Incerteza local e incerteza espacial SIMULAÇÃO

Tamanho: px
Começar a partir da página:

Download "Incerteza local e incerteza espacial SIMULAÇÃO"

Transcrição

1 Incerteza local e incerteza espacial SIMULAÇÃO Situações em que o interesse na avaliação da incerteza não se resume a um ponto, mas a um conjunto de pontos simultaneamente. Com a krigagem é possível a melhor estimativa possível para locais não amostrados, pela minimização da variância do erro Todavia não há garantia que o mapa obtido pela krigagem tenha o mesmo histograma, a mesma variância e o mesmo semivariograma dos dados originais, pois trata-se, pela própria natureza do método, de um mapa com valores suavizados. A suavização é inversamente proporcional à densidade dos pontos amostrados Para avaliar a incerteza espacial, resultante do comportamento simultâneo do conjunto de variáveis, existem os modelos geoestatísticos de simulação. Espessura da Formação Dakota/Kansas, EUA (Olea, 1999) A escolha entre adotar estimação ou simulação deve ser decidida em função do que é mais relevante para cada aplicação específica: procura pelo erro mínimo local de valores estimados ou continuidade espacial correta. 1

2 Espessura da Formação Dakota, por krigagem Validação cruzada da krigagem: valores subestimados acima da média e superestimados abaixo da média (tendenciosidade condicional) Modelos de simulação, ao contrário dos métodos clássicos (krigagem incluída), são capazes de reproduzir a continuidade espacial, e ainda a função de distribuição. Estes modelos geram imagens que devem cumprir três condições: i) reprodução da função de distribuição (textura); ii)capacidade de reprodução da estrutura espacial (histograma, variância); iii) reprodução exata dos valores amostrados. 2

3 A simulação permite infinitas realizações de mapas, cada qual com, aproximadamente, o mesmo histograma e mesmo variograma que os dados originais. Teoricamente a media de um grande número de mapas simulados deve fornecer resultados mais reais e, conseqüentemente, mais confiáveis para predições. A simulação tenta atingir realismo e a estimativa acurácia. Krigagem e Simulação Ambos baseiam-se no modelo definido pelo estudo da variabilidade espacial do atributo (variografia) e honram os valores obtidos em pontos conhecidos (estimadores exatos) A krigagem cria uma realização em que a acurácia local, mínima variância de estimação, é o mais importante. Isto gera uma superfície suavizada, mascarando a variabilidade dos dados. A simulação fornece representações globais alternativas, onde prevalece a representação de padrões de continuidade espacial. O resultado da média de um conjunto grande (>100) de imagens estocásticas é a realização de krigagem do atributo. Simulação Krigagem Saida Multiplas realizações Modelo determinístico Propriedades Imagem Dados Uso Honra pontos conhecidos, histograma, variograma, densidade espectral Com ruído, especialmente se o variograma apresentar Localização dos pontos não pode ser feita a partir da imagem Modelagem da heterogeneidade; quantificação da incerteza Honra pontos conhecidos; minimiza o erro da variância Suavizada, especialmente se o variograma apresenta ruído Localização possível dos pontos Mapeamento Métodos de simulação estocástica Simulação seqüencial gaussiana Simulação annealing (recozimento) Decomposição triangular LU (lower-upper) Bandas rotativas Solução por simulação condicional: reproduz o local e o valor de todas as observações 3

4 Simulação sequencial gaussiana 1. Considerar a simulação de um atributo z encontrado em N nós x j de um reticulado, condicionada a um conjunto de dados {z(x ) =1,...n} 2. Transformar os dados originais para o campo gaussiano (media 0 e variância 1). 3. Definir uma grade e um único percurso aleatório para todos os nós do retículo. 4. Para cada nó x determinar a média e a variância da função de distribuição acumulada condicional/ccdf gaussiana, usando krigagem simples baseada no modelo variográfico normalizado. 5. Extrair um valor simulado de cada ccdf e adicioná-lo ao conjunto de dados; a informação condicionante (n) consiste de um número específico n(x ), o qual inclui tanto valores normalizados como valores simulados durante uma seqüencia anterior, se existir. 6. Proceder de modo idêntico no próximo nó do reticulado, segundo o percurso aleatório, para a obtenção d mais valores, segundo (4) e (5). 7. Continuar até todos os nós terem sido percorridos. 8. Após todas as realizações, retro-transformar os valores simulados no campo gaussiano para os valores simulados no campo original Se o número total de observações é n e o número de nós é N, após o processo de simulação o número da amostragem expandida passa a ser n+n-1. Como tipicamente n<n, o método precisa discriminar a favor dos dados originais para funcionar com propriedade 4

5 Intervalo entre quartis/ied= = 36 Histogramas referentes à dados originais e 3 simulações. IEQ:36.0 IEQ:36.7 IEQ:35.6 IEQ:37.5 (IEQ K : 26.1) 5

6 Pb: amostragem (0,06-1,25)/GS+ g(h) = 0, ,20 Sph 0,3504(h) Krigagem ordinária (0,141-0,785) Variância da krigagem 6

7 Número de simulações: 1 (0,02-8,46) Número de simulações: 10 (0,06-2,69) Número de simulações: 100 (0,06-1,25) Número de simulações: 1000 (0,06-1,25) 7

8 Número de simulações: (0,06-1,25) Krigagem Simulação Exercício 06: Krigagem ordinária Para a realização deste exercício é necessário acessar o software de cunho didático E{Z}Kriging desenvolvido por D.J.J.Walvoort da Wageningen University/Holanda e, eventualmente, o texto explicativo que o acompanha. 8

9 Questões Mantendo a mesma configuração original, mas adicionando o valor 100 a cada um dos sete valores conhecidos, o que acontece com o valor estimado e a respectiva variância de estimação? Se for modificada a configuração espacial dos 7 pontos, de modo a 6 ficarem agrupados como no esquema abaixo, como ficam os pesos de cada um dos pontos? Mantendo a mesma configuração original para C0 e C1, se for modificado o modelo variográfico para exponencial e, em seguida, para gaussiano, acompanhados das respectivas modificações em a, o que acontece com os valores estimado e variância da krigagem? Qual o significado disso Mantendo a mesma configuração original, inclusive o modelo esférico, mas aumentando o valor do efeito pepita o que acontece e qual a explicação? Mantendo a mesma configuração original, inclusive o modelo esférico, mas usando krigagem ordinária por blocos, a medida que aumentam as dimensões dos blocos o que acontece e porque? A partir da configuração original se o ponto 2 tiver modificada sua posição espacial para bem próximo ao ponto 0 o que acontece, com relação aos pesos? Explicar por que. 9

Incerteza local e incerteza espacial SIMULAÇÃO

Incerteza local e incerteza espacial SIMULAÇÃO Incerteza local e incerteza espacial SIMULAÇÃO Situações em que o interesse na avaliação da incerteza não se resume a um ponto, mas a um conjunto de pontos simultaneamente. Com a krigagem é possível a

Leia mais

Análise de Risco dos Teores de Ferro em Planos de Lavra Mensais e Anual de uma Mina em Operação

Análise de Risco dos Teores de Ferro em Planos de Lavra Mensais e Anual de uma Mina em Operação Análise de Risco dos Teores de Ferro em Planos de Lavra Mensais e Anual de uma Mina em Operação Agenda Objetivo Descrição do Problema Caso Base Resultados Conclusão Trabalhos Futuros Objetivo Descrição

Leia mais

Geoestatística Para as Ciências da Terra e do Ambiente - 3ª ed.

Geoestatística Para as Ciências da Terra e do Ambiente - 3ª ed. Geoestatística Para as Ciências da Terra e do Ambiente - 3ª ed. 1 INTRODUÇÃO 1.1 A Geoestatística: Objecto e Evolução 1.2 Organização do Livro 2 A ABORDAGEM GEOESTATÍSTICA NA MODELIZAÇÃO DE FENÓMENOS ESPACIAIS

Leia mais

Interpolação. Interpolação. Padrões de amostragem. Autocorrelação. Padrões de amostragem. Padrões de amostragem

Interpolação. Interpolação. Padrões de amostragem. Autocorrelação. Padrões de amostragem. Padrões de amostragem Sistemas de Informação Geográfica II Interpolação 1. Interpolação Autocorrelação Padrões de amostragem Validação de resultados Interpolação Predição do valor de atributos em pontos não-amostrados Tempo

Leia mais

Prof: Felipe C. V. dos Santos

Prof: Felipe C. V. dos Santos Prof: Felipe C. V. dos Santos Goiânia 04, 03 2016 PONTIFICIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE ENGENHARIA CURSOS DE ENGENHARIA CIVIL E AMBIENTAL HIDROLOGIA APLICADA Prof. M. Sc. Felipe Corrêa

Leia mais

KRIGAGEM INDICATIVA KRIGAGEM INDICADORA (Krigagem da Indicatriz)

KRIGAGEM INDICATIVA KRIGAGEM INDICADORA (Krigagem da Indicatriz) Avaliação dos valores médios das variáveis que definem um recurso natural: krigagem ordinária. E para características extremas? Para valores acima, ou abaixo, de valores de corte? KRIGAGEM INDICATIVA KRIGAGEM

Leia mais

Geoestatística aplicada à agricultura de precisão

Geoestatística aplicada à agricultura de precisão Geoestatística aplicada à agricultura de precisão José P. Molin ESALQ/USP [email protected] www.agriculturadeprecisao.org.br Objetivo Abordar os conceitos fundamentais relacionados à geoestatistica aplicada

Leia mais

INTRODUÇÃO À ESTATÍSTICA ESPACIAL. Prof. Anderson Rodrigo da Silva

INTRODUÇÃO À ESTATÍSTICA ESPACIAL. Prof. Anderson Rodrigo da Silva INTRODUÇÃO À ESTATÍSTICA ESPACIAL Prof. Anderson Rodrigo da Silva [email protected] Métodos Índices de agregação Métodos de quantificação da dependência especial Correlograma Variograma Métodos

Leia mais

KRIGAGEM (Krigeage, Kriging)

KRIGAGEM (Krigeage, Kriging) A Teoria das Variáveis Regionalizadas tornou possível a Geoestatística KRIGAGEM (Krigeage, Kriging) Qualquer variável dependente do espaço e/ou tempo em que, além do caráter aleatório, apresente um caráter

Leia mais

Laboratório Nº 5. A geoestatística permite descrever a continuidade espacial, a qual é uma característica

Laboratório Nº 5. A geoestatística permite descrever a continuidade espacial, a qual é uma característica Laboratório Nº 5 INTRODUÇAO A geoestatística permite descrever a continuidade espacial, a qual é uma característica essencial de muitos fenómenos naturais. Modelos inferenciais para este objetivo vêm sendo

Leia mais

ESTIMATIVA E DISTRIBUIÇÃO ESPACIAL DA BIOMASSA NA FLORESTA OMBRÓFILA MISTA

ESTIMATIVA E DISTRIBUIÇÃO ESPACIAL DA BIOMASSA NA FLORESTA OMBRÓFILA MISTA ESTIMATIVA E DISTRIBUIÇÃO ESPACIAL DA BIOMASSA NA FLORESTA OMBRÓFILA MISTA Henrique Luis Godinho Cassol SER301 - Análise Espacial de Dados Geográficos INTRODUÇÃO MATERIAIS E MÉTODOS RESULTADOS CONCLUSÕES

Leia mais

Nivelamento: conceitos básicos sobre geoestatística. Dr. Diego Silva Siqueira Colaborador no Grupo de Pesquisa CSME

Nivelamento: conceitos básicos sobre geoestatística. Dr. Diego Silva Siqueira Colaborador no Grupo de Pesquisa CSME Nivelamento: conceitos básicos sobre geoestatística Dr. Diego Silva Siqueira Colaborador no Grupo de Pesquisa CSME Panorama atual: conhecimento da variabilidade Tecnologia de sementes OK Insumos OK Engenharia

Leia mais

Introdução Variograma Modelos básicos de correlação espacial Modelação Interpolação espacial & Simulação. Geoestatística.

Introdução Variograma Modelos básicos de correlação espacial Modelação Interpolação espacial & Simulação. Geoestatística. Geoestatística Susana Barbosa Mestrado em Ciências Geofísicas 2012-2013 Geoestatística conjunto de técnicas matemáticas e numéricas para caracterizar fenómenos espaciais contínuos tendo em conta a correlação

Leia mais

KRIGAGEM INDICATIVA APLICADA À ELABORAÇÃO DE MAPAS PROBABILÍSTICOS DE RISCOS

KRIGAGEM INDICATIVA APLICADA À ELABORAÇÃO DE MAPAS PROBABILÍSTICOS DE RISCOS KRIGAGEM INDICATIVA APLICADA À ELABORAÇÃO DE MAPAS PROBABILÍSTICOS DE RISCOS Paulo M. Barbosa Landim Professor Emérito Universidade Estadual Paulista/UNESP José Ricardo Sturaro Professor Assistente Doutor

Leia mais

UNIVERSIDADE DE SÃO PAULO INSTITUTO DE GEOCIÊNCIAS MAPEAMENTO DA INCERTEZA DE REALIZAÇÕES CONDICIONAIS DA SIMULAÇÃO PLURIGAUSSIANA TRUNCADA

UNIVERSIDADE DE SÃO PAULO INSTITUTO DE GEOCIÊNCIAS MAPEAMENTO DA INCERTEZA DE REALIZAÇÕES CONDICIONAIS DA SIMULAÇÃO PLURIGAUSSIANA TRUNCADA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE GEOCIÊNCIAS MAPEAMENTO DA INCERTEZA DE REALIZAÇÕES CONDICIONAIS DA SIMULAÇÃO PLURIGAUSSIANA TRUNCADA SANTIAGO DÍAZ LÓPEZ Orientador: Prof. Dr. Jorge Kazuo Yamamoto

Leia mais

Tópicos de Estatística Espacial Geoestatística

Tópicos de Estatística Espacial Geoestatística Tópicos de Estatística Espacial Geoestatística Anderson Castro Soares de Oliveira Geoestatística A geoestatística é uma análise espacial que considera que a variável em estudo se distribui continuamente

Leia mais

INTERPOLAÇÃO DE DADOS BATIMÉTRICOS DO RESERVATÓRIO DE TUCURUÍ: COMPARAÇÃO DE INTERPOLADORES E DO NÚMERO DE PONTOS AMOSTRADOS.

INTERPOLAÇÃO DE DADOS BATIMÉTRICOS DO RESERVATÓRIO DE TUCURUÍ: COMPARAÇÃO DE INTERPOLADORES E DO NÚMERO DE PONTOS AMOSTRADOS. INTERPOLAÇÃO DE DADOS BATIMÉTRICOS DO RESERVATÓRIO DE TUCURUÍ: COMPARAÇÃO DE INTERPOLADORES E DO NÚMERO DE PONTOS AMOSTRADOS. David de Andrade Costa Monografia para disciplina de Introdução ao Geoprocessamento

Leia mais

Modelagem de fenômenos naturais ANÁLISE ESTATÍSTICA DE VARIÁVEIS REGIONALIZADAS

Modelagem de fenômenos naturais ANÁLISE ESTATÍSTICA DE VARIÁVEIS REGIONALIZADAS FACULDADE DE CIÊNCIAS AGRONÔMICAS UNESP, campus de Botucatu Programa de Pós-Graduação ANÁLISE ESTATÍSTICA DE VARIÁVEIS REGIONALIZADAS Paulo M. Barbosa Landim [email protected] 11/07 Análise espacial

Leia mais

INTRODUÇÃO À ANÁLISE GEOESTATÍSTICA

INTRODUÇÃO À ANÁLISE GEOESTATÍSTICA CICLO DE CAPACITAÇÃO TÉCNICA INTERNA INTRODUÇÃO À ANÁLISE GEOESTATÍSTICA Responsáveis Célia Regina Grego Fernando A P. Paim Alex de Oliveira Outubro - 2011 ITENS ABORDADOS 1- Introdução 2- Amostragem e

Leia mais

COKRIGAGEM. Aplicação da cokrigagem

COKRIGAGEM. Aplicação da cokrigagem COKRIGAGEM Procedimento geoestatístico segundo o qual diversas variáveis regionalizadas podem ser estimadas em conjunto, com base na correlação espacial entre si. É uma extensão multivariada do método

Leia mais

EXECUÇÃO DE PLANOS OPERACIONAIS UTILIZANDO SIMULAÇÃO CONDICIONAL

EXECUÇÃO DE PLANOS OPERACIONAIS UTILIZANDO SIMULAÇÃO CONDICIONAL EXECUÇÃO DE PLANOS OPERACIONAIS UTILIZANDO SIMULAÇÃO CONDICIONAL Rondinelli Sousa, USP, Mestrando. Carlos Carrasco, USP, Mestrando. Giorgio de Tomi, USP, Prof. Associado. Departamento de Engenharia de

Leia mais

Sumário. Introdução, 9. 1 Conceitos Básicos, Cálculo e Modelagem de Variogramas Experimentais, Estimativas Geoestatísticas, 55

Sumário. Introdução, 9. 1 Conceitos Básicos, Cálculo e Modelagem de Variogramas Experimentais, Estimativas Geoestatísticas, 55 Sumário Introdução, 9 Breve histórico da Geoestatística, 9 Objetivos, 12 Organização do livro, 12 1 Conceitos Básicos, 19 1.1 Fenômeno espacial, 19 1.2 Amostra e métodos de amostragem, 1.3 Inferência espacial,

Leia mais

ANÁLISE GEOESTATÍSTICA: UMA INTRODUÇÃO. Célia Regina Grego

ANÁLISE GEOESTATÍSTICA: UMA INTRODUÇÃO. Célia Regina Grego ANÁLISE GEOESTATÍSTICA: UMA INTRODUÇÃO Célia Regina Grego [email protected] CONTEÚDO 1. INTRODUÇÃO 2. ANÁLISE EXPLORATÓRIA 3. SEMIVARIOGRAMA 4. INTERPOLAÇÃO 5. CONSTRUÇÃO DE MAPAS 1. INTRODUÇÃO SURGIMENTO

Leia mais

KRIGAGEM ORDINÁRIA E INVERSO DO QUADRADO DA DISTÂNCIA APLICADOS NA ESPACIALIZAÇÃO DA POPULAÇÃO DE Zaprionus indianus

KRIGAGEM ORDINÁRIA E INVERSO DO QUADRADO DA DISTÂNCIA APLICADOS NA ESPACIALIZAÇÃO DA POPULAÇÃO DE Zaprionus indianus KRIGAGEM ORDINÁRIA E INVERSO DO QUADRADO DA DISTÂNCIA APLICADOS NA ESPACIALIZAÇÃO DA POPULAÇÃO DE Zaprionus indianus Mauricio Paulo Batistella Pasini 1, Alessandro Dal Col Lúcio 2, Diniz Fronza 3, Liane

Leia mais

ANÁLISE VARIOGRÁFICA. A Geoestatística é baseada nos seguintes conceitos: Funções aleatórias. Variável regionalizada.

ANÁLISE VARIOGRÁFICA. A Geoestatística é baseada nos seguintes conceitos: Funções aleatórias. Variável regionalizada. ANÁLISE VARIOGRÁFICA A Geoestatística é baseada nos seguintes conceitos: Funções aleatórias Variável regionalizada Estacionariedade 1 2 No espaço (2D) ocorrem infinitos valores de uma variável. Por amostragem

Leia mais

Análise da variação espacial do teor de argila sobre a Fazenda Canchim.

Análise da variação espacial do teor de argila sobre a Fazenda Canchim. SER - 300 - INTRODUÇÃO AO GEOPROCESSAMENTO Laboratório 5 Geoestatística Linear Análise da variação espacial do teor de argila sobre a Fazenda Canchim. Professor(es) coordenador(es): Dr. Antonio Miguel

Leia mais

Modelagem Numérica de Terreno. Carlos Alberto Felgueiras

Modelagem Numérica de Terreno. Carlos Alberto Felgueiras Modelagem Numérica de Terreno Carlos Alberto Felgueiras Modelo Numérico de Terreno Definição Um MNT descreve a variação espacial contínua de uma grandeza sobre uma região. Dados de entrada arquivos pontuais

Leia mais

INCORPORARAÇÃO DA GEOESTATÍSTICA A PREVISÕES DE ESCOLHA MODAL

INCORPORARAÇÃO DA GEOESTATÍSTICA A PREVISÕES DE ESCOLHA MODAL INCORPORARAÇÃO DA GEOESTATÍSTICA A PREVISÕES DE ESCOLHA MODAL Viviani Antunes Gomes Cira Souza Pitombo INCORPORARAÇÃO DA GEOESTATÍSTICA A PREVISÕES DE ESCOLHA MODAL Viviani Antunes Gomes Cira Souza Pitombo

Leia mais

Autocorrelação Espacial. Sistemas de Informação Geográfica II. Estatística espacial MAUP. Estatísticas espaciais. Estatística espacial

Autocorrelação Espacial. Sistemas de Informação Geográfica II. Estatística espacial MAUP. Estatísticas espaciais. Estatística espacial Sistemas de Informação Geográfica II Estatística espacial Alexandre Gonçalves DECivil - IST [email protected] Autocorrelação Espacial Os dados de locais próximos entre si tendem a

Leia mais

Processos Hidrológicos CST 318 / SER 456. Tema 9 -Métodos estatísticos aplicados à hidrologia ANO 2016

Processos Hidrológicos CST 318 / SER 456. Tema 9 -Métodos estatísticos aplicados à hidrologia ANO 2016 Processos Hidrológicos CST 318 / SER 456 Tema 9 -Métodos estatísticos aplicados à hidrologia ANO 2016 Camilo Daleles Rennó Laura De Simone Borma http://www.dpi.inpe.br/~camilo/prochidr/ Caracterização

Leia mais

RESENHA 1. Aluno: Rodrigo de Almeida Muniz Doutorando: Engenharia de Sistemas Agrícolas

RESENHA 1. Aluno: Rodrigo de Almeida Muniz Doutorando: Engenharia de Sistemas Agrícolas RESENHA 1 Aluno: Rodrigo de Almeida Muniz Doutorando: Engenharia de Sistemas Agrícolas VARIABILIDADE ESPACIAL DO ESTOQUE DE CARBONO NOS TABULEIROS COSTEIROS DA PARAÍBA: SOLO SULTIVADO COM CANA DE AÇÚCAR.

Leia mais

Modelagem de dados espaciais

Modelagem de dados espaciais VI Simpósio da Sociedade Brasileira de Engenharia de Avaliações Modelagem de dados espaciais José Luiz Portugal UFPE [email protected] Objetivos Contextualizar modelos de dados espaciais Compreender

Leia mais

Seleção e ajuste de modelos espaciais de semivariograma aplicados a dados do ph do solo

Seleção e ajuste de modelos espaciais de semivariograma aplicados a dados do ph do solo Seleção e ajuste de modelos espaciais de semivariograma aplicados a dados do ph do solo Kuang Hongyu 1 1 Programa de Pós graduação em Estatística e Experimentação Agronômica Departamento de Ciência Exatas,

Leia mais

GEOESTATíSTICA: FUNDAMENTOS E APLICAÇÕES. Qual o tamanho ideal do domínio ou da janela de estimação?

GEOESTATíSTICA: FUNDAMENTOS E APLICAÇÕES. Qual o tamanho ideal do domínio ou da janela de estimação? 5 GEOESTATíSTICA: FUNDAMENTOS E APLICAÇÕES 5.1 INTRODUÇÃO Eduardo Celso Gerbi Camargo Como nos ensina Burrough (1998), quando os dados são abundantes, a maior parte dos métodos de interpolação produz valores

Leia mais

Modelagem de fertilidade do solo por simulação estocástica com tratamento de incertezas

Modelagem de fertilidade do solo por simulação estocástica com tratamento de incertezas Modelagem de fertilidade do solo 379 Modelagem de fertilidade do solo por simulação estocástica com tratamento de incertezas Jussara de Oliveira Ortiz (1), Carlos Alberto Felgueiras (1), Suzana Druck ()

Leia mais

Interpolação. Dr. Marcos Figueiredo

Interpolação. Dr. Marcos Figueiredo Introdução às Análises Espaciais para Ecologia e Conservação da Biodiversidade (PPGE, PPGBIO) (Graduação em Biologia - IBE 013) Interpolação Dr. Marcos Figueiredo ([email protected]) Tópicos 1. Conceito

Leia mais

θ depende de um parâmetro desconhecido θ.

θ depende de um parâmetro desconhecido θ. 73 Método de Máxima Verosimilhança (Maximum Likelihood) Seja uma variável aleatória (v. a.) cuja densidade de probabilidade depende de um parâmetro desconhecido. Admite-se conhecida a forma de Exemplo

Leia mais

Instrumentação Industrial. Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição

Instrumentação Industrial. Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição Instrumentação Industrial Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição Introdução a Metrologia O que significa dizer: O comprimento desta régua é 30cm. A temperatura

Leia mais

Aplicação do Estimador de densidade por Kernel

Aplicação do Estimador de densidade por Kernel LABORATÓRIO 1: ANÁLISE DE PADRÕES DE DISTRIBUIÇÃO DE PONTOS O objetivo deste laboratório é ilustrar as várias formas de analisar padrão de pontos, a partir de alguns conjuntos de dados. As ferramentas

Leia mais

p.1/48 Eduardo Mendes Departamento de Engenharia Eletrônica Universidade Federal de Minas Gerais Av. Antônio Carlos 6627, Belo Horizonte, MG, Brasil

p.1/48 Eduardo Mendes Departamento de Engenharia Eletrônica Universidade Federal de Minas Gerais Av. Antônio Carlos 6627, Belo Horizonte, MG, Brasil p1/48 Capítulo 4 - Métodos ão Paramétricos Eduardo Mendes Departamento de Engenharia Eletrônica Universidade Federal de Minas Gerais Av Antônio Carlos 27, elo Horizonte, MG, rasil p2/48 Introdução Os métodos

Leia mais

Estatística espacial Geoestatística. Profa. Dra. Rúbia Gomes Morato

Estatística espacial Geoestatística. Profa. Dra. Rúbia Gomes Morato Estatística espacial Geoestatística Profa. Dra. Rúbia Gomes Morato Estatística espacial Diferencia-se da estatística tradicional por considerar a localização, a posição no espaço. Estatística espacial

Leia mais

3 Modelo Matemático Definições Iniciais. Denote-se, em geral, o desvio-padrão do processo por σ = γσ 0, sendo σ 0 o

3 Modelo Matemático Definições Iniciais. Denote-se, em geral, o desvio-padrão do processo por σ = γσ 0, sendo σ 0 o Modelo Matemático 57 3 Modelo Matemático Este trabalho analisa o efeito da imprecisão na estimativa do desvio-padrão do processo sobre o desempenho do gráfico de S e sobre os índices de capacidade do processo.

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS fonte de graus de soma de quadrado variação liberdade quadrados médio teste F regressão 1 1,4 1,4 46,2 resíduo 28 0,8 0,03 total 2,2 A tabela de análise de variância (ANOVA) ilustrada acima resulta de

Leia mais

Medidas Territoriais: Bairro, Distrito, Zona, Interdistrital, Intradistrital, Intermunicipal e outros Recortes do Espaço Urbano

Medidas Territoriais: Bairro, Distrito, Zona, Interdistrital, Intradistrital, Intermunicipal e outros Recortes do Espaço Urbano INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS Ministério da Ciência e Tecnologia Medidas Territoriais: Bairro, Distrito, Zona, Interdistrital, Intradistrital, Intermunicipal e outros Recortes do Espaço Urbano

Leia mais

ANÁLISE COMPARATIVA DE MÉTODOS DE INTERPOLAÇÃO PARA A ESPACIALIZAÇÃO DOS PERCENTIS 75 DA PRECIPITAÇÃO PLUVIOMÉTRICA ANUAL PARA O ESTADO DO PIAUÍ

ANÁLISE COMPARATIVA DE MÉTODOS DE INTERPOLAÇÃO PARA A ESPACIALIZAÇÃO DOS PERCENTIS 75 DA PRECIPITAÇÃO PLUVIOMÉTRICA ANUAL PARA O ESTADO DO PIAUÍ ANÁLISE COMPARATIVA DE MÉTODOS DE INTERPOLAÇÃO PARA A ESPACIALIZAÇÃO DOS PERCENTIS 75 DA PRECIPITAÇÃO PLUVIOMÉTRICA ANUAL PARA O ESTADO DO PIAUÍ F. E. P. MOUSINHO 1 ; A. S. ANDRADE JÚNIOR. 2 ; J. A. FRIZZONE

Leia mais

AULAS 21 E 22 Análise de Regressão Múltipla: Estimação

AULAS 21 E 22 Análise de Regressão Múltipla: Estimação 1 AULAS 21 E 22 Análise de Regressão Múltipla: Estimação Ernesto F. L. Amaral 28 de outubro e 04 de novembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Cohen, Ernesto, e Rolando Franco. 2000. Avaliação

Leia mais

3 INTERVALOS DE CONFIANÇA

3 INTERVALOS DE CONFIANÇA 3 INTEVALOS DE CONFIANÇA 3.1 Introdução A estimativa de intervalos de confiança é utilizada para se obter medidas de incerteza dos dados analisados. A análise da incerteza de uma previsão, por exemplo,

Leia mais

EFEITO DA ACUMULAÇÃO EM 2D EM ESTIMATIVAS DE MINÉRIO FOSFÁTICO

EFEITO DA ACUMULAÇÃO EM 2D EM ESTIMATIVAS DE MINÉRIO FOSFÁTICO EFEITO DA ACUMULAÇÃO EM 2D EM ESTIMATIVAS DE MINÉRIO FOSFÁTICO Diego Machado Marques, UFRGS, [email protected] João Felipe C. L. Costa, UFRGS, [email protected] Ricardo Hundelshaussen UFRGS, [email protected]

Leia mais

TT64 COMPARAÇÃO DE MODELOS INFERENCIAIS TRADICIONAIS E ESPACIAIS UTILIZANDO DIFERENTES VARIÁVEIS DE LOCALIZAÇÃO.

TT64 COMPARAÇÃO DE MODELOS INFERENCIAIS TRADICIONAIS E ESPACIAIS UTILIZANDO DIFERENTES VARIÁVEIS DE LOCALIZAÇÃO. TT64 COMPARAÇÃO DE MODELOS INFERENCIAIS TRADICIONAIS E ESPACIAIS UTILIZANDO DIFERENTES VARIÁVEIS DE LOCALIZAÇÃO. CARLOS ALBERTO PERUZZO TRIVELLONI ENGENHEIRO CIVIL (UNIVERSIDAD DE LA REPÚBLICA, MONTEVIDÉU,

Leia mais

GEOESTATÍSTICA APLICADA AO ESTUDO DA VARIAÇÃO DE CORES DO QUARTZO DA REGIÃO DE ANTÔNIO DIAS MG.

GEOESTATÍSTICA APLICADA AO ESTUDO DA VARIAÇÃO DE CORES DO QUARTZO DA REGIÃO DE ANTÔNIO DIAS MG. GEOESTATÍSTICA APLICADA AO ESTUDO DA VARIAÇÃO DE CORES DO QUARTZO DA REGIÃO DE ANTÔNIO DIAS MG. Adam Barros Fernandes 1, Felipe de Freitas Moreira Vilela 1, Gabrieli Santos Boulhosa 1, Giulia Fabri Rodrigues

Leia mais

Sexta Lista: Geração de Números Pseudo-Aleatórios e Método de Monte Carlo

Sexta Lista: Geração de Números Pseudo-Aleatórios e Método de Monte Carlo Sexta Lista: Geração de Números Pseudo-Aleatórios e Método de Monte Carlo Antônio Carlos Roque da Silva Filho e Cristiano R. F. Granzotti 26 de junho de 2017 Os exercícios desta lista devem ser resolvidos

Leia mais