
Teste Mann-Whitney. Contrapartida não-paramétrica para. Teste-t para amostras independentes
Teste Mann-Whitney Contrapartida não-paramétrica para Teste-t para amostras independentes Teste Mann-Whitney pequenas amostras independentes 1. Testes para Duas Populações, X e Y, Independentes. Corresponde
EXEMPLOS DE CÁLCULO DO TAMANHO AMOSTRAL. Desenvolvido por Lucas Lima Ayres
EXEMPLOS DE CÁLCULO DO TAMANHO AMOSTRAL Desenvolvido por Lucas Lima Ayres Belo Horizonte/2015 1 1. INTERVALOS DE CONFIANÇA PARA UMA PROPORÇÃO 1.1. ASSINTÓTICO 1.1.1. ASSINTÓTICO SIMPLES 1.1.1.1.BILATERAL
MINICURSO DE TESTES DE HIPÓTESES E INTERVALOS DE CONFIANÇA
UNIVERSIDADE FEDERAL DO RIO GRANDE Instituto de Matemática, Estatística e Física Programa de Pós-Graduação em Modelagem Computacional MINICURSO DE TESTES DE HIPÓTESES E INTERVALOS DE CONFIANÇA Ministrantes:
Bioestatística. Paulo Nogueira quarta-feira, 11 de Janeiro de 2012
Bioestatística Paulo Nogueira quarta-feira, 11 de Janeiro de 2012 Bioestatística? Bioestatística Biologia + Estatística (Portmanteau) Biometria Estatística aplicada às ciências da saúde Para que serve
Incerteza, exatidão, precisão e desvio-padrão
1 Incerteza, exatidão, precisão e desvio-padrão Incerteza ( uncertainty or margin of error ) A incerteza, segundo a Directiva Comunitária 2007/589/CE, é: parâmetro associado ao resultado da determinação
Inferência Estatística:
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Inferência Estatística: Princípios de Bioestatística decidindo na presença de incerteza Aula 8: Intervalos
Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA QUANTIFICAÇÃO DOS GRUPOS DO ESTUDO PESQUISA INFERÊNCIA ESTATÍSTICA TESTE DE HIPÓTESES E
Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA Determinada a pergunta/ hipótese Recolhidos os dados Análise descritiva = Estatística descritiva QUAIS TESTES ESTATÍSTICOS DEVEM SER REALIZADOS?? PROFESSORA:
RAD1507 Estatística Aplicada à Administração I Prof. Dr. Evandro Marcos Saidel Ribeiro RESUMO -
UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DE RIBEIRÃO PRETO DEPARTAMENTO DE ADMINISTRAÇÃO RAD1507 Estatística Aplicada à Administração I Prof. Dr. Evandro Marcos Saidel
Capacitação em R e RStudio PROJETO DE EXTENSÃO. Software R: capacitação em análise estatística de dados utilizando um software livre.
UFFS Universidade Federal da Fronteira Sul Campus Cerro Largo PROJETO DE EXTENSÃO Software R: capacitação em análise estatística de dados utilizando um software livre Fonte: https://www.r-project.org/
Estatística Computacional A - Aula SAS 01 Estatísticas Descritivas Prof. José Carlos Fogo
Estatística Computacional A - Aula SAS 01 Estatísticas Descritivas Prof. José Carlos Fogo /* Linha de comando com configurações de página */ options ps=60 ls=80 nodate pageno=1; /* Entrando com um arquivo
ESTUDO DE CASO. Terapêutica e prevenção secundária no tumor do pulmão
ESTUDO DE CASO Terapêutica e prevenção secundária no tumor do pulmão É bem conhecida a relação tabaco / tumor do pulmão, embora existam casos de neoplasia do pulmão sem antecedentes de tabagismo. Mesmo
BOOTSTRAP. - APLICAÇÃO DO MB: podem ser aplicados quando existe, ou não, um modelo probabilístico bem definido para os dados.
OOTSTRAP INTRODUÇÃO - IDEIA ÁSICA: reamostrar de um conjunto de dados, diretamente ou via um modelo ajustado, a fim de criar replicas dos dados, a partir das quais podemos avaliar a variabilidade de quantidades
O teste qui-quadrado. A variável teste é: χ E. Os testes. Hipóteses e Cálculo H 0 : As variáveis são independentes H 1 : As variáveis são dependentes
Prof. Lorí Viali, Dr. http://www.mat.ufrgs.br/viali/ [email protected] Os testes O teste Qui-Quadrado O teste exato de Fisher O teste de Kolmogorov-Smirnov O teste de U de Mann-Whitney O teste de Wilcoxon
Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM
Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM Estimação de Parâmetros O objetivo da Estatística Indutiva é tirar conclusões probabilísticas sobre aspectos da população,
Os testes. O teste de McNemar O teste de Wilcoxon O teste do sinais
Prof. Lorí Viali, Dr. http://www.mat.ufrgs.br/viali/ [email protected] Os testes O teste de McNemar O teste de Wilcoxon O teste do sinais O teste de McNemar para a significância de mudanças é aplicável
Capítulo 6 Estatística não-paramétrica
Capítulo 6 Estatística não-paramétrica Slide 1 Teste de ajustamento do Qui-quadrado Testes de independência e de homogeneidade do Qui-quadrado Testes dos sinais e de Wilcoxon Teste de Mann-Whitney Teste
Filho, não é um bicho: chama-se Estatística!
Paulo Jorge Silveira Ferreira Filho, não é um bicho: chama-se Estatística! Estatística aplicada uma abordagem prática FICHA TÉCNICA EDIÇÃO: Paulo Ferreira TÍTULO: Filho, não é um bicho: chama-se Estatística!
INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA. Prof. Anderson Rodrigo da Silva
INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Prof. Anderson Rodrigo da Silva [email protected] Tipos de Pesquisa Censo: é o levantamento de toda população. Aqui não se faz inferência e sim uma descrição
1 AULA 3 - MODELO DE REGRESSÃO LINEAR
1 AULA 3 - MODELO DE REGRESSÃO LINEAR 1.1 Análise exploratória Fazer um modelo de regressão linear envolve modelar uma variável de desfecho contínua em função de uma ou mais variáveis explanatórias. Como
Estatística Aplicada. Inferência estatística com desvio padrão populacional desconhecido Estimativa de proporção Capítulo 10 Itens 10.4 a 10.
Estatística Aplicada Inferência estatística com desvio padrão populacional desconhecido Estimativa de proporção Capítulo 10 Itens 10.4 a 10.5 Casos população infinita Quando o desvio-padrão populacional
SUMÁRIO. 1.1 Introdução, Conceitos Fundamentais, 2
SUMÁRIO 1 CONCEITOS BÁSICOS, 1 1.1 Introdução, 1 1.2 Conceitos Fundamentais, 2 1.2.1 Objetivo, 2 1.2.2 População e amostra, 2 1.3 Processos estatísticos de abordagem, 2 1.4 Dados estatísticos, 3 1.5 Estatística
