Maurício Clarisse Petroceli Loures

Tamanho: px
Começar a partir da página:

Download "Maurício Clarisse Petroceli Loures"

Transcrição

1 INSTITUTO DE MATEMÁTICA PURA E APLICADA POGRAMA DE MESTRADO EM MATEMÁTICA EQUAÇÕES DIFERENCIAIS ORDINÁRIAS I Maurício Clarisse Petroceli Loures Relatório - Prática Computacional Órbitas para o problema de N corpos Análise de estabilidade para o Pêndulo de Kapitza RIO DE JANEIRO 217

2 Parte I Órbitas para o problema de N corpos 1

3 Introdução Em um sistema fechado tri-dimensional, fazemos valer as leis newtonianas da mecânica clássica e da gravitação universal. Adicionamos a este sistema N corpos esféricos (onde n é um número natural qualquer) em N posições distintas bem definidas do espaço. Para cada um desses corpos definimos uma massa constante e uma velocidade inicial. Como esse sistema evolui através do tempo? Quais órbitas estes corpos desenham no espaço? Com alguma liberdade poética, podemos dizer que as perguntas acima são provavelmente duas das mais antigas da história da ciência. A observação do céu e a tentativa de descrever o movimento dos objetos celestiais são atividades praticadas pela humanidade praticamente desde os seus primórdios. As evidências mais antigas de atividade astronômica datam de 75 A.C. [1]. De uma forma mais rigorosa, devemos atribuir este famoso problema (formulado como no primeiro parágrafo) a Newton que estabeleceu claramente as leis que regem a mecânica celeste e providenciou o ferramental teórico e matemático necessário para a formulação rigorosa do problema. A saber, encontrar soluções para o sistema de equações diferenciais N x x i x j j = Gm i ; j = 1,..., N; xi x j 3 i=1; i j (1) (x 1,..., x N ) = (x o 1,..., x o N ); (x 1,..., x N ) = (vo 1,..., vn o ). onde x i é a posição do i-ésimo corpo, m i sua massa, x o i e vi o são respectivamente sua posição e velocidade iniciais e G é a constante gravitacional do sistema. Nesta parte do trabalho apresentamos algumas condições iniciais que oferecem órbitas interessantes para o sistema 1. 2

4 Órbita circular dupla x o 1 = ( 1,, ) v1 o = (, 1, ) x o 2 = (,, ) v1 o = (,, ) x o 3 = (1,, ) v1 o = (, 1, ) G = 1 m 1 = m 2 = m 3 = 1 3

5 Sistema Sol-Terra-Lua Sol x o 1 = (,, ) v1 o = (,, ) m 1 = 1.988e3 Terra x o 2 = (1.496e11,, ) v1 o = (, 32, ) m 2 = 5.973e24 Lua x o 1 = (1.496e e8,, ) v3 o = (, 31276, ) m 3 = 7.347e22 G = e 11 Adicionando planetas ao sistema solar Mercúrio x o 4 = (46e9,, ) v4 o = (, 5898, ) m 4 =.3311e24 Vênus x o 5 = (17.48e9,, ) v5 o = (, 3526, ) m 5 = e24 Marte x o 6 = (26.62e9,, ) v6 o = (, 2978, ) m 6 =.64171e24 Júpter x o 7 = (74.52e9,, ) v7 o = (, 1372, ) m 7 = e24 Saturno x o 8 = ( e9,, ) v8 o = (, 118, ) m 8 = e24 Urano x o 9 = (2741.3e9,, ) v9 o = (, 711, ) m 9 = e24 Netuno x o 1 = ( e9,, ) v1 o = (, 55, ) m 1 = e24 G = e 11 4

6 Parte II Análise de estabilidade para o Pêndulo de Kapitza 5

7 Introdução A equação do pêndulo simples é um problema clássico e bem estudado da teoria de equações diferenciais. Isso porque trata-se de um fenômeno fácil de reproduzir fisicamente o que permite prever intuitivamente as órbitas das soluções da EDO para condições iniciais dadas. Para o estudo de estabilidade de pontos de equilíbrio, o pêndulo simples também é um exemplo muito inteessante. Para qualquer posição do pêndulo com massa m = 1, podemos medir o ângulo θ formado pela haste do pêndulo e a direção normal a superfície de sustentação onde atua a acelração gravitacional do sistema. Sendo l o comprimento da haste do pêndulo e g a aceleração gravitacional podemos modelar o pêndulo simples através da seguinte equação diferencial ordinária θ = g l sin(θ). (2) Dada a popularidade deste problema, sabemos que os pontos de equilíbrio deste sistema são θ 1 = e θ 2 = π. Também sabemos que o equilíbrio θ 1 trata-se de um equilíbrio estável enquanto θ 2 apresenta equilíbrio instável. Supreendemente, acrescentando alguma vibração sobre o suporte do pêndulo, é possivel estabilizar o equilíbrio θ 2. É o pêndulo vibrante que conhecemos como Pêndulo de Kapitza o qual podemos modelar pela EDO θ = 1 l ( g + av 2 cos(vt) ) sin(θ) (3) onde a é a amplitude e v é a frequência da vibração que aplicamos à base do pêndulo. Estudaremos a equação 3 com mais detalhes nas páginas seguintes. Delineamos os objetivos da nossa discussão a seguir 1. Escolher um método numérico para integrar a equação 3 para diferentes valores de a e v mantendo l = g = Através das soluções encontradas numericamente, investigar pontos de equilíbrio para o pêndulo de Kapitza. 3. Elaborar uma estratégia para investigar analiticamente o equilíbrio do pêndulo com vibração. 4. Obter condições de estabilidade para o pêndulo de Kapitza. 6

8 5. Relacionar os resultados obtidos analiticamente com as soluções encontradas numericamente. Escolhendo um método numérico adequado Ao introduzir uma rápida vibração sobre o pêndulo simples, intuitivamente esperamos que as soluções apresentem elevada oscilação local. No entando, também podemos esperar que o comportamento do pêndulo de Kapitza seja, de alguma forma, similar ao pêndulo simples (com isso queremos dizer que não esperamos um comportamento completamente errático), ou seja, intuímos que soluções serão globalmente bem comportadas. Chamamos os problemas que apresentam esse tipo de comportamente de problemas Stiff. Como as soluções do problema 3 podem apresentar variação muito grande, obter a informação da variação da solução em um ponto futuro, mesmo que em um futuro muito próximo, pode levar a um erro grande o suficiente para fazer a integração numérica divergir. Por isso, para fazer um método explícito de passo simples convergir seria preciso tomar passos muito próximos de zero e, em alguns casos, tão próximos de zero quanto possível. A observação feita acima, nos permite imediatamente excluir de nossa lista de possíveis métodos numéricos todos os métodos explícitos de passo simples. Mais do que isso, podemos também excluir os métodos de passo adaptativo, pois se precisarmos tomar passos "tão próximos de zero quanto possível"o passo ótimo do método de passo adaptativo será o passo mínimo quase em todo ponto. Nestas condições, não existiria distinção entre métodos de passo adaptativo e métodos de passo simples com passo muito pequeno. A alternativa óbvia é recorrer a um método implícito. Eles funcionam bem para problemas stiff porque obtemos a informação da variação no ponto presente e não em nenhum ponto futuro da integração. Por este motivo, ecolheremos o método de Crank-Nicolson para integrar a equação 3. Experimentos numéricos Note que se tomarmos a = na equação 3, obtemos exatamente a equação 2. Utilizamos o integrador que impletamos para obter soluções para diferentes condições iniciais 7

9 (velocidade inicial nula) mantendo g = l = 1; a =. Ver figura (a) θ() = π 4. (b) θ() = ; solução estacionária; pi (c) θ() =.1; θ é equilíbrio estável. (d) θ() = π; solução estacionária (e) θ() = π.1; θ π é equilíbrio instável. Figura 1: Soluções para a equação 3 com l = g = 1, a = ; Notamos que o fluxo da equação 3 é nulo para todo t se e somente sin(θ) = θ {, π}. Desta forma, vamos estudar estabilidade destes pontos de equilíbrios mantendo a =.1. Analisando a figura 2, verificamos que o ponto θ 1 = é estável para qualquer valor de v experimentado, e θ 2 = π é estável apenas para v = 2. 8

10 pi (a) v = 1; θ() =.2; θ é equilíbrio estável. (b) v = 1; θ() = π.2; θ π é equilíbrio instável (c) v = 1; θ() =.2; θ é equilíbrio estável. (d) v = 1; θ() = π.2; θ π é equilíbrio instável (e) v = 2; θ() =.2; θ é equilíbrio estável. (f) v = 2; θ() = π.2; θ π é equilíbrio estável. Figura 2: Soluções para a equação 3 com l = g = 1, a =.1; Estudo analítico da estabilidade do pêndulo de Kapitza Conforme demonstrado em [2], é possivel aproximar as soluções θ(t) da equação 3 por funções θ (t) que satisfazem θ = θ [ g ( av ) ] 2 l cos θ + 2l sin θ. (4) Vamos definir. V (θ ) = g l cos θ + ( av ) 2 2l sin θ Encontramos equilíbrio para o problema 4 se e somente se θ V =. Desta forma, 9

11 obtemos a condição θ V = 1 ] l sin θ [g + (av)2 cos θ = 2l ( ) 2gl sin θ = ou θ o = acos, quando 2gl (av) 2 (av) 2 1. Estamos interessados em estudar a estabilidade dos pontos estacionários θ 1 = e θ 2 = π. Comecemos por θ 1. Neste caso, podemos usar a função de Lyapunov V (θ ) = V (θ ) + g l. Neste caso, escrevemos Temos V () = e, como 1 cos θ V = g l [1 cos θ ] + ( av ) 2. 2l sin θ > para todo θ, V (θ ) > para todo θ. Além disso, V (θ ) ao longo do fluxo da equação 4 é dada por ( θ V ) ( θ V ) = ( θ V ) 2 > em I {} onde I é alguma vizinhança de θ =. Logo, verificamos que V é de fato uma função de Lyapunov e portanto devemos esperar estabilidade do ponto estacionário θ = para quaisquer valores de a e de v. Para θ 2, podemos usar a função de Lyapunov V π (θ ) = V (θ ) g l. Neste caso, escrevemos V π = g l [1 + cos θ ] + ( av ) 2. 2l sin θ Temos V () =. Além disso, V (θ ) ao longo do fluxo da equação 4 é dada por ( θ V π ) ( θ V ) = ( θ V ) 2. Logo, para verificar que V π é de fato uma função de Lyapunov resta mostrar que para alguma vizinhança de θ = π, V π (θ ) >. Note que podemos escrever V π = g l [1 + cos θ ] + (av)2 4l 2 [ 1 cos 2 θ ] = g l [1 + cos θ ] + (av)2 [1 cos θ 4l 2 ] [1 + cos θ ] ] gl (av)2 = [1 + cos θ ] [ + [1 cos θ 4l 2 ]. 1

12 Como 1 + cos θ, o sinal de V π é o mesmo de g l + (av)2 4l 2 [1 cos θ ]. Portanto V π > (av) 2 [1 cos θ ] > 4gl. Vamos mostrar que V π > em I {π} se e somente se (av) 2 > 2gl. De fato, temos 1 cos θ 2. Portanto, (av) 2 2gl = (av) 2 [1 cos θ ] 4gl = V π. Supomos agora (av) 2 > 2gl. Logo, existe δ > tal que (av) 2 > 2gl + δ. Tome ɛ > tal que 2δ 2glɛ δɛ > e uma vizinhança I de π tal que 2 ɛ < 1 cos θ < 2 θ I {π}. Temos, para todo θ I {π}, (av) 2 [1 cos θ ] > (2gl + δ)(2 ɛ) = 4gl + 2δ 2glɛ δɛ > 4gl = V π > Podemos conclcuir que o ponto estacionário θ π é estável sempre que av > 2gl. Este resultado corrobora os experimentos numéricos que realizamos pois para os valores g = l = 1 temos 2gl 1.4. Fixando a =.1, encontramos instabilidade para v = 1 (av =.1 < 1.4) e para v = 1 (av = 1 < 1.4) mas encontramos estabilidade para v = 2 (av = 2 > 1.4). Considerações Finais O que fizemos neste trabalho, demonstra o poder as ferramentas computacionais para gerar intuição sobre o problema estudado. Através dos experimentos computacionais, melhorase o entendimento a respeito do fenômeno estudado o que pode proporcionar ferramentas matemáticas úteis e não triviais para a abordagem analítica o problema. 11

13 Bibliografia [1] AABOE, A., Episodes from the early history of astronomy. Springer Science & Business Media, 21. [2] BELLO, T. et al, Stability Analysis of Pendulum With Vibrating Base; 214. Disponível em <math.arizona.edu>. Acesso em julho,

Introdução à Física Computacional 1S/2018

Introdução à Física Computacional 1S/2018 Introdução à Física Computacional 1/2018 Projeto 4 Leis de Kepler e o problema de três corpos Início: 23 de Abril de 2018 Data da entrega do relatório: 21 de Maio de 2018 Prof.: Eric C. Andrade Descrição:

Leia mais

Física 1 Mecânica. Instituto de Física - UFRJ

Física 1 Mecânica. Instituto de Física - UFRJ Física 1 Mecânica Sandra Amato Instituto de Física - UFRJ Lei da Gravitação de Newton 1/ 33 (Vetores) Física 1 1/33 Física 1 Mecânica Sandra Amato Instituto de Física - UFRJ Lei da Gravitação de Newton

Leia mais

PGF Mecânica Clássica Prof. Iberê L. Caldas

PGF Mecânica Clássica Prof. Iberê L. Caldas PGF 55 - Mecânica Clássica Prof. Iberê L. Caldas Terceiro Estudo Dirigido o semestre de 18 Os estudos dirigidos podem ser realizados em duplas. Apenas os exercícios marcados com asteriscos precisam ser

Leia mais

EUF. Exame Unificado

EUF. Exame Unificado EUF Exame Unificado das Pós-graduações em Física Para o segundo semestre de 016 Respostas esperadas Parte 1 Estas são sugestões de possíveis respostas Outras possibilidades também podem ser consideradas

Leia mais

REFORMULAÇÃO DA LEI DOS PERÍODOS A PARTIR DOS PRINCÍPIOS NEWTONIANOS

REFORMULAÇÃO DA LEI DOS PERÍODOS A PARTIR DOS PRINCÍPIOS NEWTONIANOS REFORMULAÇÃO DA LEI DOS PERÍODOS A PARTIR DOS PRINCÍPIOS NEWTONIANOS Lucas Lopes da Silva Santos; Manuella de Andrade Albuquerque; Allan Giuseppe de Araújo Caldas; Arthur Vinicius Ribeiro de Freitas Azevedo;

Leia mais

8. Estabilidade e bifurcação

8. Estabilidade e bifurcação 8. Estabilidade e bifurcação Os sistemas dinâmicos podem apresentar pontos fixos, isto é, pontos no espaço de fase onde o sistema permanece sempre no mesmo estado. Para identificar os pontos fixos e estudar

Leia mais

Lista 2. As leis de Kepler e gravitação universal de Newton

Lista 2. As leis de Kepler e gravitação universal de Newton Lista 2. As leis de Kepler e gravitação universal de Newton Nestor Caticha Física Geral IFUSP Universidade de São Paulo, CP66318, CEP 05315-970, São Paulo, SP, Brazil 25 de Outubro de 2012 Resumo Esta

Leia mais

na Órbita Terrestre: um Estudo do Caos Thales Agricola Instituto de Física UFRJ

na Órbita Terrestre: um Estudo do Caos Thales Agricola Instituto de Física UFRJ 1 Introdução A Influência de Júpiter na Órbita Terrestre: um Estudo do Caos Thales Agricola Instituto de Física UFRJ Investigar o movimento da Terra ( ) quando submetida aos campos gravitacionais do Sol

Leia mais

ONDULATÓRIA DO MOVIMENTO PENDULAR SIMPLES 1

ONDULATÓRIA DO MOVIMENTO PENDULAR SIMPLES 1 ONDULATÓRIA DO MOVIMENTO PENDULAR SIMPLES 1 SCHERER, Lucas Bastos Otero 2 ; PERSSON, Robson 3 ; GABBI, Ana Carla Streit 4 RESUMO: No presente trabalho é feito um estudo das variações periódicas, relacionadas

Leia mais

Pêndulo Duplo ou Lição 0 de Mecânica Lagrangiana, Análise Numérica e Teoria do Caos

Pêndulo Duplo ou Lição 0 de Mecânica Lagrangiana, Análise Numérica e Teoria do Caos Pêndulo Duplo ou Lição 0 de Mecânica Lagrangiana, Análise Numérica e Teoria do Caos Pedro Queiroz Departamento de Física Instituto Superior Técnico Novembro de 005 1 Introdução O Problema 3 da Série 8

Leia mais

Denomina-se gravidade a interação ente dois ou mais corpos devido sua massa. A força da gravidade é uma força de ação à distância, que se torna mais

Denomina-se gravidade a interação ente dois ou mais corpos devido sua massa. A força da gravidade é uma força de ação à distância, que se torna mais Denomina-se gravidade a interação ente dois ou mais corpos devido sua massa. A força da gravidade é uma força de ação à distância, que se torna mais evidente entre objetos com grandes massas, ocasionada

Leia mais

Seção 9: EDO s lineares de 2 a ordem

Seção 9: EDO s lineares de 2 a ordem Seção 9: EDO s lineares de a ordem Equações Homogêneas Definição. Uma equação diferencial linear de segunda ordem é uma equação da forma onde fx, gx e rx são funções definidas em um intervalo. y + fx y

Leia mais

Física 2 - EMB5039. Prof. Diego Duarte Oscilações (lista 4) 19 de abril de 2017

Física 2 - EMB5039. Prof. Diego Duarte Oscilações (lista 4) 19 de abril de 2017 Física 2 - EMB5039 Prof. Diego Duarte Oscilações (lista 4) 19 de abril de 2017 1. Mostre que a equação que descreve o sistema massa-mola vertical da figura 1 é dada por: d 2 y dt 2 + ω2 y = 0 (1) em que

Leia mais

Exercícios de Mecânica Analítica

Exercícios de Mecânica Analítica Universidade de São Paulo - Instituto de Física Complementos de Mecânica Clássica Exercícios de Mecânica Analítica Rafael Wagner - 8540310 1 de novembro de 016 1 Primeiro exercício Um sistema "pêndulo-mola"consiste

Leia mais

UNIDADE 15 OSCILAÇÕES

UNIDADE 15 OSCILAÇÕES UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito

Leia mais

Universidade Estadual do Sudoeste da Bahia. 1- Gravitação Física II

Universidade Estadual do Sudoeste da Bahia. 1- Gravitação Física II Universidade Estadual do Sudoeste da Bahia Departamento de Ciências Exatas e Naturais 1- Gravitação Física II Ferreira ÍNDICE 1) - Introdução; 2) - Força Gravitacional; 3) - Aceleração Gravitacional; 4)

Leia mais

Denomina-se gravidade a interação ente dois ou mais corpos devido sua massa. A força da gravidade é uma força de ação à distância, que torna-se mais

Denomina-se gravidade a interação ente dois ou mais corpos devido sua massa. A força da gravidade é uma força de ação à distância, que torna-se mais Denomina-se gravidade a interação ente dois ou mais corpos devido sua massa. A força da gravidade é uma força de ação à distância, que torna-se mais evidente entre objetos com grandes massas, ocasionada

Leia mais

CAOS E ORDEM CONTROLO DE UM PÊNDULO INVERTIDO

CAOS E ORDEM CONTROLO DE UM PÊNDULO INVERTIDO CAOS E ORDEM CONTROLO DE UM PÊNDULO INVERTIDO. Participantes.. Eduardo Dias. Aluno da escola secundária Domingos Sequeira de Leiria. Inscrevi-me neste estágio porque gosto de matemática e era uma boa oportunidade

Leia mais

Cap. 5 Estabilidade de Lyapunov

Cap. 5 Estabilidade de Lyapunov Cap. 5 Estabilidade de Lyapunov 1 Motivação Considere as equações diferenciais que modelam o oscilador harmônico sem amortecimento e sem força aplicada, dada por: M z + Kz = 0 Escolhendo-se x 1 = z e x

Leia mais

Métodos Computacionais em Física I (FIW234) Turmas IFA e IFB Equações Diferenciais: introdução aos sistemas caóticos

Métodos Computacionais em Física I (FIW234) Turmas IFA e IFB Equações Diferenciais: introdução aos sistemas caóticos Métodos Computacionais em Física I (FIW234) Turmas IFA e IFB Equações Diferenciais: introdução aos sistemas caóticos Edivaldo M. Santos e João R. T. de Mello Neto Aula 6 Edivaldo M. Santos e João R. T.

Leia mais

1. GRAVITAÇÃO PARTE I

1. GRAVITAÇÃO PARTE I 1. GRAVITAÇÃO PARTE I CONTEÚDO PROGRAMÁTICO: 1- GRAVITAÇÃO 1.1. Lei da Gravitação de Newton; 1.. Energia potencial gravitacional; 1.3. Leis de Kepler; Modelo Geocêntrico Vs Modelo Heliocêntrico Modelo

Leia mais

Prof. Eslley Scatena Blumenau, 12 de Setembro de

Prof. Eslley Scatena Blumenau, 12 de Setembro de Grupo de Astronomia e Laboratório de Investigações Ligadas ao Estudo do Universo Prof. Eslley Scatena Blumenau, 12 de Setembro de 2017. e.scatena@ufsc.br http://galileu.blumenau.ufsc.br O Sistema Solar

Leia mais

Princípios de Modelagem Matemática Aula 04

Princípios de Modelagem Matemática Aula 04 Princípios de Modelagem Matemática Aula 04 Prof. José Geraldo DFM CEFET/MG 09 de abril de 2014 1 Análise dimensional Análise dimensional A análise dimensional permite encontrar relações entre variáveis

Leia mais

DINÂMICA DO SISTEMA SOLAR

DINÂMICA DO SISTEMA SOLAR ASTRONOMIA DO SISTEMA SOLAR Enos Picazzio (IAGUSP 2006) DINÂMICA DO SISTEMA SOLAR NÃO HÁ PERMISSÃO DE USO PARCIAL OU TOTAL DESTE MATERIAL PARA OUTRAS FINALIDADES. Até o final do século XVII eram conhecidos:

Leia mais

AS LEIS DE KEPLER A LEI DA GRAVITAÇÃO UNIVERSAL

AS LEIS DE KEPLER A LEI DA GRAVITAÇÃO UNIVERSAL AS LEIS DE KEPLER A LEI DA GRAVITAÇÃO UNIVERSAL Um pouco de História Grécia antiga: Determinação da diferença entre as estrelas fixas e errantes (planetas) Primeiros modelos planetários explicando o movimento

Leia mais

Prova 1/3. Nome: Assinatura: Matrícula UFES: Semestre: 2013/2 Curso: Física (B e L) Turmas: 01 e 02 Data: 11/11/2013 GABARITO

Prova 1/3. Nome: Assinatura: Matrícula UFES: Semestre: 2013/2 Curso: Física (B e L) Turmas: 01 e 02 Data: 11/11/2013 GABARITO Universidade Federal do Espírito Santo Centro de Ciências Eatas Departamento de Física FIS09066 Física Prof. Anderson Coser Gaudio Prova /3 Nome: Assinatura: Matrícula UFES: Semestre: 03/ Curso: Física

Leia mais

Física 1. 3 a prova 30/06/2018. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 3 a prova 30/06/2018. Atenção: Leia as recomendações antes de fazer a prova. Física 1 3 a prova 30/06/2018 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua

Leia mais

Caos. Apresentado na disciplina Mecânica Cássica (PGF 5005) IFUSP. Iberê L. Caldas

Caos. Apresentado na disciplina Mecânica Cássica (PGF 5005) IFUSP. Iberê L. Caldas Caos Iberê L. Caldas Apresentado na disciplina Mecânica Cássica (PGF 5005) IFUSP Caos na Mecânica Clássica Criação da Mecânica. Determinismo. Sensibilidade às condições iniciais. Indeterminismo clássico.

Leia mais

Na posição de equilíbrio, temos como forças que actuam sobre o corpo: Fora da posição de equilíbrio, as forças que podem actuar são:

Na posição de equilíbrio, temos como forças que actuam sobre o corpo: Fora da posição de equilíbrio, as forças que podem actuar são: APLICAÇÕES DAS EQUAÇÕES DIFERENCIAIS DE SEGUNDA ORDEM Como aplicação das equações diferenciais de segunda ordem, vamos considerar o movimento oscilatório de uma mola de comprimento l e constante de elasticidade

Leia mais

Funções Vetoriais. Copyright Cengage Learning. Todos os direitos reservados.

Funções Vetoriais. Copyright Cengage Learning. Todos os direitos reservados. 13 Funções Vetoriais Copyright Cengage Learning. Todos os direitos reservados. 1 13.4 Movimento no Espaço: Velocidade e Aceleração Copyright Cengage Learning. Todos os direitos reservados. Movimento no

Leia mais

DINÂMICA DO SISTEMA CARRO-PÊNDULO

DINÂMICA DO SISTEMA CARRO-PÊNDULO DINÂMICA DO SISTEMA CARRO-PÊNDULO Rafael Alves Figueiredo 1 Universidade Federal de Uberlândia Av. João Naves de Ávila, 2121, Santa Mônica, Uberlândia, MG, Brasil. rafamatufu@yahoo.com.br Márcio José Horta

Leia mais

O PROBLEMA DO ENSINO DA ÓRBITA DA TERRA. João Batista Garcia Canalle Instituto de Física/UERJ

O PROBLEMA DO ENSINO DA ÓRBITA DA TERRA. João Batista Garcia Canalle Instituto de Física/UERJ O PROBLEMA DO ENSINO DA ÓRBITA DA TERRA João Batista Garcia Canalle Instituto de Física/UERJ canalle@uerj.br Resumo Este trabalho foi motivado pela reação inesperada de centenas de professores participantes

Leia mais

Mecânica Analítica. Dinâmica Hamiltoniana. Licenciatura em Física. Prof. Nelson Luiz Reyes Marques MECÂNICA ANALÍTICA PARTE 2

Mecânica Analítica. Dinâmica Hamiltoniana. Licenciatura em Física. Prof. Nelson Luiz Reyes Marques MECÂNICA ANALÍTICA PARTE 2 Mecânica Analítica Dinâmica Hamiltoniana Licenciatura em Física Prof. Nelson Luiz Reyes Marques Princípio de Hamilton O caminho real que uma partícula percorre entre dois pontos 1 e 2 em um dado intervalo

Leia mais

Exemplos de aplicação das leis de Newton e Conservação da Energia

Exemplos de aplicação das leis de Newton e Conservação da Energia Exemplos de aplicação das leis de Newton e Conservação da Energia O Plano inclinado m N Vimos que a força resultante sobre o bloco é dada por. F r = mg sin α i Portanto, a aceleração experimentada pelo

Leia mais

Sistemas Dinâmicos e Caos Lista de Problemas 2.2 Prof. Marco Polo

Sistemas Dinâmicos e Caos Lista de Problemas 2.2 Prof. Marco Polo Sistemas Dinâmicos e Caos - 2016.2 - Lista de Problemas 2.2 1 Sistemas Dinâmicos e Caos Lista de Problemas 2.2 Prof. Marco Polo Questão 01: Retratos de fase Para cada um dos seguintes sistemas, encontre

Leia mais

RELATÓRIO DE PRÁTICA EXPERIMENTAL FIS Física Experimental II OS PÊNDULOS SIMPLES E FÍSICO

RELATÓRIO DE PRÁTICA EXPERIMENTAL FIS Física Experimental II OS PÊNDULOS SIMPLES E FÍSICO UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE FÍSICA RELATÓRIO DE PRÁTICA EXPERIMENTAL FIS01260 - Física Experimental II OS PÊNDULOS SIMPLES E FÍSICO Porto Alegre, 09 de Abril de 2015. Nome: Vítor

Leia mais

Capítulo 6. Gravitação Universal

Capítulo 6. Gravitação Universal Capítulo 6 Gravitação Universal Os céus manifestam a glória de Deus, e o firmamento anuncia as obras das suas mãos. Um dia discursa a outro dia, e uma noite revela conhecimento a outra noite. Não há linguagem,

Leia mais

Energia Potencial e Forças Conservativas

Energia Potencial e Forças Conservativas Energia Potencial e Forças Conservativas Evandro Bastos dos Santos 22 de Maio de 217 1 Trabalho O trabalho realizado por uma força, quando do deslocamento de uma partícula entre dois pontos, envolve uma

Leia mais

Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas.

Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Capítulo 6 Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Definição (6.2): Seja e uma função real incógnita definida num intervalo aberto.

Leia mais

O PROBLEMA DE DOIS CORPOS

O PROBLEMA DE DOIS CORPOS O PROBLEMA DE DOIS CORPOS O que é? Por exemplo, para o caso de um veículo espacial orbitando a Terra... As equações de movimento do movimento orbital As principais forças atuando em um veículo espacial

Leia mais

(Versão 2014/2) (b) (d)

(Versão 2014/2) (b) (d) MOVIMENTO HARMÔNICO SIMPLES (Versão 2014/2) 1. INTRODUÇÃO Um dos movimentos mais importantes que observamos na natureza é o movimento oscilatório. Chamado também movimento periódico ou vibracional. Em

Leia mais

12/06/2018. Laplace ( ) O demônio de Laplace. Trabalho e Energia Cinética. Conservação de Energia. Conservação de Energia.

12/06/2018. Laplace ( ) O demônio de Laplace. Trabalho e Energia Cinética. Conservação de Energia. Conservação de Energia. MPA5004 Conceitos Fundamentais da Física do Sistema Solar Trabalho e Energia Cinética 3. Energia Cinética Suponha que uma partícula de massa constante que nos instantes t 1 e t 2 estejam localizados em

Leia mais

IFRS Câmpus Rio Grande Física IV LISTA I - GRAVITAÇÃO UNIVERSAL

IFRS Câmpus Rio Grande Física IV LISTA I - GRAVITAÇÃO UNIVERSAL IFRS Câmpus Rio Grande Física IV LISTA I - GRAVITAÇÃO UNIVERSAL - 2018 1. (FUNREI-97) Duas, entre as luas de Júpiter, Têm raios de órbitas que diferem por um fator de 2. Qual a razão entre os seus períodos

Leia mais

1 Sistemas multidimensionais e Linearização

1 Sistemas multidimensionais e Linearização Teoria de Controle (sinopse) Sistemas multidimensionais e Linearização J. A. M. Felippe de Souza Sistemas multidimensionais Linearização Aideia de sistemas é quase que intuitiva. Eemplos de sistemas físicos

Leia mais

Mecânica Clássica 1 - Lista 2 Professor: Gabriel T. Landi

Mecânica Clássica 1 - Lista 2 Professor: Gabriel T. Landi Mecânica Clássica 1 - Lista 2 Professor: Gabriel T. Landi Data de entrega: 04/11/2015 (quarta-feira). Leitura: Landau capítulo 3. Thornton & Marion, capítulos 1, 2, 8 e 9. Regras do jogo: Você pode usar

Leia mais

OS PRIMEIROS MODELOS COSMOLÓGICOS MODERNOS. Anderson Moraes

OS PRIMEIROS MODELOS COSMOLÓGICOS MODERNOS. Anderson Moraes OS PRIMEIROS MODELOS COSMOLÓGICOS MODERNOS Anderson Moraes Modelos Cosmológicos modernos. Einstein De Sitter Lemaitre Friedmam Eddington COSMOLOGIA Cosmologia é o estudo em larga escala do Universo, sua

Leia mais

1. Movimento Harmônico Simples

1. Movimento Harmônico Simples Física Oscilações 1. Movimento Harmônico Simples Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em torno de seu ponto

Leia mais

Mecânica II - FFI0111: Lista #3

Mecânica II - FFI0111: Lista #3 Mecânica II - FFI0111: Lista #3 Fazer até 11/04/2011 L.A.Ferreira ; Seg.Qua. 10:10 11:50 Estagiário: Gabriel Luchini 1 Problema 1 A equação de Newton é de segunda ordem no tempo. Você aprendeu que, para

Leia mais

Gravitação Universal. Física_9 EF. Profa. Kelly Pascoalino

Gravitação Universal. Física_9 EF. Profa. Kelly Pascoalino Gravitação Universal Física_9 EF Profa. Kelly Pascoalino Nesta aula: Introdução; Modelos planetários; As leis de Kepler; Lei da gravitação universal. INTRODUÇÃO Denomina-se gravitação, a área da Física

Leia mais

Parte 2 - P2 de Física I NOME: DRE Teste 0. Assinatura:

Parte 2 - P2 de Física I NOME: DRE Teste 0. Assinatura: Parte 2 - P2 de Física I - 2018-1 NOME: DRE Teste 0 Assinatura: Questão 1 - [3,0 pontos] Um sistema formado por dois blocos de mesma massa m, presos por uma mola de constante elástica k e massa desprezível,

Leia mais

Física 1 Capítulo 7. Conservação de Energia.

Física 1 Capítulo 7. Conservação de Energia. Física Capítulo 7 Conservação de Energia http://fisica.ufjf.br/~sjfsato/fisica Trabalho (W) e a Variação da Energia Cinética f mv mv s = K =K f K i = W = F d i Força Conservativa Quando uma força é conservativa?

Leia mais

Física 1 Mecânica. Instituto de Física - UFRJ

Física 1 Mecânica. Instituto de Física - UFRJ Física 1 Mecânica Sandra Amato Instituto de Física - UFRJ Produto Vetorial Torque e momento Angular de Uma Partícula (Rotação de uma partícula) Física 1 1/32 1/ 32 Outline 1 Produto Vetorial 2 Momento

Leia mais

Dinâmica: Algumas Forças Especiais Parte 1

Dinâmica: Algumas Forças Especiais Parte 1 Dinâmica: Algumas Forças Especiais Parte 1 Física_1 EM Profa. Kelly Pascoalino Tópicos da aula: Leis de Kepler; Lei da gravitação universal; Peso. Leis de Kepler Denomina-se gravitação, a área da Física

Leia mais

SOLUÇÃO EXATA DA EQUAÇÃO DE UM SISTEMA DE BOMBEIO MECÂNICO

SOLUÇÃO EXATA DA EQUAÇÃO DE UM SISTEMA DE BOMBEIO MECÂNICO SOLUÇÃO EXATA DA EQUAÇÃO DE UM SISTEMA DE BOMBEIO MECÂNICO Alínia Rodrigues dos Santos; Pedro Tupã Pandava Aum; Anderson de Jesus Araújo Ramos Universidade Federal do Pará. E-mails: santosalinia@gmail.com;

Leia mais

1. Estudo do pêndulo

1. Estudo do pêndulo Objectivos odelizar um pêndulo invertido rígido de comprimento e massa, supondo uma entrada de binário. Simular em computador. entar estabilizar o pêndulo em ciclo aberto por manipulação directa do binário.

Leia mais

Lista de Exercícios 4 Disciplina: CDI1 Turma: 1BEEN

Lista de Exercícios 4 Disciplina: CDI1 Turma: 1BEEN Lista de Exercícios 4 Disciplina: CDI1 Turma: 1BEEN Prof. Alexandre Alves Universidade São Judas Tadeu 1 Limites no infinito Exercício 1: Calcule os seguintes limites (a) (b) (c) (d) ( 1 lim 10 x + x +

Leia mais

Física 1 Mecânica. Instituto de Física - UFRJ

Física 1 Mecânica. Instituto de Física - UFRJ Física 1 Mecânica Sandra Amato Instituto de Física - UFRJ Gráfico de Energia Potencial z.org#besggfanedobpf3of 19/09/2014 (Gráfico de Energia Potencial) Física 1 19/09/2014 1 / 18 1/ 18 Gráfico de Energia

Leia mais

Tópicos de Física Clássica I Aula 2 As equações de Euler-Lagrange

Tópicos de Física Clássica I Aula 2 As equações de Euler-Lagrange Tópicos de Física Clássica I Aula 2 As equações de Euler-Lagrange a c tort O princípio da ação mínima O que é o princípio da ação mínima? Como se usa a formulação lagrangiana da mecânica em um problema?

Leia mais

AULA 04 ENERGIA POTENCIAL E POTENCIAL ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas

AULA 04 ENERGIA POTENCIAL E POTENCIAL ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas ELETROMAGNETISMO AULA 04 ENERGIA POTENCIAL E POTENCIAL ELÉTRICO Se um carga elétrica se move de um ponto à outro, qual é o trabalho realizado sobre essa carga? A noção de mudança de posição nos remete

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

Vibrações Mecânicas. Sistemas Contínuos. DEMEC UFPE Ramiro Willmersdorf

Vibrações Mecânicas. Sistemas Contínuos. DEMEC UFPE Ramiro Willmersdorf Vibrações Mecânicas DEMEC UFPE Ramiro Willmersdorf ramiro@willmersdor.net Sistemas contínuos ou distribuídos Equações diferenciais parciais; Cabos, cordas, vigas, etc.; Membranas, placas, etc; Processo

Leia mais

Lista 3 - FIS Relatividade Geral Curvatura, campos de Killing, fluidos, eletromagnetismo.

Lista 3 - FIS Relatividade Geral Curvatura, campos de Killing, fluidos, eletromagnetismo. Lista 3 - FIS 404 - Relatividade Geral Curvatura, campos de Killing, fluidos, eletromagnetismo. 2 quadrimestre de 2017 - Professor Maurício Richartz Leitura sugerida: Carroll (seções 3.1-3.4,3.6-3.8),

Leia mais

Movimento Harmônico Simples - III Relação entre o MHS e o MCU Oscilações amortecidas Oscilações Forçadas e Ressonância. Prof. Ettore Baldini-Neto

Movimento Harmônico Simples - III Relação entre o MHS e o MCU Oscilações amortecidas Oscilações Forçadas e Ressonância. Prof. Ettore Baldini-Neto Movimento Harmônico Simples - III Relação entre o MHS e o MCU Oscilações amortecidas Oscilações Forçadas e Ressonância Prof. Ettore Baldini-Neto 1610: Galileu, usando um telescópio recém construído, descobre

Leia mais

ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO:

ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: Professor: Edney Melo ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1. Cálculo Diferencial Em vários ramos da ciência, é necessário algumas vezes utilizar as ferramentas básicas do cálculo, inventadas

Leia mais

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que Capítulo 11 1. Equações da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que AP = t AB Fig. 1: Reta r passando por A e B. Como o ponto

Leia mais

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 9

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 9 591036 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 9 A Equação de Onda em Uma Dimensão Ondas transversais em uma corda esticada Já vimos no estudo sobre oscilações que os físicos gostam de

Leia mais

Física I Prova 3 19/03/2016

Física I Prova 3 19/03/2016 Nota Física I Prova 3 19/03/2016 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 3 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 10

Leia mais

Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas

Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas Campo Escalar e Gradiente Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas Prof. Alex G. Dias (alex.dias@ufabc.edu.br) Prof. Alysson F. Ferrari (alysson.ferrari@ufabc.edu.br) Um campo escalar

Leia mais

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 20 de março de 2013 Roteiro 1 Amortecidas forçadas Roteiro Amortecidas forçadas 1 Amortecidas

Leia mais

Oscilações, Coerência e Ressonância

Oscilações, Coerência e Ressonância , Coerência e Ressonância 1. Por que alguns sistemas físicos oscilam e outros não?. O que caracteriza um sistema oscilatório? 3. Como se mede o período de um pêndulo? parâmetros internos Oscilaç A determinação

Leia mais

2, ao medirmos um observável deste estado que possui autovetores 0 e 1, obtemos o resultado 0 com probabilidade α 2, e 1 com probabilidade β 2.

2, ao medirmos um observável deste estado que possui autovetores 0 e 1, obtemos o resultado 0 com probabilidade α 2, e 1 com probabilidade β 2. 4 Informação Quântica A teoria da Informação Quântica foi basicamente desenvolvida na última década (3, 10, 16). Nosso objetivo neste capítulo é apresentar sua estrutura fundamental, o bit quântico, e

Leia mais

INTRODUÇÃO À ASTROFÍSICA

INTRODUÇÃO À ASTROFÍSICA Introdução à Astrofísica INTRODUÇÃO À ASTROFÍSICA LIÇÃO 21 O EQUILÍBRIO HIDROSTÁTICO Lição 20 O Equilíbrio Hidrostático As estrelas se formam a partir de regiões densas e frias, chamadas de nebulosas.

Leia mais

As variáveis de rotação

As variáveis de rotação Capítulo 10 Rotação Neste capítulo vamos estudar o movimento de rotação de corpos rígidos sobre um eixo fixo. Para descrever esse tipo de movimento, vamos introduzir os seguintes conceitos novos: -Deslocamento

Leia mais

FEP-111 Fisica I para Oceanograa. Márcio Katsumi Yamashita. Lista de Exercícios 6 Gravitação

FEP-111 Fisica I para Oceanograa. Márcio Katsumi Yamashita. Lista de Exercícios 6 Gravitação FEP- Fisica I para Oceanograa Márcio Katsumi Yamashita Lista de Exercícios 6 Gravitação . Kepler determinou distâncias no sistema solar, a partir de suas observações. Por exemplo, ele encontrou a distância

Leia mais

FÍSICA LEI DA GRAVITAÇÃO DE NEWTON ENGENHARIA

FÍSICA LEI DA GRAVITAÇÃO DE NEWTON ENGENHARIA LEI DA GRAVITAÇÃO DE NEWTON ENGENHARIA 1 INTRODUÇÃO À LEI DE NEWTON DA GRAVITAÇÃO Por quê não caímos da Terra? Por que a Terra orbita o Sol? Por que quando soltamos um objeto ele cai em direção ao chão?

Leia mais

MAP0214 Cálculo Numérico com

MAP0214 Cálculo Numérico com MAP0214 Cálculo Numérico com Aplicações em Física 2 o Semestre de 2006. June 19, 2007 1 Método dos Mínimos Quadrados em duas variáveis 1.1 Introdução. O objetivo deste texto é apresentar aplicações do

Leia mais

Trabalhos de computação Mecânica e Ondas MEBM, MEFT e LMAC

Trabalhos de computação Mecânica e Ondas MEBM, MEFT e LMAC Trabalhos de computação Mecânica e Ondas MEBM, MEFT e LMAC Estes trabalhos de computação poderão ser realizados em Mathematica, usando as suas capacidades gráficas. A integração numérica das equações do

Leia mais

ELT062 - OFICINA DE SIMULAÇÃO ANALÓGICA E DIGITAL EM CONTROLE LINEARIZAÇÃO DE SISTEMAS

ELT062 - OFICINA DE SIMULAÇÃO ANALÓGICA E DIGITAL EM CONTROLE LINEARIZAÇÃO DE SISTEMAS ELT062 - OFICINA DE SIMULAÇÃO ANALÓGICA E DIGITAL EM CONTROLE LINEARIZAÇÃO DE SISTEMAS 1. INTRODUÇÃO Sistemas dinâmicos lineares são aqueles que obedecem ao princípio da superposição, isto é, um sistema

Leia mais

Escoamento potencial

Escoamento potencial Escoamento potencial J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Escoamento potencial 1 / 26 Sumário 1 Propriedades matemáticas 2 Escoamento potencial bidimensional

Leia mais

Lista de exercícios Gravitação

Lista de exercícios Gravitação Lista de exercícios Gravitação Aron Maciel Problema 1 (Curso de Física Básica 1 Mecânica - Nussenzveig) Em 1968, a nave espacial Apollo 8 foi colocada numa orbita circular em torno da Lua, a uma altitude

Leia mais

Sessão 1: Generalidades

Sessão 1: Generalidades Sessão 1: Generalidades Uma equação diferencial é uma equação envolvendo derivadas. Fala-se em derivada de uma função. Portanto o que se procura em uma equação diferencial é uma função. Em lugar de começar

Leia mais

Em um circuito RLC série, a potência média fornecida pelo gerador é igual a potência média dissipada no resistor. Com isso: 2

Em um circuito RLC série, a potência média fornecida pelo gerador é igual a potência média dissipada no resistor. Com isso: 2 ELETROMAGNETISMO Em um circuito RLC série, a potência média fornecida pelo gerador é igual a potência média dissipada no resistor. Com isso: 2 P méd = I rms R = E rms I rms cosφ Onde rms é o valor quadrático

Leia mais

Aulas Multimídias Santa Cecília Professor Rafael Rodrigues Disciplina: Física Série: 1º ano EM

Aulas Multimídias Santa Cecília Professor Rafael Rodrigues Disciplina: Física Série: 1º ano EM Aulas Multimídias Santa Cecília Professor Rafael Rodrigues Disciplina: Física Série: 1º ano EM É o estudo das forças de atração entre massas (forças de campo gravitacional) e dos movimentos de corpos submetidos

Leia mais

/augustofisicamelo. 16 Terceira Lei de Kepler (2)

/augustofisicamelo. 16 Terceira Lei de Kepler (2) 1 Introdução (Vídeo) 2 Modelo Geocêntrico 3 Modelo Heliocêntrico (1) 4 Modelo Heliocêntrico (2) 5 Sistema Solar 6 Primeira Lei de Kepler 7 Primeira Lei de Kepler (simulador) 8 Segunda Lei de Kepler 9 Segunda

Leia mais

Série IV - Momento Angular (Resoluções Sucintas)

Série IV - Momento Angular (Resoluções Sucintas) Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme

Leia mais

DCC008 - Cálculo Numérico

DCC008 - Cálculo Numérico DCC008 - Cálculo Numérico Polinômios de Taylor Bernardo Martins Rocha Departamento de Ciência da Computação Universidade Federal de Juiz de Fora bernardomartinsrocha@ice.ufjf.br Conteúdo Introdução Definição

Leia mais

POR QUE GEOCENTRISMO PREVALECEU?

POR QUE GEOCENTRISMO PREVALECEU? POR QUE GEOCENTRISMO PREVALECEU? Não percebemos a Terra se movendo contraintuitivo Modelo heliocêntrico contrariava frontalmente o pensamento aristotélico. Aristóteles: Sol jamais poderia ocupar o centro

Leia mais

Apontamentos de GEOMETRIA DIFERENCIAL. Jorge Picado

Apontamentos de GEOMETRIA DIFERENCIAL. Jorge Picado Apontamentos de GEOMETRIA DIFERENCIAL Jorge Picado Departamento de Matemática Universidade de Coimbra 2003 Os apontamentos que se seguem contêm as notas das aulas da disciplina de Geometria Diferencial.

Leia mais

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3. de maneira que o sistema se comporta como um oscilador harmônico simples.

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3. de maneira que o sistema se comporta como um oscilador harmônico simples. 591036 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3 O Pêndulo Simples O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola

Leia mais

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2011/2012. EIC0010 FÍSICA I 1o ANO 2 o SEMESTRE

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2011/2012. EIC0010 FÍSICA I 1o ANO 2 o SEMESTRE MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2011/2012 EIC0010 FÍSICA I 1o ANO 2 o SEMESTRE Prova com consulta de formulário e uso de computador. Duração 2 horas. Nome do estudante: Pode consultar

Leia mais

massa do corpo A: m A ; massa do corpo B: m B ; massa da polia: M; raio da polia: R; adotando a aceleração da gravidade: g.

massa do corpo A: m A ; massa do corpo B: m B ; massa da polia: M; raio da polia: R; adotando a aceleração da gravidade: g. Uma máquina de Atwood possui massas m A e m B, onde a massa B é maior que a massa A, ligadas por uma corda ideal, inextensível e de massa desprezível, através de uma polia de massa M e raio R. Determinar

Leia mais

massa do corpo: m; constante elástica da mola: k; adotemos a aceleração da gravidade igual a g.

massa do corpo: m; constante elástica da mola: k; adotemos a aceleração da gravidade igual a g. Um corpo, de massa m, está suspenso pela extremidade de uma mola, de constante elástica, a outra extremidade da mola está presa ao teto. Afasta-se o corpo da posição de equilíbrio e libera-se o corpo.

Leia mais

O que é a gravidade? Thiago R. P. Caramês

O que é a gravidade? Thiago R. P. Caramês O que é a gravidade? Thiago R. P. Caramês Vitória, 11 de Novembro de 2018 As quatro forças fundamentais 1. Força Nuclear Forte: mantém a coesão do núcleo atômico (intensidade: 1) 2. Força Nuclear Fraca:

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 10

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 10 597 Física II Ondas, Fluidos e Termodinâmica USP Prof. ntônio Roque ula Oscilações acopladas e modos normais Os sistemas naturais não são isolados, mas interagem entre si. Em particular, se dois ou mais

Leia mais

-Tales de Mileto (585 a.c.) geometria dos egípcios aplicada ao céu- previsão de um eclipse solar em 5 de Maio de 585 a.c. -Pitágoras (500 a.c.

-Tales de Mileto (585 a.c.) geometria dos egípcios aplicada ao céu- previsão de um eclipse solar em 5 de Maio de 585 a.c. -Pitágoras (500 a.c. -Tales de Mileto (585 a.c.) geometria dos egípcios aplicada ao céu- previsão de um eclipse solar em 5 de Maio de 585 a.c. -Pitágoras (500 a.c.) círculo e esfera como símbolos da perfeição -Aristóteles

Leia mais

Resposta: (A) o traço é positivo (B) o determinante é negativo (C) o determinante é nulo (D) o traço é negativo (E) o traço é nulo.

Resposta: (A) o traço é positivo (B) o determinante é negativo (C) o determinante é nulo (D) o traço é negativo (E) o traço é nulo. MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 201/2018 EIC0010 FÍSICA I 1º ANO, 2º SEMESTRE 12 de junho de 2018 Nome: Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário

Leia mais

Modelagem em Sistemas Complexos

Modelagem em Sistemas Complexos Modelagem em Sistemas Complexos Bifurcação local de campos vetoriais Marcone C. Pereira Escola de Artes, Ciências e Humanidades Universidade de São Paulo São Paulo - Brasil Abril de 2012 Nesta aula discutiremos

Leia mais

APÊNDICE D As Leis de Kepler por meio de sequências de atividades (Caderno de Respostas dos Alunos)

APÊNDICE D As Leis de Kepler por meio de sequências de atividades (Caderno de Respostas dos Alunos) APÊNDICE D As Leis de Kepler por meio de sequências de atividades (Caderno de Respostas dos Alunos) Colégio / Escola Professor(a): Turma: Turno: Data: / / 20 bimestre / trimestre Nome do Grupo: Aluno(a):

Leia mais