Teste de Avaliação Escrita
|
|
|
- Manuella Brandt Paiva
- 9 Há anos
- Visualizações:
Transcrição
1 Teste de Avaliação Escrita Duração: 90 minutos 10 de fevereiro de 2014 Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2013/2014 Matemática 9.º B Nome: N.º Classificação: Fraco (0% 19%) Insuficiente (20% 49%) Suficiente (50% 69%) Bom (70% 89%) Muito Bom (90% 100%) O Professor (Nuno Marreiros): O Encarregado de Educação: Atenção: Lê atentamente o enunciado e responde apenas ao que te é pedido; Apresenta todos os cálculos que efetuares; Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta. Não é permitido o uso de corretor, não sendo corrigido nenhum item onde este tenha sido usado. 1. Timóteo acorda para mais um dia de grande aventura na escola. Mora no 3.º andar de um prédio com elevador. O Timóteo ao sair de casa com o seu pai, para este o ir levar à escola, entra no elevador. Nele, estão marcados os botões correspondentes aos vários andares:. Como é muito aventureiro, com os olhos fechados carrega num botão ao acaso. Calcula, em percentagem, a probabilidade do elevador descer. 2. Depois de muito andarem a subir e a descer no elevador, ambos chegam ao carro e vão diretos para a escola. Tinham acabado de chegar ao parque de estacionamento da escola quando o pai do Timóteo recebe um telefonema a marcar uma reunião em Lisboa para daqui a 2 horas e 30 minutos. Sempre que o pai do Timóteo vai a Lisboa de automóvel, demora cerca de 3 horas nesse trajeto a uma velocidade média de 95 km/h. a) Determina a constante de proporcionalidade inversa e indica, no contexto do problema, o seu significado. b) Para poder chegar a Lisboa de forma a cumprir com a hora agendada para a reunião, com que velocidade média teria que percorrer o trajeto habitual? c) Analisando as condições climatéricas daquele dia, o pai do Timóteo disse ao filho É impossível! Para conduzir com segurança, devido às condições climatéricas, a velocidade média não poderá exceder 76 km/h Se a viagem correr como habitual, com que atraso chegará o pai à reunião? (Apresenta o resultado em minutos.) 1
2 3. Já na aula, a professora de Matemática solicitou ao Timóteo para ir ao quadro resolver o seguinte exercício: Observa os gráficos: Escolhe, justificando, um que represente uma função de proporcionalidade direta e outro que represente uma função de proporcionalidade inversa e determina as respetivas constantes de proporcionalidade. 4. Timóteo, para ganhar energia para a aula de Educação Física trouxe, de casa, um saco que contém gomas idênticas na forma e na textura, mas de sabores diferentes: alperce, morango e laranja. Sabe-se que, ao extrair, ao acaso, uma goma do saco, a probabilidade de ela ter saber a alperce é e de ter sabor a laranja é. No saco há 12 gomas com sabor a morango. a) Quantas gomas tem o Timóteo no saco? b) Caso não tenhas determinado o número de gomas, admite que estão no saco 72. Supõe que o Timóteo tirou duas gomas com sabor a morango e comeu-as. Se o Timóteo tirar do saco, ao acaso, uma terceira goma, qual a probabilidade de ela também ter sabor a morango? Apresenta o resultado sob a forma de fração irredutível. 2
3 5. Durante a aula de Educação Física foram realizados dois desportos, um coletivo e um individual. I - Começaram por jogar futebol a) O campo de jogos da escola tem 2800 m 2 de área. Tendo em conta as medidas da figura, determina as dimensões desse campo de jogos. b) O esquema representa o campo de jogos onde estão a jogar futebol. Supõe que, num determinado momento de um jogo, o José, o Manuel e o Fernando encontram-se, respetivamente, nas posições J, M e F. O Timóteo, árbitro do jogo, encontra-se a igual distância dos três colegas. Assinala a lápis, no campo de jogos, com a letra «A», o ponto onde está o Timóteo. Utiliza material de desenho e de medição. Nota: Se traçares linhas auxiliares, não as apagues. 3
4 II - De seguida foram para o lançamento do peso A prova do lançamento do peso disputa-se num local específico da pista de atletismo, que deverá ter um círculo de lançamentos com, aproximadamente, 2,2 metros de diâmetro (este círculo contém uma antepara na parte da frente), e um setor de queda com uma abertura de, aproximadamente, 40 graus em que o vértice do ângulo coincide com o centro do círculo. Para que o lançamento seja válido o peso deverá cair fora do círculo onde o atleta lança e dentro de um setor circular (setor de queda). c) Em qual das seguintes imagens pode estar representado o local onde pode cair o peso de modo que o lançamento seja válido (zona sombreada). d) Determina o comprimento da antepara (arco de circunferência). Apresenta o resultado arredondado às centésimas. e) Sabendo que o campo de lançamento do peso tem 25 metros de raio (medidos desde o centro do círculo), determina a área onde pode cair o peso de modo que o lançamento seja considerado válido. Apresenta o resultado arredondado às centésimas. f) O peso lançado pelo Timóteo percorreu uma trajetória que, com o decorrer do tempo (em segundos), a altura (em metros), da bola é dada pela função:,. De que altura, em metros, o Timóteo lançou o peso? 5 1,60 1 1,52 4
5 6. No final do almoço, o Timóteo ao comer uma laranja reparou que esta tinha a forma aproximada de uma: Esfera Coroa circular Circunferência Superfície esférica 7. De regresso a casa o Timóteo foi de comboio, tendo ouvido uma conversa entre dois funcionários da CP, que se pretendia construir um apeadeiro que ficasse à mesma distância das duas estradas. A figura representa duas estradas atravessadas por uma linha de caminho-de-ferro. Indica, na representação do lado direito, onde é que o apeadeiro deve ser construído. 8. A figura representa o bolo cúbico que o Timóteo comeu ao lanche e o respetivo modelo matemático. O plano mediador da diagonal [BD] da face superior é o plano... FBC HFG DBF ACG 9. De seguida foi realizar os trabalhos de casa e reparou que a luz do candeeiro refletida na secretária representava um lugar geométrico conhecido. Considera um plano (tampo da secretária) e um ponto A (lâmpada) que dista 4 cm daquele plano. a) Qual é o lugar geométrico dos pontos do plano, que distam 5 cm de A? Cone Círculo Circunferência Mediatriz b) Determina o valor exato da área iluminada, na secretária, pela luz do candeeiro. 5
6 Ajuda o Timóteo a resolver os seguintes exercícios que a professora de matemática mandou para casa: 10. Na figura, está representada uma circunferência, de centro O em que: A, B e C são pontos da circunferência; o segmento de reta AC é um diâmetro; a) Qual é a amplitude, em graus, do arco BA? b) Considera uma reta tangente à circunferência no ponto A. Seja D um ponto pertencente a essa reta. Sabendo que o ângulo BAD é agudo, determina a sua amplitude (em graus). Justifica a tua resposta. 11. O Bernardo pensa que o ponto de interseção das retas s e t está sobre a circunferência de centro O. A Darcília considera que não é possível sabê-lo. Quem tem razão? Porquê? Agora que terminaste o teste, faz a tua avaliação sobre como te correu, assinalando as opções que melhor se identificam contigo: Nível esperado O teste correu-me Para o teste estudei Mal Razoável Bem Nada Pouco O suficiente Muito 6
7 Teste de Avaliação Escrita Duração: 90 minutos 10 de fevereiro de 2014 PROPOSTA DE RESOLUÇÃO 1. Nº de casos possíveis: 4 Nº de casos favoráveis: 10 Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2013/2014 Matemática 9.º B 2. a) As grandezas tempo t e velocidade média correspondente v são inversamente proporcionais:. A constante de proporcionalidade é e traduz a distância, em km, entre a casa do Timóteo e o local da reunião (Lisboa). b) Sabe-se que 2 horas e 30 minutos = 2,5 Assim sendo, e portanto. Para poder cumprir o horário, o pai do Timóteo teria que percorrer o trajeto habitual com uma velocidade média de 114 km/h. c) h t = 3h 45min. Assim sendo, o pai do Timóteo chegará à reunião com um atraso de 1h15min (3h45min 2h30min), ou seja, 75 minutos. 3. f x Proporcionalidade direta k 3 h x Proporcionalidade inversa k a) Considerando os acontecimentos: M: A goma tem sabor a morango. L: A goma tem sabor a laranja. A: A goma tem sabor a alperce. tem-se Assim O Timóteo tem 72 gomas no saco. b) O Timóteo tem 72 gomas no saco, das quais 12 têm sabor a morango. Depois de o Timóteo ter tirado e comido as duas gomas com sabor a morango, ficaram no saco 70 gomas, das quais 10 com sabor a morango. Portanto,. 5. a) Área campo de jogos = Área retângulo = Largura: metros Comprimento: metros 7
8 b) Como o Timóteo, árbitro do jogo, encontra-se a igual distância dos três colegas, pretende-se determinar o circuncentro do triângulo, sendo este o ponto equidistante dos seus vértices, ou seja, dos jogadores José, Manuel e Fernando. Para determinar o circuncentro basta encontrar o ponto de interseção das mediatrizes dos seus lados. Está assinalado, no campo de jogos, com a letra «A», o ponto onde está o Timóteo. c) d) O círculo de lançamentos tem 1,1 metros de raio pois o seu diâmetro é 2,2 metros. O arco AB tem 40º de amplitude (é igual ao ângulo ao centro correspondente: ACB). Então o. A antepara tem 0,77 metros de comprimento de arco. e) Área lançamento válido = Área setor circular [DCE] Área setor circular [ACB] Área setor circular [DCE] Área setor circular [ACB] Logo, Área lançamento válido = m 2 f) metros. 5 1,60 1 1,52 6. Esfera Coroa circular Circunferência Superfície esférica 8
9 7. A bissetriz de um ângulo é o lugar geométrico dos pontos do plano equidistantes das semirretas que formam esse ângulo, ou seja, das duas estradas atravessadas por uma linha de caminho-de-ferro. 8. FBC HFG DBF ACG 9. a) Cone Círculo Circunferência Mediatriz b) Recorda que a distância do ponto A ao plano é a medida do comprimento do segmento de reta [AP], perpendicular ao plano. Área iluminada na secretária pela luz do candeeiro = Área círculo =. Determinemos o raio da circunferência. Pode-se obter o raio da circunferência recorrendo ao Teorema de Pitágoras:, ou seja, cm. Área círculo =. 10. a) Como o segmento de reta AC é um diâmetro, O arco BA tem 120º de amplitude. b) Sabe-se que a tangente a uma circunferência é perpendicular (90º) ao raio no ponto de tangência, ou seja, em A. 11. A soma das amplitudes dos ângulos internos do triângulo é 180º. O ponto de interseção das retas s e t é um dos vértices do triângulo, cuja medida da amplitude é dada por: 180 ( ) = 48. Assim sendo, a medida da amplitude do ângulo escondido é 48º. Aos ângulos iguais opõem-se lados iguais que são os raios da circunferência. Quem tem razão é o Bernardo. 9
Teste de Avaliação Escrita
Teste de Avaliação Escrita Duração: 9 minutos 8 de outubro de Escola E.B., Eng. Nuno Mergulhão Portimão Ano Letivo /4 Matemática 9.º B Nome: N.º Classificação: Fraco (% 9%) Insuficiente (% 49%) Suficiente
Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação:
Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2012/2013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 19 de fevereiro de 2013 Nome: N.º Turma:
Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2012/2013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Classificação:
Escola E.B.,3 Eng. Nuno Mergulhão Portimão Ano Letivo 01/013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 6 de março de 013 Nome: N.º Turma: Classificação:
Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação:
Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2012/2013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 25 de fevereiro de 2013 Nome: N.º Turma:
Teste de Avaliação Escrita
Teste de Avaliação Escrita Duração: 90 minutos 9 de dezembro de 01 Escola E.B., Eng. Nuno Mergulhão Portimão Ano Letivo 01/01 Matemática 9.º B Nome: N.º Classificação: Fraco (0% 19%) Insuficiente (0% 9%)
Teste de Avaliação Escrita
Teste de Avaliação Escrita Duração: 90 minutos 7 de março de 04 Escola E.B.,3 Eng. Nuno Mergulhão Portimão Ano Letivo 03/04 Matemática 7.º C Nome: N.º Turma: Classificação: Fraco (0% 9%) Insuficiente (0%
Teste de Avaliação Escrita
Teste de Avaliação Escrita Duração: 90 minutos de março de 01 Escola E.B.,3 Eng. Nuno Mergulhão Portimão Ano Letivo 013/01 Matemática 7.º Ano Nome: N.º Turma: Classificação: Fraco (0% 19%) Insuficiente
Proposta de teste de avaliação Matemática 9
Proposta de teste de avaliação Matemática 9 Oo Nome da Escola no letivo 0-0 Matemática 9.º ano Nome do luno Turma N.º Data Professor - - 0 PRTE Nesta parte é permitido o uso da calculadora.. Relativamente
Nome: N.º Turma: Suficiente (50% 69%) Bom (70% 89%)
Escola E.B.,3 Eng. Nuno Mergulhão Portimão Ano Letivo 01/013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 9 de abril de 013 Nome: N.º Turma: Classificação:
MATEMÁTICA - 3o ciclo Lugares geométricos (9 o ano)
MATEMÁTICA - 3o ciclo Lugares geométricos (9 o ano) Exercícios de provas nacionais e testes intermédios 1. Na figura ao lado, estão representados uma circunferência de centro no ponto C e os pontos T,
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/2.ª Fase Caderno 1: 6 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
Exame Nacional de a chamada
Exame Nacional de 007. a chamada 1. O Paulo tem dois dados, um branco e um preto, ambos equilibrados e com a forma de um cubo. As faces do dado branco estão numeradas de 1 a, e as do dado preto estão numeradas
Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática 23/01/2012 Circunferência e polígonos; Rotações. 9.º Ano
Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática 23/01/2012 Circunferência e polígonos; Rotações. 9.º Ano Nome: N.º: Turma: 1. Coloca, na figura, pela letra conveniente, os elementos
Proposta de Prova Final de Matemática
Proposta de Prova Final de Matemática 3. o Ciclo do Ensino Básico Duração da Prova (CADERNO 1 + CADERNO ): 90 minutos Tolerância: 30 minutos Data: Caderno 1: 35 minutos. Tolerância: 10 minutos (é permitido
Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro?
Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro? (considera = 3,14) Qual o perímetro de um círculo com 18 cm de raio? (considera
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 2016-2 a Fase Proposta de resolução Caderno 1 1. Calculando a diferença entre 3 1 e cada uma das opções apresentadas, arredondada às centésimas, temos que: 3 1 2,2
MATEMÁTICA - 3o ciclo Lugares geométricos (9 o ano)
MATEMÁTICA - 3o ciclo Lugares geométricos (9 o ano) Exercícios de provas nacionais e testes intermédios 1. Na figura seguinte, está representado um sólido composto por um cone reto de vértice V e uma semiesfera.
Prova Final de Matemática
PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 1 Páginas Entrelinha 1,5 Duração da Prova: 90 minutos.
PROVA FINAL DE MATEMÁTICA 9.º ano de escolaridade
Nome: N.º Turma Data: / / Avaliação Professor Encarregado Educação Parte 1: 35 minutos. (é permitido o uso de calculadora) 1 2 1. Sabe-se que A ]3, 21 21 ] = ] 2, ]. 2 2 Qual dos conjuntos seguintes poderá
ESCOLA BÁSICA DE ALFORNELOS COMPILAÇÃO DE EXERCÍCIOS RETIRADOS DOS EXAMES NACIONAIS LUGARES GEOMÉTRICOS
ESCOLA BÁSICA DE ALFORNELOS Prof.ª Arminda Pereira COMPILAÇÃO DE EXERCÍCIOS RETIRADOS DOS EXAMES NACIONAIS LUGARES GEOMÉTRICOS 1. Considera, no espaço, um ponto A Qual é o lugar geométrico dos pontos do
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 1: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:
Teste de Matemática A 2017 / 2018 Teste N.º 4 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 90 minutos 12.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
Caderno 1: 35 minutos. Tolerância: 10 minutos. É permitido o uso de calculadora.
Prova Final de Matemática Prova 92 2.ª Fase 3.º Ciclo do Ensino Básico 2017 Decreto-Lei n.º 139/2012, de 5 de julho Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30 minutos. Caderno
MATEMÁTICA - 3o ciclo Lugares geométricos (9 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Lugares geométricos (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como a superfície esférica tem centro no ponto V e contém o ponto A, então
O teste é constituído por dois cadernos (Caderno 1 e Caderno 2). Utiliza apenas caneta ou esferográfica, de tinta azul ou preta.
Nome: Ano / Turma: N.º: Data: - - O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul ou preta. É permitido o uso de calculadora no Caderno
Caderno 1: 35 minutos. Tolerância: 10 minutos. É permitido o uso de calculadora.
Prova Final de Matemática Prova 92 1.ª Fase 3.º Ciclo do Ensino Básico 2017 Decreto-Lei n.º 139/2012, de 5 de julho Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30 minutos. Caderno
Curso: Engenharia Disciplina: Desenho Técnico Prof.ª Me. Aline Ribeiro CONSTRUÇÕES GEOMÉTRICAS 1. DESENHO GEOMÉTRICO
1 Curso: Engenharia Disciplina: Desenho Técnico Prof.ª Me. Aline Ribeiro CONSTRUÇÕES GEOMÉTRICAS 1. DESENHO GEOMÉTRICO 1.1. O que é desenho geométrico Desenho Geométrico é o conjunto de técnicas utilizadas
Escola Básica de Ribeirão (Sede) ANO LETIVO 2011/2012 Ficha de Trabalho Abril 2012 Nome: N.º: Turma: Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Circunferência
a) A Cristiana escolhe uma ficha. Qual é o maior número que a Cristiana pode obter?
Ficha de Avaliação Diagnóstica Duração: 45 minutos 23 de setembro de 2013 Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2013/2014 Matemática 7.º ano Nome: N.º Turma: Classificação de Orientação:
Departamento de Matemática e Ciências Experimentais. Nome: N.º Data: /março/14
Matemática 9.º Ano - 2013/2014 Agrupamento de Escolas de Carnaxide-Portela Departamento de Matemática e Ciências Experimentais Ficha de Trabalho n.º10 Lugares Geométricos Nome: N.º Data: /março/14 1. Na
Teste Intermédio 2012
Teste Intermédio 01 1. Uma escola básica tem duas turmas de 9. ano: a turma e a turma. Os alunos da turma distribuem-se, por idades, de acordo com o seguinte diagrama circular. Idades dos alunos da turma
Caderno 1: 35 minutos. Tolerância: 10 minutos. É permitido o uso de calculadora.
Prova Final de Matemática Prova 92 1.ª Fase 3.º Ciclo do Ensino Básico 2017 Decreto-Lei n.º 139/2012, de 5 de julho Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30 minutos. Caderno
Prova Final de Matemática a Nível de Escola Prova 82/1ª Fase 2018 Caderno Único: Página 1/9
Prova Final de Matemática a Nível de Escola 3º Ciclo do Ensino Básico Decreto-Lei nº139/01, de 5 de julho Prova 8/1ª Fase 9 Páginas Duração da Prova (CADERNO ÚNICO): 90 minutos. Tolerância: 30 minutos.
Caderno 1: 35 minutos. Tolerância: 10 minutos. É permitido o uso de calculadora.
Prova Final de Matemática Prova 92 2.ª Fase 3.º Ciclo do Ensino Básico 2017 Decreto-Lei n.º 139/2012, de 5 de julho Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30 minutos. Caderno
Prova-modelo de Exame
Prova-modelo de Exame Nome N. o Turma Data /maio/019 Avaliação Professor Duração da Prova (Caderno 1 + Caderno ): 150 minutos Tolerância: 0 minutos A prova é constituída por dois cadernos (Caderno 1 e
Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.
Nome: Ano / Turma: N.º: Data: - - Caderno 1: (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul ou
Prova Final de Matemática
PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 39/0, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:
As cotações dos itens de cada caderno encontram-se no final do respetivo caderno.
Nome: Ano / Turma: N.º: Data: - - O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul ou preta. É permitido o uso de calculadora no Caderno
Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.
Teste de Matemática A 2018 / 2019 Teste N.º 3 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
LUGARES GEOMÉTRICOS Geometria Euclidiana e Desenho Geométrico PROF. HERCULES SARTI Mestre
LUGARES GEOMÉTRICOS Geometria Euclidiana e Desenho Geométrico PROF. HERCULES SARTI Mestre Lugar Geométrico Lugar geométrico é uma figura cujos pontos e somente eles satisfazem determinada condição. Todos
Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.
Teste Intermédio de Matemática Entrelinha 1,5 Teste Intermédio Matemática Entrelinha 1,5 (Versão única igual à Versão 1) Duração do Teste: 90 minutos 10.05.2012 9.º Ano de Escolaridade Decreto-Lei n.º
Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.
Teste Intermédio de Matemática Versão Teste Intermédio Matemática Versão Duração do Teste: 90 minutos 10.05.01 9.º Ano de Escolaridade Decreto-Lei n.º 6/001, de 18 de janeiro Identifica claramente, na
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/01, de 5 de julho Prova 9/1.ª Chamada Caderno 1: 7 Páginas Duração da Prova (CADERNO 1 + CADERNO ): 90 minutos. Tolerância: 30 minutos.
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 1: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.
Proposta de Resolução [maio - 018] Caderno 1: (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul ou
Exame Nacional de a chamada
1. A Beatriz e o Carlos abasteceram os seus carros de gasolina. A determinada altura, o Carlos interrompeu o abastecimento para verificar quanto dinheiro trazia na carteira. Em seguida, retomou o abastecimento.
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 017-1 a Fase Proposta de resolução Caderno 1 1. Como 9 =,5 e 5,, temos que 5 < 9 indicados na definição do conjunto, vem que: e assim, representando na reta real os
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos Candidatura de 206 Exame de Matemática Tempo para realização da prova: 2 horas Tolerância: 30 minutos Material admitido: material de escrita
Lista de exercícios 06 Aluno (a): Turma: 9º ano (Ensino fundamental) Professor: Flávio Disciplina: Matemática
Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: É fundamental a apresentação de uma lista legível, limpa e organizada. Rasuras podem invalidar a lista. Nas questões que
ESCOLA EB 2,3 DE SANDE ENC. DE EDUC.: OBSERVAÇÃO:
ESCOLA EB 2,3 DE SANDE ANO LETIVO 2011/2012 FICHA DE AVALIAÇÃO N.º 4 DE MATEMÁTICA 9.º ANO NOME: N.º TURMA: DATA: / / PROFESSOR: CLASSIFICAÇÃO: ENC. DE EDUC.: OBSERVAÇÃO: Apresenta o teu raciocínio de
AGRUPAMENTO DE ESCOLAS DE SANTO ANTÓNIO PAREDE Escola EB23 de Santo António - Parede
Prova de Avaliação Global MATEMÁTICA Versão 1 Duração da Prova: 90 minutos Junho de 011 9.º Ano de Escolaridade Decreto-Lei n.º 6/011, de 18 de janeiro Identifica, claramente, na folha de respostas, a
Departamento de Matemática e Ciências Experimentais. Nome: N.º Data: /maio 2014
Matemática 9.º Ano - 2013/2014 Agrupamento de Escolas de Carnaxide-Portela Departamento de Matemática e Ciências Experimentais Ficha de Trabalho n.º12 5.ª Ficha de Avaliação Nome: N.º Data: /maio 2014
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 1: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
RaizDoito. 1. Num referencial o.m. do plano, considere a reta r de equação x = -5.
1. Num referencial o.m. do plano, considere a reta r de equação x = -5. Qual dos seguintes pares de pontos define uma reta perpendicular à reta r? (A) (B) ( C) (D) 2. A condição que define o domínio plano
Planificação Anual GR Disciplina Matemática 9.ºAno
Planificação Anual GR 500 - Disciplina Matemática 9.ºAno Período letivo Competências Conteúdos Estratégias / Processos de operacionalização Recursos didácticos Avaliação Blocos previstos Resolver problemas
Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.
Teste de Matemática A 2018 / 2019 Teste N.º 3 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 90 minutos 12.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
Teste de Avaliação. Nome N. o Turma Data /mar./2019. Avaliação E. Educação Professor. Duração (Caderno 1 + Caderno 2): 90 minutos. MATEMÁTICA 9.
Teste de Avaliação Nome N. o Turma Data /mar./2019 Avaliação E. Educação Professor MATEMÁTICA 9. o ANO Duração (Caderno 1 + Caderno 2): 90 minutos O teste é constituído por dois cadernos (Caderno 1 e Caderno
Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:
Teste de Matemática A 2017 / 2018 Teste N.º 2 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/2.ª Fase Caderno 1: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
Escola Secundária de Lousada. Matemática do 9º ano FT 17 Data: / / 2013 Assunto: Ficha de Preparação para o 3º Teste
Escola Secundária de Lousada Matemática do 9º ano FT 7 Data: / / 0 Assunto: Ficha de Preparação para o º Teste Apresentação dos Conteúdos e Objetivos para o º Teste de Avaliação de Matemática Data da Realização
Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.
Proposta de Resolução [dezembro - 017] Caderno 1: (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul
TESTE DE MATEMÁTICA 9.º ano
Nome: Nº: Turma: Duração: 90 minutos Classificação: 1. Considera duas caixas, A e B. A caixa A tem quatro bolas numeradas, indistinguíveis ao tato: uma com o número 1, uma com o número 2, uma com o número
TESTE DE MATEMÁTICA 9.º ano
Nome: Nº: Turma: Duração: 90 minutos Classificação: 1. O Tiago contabilizou o tempo, em segundos, que cada cliente teve de esperar até ser atendido pelo empregado de mesa de um café. A informação recolhida
EXTERNATO JOÃO ALBERTO FARIA Ficha de Matemática 9º ANO
EXTERNATO JOÃO ALBERTO FARIA Ficha de Matemática 9º ANO 1- Resolve os sistemas seguintes: 4x 2( y 1 3( x 1) 1 x 3) 3 y 1 2 1 x 2- Num escritório de advogados trabalham dois advogados e uma secretária.
, 10 4. pertence ao conjunto dado? Justifica a resposta e apresenta todos os cálculos que efetuares.
Teste de Avaliação Escrita Duração: 90 minutos 9 de maio de 0 Escola E.B., Eng. Nuno Mergulhão Portimão Ano Letivo 0/0 Matemática 9.º B Nome: N.º Classificação: Fraco (0% 9%) Insuficiente (0% 9%) Suficiente
Escola Secundária/2,3 da Sé-Lamego Proposta de Resolução da Ficha de Trabalho de Matemática 23/01/2012 Circunferência e polígonos; Rotações. 9.
Escola Secundária/,3 da Sé-Lamego Proposta de Resolução da Ficha de Trabalho de Matemática 3/01/01 Circunferência e polígonos; Rotações. 9.º Ano Nome: N.º: Turma: 1. Coloca, na figura, pela letra conveniente,
Versão 1. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.
Teste Intermédio de Matemática Versão Teste Intermédio Matemática Versão Duração do Teste: 90 minutos.05.009 3.º Ciclo do Ensino Básico 9.º Ano de Escolaridade Decreto-Lei n.º 6/00, de 8 de Janeiro Identifica
Teste de Avaliação. Nome N. o Turma Data /maio/2019. Avaliação E. Educação Professor. Duração (Caderno 1 + Caderno 2): 90 minutos. MATEMÁTICA 9.
Teste de Avaliação Nome N. o Turma Data /maio/2019 Avaliação E. Educação Professor MATEMÁTICA 9. o ANO Duração (Caderno 1 + Caderno 2): 90 minutos O teste é constituído por dois cadernos (Caderno 1 e Caderno
Agrupamento de Escolas de Diogo Cão, Vila Real
Agrupamento de Escolas de Diogo Cão, Vila Real 2015/2016 MATEMÁTICA FICHA DE TRABALHO 7 3º PERÍODO MAIO Nome: Nº Turma: 9º Data: CIRCUNFERÊNCIA 1. Relativamente à fig. 1 indica: 1.1 duas cordas; 1.2 a
1. Qual é o valor numérico da expressão
Escola Secundária de Lousada Ficha de Trabalho de Matemática do 9º ano - nº Data: / 05/ 011 Assunto: Preparação para o teste intermédio I Lições nº, 1 1 1 0 1. Qual é o valor numérico da expressão + 3?
Nome: N.º: Turma: Classificação: Professor: Enc. Educação:
Escola Básica de Ribeirão (Sede) ANO LETIVO 013/014 Nome: N.º: Turma: Classificação: Professor: Enc. Educação: 9.º Ano Ficha de Avaliação de Matemática Versão Duração do Teste: 35 minutos (Caderno 1) +
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - o ciclo 2009-2 a Chamada Proposta de resolução 1. 1.1. Considerando que não queremos que o automóvel preto seja atribuído à mãe, e selecionando, ao acaso, um elemento da família,
MATEMÁTICA - 3o ciclo Figuras semelhantes (7 o ano)
MTMÁTI - 3o ciclo Figuras semelhantes (7 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura seguinte, está representado o triângulo [], inscrito numa circunferência de centro no ponto
MATEMÁTICA - 3o ciclo Figuras semelhantes (7 o ano)
MTMÁTI - 3o ciclo Figuras semelhantes (7 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura seguinte, estão representadas duas semirretas, Ȯ e Ȯ, e duas retas paralelas, r e s. a reta
Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:
Teste de Matemática A 2017 / 2018 Teste N.º 3 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano)
MTMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura ao lado, estão representados um cilindro e um prisma quadrangular regular [ ] de bases []
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/2.ª Fase Caderno 1: 6 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
TPC PÁSCOA. A função g é de proporcionalidade inversa e o ponto Os segmentos de reta OD e AB e EF. são paralelos;
EXTERNATO JOÃO ALBERTO FARIA ARRUDA DOS VINHOS TPC PÁSCOA Ano letivo 014 / 15 1. No referencial da figura está representado um quadrilátero e um triângulo retângulo em F. A figura não está desenhada à
Exercícios de testes intermédios
Exercícios de testes intermédios 1. Qual das expressões seguintes designa um número real positivo, para qualquer x pertencente 3 ao intervalo,? (A) sin x cos x (B) cos x tan x tan x sin x sin x tan x Teste
