CURSO DE MEDICINA EXERCÍCIOS ESTRUTURA E FUNÇÃO DOS ÁCIDOS NUCLEICOS 2

Tamanho: px
Começar a partir da página:

Download "CURSO DE MEDICINA EXERCÍCIOS ESTRUTURA E FUNÇÃO DOS ÁCIDOS NUCLEICOS 2"

Transcrição

1 AULAS: 14 e 21/08/2014 Profª: Ana Luisa Miranda-Vilela CURSO DE MEDICINA EXERCÍCIOS ESTRUTURA E FUNÇÃO DOS ÁCIDOS NUCLEICOS 2 1) O mofamento de grãos durante a estocagem causa perdas nutricionais e de valor de mercado, além de promover riscos à saúde humana e de animais domésticos, devido à liberação de toxinas. Entre as toxinas, maior atenção tem sido dado às aflatoxinas produzidas por fungos dos gêneros Aspergillus e Penicillium, devido a sua alta capacidade de causar câncer de fígado. As aflotoxinas podem causar câncer do fígado, pois, mesmo em pequena quantidade são capazes de provocar uma mutação no gene p- 53, transformando G em T na trinca 249. Sabe-se que o gene p53 - com pares de bases, está localizado no braço curto do cromossomo 17 e codifica uma nucleoproteína de mesmo nome constituída por 393 aminoácidos, e que regula as divisões celulares, controlando a entrada da célula na fase S por bloquear a fase de transcrição G1 S do ciclo celular. Normalmente o p53 evita a reprodução numa célula danificada ou alvo de mutação. E vai além: promove o suicídio da célula, um processo chamado apoptose. Às vezes, no entanto, sem que se saiba porque, o p53 é alvo de mutação ou é neutralizado e as células danificadas continuam a proliferar no interior do organismo, criando-se os tumores. CÓDONS CGG UAC UUC GCG UCC GGG UAG UAA UAC UCA GCC AAG CGC AGG CCC AMINOÁCIDO arginina tirosina fenilalanina alanina serina glicina stop stop tirosina Serina Alanina Lisina Arginina Arginina Prolina Baseando-se nas informações acima, na tabela ao lado e em conhecimentos correlatos, responda. a. A mutação referida no texto obrigatoriamente vai levar ao descontrole da divisão celular devido à substituição de aminoácido na proteína p53? Justifique. Resposta: Não. Se a mutação ocorrer na 3ª base da trinca 249 (que ficará AGT), o códon correspondente será UCA, também do aminoácido serina. b. Quanto ao tipo de substituição de base, classifique a mutação de ponto envolvida na trinca 249 (trecho grifado no texto). Justifique. Resposta: Transversão, pois ocorre por substituição de uma purina (G) por uma pirimidina (T). c. Que tipo de mecanismo estaria envolvido no reparo da mutação especificada no trecho grifado? Cite e explique para justificar sua resposta. Resposta: A substituição G T na trinca 249 irá provocar um pareamento errado, uma vez a base complementar presente na outra fita do DNA é a citosina. Os pareamentos errados são instáveis e provocam dobras na molécula (alteração espacial). Assim, são percebidos e corrigidos pelo sistema de reparo de pareamentos errôneos (mismatch repair), que reconhece a fita nova devido esta não estar metilada. Ocorre uma excisão na fita nova e uma exonuclease degrada parte desta fita, logo em seguida uma DNA polimerase reconstitui a parte da fita que foi degradada fazendo o pareamento correto. d. Qual a sequencia correta dos aminoácidos inseridos na nucleoproteína p53 a partir do códon 245 até o 251?

2 Resposta: CGG UAC UUC GCG UCC GGG UAC Arginina tirosina fenilalanina alanina serina glicina tirosina e. Quantas ligações peptídicas serão necessárias na formação da nucleoproteína p53? Justifique. Resposta: 392 ligações peptídicas, pois a proteína p53 possui 393 aminoácidos e cada ligação peptídica liga dois aminoácidos. f. Determine o percentual da região codificadora do RNA mensageiro maduro em relação ao gene p53. Demonstre seus cálculos e justifique. Resposta: 50,04%, pois como a proteína p53 tem 393 aminácidos, serão necessários 394 códons, pois cada códon codifica um aminoácido e é necessário um códon de parada para finalizar o processo. Veja os cálculos a seguir. 3 nucleotídeos 1 aminoácido x 393 aminoácidos x = nucleotídeos RNA mensageiro nucleotídeos + 3 (códon de parada) = nucleotídeos Gene (fita molde) = nucleotídeos 100% nucleotídeos x x = 50,04% 2) Pesquisadores norte-americanos descobriram que as diferentes formas das pessoas perceberem a dor podem ter origem genética. A variação de apenas um gene pode explicar porque algumas pessoas suportam mais dor do que outras. Segundo uma equipe da Universidade de Michingan, a sensação de dor está ligada ao gene COMT que produz a enzima transferase catecol-o-metil (COMT), que ajuda a regular quantos analgésicos naturais - as chamadas endorfinas - um organismo produz. O gene COMT pode ser encontrado em duas formas, de acordo com o aminoácido presente. Na transcrição do códon 158, a troca de um único aminoácido, valina metionina pode determinar decréscimo da atividade da enzima COMT, ou seja, o gene da COMT que contém o aminoácido metionina, ou met, é menos ativo do que aquele que contém o aminoácido valina, ou val. Esta pequena variação tem um grande efeito na atividade do COMT, dizem os pesquisadores. Cada indivíduo tem duas cópias desse gene, uma herdada de cada um dos pais. Pessoas com a forma mais lenta do gene - que tem duas cópias com metionina - produzem enzimas três a quatro vezes menos efetivas que outras, como as que contêm apenas cópias com valina ou ambos os aminoácidos. O estudo mostrou que as pessoas em que as duas cópias traziam metionina sofriam mais com a dor do que aquelas com duas cópias trazendo valina. Os voluntários com uma cópia de cada tipo apresentaram uma tolerância à dor intermediária. ( com adaptações) Abaixo são dadas as sequencias parentais (recebidas de cada um dos pais) responsáveis pela transcrição do códon 158 do gene COMT de quatro indivíduos. Indivíduo 1 CAA (sequência materna) CAG (sequência paterna) Indivíduo 2 TAC (sequência materna) TAC (sequência paterna) Indivíduo 3 CAC (sequência materna) CAT (sequência paterna) Indivíduo 4 CAT (sequência materna) TAC (sequência paterna) Sabendo-se com os códons da metionina e da valina são, respectivamente, AUG e GUU, GUC, GUA, GUG, que a enzima transferase catecol-o-metil (COMT) possui 271 aminoácidos e que o gene COMT dos quatro indivíduos possui 1,5 Kb (1.500 pb), responda. a) Qual (is) indivíduo(s) possui(em): - Maior sensibilidade à dor: Indivíduo 2 - Sensibilidade intermediária à dor: Indivíduo 4 - Menor sensibilidade à dor: Indivíduos 1 e 3 b) Justifique sua resposta. Resposta: Ambas as sequencias dos indivíduos 1 e 3 darão origem aos códons sinônimos da valina; ambas do indivíduo 2, ao códon da metionina e as do indivíduo 4 darão origem aos códons da valina (sequencia materna) e metionina (sequencia paterna). Como o texto menciona, as pessoas possuem duas cópias de metionina sofreram mais com a dor do que aquelas com duas cópias trazendo valina. Os voluntários com uma cópia de cada tipo apresentaram uma tolerância à dor intermediária.

3 c) Calcule o percentual do RNAm maduro em relação ao gene COMT. 1 códon 1 aminoácido 3 bases x = 813 bases + 3 bases (códon de parada) no RNAm = 816 bases 271 aminoácidos x pb 100% x = 54,4% 816 pb x d) Considerando apenas o RNAm maduro, quantos códons e quantas ligações peptídicas foram necessários para a síntese da enzima transferase catecol-o-metil (COMT)? Justifique sua resposta. Resposta: 272 códons e 270 ligações peptídicas. Como a proteína tem 271 aminoácidos e cada aminoácido é codificado por um códon, foram necessários 271 códons para codificar os aminoácidos + 1 códon de parada. Porém, uma ligação peptídica liga dois aminoácidos e os aminoácidos extremos não estão ligados. Consequentemente, foram necessárias 270 ligações peptídicas. e) Explique os 2 principais motivos que poderiam explicar o fato da proteína ter apenas 271 aminoácidos. Resposta: O gene contém regiões regulatórias, como o promotor, que não são traduzidas. Além disto, provavelmente este gene é interrompido, ou seja, contém exons (regiões codificadoras) e íntrons (regiões não codificadoras que serão removidas durante o splicing, para produzir o RNAm maduro). 3) O gene supressor de tumor p-53 é um dos principais alvos de mutação durante o processo de carcinogênese. Está localizado no braço curto do cromossomo 17 e codifica a nucleoproteína p-53 que é responsável pela regulação da transcrição nuclear, funcionando como um policial molecular. Se a célula for exposta a agentes mutagênicos externos a p-53 acumula-se no núcleo freando o ciclo celular em G1, dando tempo para que a célula repare seu DNA. Caso a célula não o repare, a p-53 dispara a morte celular por apoptose. Na versão mutagênica desse gene, a célula que sofre lesão em seu material genético não tem sua divisão celular interrompida e deste modo, o dano celular se transmite às células filhas. A mutação de p-53 não causa a transformação maligna sozinha, porém predispõe a célula a outras mutações que a levarão a uma transformação maligna. Baseando-se no texto e em conhecimentos correlatos, responda ao que se pede. a. Sabendo que a p-53 é uma proteína constituída por 393 aminoácidos, quantos nucleotídeos serão necessários apenas para a codificação desses aminoácidos? Justifique. Resposta: nucleotídeos 3 nucleotídeos 1 aminoácido x 393 aminoácidos x = nucleotídeos b. Quantos códons serão necessários para a síntese dos 393 aminoácidos?justifique. Resposta: 394 códons, pois um códon codifica um aminoácido e é necessário um códon de parada para finalizar o processo. c. Que evento indispensável para que ocorra a divisão celular será bloqueado com a informação dada no trecho grifado no texto? Resposta: A replicação do DNA (fase S da interfase). 4) Os vírus HPV tipo 16 e tipo 18 (grupo II) estão associados ao câncer oral e de colo uterino. O genoma desses vírus pode integrar-se ao genoma humano em áreas próximas a proto-oncogenes, produzindo uma versão mutante desse genes. Além disso, o genoma viral controla a transcrição dos genes virais E6 e E7 que interferem nos mecanismos de controle do ciclo celular. A proteína E6 interage com a proteína p-53, impedindo sua ação supressora de tumor no núcleo celular. Logo, se outra proteína supressora de tumor como a prb, por exemplo não compensar a reduzida atividade da p-53, a transformação celular pode de fato ocorrer. No entanto, a proteína E7 desses vírus tem mostrado não só a capacidade de formar complexo com a prb, desativando-a, mas também de degradar a p-53. A ativação de oncogenes somada à perda ou à anulação dos genes supressores de tumor acabam por levar ao crescimento desordenado e à formação de tumores. ( e com adaptações) Abaixo é apresentado um esquema do proto-oncogene ras e de sua versão mutante, após inserção viral. Proto-oncogene ras TAC TGC CTT ATA TTC GAC CAC CAC CAC CCG CGG CCG CCG...GAG AGC

4 Oncogene ras TAC TGC CTT ATA TTC GAC CAC CAC CAC CCG CGG CAG CCG...GAG AGC Baseando-se nas informações acima e em conhecimentos correlatos, responda o que se pede. a. Dê a sequencia de aminoácidos do proto-oncogene ras. Resposta: Metionina treonina - ácido glutâmico tirosina lisina leucina valina valina valina glicina alanina glicina glicina leucina - serina. b. Considerando que os genes supressores de tumor foram inativados pelos vírus, caso a mutação na trinca destacada em negrito provoque a substituição da 3ª base por uma citosina no proto-oncogene, o produto do gene ainda poderá levar ao descontrole da divisão celular? Justifique. Resposta: Não, pois a troca do códon não afetou o aminoácido. 5) BRÓCOLIS FICA MAIS AMARGO PARA PORTADOR DE MUTAÇÃO Os pesquisadores Mari Sandell e Paul Breslin, do instituto de pesquisas Monell, na Filadélfia, mostraram em artigo publicado na revista científica Current Biology que basta um gene para a pessoa achar vegetais como o brócolis bem mais amargo do que acha o resto da população. O gene htas2r38 está ligado a um receptor de sabor na língua. Quem possui duas cópias de uma versão sensível a brócolis sente os vegetais dessa família em média 60% mais amargos do que aqueles cujos genes são de outra versão. Quem tem apenas uma cópia da versão sensível do gene teve opinião intermediária sobre o amargor. No artigo, os investigadores relacionaram a percepção individual do gosto amargo dos compostos PTC (feniltiocarbamida) e PROP (propiltiouracil) a variações do gene htas2r38, que codifica o receptor para o gosto conhecido. Duas formas mais frequentes do gene PAV e AVI determinam, respectivamente, a maior sensibilidade ou a insensibilidade a esse tipo de gosto. Formas menos frequentes denominadas AAI, PVI e AAV respondem pela sensibilidade intermediária. Os três polimorfismos mais comuns observados na proteína receptora ocorrem nos aminoácidos de posição 49 onde uma prolina ou uma alanina é codificada, 262 onde uma alanina ou uma valina é codificada, e 296 onde uma valina ou uma isoleucina é codificada. Esses polimorfismos são determinados pelas formas PAV (prolina-alaninavalina), AVI (alanina-valina-isoleucina), AAI (alanina-alanina-isoleucina), PVI (prolina-valina-isoleucina) e AAV (alanina-alanina-valina). Os testes foram feitos com 35 voluntários que experimentaram 27 vegetais diferentes, dos quais 17 contêm compostos chamados glucosinolatos. Eles estão presentes em brócolis, agrião, rabanete e outros alimentos. Os voluntários tiveram que comer os alimentos crus, pois o cozimento altera o gosto. O glucosinolato pode afetar a função da glândula tireoide, produtora de hormônios que agem em vários órgãos do corpo. Ele pode impedir a absorção de iodo pela tireoide e provocar: a) sua hipertrofia; b) consequências graves para indivíduos em fase jovem. O mal é típico de regiões distantes do oceano, que é fonte de iodo na forma de sal ou contido em frutos do mar. Para quem vive nessa região de maior risco, ter a forma do gene que acentua o sabor amargo dos vegetais que afeta a tireoide é vantajoso em termos evolutivos. (Folha Imagem, 17/07/2006, com adaptações de Utilize a tabela de aminoácidos ao lado e as sequencias parentais (recebidas de cada um dos pais) abaixo relacionadas e responsáveis pela tradução dos aminoácidos 49, 262 e 296 da proteína receptora para o gosto amargo, para responder os itens seguintes. Aminoácido Prolina Alanina Valina Isoleucina Códons CCU CCC CCA - CCG GCU GCC GCA - GCG GUU GUC GUA - GUG AUU AUC - AUA Sequência responsável pela tradução do aminoácido 49 Indivíduo 1 Indivíduo 2 Indivíduo 3 Indivíduo 4 GGA (sequência CGA (sequência materna) GGT (sequência materna) CGT (sequência materna) materna) GGC (sequência paterna) CGT (sequência paterna) CGC (sequência paterna) CGC (sequência paterna)

5 Sequência responsável pela tradução do aminoácido 262 Indivíduo 1 Indivíduo 2 Indivíduo 3 Indivíduo 4 CGA (sequência CAA (sequência materna) CGT (sequência materna) CGT (sequência materna) materna) CGG (sequência paterna) CAT (sequência paterna) CAC (sequência paterna) CAT (sequência paterna) Sequência responsável pela tradução do aminoácido 296 Indivíduo 1 Indivíduo 2 Indivíduo 3 Indivíduo 4 CAA (sequência TAA (sequência materna) CAG (sequência materna) TAG (sequência materna) materna) CAG (sequência paterna) TAT (sequência paterna) TAA (sequência paterna) TAT (sequência paterna) a. Quais as sequencias de aminoácidos (recebidos de cada parental) e os genótipos de cada um dos indivíduos? Indivíduos Sequência de aminoácidos Sequência de aminoácidos (materna) (paterna) Genótipos 1 prolina alanina valina prolina alanina valina PAV / PAV 2 alanina valina isoleucina alanina valina isoleucina AVI / AVI 3 prolina alanina valina alanina valina - isoleucina PAV / AVI 4 alanina alanina - isoleucina alanina valina - isoleucina AAI / AVI Indivíduo Trincas DNA (materna) Códons (materna) Trincas DNA paterna Códons (paterna) GGA CGA CAA CCU GCU GUU GGC CGG CAG CCG GCC GUC 2 CGA CAA TAA GCU GUU AUU CGT CAT TAT GCA GUA AUA 3 GGT CGT CAG CCA GCA GUC CGC CAC TAA GCG GUG AUU 4 CGT CGT TAG GCA GCA AUC CGC CAT TAT GCG GUA AUA b. Mediante a análise realizada no item a, responda: b.1. Qual(is) indivíduo(s) terá(ão) maior sensibilidade ao gosto amargo? Indivíduo 1 b.2. Qual(is) indivíduo(s) será(ão) insensível(is) ao gosto amargo? Indivíduo 2 b.3. Qual(is) indivíduo(s) terá(ão) sensibilidade intermediária ao gosto amargo? Indivíduos 3 e 4 c. Sabendo-se que o gene htas2r38 tem 1002 pb (pares de bases) e a proteína receptora do gosto amargo (denominada T2R38) codificada por ele é constituída por 333 aminoácidos, responda: c.1. Quantos códons serão necessários para codificar a proteína T2R38? Justifique sua resposta. Resposta: 334 porque cada códon codifica um aminoácido e é necessário um códon de parada para finalizar a síntese proteica. c.2. Julgue e justifique a frase: Para a síntese do receptor protéico T2R38, 100% do gene htas2r38 foi usado, não ocorrendo a presença de íntrons. (Inclua na sua justificativa os cálculos genômicos necessários). Resposta: Certo: o gene possui bases. Destas, 999 foram usadas para incluir os aminoácidos durante a síntese proteica e 3 bases (códon de parada), foram necessárias para finalizar a síntese. 1 códon 3 bases 1 aminoácidos x = 999 bases x 333 aminoácidos 6) A orexina ou hipocretina é um precursor de dois neuropeptídeos hipotalâmicos orexina A e orexina B que são produzidos pelas células de um pequeno núcleo do hipotálamo e têm um importante papel na regulação do ciclo sonovigília e funções hipotalâmicas relacionadas. Essa substância é importante para manter o estado de vigília e é uma molécula ausente no cérebro de pacientes com narcolepsia, doença que faz as pessoas adormecerem subitamente (Nature Medicine 2007, 13: , com adaptações). Em relação ao tema e utilizando os dados abaixo, responda o que se pede nos itens a seguir.

6 Dados: A orexina/hipocretina apresenta 131 aminoácidos e é produzida a partir de um RNAm maduro de 577 bases, transcrito pelo gene HCRT, região do DNA localizada no cromossomo 17 com pb (pares de bases). Os neuropeptídeos orexina A e orexina B maduros são produzidos por um processo proteolítico (pós-traducional) a partir do precursor orexina: a orexina A corresponde, na proteína precursora, aos aminoácidos de posição 34 (glutamina) a 67 (glicina) e a orexina B, aos aminoácidos de posição 70 (arginina) a 97 (metionina). Uma mutação no gene HCRT que provoca a substituição de uma leucina por uma arginina na posição 16 da proteína precursora (LEU16ARG) foi associada à narcolepsia. Abaixo são dadas as sequências parentais (recebidas de cada um dos pais) responsáveis pela tradução do aminoácido 16 de três indivíduos. Indivíduo 1 GAA (sequência materna) GAG (sequência paterna) Indivíduo 2 GAC (sequência materna) GCC (sequência paterna) Indivíduo 3 GCC (sequência materna) TCT (sequência paterna) Levando em conta as informações contidas no texto e nos dados e sabendo que os códons da leucina são UUA, UUG, CUU, CUC, CUA e CUG, e que os códons da arginina são CGU, CGC, CGA, CGG, AGA E AGG, responda. a) Qual (is) dos indivíduos provavelmente sofre(m) de narcolepsia? Justifique sua resposta para validar o item. Resposta: Indivíduo 3, uma vez que recebeu as duas sequências mutadas (ver quadro de códons e aminoácidos abaixo). De acordo com o texto, a mutação referida leva a uma não produção de orexina. Indivíduo 1 CÓDONS CUU (leucina) seq. mat. CUC (leucina) seq. pat. Indivíduo 2 CÓDONS CUG (leucina) seq. mat. CGG (arginina) seq. pat. Indivíduo 3 CÓDONS CGG (arginina) seq. mat. AGA (arginina) seq. pat. b) Qual (is) dos indivíduos teria(m) mais tendência à insônia, por produzir uma maior quantidade de orexina? Justifique sua resposta para validar o item. Resposta: Indivíduo 1, uma vez que recebeu as duas sequências normais (olhar tabela de códons e aminoácidos no item a), tendo, portanto, maior produção de orexina. Utilize a tabela de aminoácidos ao lado e as informações contidas no dado para responder o item c. Aminoácido Glutamina CAA, CAG Glicina GGU, GGC, GGA, GGG c) Quais seriam as sequências de bases no gene HCRT, Arginina CGU, CGC, CGA, CGG, AGA, AGG responsáveis, respectivamente, pela tradução dos aminoácidos Metionina AUG inicial e final da: orexina A: inicial (glutamina): GTT ou GTC; final (glicina): CCA, CCG, CCT OU CCC orexina B: inicial (arginina): GCA, GCG, GCT, GCC, TCT OU TCC; final (metionina): TAC Utilize as informações contidas nos dados e para responder os itens que se seguem. Códons d) Uma vez que nosso corpo não desperdiça energia nem matéria-prima inutilmente e os processos de transcrição e tradução necessitam de energia e de matéria-prima para ocorrerem, forneça um argumento biologicamente aceitável que possa explicar a informação fornecida no trecho grifado do dado. (Lembre-se de mencionar na sua resposta, qual o tamanho esperado da proteína precursora orexina a partir do RNAm citado.) Resposta: Uma vez que cada aminoácido é codificado por 3 bases no RNAm (códon), seria de se esperar que um RNAm de 577 bases fosse responsável pela tradução de uma proteína de aproximadamente 191 aminoácidos (considerando o códon de parada). Como a proteína apresenta 131 aminoácidos, podemos supor que: - o RNAm em questão é responsável pela síntese de mais de uma proteína ou; - a partir do RNAm citado, uma grande proteína seria produzida e, por processos proteolíticos mencionados no dado 3, seriam inicialmente produzidas não só a orexina A e a B, mas também outro polipeptídeo. e) Mediante conhecimentos sobre estrutura dos ácidos nucleicos e transcrição, explique por que no DNA a informação fornecida pelo dado foi em pares de bases, enquanto no RNAm, em bases. Resposta: O DNA é formado por duas cadeias polinucleotídicas antiparalelas e complementares, onde as bases de uma cadeia encontram-se ligadas às bases complementares da outra cadeia por pontes de hidrogênio daí usarmos o termo pares de bases. Na transcrição, apenas uma das cadeias (fitas) do DNA serve de molde para a síntese do RNA, que apresenta uma única cadeia polinucleotídica: daí usarmos o termo bases.

7 f) Qual o percentual do RNAm maduro em relação ao gene HCRT? Demonstre seus cálculos para validar o item. Resposta: Gene HCRT bases participam da transcrição (apenas uma das fitas do DNA é usada na transcrição). Então: bases 100% 577 bases x X 41,42% 7) O câncer de pele corresponde a cerca de 25% de todos os tumores malignos humanos registrados no Brasil, estando relacionado a alguns fatores ambientais de risco como exposição a químicos (arsênico), radiação ionizante e principalmente aos raios ultravioletas (UV) do sol. Em relação ao abordado tema, responda: a. Que tipos de lesões no DNA podem ser induzidas pelas radiações ionizantes? Qual delas é a mais grave e por que? (Inclua na sua resposta o mecanismo de reparo possível e qual a sua consequência). Resposta: Deleção de todo o nucleotídeo, levando à quebra de fita simples; quebras de fita simples e de fita dupla; dano em bases nitrogenadas, levando a quebra ou deleção da base. (Pode também ser aceito: quebras de fita simples e de fita dupla, dano em bases nitrogenadas). Mais grave: quebra de fita dupla, pois o reparo só pode ser feito por recombinação (entre dois genes homólogos ou por junção de extremidades não-homólogas). Em ambos os casos a sequencia original de DNA acaba sendo alterada. b. Que tipo de lesão mais frequente no DNA está relacionada ao trecho grifado? Por que esta lesão é facilmente percebida pelo sistema de reparo? Resposta: Dímero de timina (ou dímero de pirimidina). Porque promove distorções espaciais na molécula de DNA. c. Considerando a lesão do item b, o reparo pode ser feito por dois tipos de mecanismos diferentes, dependendo se ele ocorre depois ou durante a replicação do DNA. Cite os dois tipos de mecanismos e compare-os quanto à correção da lesão? Resposta: Durante a replicação: reparo por recombinação com a fita parental não-danificada da mesma molécula de DNA (sistema de tolerância). Após a replicação: excisão de nucleotídeos. OBS.: O reparo por recombinação não remove a lesão, apenas possibilita a continuidade da replicação. Assim, é necessário que o sistema de reparo conserte posteriormente a lesão por excisão de nucleotídeos. d. Qual dos mecanismos de reparo do item c implicaria em parada do ciclo celular no ponto de checagem? Tal ponto de checagem estaria localizado na transição entre quais fases do ciclo celular? Resposta: O reparo por recombinação com a fita parental não-danificada da mesma molécula de DNA. Por não corrigir a lesão, implicaria em parada do ciclo celular na transição G 2 /M. e. O Xeroderma pigmentosum também está entre os fatores de risco para o câncer de pele. Por quê? Resposta: Porque em indivíduos portadores de xeroderma pigmentosum o reparo por excisão de nucleotídeos é deficiente. Desta forma, não corrige as lesões provocadas pelos raios ultravioleta do sol. 8) A doença de Parkinson está entre os problemas neurológicos mais preponderantes hoje em dia. Se caracteriza por tremor nas mãos, nos braços e em outros locais, rigidez nos membros, lentidão de movimentos, equilíbrio e coordenação debilitados. Alguns pacientes têm, também, dificuldade para andar, falar, dormir, urinar e dificuldades no desempenho sexual. Nos Institutos Nacionais da Saúde (NIH) dos EUA, em 1997, foi identificada uma mutação no gene da alfasinucleína em famílias italianas e gregas que tinham a forma hereditária do mal de Parkinson; posteriormente esta mesma mutação foi também detectada em famílias brasileiras com a doença. Esse gene codifica uma proteína muito pequena, com apenas 144 aminoácidos, à qual se atribui um papel na sinalização entre neurônios. A mutação referida é denominada G209A, pois provoca a substituição de uma guanina por uma adenina no nucleotídeo 209 do gene da alfa-sinucleína, conduzindo a uma substituição de alanina por treonina na posição 53 da proteína (Ala53Thr). É uma mutação de herança autossômica dominante, o que significa dizer que apenas uma cópia (da mãe ou do pai) é suficiente para desencadear a doença. Ela é extremamente rara e responde por menos de 1% dos pacientes. Pouco tempo depois, descobriu-se outra mutação autossômica dominante no mesmo gene em uma família de origem alemã, em que a alanina da posição 30 era substituída por uma prolina (Ala30Pro). (Arch Neurol. 55(12): , 1998; Arq. Neuro-Psiquiatr. 59(3B): , 2001; Scientific American Brasil n O 40, 2005)

8 Abaixo são dadas as sequências parentais (recebidas de cada um dos pais) responsáveis pela transcrição dos códons 30 e 53 do gene da alfasinucleína de três indivíduos. Indivíduo 1: Códon 30 Códon 53 CGA (sequência materna) CGA (sequência materna) CGG (sequência paterna) TGA (sequência paterna) CÓDONS GCU, GCC, GCA, GCG ACU, ACC, ACA, ACG CCU, CCC, CCA, CCG AMINOÁCIDO alanina treonina prolina Indivíduo 2: Indivíduo 3: Códon 30 Códon 53 Códon 30 Códon 53 CGG (sequência materna) CGA (sequência materna) GGG (sequência materna) CGA (sequência materna) CGT (sequência paterna) CGC (sequência paterna) CGT (sequência paterna) CGC (sequência paterna) Baseando-se nas informações contidas no texto, nas tabelas e em conhecimentos correlatos, responda. a) Em relação ao tipo de substituição de base, como é denominada a mutação descrita no segundo parágrafo? Justifique. Resposta: transição, pois há troca de uma purina (G) por outra purina (A). b) Qual(is) dos três indivíduos tem predisposição para desenvolver a doença devido a pelo menos uma das mutações citadas? Justifique para validar o item. Resposta: Visto que as mutações são dominantes, os indivíduos 1 e 3 estão predispostos a desenvolver a doença. O indivíduo 1 por receber uma sequência paterna que codifica a treonina no códon 53; e o indivíduo 3, por receber uma sequência materna que codifica a prolina no códon 30. Vide tabelas abaixo. Indivíduo 1: Códon 30 Códon 53 GCU alanina GCU alanina GCC alanina ACU treonina Indivíduo 2: Códon 30 Códon 53 GCC alanina GCU alanina GCA alanina GCG alanina Indivíduo 3: Códon 30 Códon 53 CCC prolina GCU alanina GCA alanina GCG alanina c) Considerando apenas o RNAm maduro, quantos códons e quantas ligações peptídicas foram necessários para a síntese da proteína alfa-sinucleína? Justifique. Resposta: 145 códons e 143 ligações peptídicas. Como a proteína tem 144 aminoácidos e cada aminoácido é codificado por um códon, foram necessários 144 códons para codificar os aminoácidos + 1 códon de parada. Porém, uma ligação peptídica liga dois aminoácidos e os aminoácidos extremos não estão ligados. Consequentemente, foram necessárias 143 ligações peptídicas. d) Considerando apenas os códons necessários para início e finalização da síntese proteica, quantas bases no RNAm maduro foram necessárias para codificar os aminoácidos da proteína alfa-sinucleína? Apresente os cálculos para validar o item. Resposta: 435 bases. 1 códon 3 bases 1 aminoácido x = 435 bases x 144 aminoácidos + 1 códon de parada

9 e) Considerando que o gene da proteína alfa-sinucleina tem 1543 bases, explique os 2 principais motivos que poderiam explicar o fato da proteína ter apenas 144 aminoácidos. Resposta: O gene contém regiões regulatórias, como o promotor, que não são traduzidas. Além disto, provavelmente este gene é interrompido, ou seja, contém exons (regiões codificadoras) e íntrons (regiões não codificadoras que serão removidas durante o splicing, para produzir o RNAm maduro). 9) Sabe-se que a taxa de mutação espontânea na replicação do DNA é de aproximadamente 10 7, mas no HIV, um retrovírus com genoma diploide de RNA fita simples unidos por proteínas que funcionam como mensageiros, apresentando 5 CAP e cauda poli(a), entre outras regiões codificadoras responsáveis pela integração no material genético nas células parasitadas e replicação viral, as taxas de mutação são as mais elevadas na natureza, na ordem de 10-3 a 10-5 por nucleotídeo por ciclo de replicação. Isto significa dizer que pode existir a incorporação de um nucleotídeo errado a cada mil ou cem mil bases copiadas. (Tendências em HIV/AIDS 1(1): 4-11, 2006, com adaptações) Em relação ao texto e conhecimentos correlatos, responda: a) Que papéis essenciais dos terminais 5 Cap e cauda poli(a) poderiam dar ao HIV uma vantagem para garantir a infecção? Resposta: Tanto o CAP quanto o poli-a têm a função de proteger o RNA da ação de nucleases, evitando assim a degradação do RNA viral. b) Explique um motivo biologicamente plausível para a taxa de mutação espontânea do HIV ser mais elevada do que a taxa de mutação espontânea na replicação do DNA. Resposta: Qualquer uma das opções pode ser considerada: o esqueleto do DNA é mais estável do que o esqueleto do RNA; ausência de atividades revisoras das enzimas RNA polimerase e transcriptase reversa viral. 10) A hemoglobina (Hb) é a proteína mais abundante e funcionalmente importante dos glóbulos vermelhos do sangue. É uma proteína de estrutura globular e quaternária, composta por quatro cadeias polipeptídicas (cadeias de globina 1, 2, 1 e 2 ) e um grupo prostético (grupo heme contendo um íon Fe 2+ ) ligado a cada uma das cadeias de globina. Sua característica mais importante é a capacidade de combinar-se fraca e reversivelmente com o oxigênio e liberá-lo nos capilares dos tecidos, oxigenando-os. Como sua estabilidade é dependente do arranjo estrutural que ocorre entre as duas globinas do tipo com as duas do tipo, mutações pontuais podem promover a formação de moléculas anormais com características bioquímicas e funcionais alteradas, sendo responsáveis por manifestações clínicas e alterações hematológicas, como acontece nas anemias hereditárias. Mutações de sentido trocado na cadeia, por exemplo, causam siclemia ou anemia falciforme, enquanto mutações sem sentido, talassemia 0. A hemoglobina A ou HbA é o tipo predominante entre as hemoglobinas normais. A hemoglobina S (HbS), decorre da substituição de ácido glutâmico (Glu) por valina (Val) na trinca do DNA responsável pela transcrição do códon 6 da cadeia. Como o gene da cadeia está localizado no cromossomo 11 e cada célula tem duas cópias do cromossomo 11 uma proveniente da mãe e outra do pai indivíduos que apresentam as duas cópias normais do gene produzem apenas hemácias normais (HbA/HbA). Já os indivíduos HbS/HbS morrem precocemente devido à anemia falciforme severa, enquanto aqueles HbA/HbS levam uma vida normal em situações de pressão normal de oxigênio, por apresentarem hemácias normais e anormais. a) Os indivíduos A, B e C, são crianças com menos de 1 mês de idade que foram internadas em um hospital por apresentarem um quadro de anemia grave. Baseando-se no segmento de DNA responsável pela transcrição dos códons 5, 6 e 7 do gene da cadeia da hemoglobina (Hb), cuja sequência normal é GGA CTC CTC e na tabela de códons abaixo, responda: Indivíduo A: GGA CTC CTC (sequência materna) GGA CTT CTC (sequência paterna) Indivíduo B: GGA CAC CTC (sequência materna) GGA CAC CTC (sequência paterna) Indivíduo C: GGA CTC ATC (sequência materna) GGA CTT ATC (sequência paterna) a) Qual deles apresenta as duas CÓDONS AMINOÁCIDO sequências normais do gene Hb GAA, GAG Ácido glutâmico (HbA/HbA) e, portanto, não apresenta GUU, GUC, GUA, anemia falciforme e sim outro tipo de Valina GUG anemia? Justifique para validar o item. CCU, CCC, CCA, Indivíduo A, pois apresenta a sequência Prolina CCG de aminoácidos normal: prolina ácido UGA, UAA, Stop glutâmico ácido glutâmico. UAG OBS.: o indivíduo C não apresenta as duas sequências normais do gene Hb (mesmo sem apresentar anemia falciforme). b) Qual deles apresenta a forma grave da anemia falciforme e qual apresenta talassemia 0? Justifique para validar o item.

10 Anemia falciforme severa: indivíduo B, pois recebeu tanto a sequência materna quanto a paterna com a mutação de sentido trocado no códon 6: substituição de ácido glutâmico por valina. Talassemia 0 : indivíduo C, pois recebeu as duas sequências com a mutação sem sentido, que gera um códon de parada precoce (códon 7). c) Em relação ao tipo de substituição de base que ocorre na anemia falciforme, como é denominada a mutação de ponto apresentada pelo(s) indivíduo(s) acima que apresenta(m) a doença? Justifique para validar o item. Resposta: Transversão, pois comparando com o indivíduo A que é normal, houve troca de uma pirimidina (T) por uma purina (A) na segunda base do códon 6 do indivíduo B. d) Sabendo-se que a fita molde do DNA do gene da cadeia da Hb possui bases e a cadeia da hemoglobina, 147 aminoácidos, calcule o percentual do RNAm maduro em relação ao gene da cadeia da Hb. 1 códon 3 bases 1 aminoácido x = 441 bases + 3 bases (códon de parada) = 444 bases x 147 aminoácidos bases 100% x = 27,65% 444 bases x e) Considerando apenas o RNAm maduro, quantos códons e quantas ligações peptídicas foram necessários para a síntese da cadeia da Hb? Justifique sua resposta para validar o item. Resposta: 148 códons e 146 ligações peptídicas. Como a proteína tem 147 aminoácidos e cada aminoácido é codificado por um códon, foram necessários 147 códons para codificar os aminoácidos + 1 códon de parada. Porém, uma ligação peptídica liga dois aminoácidos e os aminoácidos extremos não estão ligados. Consequentemente, foram necessárias 146 ligações peptídicas. f) Explique os 2 principais motivos que poderiam explicar o fato da cadeia da Hb ter apenas 147 aminoácidos. Resposta: O gene contém regiões regulatórias, como o promotor, que não são traduzidas. Além disto, provavelmente este gene é interrompido, ou seja, contém exons (regiões codificadoras) e íntrons (regiões não codificadoras que serão removidas durante o splicing, para produzir o RNAm maduro).

11 Código de letras usadas na representação dos aminoácidos. Adaptado do livro Molecular Biology of the cell, de Albert, B.; Johnson, A.; Lewis, J.; Raff, M., Roberts, K. and Walter, P. (3rd ed. Ed. Garland, 1996). AMINOÁCIDO CÓDIGO DE LETRAS A Alanina (Ala) C Cisteína (Cys) D Aspartato (Asp) E Ácido glutâmico (Glu) F Fenilalanina (Phe) G Glicina (Gly) H Histidina (His) I Isoleucina (Ile) K Lisina (Lys) L Leucina (Leu) M Metionina (Met) N Asparagina (Asn) P Prolina (Pro) Q Glutamina (Gln) R Arginina (Arg) S Serina (Ser) T Treonina (Thr) W Triptofano (Trp) Y Tirosina (Tyr) V Valina (Val) Quanto à cadeia lateral (estacada em negrito), os aminoácidos podem ser classificados em: 1- Aminoácidos apolares: apresentam grupos químicos de hidrocarbonetos apolares ou hidrocarbonetos modificados, exceto a glicina (que possui um átomo de hidrogênio como cadeia lateral). São hidrofóbicos. Glicina: H-CH(NH 2 )-COOH Alanina: CH 3 -CH(NH 2 )-COOH Leucina: CH 3 (CH 3 )-CH 2 -CH(NH 2 )-COOH Valina: CH 3 -CH(CH 3 )-CH(NH 2 )-COOH Isoleucina: CH 3 -CH 2 -CH(CH 3 )-CH(NH 2 )-COOH Prolina: -CH 2 -CH 2 -CH 2 - ligando o grupo amino ao carbono alfa Fenilalanina: C 6 H 5 -CH 2 -CH(NH 2 )-COOH Triptofano: R aromático-ch(nh 2 )-COOH Metionina: CH 3 -S-CH 2 -CH 2 -CH(NH 2 )-COOH 2- Aminoácidos polares neutros: apresentam grupos químicos que tendem a formar ligações de hidrogênio. Serina: OH-CH 2 -CH(NH 2 )-COOH Treonina: OH-CH(CH 3 )-CH(NH 2 )-COOH Cisteina: SH-CH 2 -CH(NH 2 )-COOH Tirosina: OH-C 6 H 4 -CH 2 -CH(NH 2 )-COOH Asparagina: NH 2 -CO-CH 2 -CH(NH 2 )-COOH Glutamina: NH 2 -CO-CH 2 -CH 2 -CH(NH 2 )-COOH 3- Aminoácidos ácidos: apresentam grupos carboxilato. São hidrofílicos. Ácido aspártico: HCOO-CH2-CH(NH2)-COOH Ácido glutâmico: HCOO-CH 2 -CH 2 -CH(NH 2 )-COOH 4- Aminoácidos básicos: apresentam grupos amino. São hidrofílicos. Arginina: HN=C(NH 2 )-NH-CH 2 -CH 2 -CH 2 -CH(NH 2 )-COOH Lisina: NH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH(NH 2 )-COOH Histidina: H-(C 3 H 2 N 2 )-CH 2 -CH(NH 2 )-COOH

EXERCÍCIOS SOBRE ÁCIDOS NUCLÉICOS E SÍNTESE PROTÉICA

EXERCÍCIOS SOBRE ÁCIDOS NUCLÉICOS E SÍNTESE PROTÉICA Lista de exercícios SOBRE ÁCIDOS NUCLÉICOS E SÍNTESE PROTÉICA 1) O mofamento de grãos durante a estocagem causa perdas nutricionais e de valor de mercado, além de promover riscos à saúde humana e de animais

Leia mais

CURSO DE MEDICINA EXERCÍCIOS ESTRUTURA E FUNÇÃO DOS ÁCIDOS NUCLEICOS 2

CURSO DE MEDICINA EXERCÍCIOS ESTRUTURA E FUNÇÃO DOS ÁCIDOS NUCLEICOS 2 AULAS: 14 e 21/08/2014 Profª: Ana Luisa Miranda-Vilela CURSO DE MEDICINA EXERCÍCIOS ESTRUTURA E FUNÇÃO DOS ÁCIDOS NUCLEICOS 2 1) O mofamento de grãos durante a estocagem causa perdas nutricionais e de

Leia mais

EXERCÍCIOS SOBRE ÁCIDOS NUCLÉICOS E SÍNTESE PROTÉICA

EXERCÍCIOS SOBRE ÁCIDOS NUCLÉICOS E SÍNTESE PROTÉICA Gabarito Exercícios Ácidos Nucléicos EXERCÍCIO EXERCÍCIOS SOBRE ÁCIDOS NUCLÉICOS E SÍNTESE PROTÉICA 1) O mofamento de grãos durante a estocagem causa perdas nutricionais e de valor de mercado, além de

Leia mais

ESTRUTURA E FUNÇÃO DOS ÁCIDOS NUCLEICOS

ESTRUTURA E FUNÇÃO DOS ÁCIDOS NUCLEICOS Lista de exercícios ESTRUTURA E FUNÇÃO DOS ÁCIDOS NUCLEICOS 1. Os ácidos nucleicos são constituídos por cadeias polinucleotídicas. Descreva resumidamente este tipo de composto. 2. Cite as principais diferenças

Leia mais

BIOLOGIA. Biologia Molecular (segunda parte) Professora: Brenda Braga

BIOLOGIA. Biologia Molecular (segunda parte) Professora: Brenda Braga BIOLOGIA Biologia Molecular (segunda parte) Professora: Brenda Braga Ácidos Nuclêicos DNA RNA Ácido Desoxirribonuclêico Ácido Ribonuclêico Cadeias de Nucleotídeos Fosfato Pentose Base Nitrogenada A ligação

Leia mais

CÓDIGO GENÉTICO Lista I 20 Questões Professor Charles Reis Curso Expoente

CÓDIGO GENÉTICO Lista I 20 Questões Professor Charles Reis Curso Expoente CÓDIGO GENÉTICO Lista I 20 Questões Professor Charles Reis Curso Expoente 01. (FUVEST) A seguir está representada a sequência dos 13 primeiros pares de nucleotídeos da região codificadora de um gene. A

Leia mais

BIOLOGIA. Moléculas, células e tecidos. Transcrição e tradução Parte 2. Professor: Alex Santos

BIOLOGIA. Moléculas, células e tecidos. Transcrição e tradução Parte 2. Professor: Alex Santos BIOLOGIA Moléculas, células e tecidos Professor: Alex Santos Parte 2: Síntese de proteínas Tópicos em abordagem : I Processamento do imrna em Eucariotos II Código genético III Tradução: Síntese de proteínas

Leia mais

Site:

Site: Código Genético É o conjunto dos genes humanos. Neste material genético está contida toda a informação para a construção e funcionamento do organismo humano. Este código está contido em cada uma das nossas

Leia mais

CÓDIGO GENÉTICO E SÍNTESE PROTEICA

CÓDIGO GENÉTICO E SÍNTESE PROTEICA Terceirão Biologia 1 Professor João CÓDIGO GENÉTICO E SÍNTESE PROTEICA Dogma central da Biologia Descreve o fluxo unidirecional de informações, do DNA à síntese de proteínas. Duplicação/Replicação Síntese

Leia mais

ESTRUTURA E FUNÇÃO DOS ÁCIDOS NUCLEICOS

ESTRUTURA E FUNÇÃO DOS ÁCIDOS NUCLEICOS Lista de exercícios ESTRUTURA E FUNÇÃO DOS ÁCIDOS NUCLEICOS 1) Que propriedades do DNA e da DNA polimerase sugerem que as duas fitas não podem ser replicadas pelo crescimento no mesmo sentido? Resposta:

Leia mais

MUTAÇÃO E MECANISMOS DE REPARO DE DNA

MUTAÇÃO E MECANISMOS DE REPARO DE DNA Lista de exercícios MUTAÇÃO E MECANISMOS DE REPARO DE DNA 1) Uma globina de 146 aminoácidos sofreu uma mutação no códon correspondente ao sexto aminoácido da cadeia. A análise do DNA indicou uma mudança

Leia mais

Biotecnologia Geral TRANSCRIÇÃO E TRADUÇÃO

Biotecnologia Geral TRANSCRIÇÃO E TRADUÇÃO Biotecnologia Geral TRANSCRIÇÃO E TRADUÇÃO DNA Replicação DNA Trasncrição Reversa Transcrição RNA Tradução Proteína Transcrição É o processo pelo qual uma molécula de RNA é sintetizada a partir da informação

Leia mais

CÓDIGO GENÉTICO E SÍNTESE PROTEICA

CÓDIGO GENÉTICO E SÍNTESE PROTEICA Terceirão Biologia 1 Professor João CÓDIGO GENÉTICO E SÍNTESE PROTEICA 1. Síntese de proteínas pelos ribossomos a partir do RNAm. a) RNAm: molécula de RNA que contem a informação genética necessária para

Leia mais

BIOLOGIA EXERCÍCIOS. Anabolismo Nuclear

BIOLOGIA EXERCÍCIOS. Anabolismo Nuclear Anabolismo Nuclear EXERCÍCIOS 1. mesmo responsável pela decodificação do genoma humano em 2001, o presidente dos EUA, Barack Obama, pediu a seus conselheiros especializados em biotecnologia para analisarem

Leia mais

14/02/2017. Genética. Professora Catarina

14/02/2017. Genética. Professora Catarina 14/02/2017 Genética Professora Catarina 1 A espécie humana Ácidos nucleicos Tipos DNA ácido desoxirribonucleico RNA ácido ribonucleico São formados pela união de nucleotídeos. 2 Composição dos nucleotídeos

Leia mais

Fenilalanina (Phe) Treonina (Thr) Tirosina (Tir)

Fenilalanina (Phe) Treonina (Thr) Tirosina (Tir) Pergunta 1 Abaixo estão apresentadas as estruturas de três aminoácidos. Fenilalanina (Phe) Treonina (Thr) Tirosina (Tir) Usando os espaços em branco abaixo, classifique os três na ordem da hidrofobicidade

Leia mais

COLÉGIO PEDRO II CAMPUS TIJUCA II. DEPARTAMENTO DE BIOLOGIA E CIÊNCIAS COORD.: PROFa. CRISTIANA LIMONGI

COLÉGIO PEDRO II CAMPUS TIJUCA II. DEPARTAMENTO DE BIOLOGIA E CIÊNCIAS COORD.: PROFa. CRISTIANA LIMONGI COLÉGIO PEDRO II CAMPUS TIJUCA II DEPARTAMENTO DE BIOLOGIA E CIÊNCIAS COORD.: PROFa. CRISTIANA LIMONGI 1º & 2º TURNOS 3ª SÉRIE / ENSINO MÉDIO REGULAR & INTEGRADO ANO LETIVO 2015 PROFESSORES: FRED & PEDRO

Leia mais

Código Genético. Bianca Zingales

Código Genético. Bianca Zingales Código Genético Bianca Zingales zingales@iq.usp.br O dogma central da Biologia Molecular Replicação Transcrição O DNA contém a informação genética Tradução As proteínas são a expressão da informação genética

Leia mais

Substrato do Tripeptídeo

Substrato do Tripeptídeo Pergunta 1 Você está estudando uma enzima chamada quinase. Seu substrato é o tripeptídeo Ala-Lys-Thr, com uma molécula incomum em suas terminações C, a molécula GLOW. Quando essa molécula GLOW é segmentada

Leia mais

2016 Dr. Walter F. de Azevedo Jr.

2016 Dr. Walter F. de Azevedo Jr. 2016 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 000000000000111111111110001100000000000 000000000001111111111111111111000000001 000000000111111111111111111111111000000

Leia mais

Entendem-se por compostos heterocíclicos, aqueles compostos orgânicos cíclicos estáveis, que contem no seu anel um ou mais átomos diferentes do

Entendem-se por compostos heterocíclicos, aqueles compostos orgânicos cíclicos estáveis, que contem no seu anel um ou mais átomos diferentes do 1 2 3 Entendem-se por compostos heterocíclicos, aqueles compostos orgânicos cíclicos estáveis, que contem no seu anel um ou mais átomos diferentes do carbono. 4 5 O prefixo ribo também é aceitável para

Leia mais

Código Genético. Bianca Zingales

Código Genético. Bianca Zingales Código Genético Bianca Zingales zingales@iq.usp.br Um gene - uma enzima Beadle & Tatum (1930 1940) Experimentos de genética com o fungo Neurospora. Mutações induzidas com raios X. Mutações em um único

Leia mais

Aminoácidos peptídeos e proteínas

Aminoácidos peptídeos e proteínas Pontifícia Universidade Católica de Goiás Departamento de Biologia Aminoácidos peptídeos e proteínas Prof. Macks Wendhell Gonçalves, Msc mackswendhell@gmail.com Algumas funções de proteínas A luz produzida

Leia mais

Princípios de Sistemática Molecular

Princípios de Sistemática Molecular ! Ciências teóricas e sistemática biológica "! DNA, genes, código genético e mutação! Alinhamento de seqüências! Mudanças evolutivas em seqüências de nucleotídeos! Otimização em espaços contínuos e discretos!

Leia mais

ÁCIDOS NUCLÉICOS Alfredinho Alves

ÁCIDOS NUCLÉICOS Alfredinho Alves ÁCIDOS NUCLÉICOS Alfredinho Alves 1 1. Histórico Frederish Miescher, médico alemão, aos 20 anos de idade, observou a presença do DNA em células do pus, embora não pudesse detalhar a estrutura molecular

Leia mais

MUTAÇÕES E MECANISMOS DE REPARO. Prof. Odir A. Dellagostin

MUTAÇÕES E MECANISMOS DE REPARO. Prof. Odir A. Dellagostin MUTAÇÕES E MECANISMOS DE REPARO Prof. Odir A. Dellagostin O QUE É MUTAÇÃO? QUALQUER ALTERAÇÃO NA SEQÜÊNCIA DE DNA genômica (adição ou perda de cromossomos); cromossômica (adição, perda ou mudança de local/orientação

Leia mais

CURSO DE ENFERMAGEM. EXERCÍCIOS ESTRUTURA E FUNÇÃO DOS ÁCIDOS NUCLEICOS LISTAS 2 e 3

CURSO DE ENFERMAGEM. EXERCÍCIOS ESTRUTURA E FUNÇÃO DOS ÁCIDOS NUCLEICOS LISTAS 2 e 3 CURSO DE ENFERMAGEM EXERCÍCIOS ESTRUTURA E FUNÇÃO DOS ÁCIDOS NUCLEICOS LISTAS 2 e 3 Profª: Ana Luisa Miranda-Vilela LISTA 2 1) Quais são as diferenças de composição e estrutura entre RNA e DNA? Escreva

Leia mais

ATIVIDADES. BC.06: Ácidos nucléicos e ação gênica BIOLOGIA

ATIVIDADES. BC.06: Ácidos nucléicos e ação gênica BIOLOGIA ATIVIDADES 1. DNA e RNA são encontrados em quantidades apreciáveis, respectivamente: a) no núcleo; no citoplasma. b) no núcleo; no núcleo e no citoplasma. c) no núcleo; no núcleo. d) no núcleo e no citoplasma;

Leia mais

Tema da aula/lista de exercício: Aula 7 Replicação/Transcrição/Tradução

Tema da aula/lista de exercício: Aula 7 Replicação/Transcrição/Tradução Disciplina: Biologia Profa: Laure Turma: TR / / Tema da aula/lista de exercício: Aula 7 Replicação/Transcrição/Tradução 1. (Unicamp) Em um experimento, um segmento de DNA que contém a região codificadora

Leia mais

Aminoácidos não-essenciais: alanina, ácido aspártico, ácido glutâmico, cisteína, glicina, glutamina, hidroxiprolina, prolina, serina e tirosina.

Aminoácidos não-essenciais: alanina, ácido aspártico, ácido glutâmico, cisteína, glicina, glutamina, hidroxiprolina, prolina, serina e tirosina. AMINOÁCIDOS Os aminoácidos são as unidades fundamentais das PROTEÍNAS. Existem cerca de 300 aminoácidos na natureza, mas nas proteínas podemos encontrar 20 aminoácidos principais Estruturalmente são formados

Leia mais

Composição química celular

Composição química celular Natália Paludetto Composição química celular Proteínas Enzimas Ácidos nucléicos Proteínas Substâncias sólidas; Componente orgânico mais abundante da célula. Podem fornecer energia quando oxidadas, mas

Leia mais

Biologia - Grupos A - B - Gabarito

Biologia - Grupos A - B - Gabarito 1 a QUESTÃO: (1, ponto) Avaliador Revisor Foram coletados 1. exemplares do mosquito Anopheles culifacies, de ambos os sexos, em cada uma de duas regiões denominadas A e B, bastante afastadas entre si.

Leia mais

DNA, RNA E INFORMAÇÃO

DNA, RNA E INFORMAÇÃO DNA, RNA E INFORMAÇÃO OS ÁCIDOS NUCLEICOS Embora descobertos em 1869, por Miescher, no pus das bandagens de ferimentos, o papel dos ácidos nucleicos na hereditariedade e no controle da atividade celular

Leia mais

CURSO: ENFERMAGEM DISCIPLINA: BIOQUÍMICA HUMANA PROF. WILLAME BEZERRA. Aminoácidos. Prof. Willame Bezerra

CURSO: ENFERMAGEM DISCIPLINA: BIOQUÍMICA HUMANA PROF. WILLAME BEZERRA. Aminoácidos. Prof. Willame Bezerra CURSO: ENFERMAGEM DISCIPLINA: BIOQUÍMICA HUMANA PROF. WILLAME BEZERRA Aminoácidos Prof. Willame Bezerra As proteínas são as biomoléculas mais abundantes nos seres vivos e exercem funções fundamentais em

Leia mais

ESCOLA SECUNDÁRIA DE CASQUILHOS BARREIRO

ESCOLA SECUNDÁRIA DE CASQUILHOS BARREIRO ESCOLA SECUNDÁRIA DE CASQUILHOS BARREIRO Disciplina de BIOLOGIA E GEOLOGIA 11º ano 1º Teste Formativo 11º A TEMA: DNA e Síntese de Proteínas 45 minutos 21 de Outubro de 2011 Nome: Nº Classificação: _,

Leia mais

Biologia Molecular II

Biologia Molecular II Biologia Molecular II ÁCIDOS NUCLÊICOS Ácidos Nuclêicos DNA RNA Ácido Desoxirribonuclêico Ácido Ribonuclêico Cadeias de Nucleotídeos Fosfato Pentose Ribose RNA Desoxirribose DNA Base Nitrogenada Púricas:

Leia mais

COLÉGIO PEDRO II CAMPUS TIJUCA II

COLÉGIO PEDRO II CAMPUS TIJUCA II COLÉGIO PEDRO II CAMPUS TIJUCA II DEPARTAMENTO DE BIOLOGIA E CIÊNCIAS COORD.: PROFa. CRISTIANA LIMONGI 1º & 2º TURNOS 3ª SÉRIE / ENSINO MÉDIO REGULAR & INTEGRADO ANO LETIVO 2015 PROFESSORES: FRED & PEDRO

Leia mais

Estágio Docência. Vanessa Veltrini Abril Doutoranda em. Março de 2007

Estágio Docência. Vanessa Veltrini Abril Doutoranda em. Março de 2007 Ação Gênica Estágio Docência Vanessa Veltrini Abril Doutoranda em Genética e Melhoramento Animal Março de 2007 Qual é a função do DNA? Como a informação genética é transportada? Genes TRANSFERÊNCIA DE

Leia mais

GABARITO - TRANSCRIÇÃO E TRADUÇÃO

GABARITO - TRANSCRIÇÃO E TRADUÇÃO GABARITO - TRANSCRIÇÃO E TRADUÇÃO 9º ANO BIOLOGIA LUCIANA 3º BIM Lista de exercícios de vestibular PARA TREINAR ALGUNS CONCEITOS IMPORTANTES COPIE NO SEU CADERNO AS QUESTÕES: 1, 3, 4 E 13. 1.(UFERSA) Considere

Leia mais

Prof. Marcelo Langer. Curso de Biologia. Aula Genética

Prof. Marcelo Langer. Curso de Biologia. Aula Genética Prof. Marcelo Langer Curso de Biologia Aula Genética CÓDIGO GENÉTICO Uma linguagem de códons e anticódons, sempre constituídos por 3 NUCLEOTÍDEOS. 64 CODONS = 4 tipos diferentes de nucleotídeos, combinação

Leia mais

Conceito: qualquer modificação súbita e hereditária no conjunto gênico de um organismo, que não é explicada pela recombinação da variabilidade

Conceito: qualquer modificação súbita e hereditária no conjunto gênico de um organismo, que não é explicada pela recombinação da variabilidade MUTAÇÃO Conceito: qualquer modificação súbita e hereditária no conjunto gênico de um organismo, que não é explicada pela recombinação da variabilidade genética pré-existente. Organismo mutante: é aquele

Leia mais

TRADUZINDO O CÓDIGO GENÉTICO. Aula teórica 6. Maria Carolina Quecine Departamento de Genética LGN0114 Biologia Celular

TRADUZINDO O CÓDIGO GENÉTICO. Aula teórica 6. Maria Carolina Quecine Departamento de Genética LGN0114 Biologia Celular TRADUZINDO O CÓDIGO GENÉTICO Aula teórica 6 LGN0114 Biologia Celular Maria Carolina Quecine Departamento de Genética mquecine@usp.br LEMBRANDO Um gene unidade da informação genética que controla a síntese

Leia mais

13/08/2018. Escala de ph. Escala de ph. Crescimento básico. Crescimento ácido. Neutro. básico

13/08/2018. Escala de ph. Escala de ph. Crescimento básico. Crescimento ácido. Neutro. básico Escala de ph Crescimento básico Neutro Crescimento ácido Escala de ph básico 1 Sistema tampão Um par conjugado ácido-base tende a resistir a alteração de ph, quando pequenas quantidades de ácido ou base

Leia mais

genética molecular genética clássica DNA RNA polipeptídio GENÉTICA Exercícios 1. Julgue os itens que se seguem.

genética molecular genética clássica DNA RNA polipeptídio GENÉTICA Exercícios 1. Julgue os itens que se seguem. GENÉTICA clássica molecular DNA RNA polipeptídio Exercícios 1. Julgue os itens que se seguem. 01. As cadeias de RNA mensageiros são formadas por enzimas que complementam a sequência de bases de um segmento

Leia mais

- Ácidos Nucleicos e Síntese Proteica - Profª Samara

- Ácidos Nucleicos e Síntese Proteica - Profª Samara - Ácidos Nucleicos e Síntese Proteica - Profª Samara A verdade por trás da descoberta da estrutura do DNA Rosalind Franklin Mãe do DNA (1920-1958) Erwin Chargaff (1905-2002) FOTO 51 1953 James Watson e

Leia mais

- Apresentam uma fórmula básica: um átomo central de carbono onde se ligam:

- Apresentam uma fórmula básica: um átomo central de carbono onde se ligam: 1 4 Aminoácidos e proteínas a) Aminoácidos - São encontrados polimerizados formando proteínas ou livres - São degradados, originando moléculas intermediárias da síntese de glicose e lipídeos - Alguns são

Leia mais

1 3AMINOپ0 9CIDOS PLASMپ0 9TICOS LIVRES پ0 9CIDOS AMINADOS PLASMپ0 9TICOS LIVRES

1 3AMINOپ0 9CIDOS PLASMپ0 9TICOS LIVRES پ0 9CIDOS AMINADOS PLASMپ0 9TICOS LIVRES 1 3AMIپ0 9CIDS PLASMپ0 9TICS LIVRES پ0 9CIDS AMIADS PLASMپ0 9TICS LIVRES CBPM 4.03.01.29-0 AMB 28.13.043-0 CBPM 4.03.01.67-2 AMB 28.04.099-6/92 Sinon ھmia: پ0 9cido asp rtico, پ0 9cido glutپ0 9mico, Alanina,

Leia mais

EVOLUÇÃO. Prof. Nelson Jorge da Silva Jr. Ph.D.

EVOLUÇÃO. Prof. Nelson Jorge da Silva Jr. Ph.D. EVOLUÇÃO EVIDÊNCIAS DO PROCESSO EVOLUTIVO Prof. Nelson Jorge da Silva Jr. Ph.D. Professor Titular PREMISSAS BÁSICAS DA EVOLUÇÃO 1. As espécies mudam no sentido da descendência com modificação. 2. Todos

Leia mais

OS ÁCIDOS NUCLÉICOS DNA / RNA

OS ÁCIDOS NUCLÉICOS DNA / RNA OS ÁCIDOS NUCLÉICOS DNA / RNA Prof. André Maia Considerações do Professor Os ácidos nucléicos são as maiores moléculas encontradas no mundo vivo. São responsáveis pelo controle dos processos vitais básicos

Leia mais

Cromossômicas: afetam a estrutura e o número de cromossomos Gênicas: afetam um único gene

Cromossômicas: afetam a estrutura e o número de cromossomos Gênicas: afetam um único gene Mutações gênicas MUTAÇÕES Cromossômicas: afetam a estrutura e o número de cromossomos Gênicas: afetam um único gene MUTAÇÕES GÊNICAS Alterações em uma ou mais bases do DNA, afetando a leitura durante a

Leia mais

Introdução à Bioquímica

Introdução à Bioquímica Introdução à Bioquímica Nucleotídeos e Ácidos Nucléicos Dra. Fernanda Canduri Laboratório de Sistemas BioMoleculares. Departamento de Física.. UNESP São José do Rio Preto - SP. Genoma! O genoma de um organismo

Leia mais

26/04/2015. Tradução. José Francisco Diogo da Silva Junior Mestrando CMANS/UECE. Tradução em eucarióticos e procarióticos. Eventos pós transcricionais

26/04/2015. Tradução. José Francisco Diogo da Silva Junior Mestrando CMANS/UECE. Tradução em eucarióticos e procarióticos. Eventos pós transcricionais Tradução José Francisco Diogo da Silva Junior Mestrando CMANS/UECE Tradução em eucarióticos e procarióticos Eventos pós transcricionais 1 Processo de síntese de proteínas mrna contém o código do gene trna

Leia mais

Programa de Pós-Graduação em Química

Programa de Pós-Graduação em Química 1/12 Programa de Pós-Graduação em Química PROVA DE CONHECIMENTOS ESPECÍFICOS Duração da Prova: 4 horas São José do Rio Preto, 24 de Janeiro de 2013. Departamento 1 2/12 Questão 1. Os haloalcanos, também

Leia mais

Aminoácidos (aas) Prof.ª: Suziane Antes Jacobs

Aminoácidos (aas) Prof.ª: Suziane Antes Jacobs Aminoácidos (aas) Prof.ª: Suziane Antes Jacobs Introdução Pequenas moléculas propriedades únicas Unidades estruturais (UB) das proteínas N- essencial para a manutenção da vida; 20 aminoácidos-padrão -

Leia mais

Aminoácidos. Prof. Dr. Walter F. de Azevedo Jr. Laboratório de Sistemas BioMoleculares. Departamento de Física. UNESP São José do Rio Preto. SP.

Aminoácidos. Prof. Dr. Walter F. de Azevedo Jr. Laboratório de Sistemas BioMoleculares. Departamento de Física. UNESP São José do Rio Preto. SP. Aminoácidos Prof. Dr. Walter F. de Azevedo Jr. Laboratório de Sistemas BioMoleculares. Departamento de Física. UNESP São José do Rio Preto. SP. Resumo Introdução Quiralidade Ligação peptídica Cadeia peptídica

Leia mais

BIOLOGIA. Moléculas, Células e Tecidos Transcrição e Tradução. Prof. Daniele Duó

BIOLOGIA. Moléculas, Células e Tecidos Transcrição e Tradução. Prof. Daniele Duó BIOLOGIA Moléculas, Células e Tecidos Prof. Daniele Duó O código genético É a relação entre a sequência de bases no DNA e a sequência correspondente de aminoácidos, na proteína; Guarda toda informação

Leia mais

Faculdade Anhanguera Curso de Graduação em Educação Física

Faculdade Anhanguera Curso de Graduação em Educação Física Faculdade Anhanguera Curso de Graduação em Educação Física Profa. Dra. Amabile Vessoni Arias E-mail: Amabile.arias@anhanguera.com 2016-2 Mês de agosto Conteúdo 9 Unidade 1 16 Unidade 1 23 Unidade 1 30

Leia mais

Aulas Multimídias Santa Cecília. Profa. Renata Coelho

Aulas Multimídias Santa Cecília. Profa. Renata Coelho Aulas Multimídias Santa Cecília Profa. Renata Coelho Duplicação, transcrição e tradução DNA Modelo de Watson e Crick, proposto em 2 de abril de 1953: DNA é formado por 2 fitas (dupla hélice) Cada filamento

Leia mais

ÁCIDOS NUCLEICOS A- ESTRUTURA DOS ÁCIDOS NUCLEICOS E REPLICAÇÃO DO DNA

ÁCIDOS NUCLEICOS A- ESTRUTURA DOS ÁCIDOS NUCLEICOS E REPLICAÇÃO DO DNA Lista de exercícios ÁCIDOS NUCLEICOS A- ESTRUTURA DOS ÁCIDOS NUCLEICOS E REPLICAÇÃO DO DNA 1) Os ácidos nucleicos são constituídos por cadeias polinucleotídicas. Descreva resumidamente este tipo de composto.

Leia mais

BASES NITROGENADAS DO RNA

BASES NITROGENADAS DO RNA BIO 1E aula 01 01.01. A determinação de como deve ser uma proteína é dada pelos genes contidos no DNA. Cada gene é formado por uma sequência de códons, que são sequências de três bases nitrogenadas que

Leia mais

Relação, perfil de resistência e procedência dos isolados de M. tuberculosis estudados.

Relação, perfil de resistência e procedência dos isolados de M. tuberculosis estudados. Anexos Anexos 144 ANEXO 1 Relação, perfil de resistência e procedência dos isolados de M. tuberculosis estudados. Isolados Perfil de resistência Procedência 23130 Z, S UEM-Maringá/PR 1264 SENSÍVEL UEM-Maringá/PR

Leia mais

3 Nucleotídeos e Ácidos Nucléicos

3 Nucleotídeos e Ácidos Nucléicos 1 3 Nucleotídeos e Ácidos Nucléicos - São compostos ricos em energia - Funcionam como sinais químicos - São reservatórios moleculares da informação genética a) Nucleotídeos - São encontrados polimerizados

Leia mais

EXERCÍCIOS DE VESTIBULAR

EXERCÍCIOS DE VESTIBULAR EXERCÍCIOS DE VESTIBULAR PRÉ-VESTIBULAR BIOLOGIA PROF. MARCONI 1º Bimestre 01. (Ufal 2006) Como as células vivas não conseguem distinguir os elementos radioativos dos não radioativos, elas incorporam ambos

Leia mais

Soluções de Conjunto de Problemas 1

Soluções de Conjunto de Problemas 1 Soluções de 7.012 Conjunto de Problemas 1 Questão 1 a) Quais são os quatro tipos principais de moléculas biológicas discutidos na aula? Cite uma função importante de cada tipo de molécula biológica na

Leia mais

Plano de Aulas. Biologia. Módulo 22 Genética molecular e biotecnologia

Plano de Aulas. Biologia. Módulo 22 Genética molecular e biotecnologia Plano de Aulas Biologia Módulo 22 Genética molecular e biotecnologia Resolução dos exercícios propostos Retomada dos conceitos 10 CAPÍTULO 1 1 a As bases nitrogenadas são complementares por meio de pontes

Leia mais

Estrutura do DNA. Macromoléculas Ácidos Nucleicos (DNA e RNA) Estrutura dos ácidos nucleicos. Estrutura dos ácidos nucleicos 09/03/2017

Estrutura do DNA. Macromoléculas Ácidos Nucleicos (DNA e RNA) Estrutura dos ácidos nucleicos. Estrutura dos ácidos nucleicos 09/03/2017 Macromoléculas Ácidos Nucleicos (DNA e RNA) Estrutura do DNA James Watson e Francis Crick (1953) Esclareceram a estrutura do DNA: dupla hélice composta de 2 filamentos de nucleotídeosque se enrolam em

Leia mais

BIOLOGIA. Assinale a alternativa que preenche corretamente os parênteses, de cima para baixo. a) V V V b) V F F c) F F F d) V V F e) F V V

BIOLOGIA. Assinale a alternativa que preenche corretamente os parênteses, de cima para baixo. a) V V V b) V F F c) F F F d) V V F e) F V V BIOLOGIA 01 Não é somente o sabor agradável ao paladar que faz dos cogumelos comestíveis um dos alimentos mais cobiçados pelos asiáticos e europeus. Esses cogumelos são ricos em proteínas, sais minerais,

Leia mais

ESTRUTURA E FUNÇÃO DOS GENES E CROMOSSOMOS

ESTRUTURA E FUNÇÃO DOS GENES E CROMOSSOMOS Faculdade Ciência da Vida Disciplina: Genética Básica Aula 2 ESTRUTURA E FUNÇÃO DOS GENES E CROMOSSOMOS PROFESSORA: Fernanda Guimarães E-MAIL: guimaraes.biologia@gmail.com NÚCLEO Abriga do material genético

Leia mais

Organização estrutural e funcional do núcleo. Professor Otaviano Ottoni Netto

Organização estrutural e funcional do núcleo. Professor Otaviano Ottoni Netto Organização estrutural e funcional do núcleo Professor Otaviano Ottoni Netto Núcleo Celular Estrutura do Núcleo Alberts et al., 1994 - págs 335 e 345 _Tráfego de proteínas entre núcleo e citoplasma_

Leia mais

DNA: Replicação e Transcrição. Professora: MSc Monyke Lucena

DNA: Replicação e Transcrição. Professora: MSc Monyke Lucena EXTRA, EXTRA Se a mãe for (DD) e o pai (D), nenhum dos descendentes será daltónico nem portador. Se a mãe (DD) e o pai for (d), nenhum dos descendentes será daltônico, porém as filhas serão portadoras

Leia mais

Estruturas Pedagógicas. Área disciplinar de Biologia e Geologia Ano letivo 2018/2019

Estruturas Pedagógicas. Área disciplinar de Biologia e Geologia Ano letivo 2018/2019 Estruturas Pedagógicas Direção-Geral dos Estabelecimentos Escolares Direção de Serviços da Região Centro Área disciplinar de Biologia e Geologia Ano letivo 2018/2019 QUESTÃO AULA DE BIOLOGIA E GEOLOGIA

Leia mais

Estruturas Pedagógicas. Área disciplinar de Biologia e Geologia Ano letivo 2018/2019

Estruturas Pedagógicas. Área disciplinar de Biologia e Geologia Ano letivo 2018/2019 Estruturas Pedagógicas Direção-Geral dos Estabelecimentos Escolares Direção de Serviços da Região Centro Área disciplinar de Biologia e Geologia Ano letivo 2018/2019 QUESTÃO AULA DE BIOLOGIA E GEOLOGIA

Leia mais

Profº Lásaro Henrique

Profº Lásaro Henrique Profº Lásaro Henrique Proteínas são macromoléculas complexas, compostas de aminoácidos. São os constituintes básicos da vida e necessárias para os processos químicos que ocorrem nos organismos vivos. Nos

Leia mais

Prof. João Carlos Setubal

Prof. João Carlos Setubal Prof. João Carlos Setubal QBQ 102 Aula 2 (biomol) Como genes codificam proteínas 2 Genes e proteínas DNA Proteína 3 Hugues Sicotte, NCBI Proteínas são as moléculas trabalhadoras dos organismos nós somos

Leia mais

Caraterização molecular e funcional de variantes alfa de hemoglobina identificadas no Centro Hospitalar e Universitário de Coimbra

Caraterização molecular e funcional de variantes alfa de hemoglobina identificadas no Centro Hospitalar e Universitário de Coimbra IV. Resultados Caraterização molecular e funcional de variantes alfa de hemoglobina identificadas no Centro Hospitalar e Universitário de Coimbra 59 Resultados 1. VARIANTES DESCRITAS Indivíduo I 1.1. CASO

Leia mais

2. Resposta: C Comentário: Ribonucleases são enzimas que digerem moléculas de RNA, principais componentes de estruturas como ribossomos e nucléolos.

2. Resposta: C Comentário: Ribonucleases são enzimas que digerem moléculas de RNA, principais componentes de estruturas como ribossomos e nucléolos. 1. A Comentário: Cada 3 bases nitrogenadas no RNAm constituem uma unidade denominada códon, que uma vez traduzida, codifica um certo aminoácido no peptídio. Assim, se a proteína em questão contém 112 aminoácidos,

Leia mais

MACRONUTRIENTES III PROTEÍNAS

MACRONUTRIENTES III PROTEÍNAS MACRONUTRIENTES III PROTEÍNAS 1 PROTEÍNAS As proteínas são compostos orgânicos de estrutura complexa e massa molecular elevada, elas são sintetizadas pelos organismos vivos através da condensação de um

Leia mais

3. (Unesp 2010) Observe a tirinha, que alude à gripe Influenza A (H1N1).

3. (Unesp 2010) Observe a tirinha, que alude à gripe Influenza A (H1N1). ÁCIDOS NUCLÉIOCOS E SÍNTESE DE PROTEÍNAS PRÉ-VESTIBULAR GEOGRAFIA PROF. MARCONI 1. (Ufal 2006)Como as células vivas não conseguem distinguir os elementos radioativos dos não radioativos, elas incorporam

Leia mais

Como genes codificam proteínas QBQ 204 Aula 3 (biomol)

Como genes codificam proteínas QBQ 204 Aula 3 (biomol) Como genes codificam proteínas QBQ 204 Aula 3 (biomol) Prof. João Carlos Setubal Como DNA permite A atividade da vida? A reprodução da vida? Hoje vamos ver a parte da atividade da vida Atividade da vida

Leia mais

REVISÃO LEMBRANDO O DOGMA CENTRAL DA BIOLOGIA. Aula 2

REVISÃO LEMBRANDO O DOGMA CENTRAL DA BIOLOGIA. Aula 2 REVISÃO LEMBRANDO O DOGMA CENTRAL DA BIOLOGIA Aula 2 LGN0232 Genética molecular Maria Carolina Quecine Departamento de Genética mquecine@usp.br O QUE EXISTE EM COMUM ENTRE OS ORGANISMOS? O QUE FAZ UM

Leia mais

- Ácido ribonucléico (ARN ou RNA): participa do processo de síntese de proteínas.

- Ácido ribonucléico (ARN ou RNA): participa do processo de síntese de proteínas. 1- TIPOS DE ÁCIDO NUCLÉICO: DNA E RNA Existem dois tipos de ácidos nucléicos: - Ácido desoxirribonucléico (ADN ou DNA): é o principal constituinte dos cromossomos, estrutura na qual encontramos os genes,

Leia mais

Rafael Mesquita. Aminoácidos

Rafael Mesquita. Aminoácidos Aminoácidos As Proteínas são polímeros de Aminoácidos Os Aminoácidos apresentam pelo menos um grupo carboxílico e um grupo amino Aminoácidos têm como fórmula geral COOH + H 3 N - C - H R Aminoácidos constituintes

Leia mais

RMN em proteínas pequenas

RMN em proteínas pequenas COSY COrrelated SpectroscopY Experimento 2D homonuclear ( 1 H- 1 H) mais simples Primeiro experimento 2D proposto (Jeener, 1971) Período de mistura: 1 único pulso de 90 Transferência da coerência entre

Leia mais

Universidade Estadual do Rio Grande do Sul Bacharelado em Gestão Ambiental Biologia Aplicada Aula 7

Universidade Estadual do Rio Grande do Sul Bacharelado em Gestão Ambiental Biologia Aplicada Aula 7 Universidade Estadual do Rio Grande do Sul Bacharelado em Gestão Ambiental Biologia Aplicada Aula 7 Professor Antônio Ruas 1. Créditos: 60 2. Carga horária semanal: 4 3. Semestre: 1 4. Assunto: (i) Síntese

Leia mais

Prof. Marcelo Langer. Curso de Biologia. Aula 26 Genética

Prof. Marcelo Langer. Curso de Biologia. Aula 26 Genética Prof. Marcelo Langer Curso de Biologia Aula 26 Genética MATERIAL GENÉTICO A primeira atividade é a de orientação do DNA para formar a proteína, que será responsável pela característica genética. DNA é

Leia mais

Profº André Montillo

Profº André Montillo Profº André Montillo www.montillo.com.br Definição: É um polímero, ou seja, uma longa cadeia de nucleotídeos. Estrutura Molecular dos Nucleotídeos: Os nucleotídeos são constituídos por 3 unidades: Bases

Leia mais

Introdução à Teoria da Informação

Introdução à Teoria da Informação Introdução à Teoria da Informação Probabilidade e Estatística I Antonio Roque Aula 8 O conceito de quantidade de informação associada a um evento foi introduzido pelo engenheiro norte-americano Claude

Leia mais

Biologia. Código Genético. Professor Enrico Blota.

Biologia. Código Genético. Professor Enrico Blota. Biologia Código Genético Professor Enrico Blota www.acasadoconcurseiro.com.br Biologia CÓDIGO GENÉTICO NÚCLEO E SÍNTESE PROTEICA O núcleo é de fundamental importância para grande parte dos processos que

Leia mais

DNA - ATGCCGAAATTTGCG. O segmento de RNAm formado na transcrição terá a sequência de bases: RNA - UACGGCUUUAAACGC

DNA - ATGCCGAAATTTGCG. O segmento de RNAm formado na transcrição terá a sequência de bases: RNA - UACGGCUUUAAACGC Transcrição da informação genética A síntese de RNA (mensageiro, por exemplo) se inicia com a separação das duas fitas de DNA. Apenas uma das fitas do DNA serve de molde para a produção da molécula de

Leia mais

Como genes codificam proteínas QBQ102

Como genes codificam proteínas QBQ102 Como genes codificam proteínas QBQ102 Prof. João Carlos Setubal Como DNA permite A atividade da vida? A reprodução da vida? Hoje vamos ver a parte da atividade da vida Atividade da vida significa basicamente

Leia mais

IFSC Campus Lages. Tradução. Biologia Molecular Prof. Silmar Primieri

IFSC Campus Lages. Tradução. Biologia Molecular Prof. Silmar Primieri IFSC Campus Lages Tradução Biologia Molecular Prof. Silmar Primieri Relação DNA RNA Proteína Estrutura das proteínas Gene - Proteína Hipótese Gene - Proteina Os genes são responsáveis pelo funcionamento

Leia mais

CAPÍTULO 6: COMPOSTOS ORGÂNICOS PROTEÍNAS CAP. 7: COMPOSTOS ORGÂNICOS ÁCIDOS NUCLEICOS E VITAMINAS

CAPÍTULO 6: COMPOSTOS ORGÂNICOS PROTEÍNAS CAP. 7: COMPOSTOS ORGÂNICOS ÁCIDOS NUCLEICOS E VITAMINAS CAPÍTULO 6: COMPOSTOS ORGÂNICOS PROTEÍNAS CAP. 7: COMPOSTOS ORGÂNICOS ÁCIDOS NUCLEICOS E VITAMINAS 1. Dentre os diferentes compostos orgânicos das células temos as proteínas. Sobre estas responda: a) Cite

Leia mais

Estrutura do DNA 16/05/2018 ÁCIDOS NUCLÉICOS HISTÓRICO ÁCIDOS NUCLÉICOS. Adenina. Guanina. Citosina. Uracila. Timina GREGOR MENDEL

Estrutura do DNA 16/05/2018 ÁCIDOS NUCLÉICOS HISTÓRICO ÁCIDOS NUCLÉICOS. Adenina. Guanina. Citosina. Uracila. Timina GREGOR MENDEL ÁCIDOS NUCLÉICOS ÁCIDOS NUCLÉICOS: são substâncias formadoras de genes, constituídas por um grande número de NUCLEOTÍDEOS, que são unidades formadas por três tipos de substâncias químicas: - Uma base nitrogenada:

Leia mais

Aula 8 Síntese de proteínas

Aula 8 Síntese de proteínas Aula 8 Síntese de proteínas As proteínas que podem ser enzimas, hormônios, pigmentos, anticorpos, realizam atividades específicas no metabolismo dos seres vivos. São produzidas sob o comando do DNA. Observe

Leia mais

A Célula Humana. Disciplina: Anatomia e Fisiologia. Samara Cristina Ferreira Machado. Programa Nacional de Formação em Radioterapia

A Célula Humana. Disciplina: Anatomia e Fisiologia. Samara Cristina Ferreira Machado. Programa Nacional de Formação em Radioterapia Disciplina: Anatomia e Fisiologia A Célula Humana Samara Cristina Ferreira Machado Programa Nacional de Formação em Radioterapia Abordagem Celular - Estrutura Celular - Função Celular - Ciclo Celular Estrutura

Leia mais

CURSO DE MEDICINA EXERCÍCIOS MUTAÇÃO E MECANISMOS DE REPARO

CURSO DE MEDICINA EXERCÍCIOS MUTAÇÃO E MECANISMOS DE REPARO Profª: Ana Luisa Miranda-Vilela CURSO DE MEDICINA EXERCÍCIOS MUTAÇÃO E MECANISMOS DE REPARO 1) Uma globina de 146 aminoácidos sofreu uma mutação no códon correspondente ao sexto aminoácido da cadeia. A

Leia mais

Introdução. Estrutura dos Aminoácidos e Proteínas. Aminoácidos componentes de proteínas. Aminoácidos componentes de proteínas 10/02/2012.

Introdução. Estrutura dos Aminoácidos e Proteínas. Aminoácidos componentes de proteínas. Aminoácidos componentes de proteínas 10/02/2012. Introdução Estrutura dos Aminoácidos e Prof. Dr. Bruno Lazzari de Lima : Componentes celulares mais importantes. Diversidade de forma e função. Estruturais. Enzimáticas. Transportadoras. Ex.: Insulina,

Leia mais

BIOLOGIA MOLECULAR EM ENDOCRINOLOGIA

BIOLOGIA MOLECULAR EM ENDOCRINOLOGIA BIOLOGIA MOLECULAR EM ENDOCRINOLOGIA Curso de Atualização em Endocrinologia 2017 Denise Pires de Carvalho Instituto de Biofísica Carlos Chagas Filho / UFRJ DNA Sequência de Nucleotídeos RNA Sequência de

Leia mais

Proteínas São macromoléculas complexas, compostas de aminoácidos, e necessárias para os processos químicos que ocorrem nos organismos vivos

Proteínas São macromoléculas complexas, compostas de aminoácidos, e necessárias para os processos químicos que ocorrem nos organismos vivos Proteínas São macromoléculas complexas, compostas de aminoácidos, e necessárias para os processos químicos que ocorrem nos organismos vivos São os constituintes básicos da vida: tanto que seu nome deriva

Leia mais

E se ocorrerem erros durante estes processos? Mutações, que consequências?

E se ocorrerem erros durante estes processos? Mutações, que consequências? E se ocorrerem erros durante estes processos? Mutações, que consequências? Alterações do material genético Mutações alterações bruscas do material genético. Mutantes indivíduos que manifestam mutações.

Leia mais