DETERMINAÇÃO DO DESVIO DA VERTICAL INTEGRANDO OBSERVAÇÕES DE POSICIONAMENTO POR SATÉLITES E TOPOGRAFIA

Tamanho: px
Começar a partir da página:

Download "DETERMINAÇÃO DO DESVIO DA VERTICAL INTEGRANDO OBSERVAÇÕES DE POSICIONAMENTO POR SATÉLITES E TOPOGRAFIA"

Transcrição

1 1 UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO DE TECNOLOGIA CURSO DE GRADUAÇÃO EM ENGENHARIA DE AGRIMENSURA PROJETO FINAL DE CURSO DETERMINAÇÃO DO DESVIO DA VERTICAL INTEGRANDO OBSERVAÇÕES DE POSICIONAMENTO POR SATÉLITES E TOPOGRAFIA JÉSSICA CAROLINE DOS SANTOS SIQUEIRA SEROPÉDICA 2013

2 2 UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO DE TECNOLOGIA CURSO DE GRADUAÇÃO EM ENGENHARIA DE AGRIMENSURA DETERMINAÇÃO DO DESVIO DA VERTICAL INTEGRANDO OBSERVAÇÕES DE POSICIONAMENTO POR SATÉLITES E TOPOGRAFIA JÉSSICA CAROLINE DOS SANTOS SIQUEIRA Sob Orientação do Professor Luiz Guimarães Barbosa Monografia apresentada à disciplina IT 195- Projeto de Agrimensura como requisito parcial a conclusão do Curso de Engenharia de Agrimensura da Universidade Federal Rural do Rio de Janeiro. SEROPÉDICA 2013

3 3 DEDICATÓRIA À Deus, minha mãe Jane Roseny, minha irmã Janaina, ao meu namorado Rodrigo Navega, ao meu afilhado Luiz Felipe, ao meu cunhado José Sérgio, e aos professores João Gonçalves Bahia e Luiz Guimarães Barbosa por sempre me darem força, me incentivar e vibrar com minhas conquistas e me apoiar nas dificuldades. A todos vocês o meu muito obrigado.

4 4 AGRADECIMENTOS Primeiramente a Deus pelas vitórias alcançadas até hoje e pelas que virão, por me dar força em todas as dificuldades e angustias vividas. Por ser meu tudo e nunca me deixar em nenhum momento. O meu muito obrigada pela vida e por mais esse sonho realizado. À minha mãe por ser minha mãe, mulher forte guerreira e que sempre me ensinou que por mais que as coisas pareçam difíceis, temos que acreditar e nunca deixar de lutar. Se hoje cheguei até aqui foi porque você sempre esteve ao meu lado me incentivando da melhor maneira. À Janaina por ser mais que uma irmã, ser um exemplo a se seguir. Obrigada por sempre acreditar em mim, mesmo quando eu mesma já tinha deixado e a me incentivar em todos os momentos difíceis. E pelo presente mais lindo recebido até hoje, meu sobrinho e afilhado Luiz Felipe, a este agradeço por me fazer esquecer o mundo ao redor quando estou ao seu lado. A Rodrigo Navega, mais que um namorado, um amigo, irmão, companheiro. Você sempre me apoiou incondicionalmente e nunca me deixou esquecer a simplicidade e ingenuidade que podemos viver a vida. Agradeço pelos sorrisos em momentos difíceis, pelas palavras e pela felicidade que me proporciona sempre. Ao meu professor de matemática do ensino fundamental Jorge, mesmo sem nada em troca foi uma das peças fundamentais para eu ter chegado hoje aqui, obrigada onde quer que o senhor esteja. Ao professor Renato Aquino da UFRRJ pela paciência e apoio sempre. No mundo Deus sempre coloca pessoas especiais para nos ajudar, incentivar, apoiar, ensinar, ouvir, dar conselhos e dar broncas quando necessário. Fui privilegiada em ter conhecido e convivido com vocês professores Luiz Guimarães e João Gonçalves Bahia. Vocês são mais que professores, são exemplos a seguir, amigos que pretendo levar para toda a vida, o meu muito obrigada de coração. Ao professor Bahia, obrigada também por me mostrar verdadeiramente a importância de um amigo e pela total disposição em me ajudar. Ao meu orientador, Luiz Guimarães Barbosa pelo incentivo, dedicação, paciência e ideias desafiadoras. A empresa SOLUGEO por me emprestar os equipamentos utilizados nesta pesquisa. Aos meus amigos e todos aqueles que se fizeram presentes em minha vida durante toda a graduação me estimulando a sempre buscar mais.

5 5 RESUMO Os levantamentos geodésicos oriundos de observações de satélites são referenciados a um sistema global e estão vinculados a normal ao elipsóide, entretanto os mesmos são realizados sob a superfície física, sendo esta relacionada com a vertical ao geóide. Adicionalmente se tornou rotineira a utilização de técnicas de posicionamento por satélites para apoiar levantamentos topográficos. Diante do exposto surge a necessidade de compatibilização entre os sistemas, uma vez que as superfícies envolvidas nos dois casos denominadas de elipsóide e geóide respectivamente, normalmente não são coincidentes e nem paralelas. A relação geométrica entre esses dois sistemas é obtida através do conhecimento do valor do desvio da vertical e da ondulação geoidal, sendo a determinação do desvio da vertical a parcela que apresenta maior dificuldade em sua mensuração, pois os métodos convencionais para tal utilizam laboriosas e caras observações astronômicas. O objetivo desta pesquisa é apresentar metodologias alternativas na determinação do valor do desvio da vertical empregando observáveis da topografia clássicas e do sistema de posicionamento por satélites. A solução parcial de Procrustes através de uma matriz rotação relaciona o sistema global com o local, tendo como parâmetros a latitude e a longitude astronômica, assim como uma orientação horizontal desconhecida. Outra metodologia possui como incógnitas as componentes do desvio da vertical, componente meridiana e primeiro vertical e uma orientação horizontal desconhecida e é solucionada considerando a relação entre pontos pertencentes tanto ao sistema geodésico local como no astronômico local através do MMQ empregando o modelo paramétrico. A última metodologia, denominada de Helmert considera que o desvio da vertical poderá ser obtido a partir do conhecimento das altitudes geométricas e ortométricas dos pontos, assim como a distancia espacial entre os mesmos. Sua solução também é baseada pelo MMQ empregando o modelo paramétrico. Para a rede de teste localizada no Campus da UFRRJ, foi obtido um desvio da vertical de 6,48 no ponto origem com a metodologia de Helmert e de 9,82 com o método que utiliza o MMQ. Estas metodologias foram validadas considerando o valor da ondulação geoidal obtida com dados fornecidos pelo IBGE e o calculado com o valor do desvio encontrado, posteriormente seus resultados foram comparados com as tolerâncias estabelecidas na NBR A metodologia de Helmert apresentou melhores resultados para as componentes do desvio da vertical. Os dois métodos se apresentaram como promissoras alternativas na determinação do desvio da vertical empregando técnicas usualmente utilizadas no cotidiano para mensuração. Palavras-chave: Desvio da Vertical, Problema parcial de Procrustes, Método de Helmert, MMQ.

6 6 ABSTRACT The geodetics surveys arising from satellites observations are referenced to a system global and are attached to normal to the ellipsoid, however they are performed beneath physical surface, being this referenced with the vertical to the geoid. Additionally became routine the use of techniques positioning for satellites to support surveys topographic. Given the above emerge the need of compatibility among the systems, once the surfaces involved at the two cases called of ellipsoid and geoid, respectively, normally aren't coincident nor parallels. The geometric nexus among those two systems is obtained through of knowing of value deviation of the vertical and of the geoid undulation, being determining the deviation of the vertical the portion that exhibit the bigger dificulty in their mensuration, because the conventional methods use laborious and expensive astronomical observations. The object this research is introduce methodologies alternatives in the determination of the value deviation of the vertical, using observables of classical topography and of the satellites positioning system. The Partial Procrustes solution through an rotation matrix relates the global system with the local, having as parameters the astronomical latitude and longitude, even as an orientation horizontal unknown. Another methodology has as unknowns the components of deviation of the vertical, component meridian and first vertical and a horizontal orientation unknown and is resolved considering the relationship between points belonging both to local geodetic system as in astronomical local, through the MMQ employing the parametric model. The last methodology, named of Helmert consider that the deviation of the vertical can be obtained from of the knowledge of the heights geometric and orthometric of the points, even as the space distance between are the same. Your solution also is based at MMQ employing the parametric model. To test network located in the campus of the UFRRJ, was obtained a deviation of the vertical of 6,48" at point of origin with the methodology of Helmert and of 9,82" with the method that uses the MMQ. These methodology were validate considering the value of the geoid undulation obtained with data provided by IBGE and the calculated on the value of deviation of the vertical found, after their results were compared with the established tolerances in NBR The methodology of Helmert exhibit better results to components deviation of the vertical. The two methods if presented as promising alternatives in determination of the deviation of the vertical employing techniques commonly used in everyday life to mensuration. Keywords: Deviation of the vertical, Partial Procrustes solution, Method of the Helmert, Method of least squares (MMQ).

7 7 LISTA DE FIGURAS Figura 1 - Sistema de Coordenadas Cartesianas Associado ao Sistema Global Figura 2 - Sistema de Coordenadas Cartesianas e Esféricas Figura 3 - Sistema de Coordenadas Geodésicas Figura 4 - Coordenadas cartesianas tridimensionais Figura 5 - Sistema Topocêntrico Figura 6 - Sistema de Coordenadas Astronômicas Figura 7 - Observações terrestres A, Z e s no sistema astronômico local x, y, z Figura 8 - Ondulação geoidal Figura 9 - Desvio da Vertical Figura 10 - Relacionamento entre sistema global e sistema astronômico local Figura 11 - Sistemas SGL e SAL, com seus respectivos vetores posição, tendo como origem o ponto O Figura 12 - Relação geométrica entre o SAL e o SGL Figura 13 Rotação Figura 14 - Figura 14 Rotação Figura 15 Rotação Figura 16 - Determinação do desvio da vertical pelo método de Helmert Figura 17 - Nivelamento Trigonométrico Figura 18 - localização da rede com a distribuição geométrica dos pilares utilizados Figura 19 - Ilustração gráfica da primeira etapa do levantamento Figura 20 - Ilustração gráfica da segunda etapa do levantamento Figura 21 - Cálculo das coordenadas relativas Figura 22 - Vetores GPS da rede

8 8 LISTA DE TABELAS Tabela 1 - Distâncias a partir do pilar Tabela 2 - Coordenadas relativas e incertezas das direções da rede de teste Tabela 3 - Coordenadas cartesianas tridimensionais dos pontos da rede Tabela 4 - Coordenadas geodésicas, altitudes geométricas e respectivas incertezas dos pontos da rede Tabela 5 - Azimute geodésico das direções dos pontos da rede Tabela 6 - Ângulos verticais e distâncias inclinadas com suas respectivas incertezas Tabela 7 - Somatório dos resíduos com diferentes matrizes peso no ajustamento.. 69 Tabela 8 - Teste qui-quadrado do ajustamento do modelo de Helmert para obtenção do desvio da vertical Tabela 9 - Desvio da vertical e suas componentes Tabela 10 - Validação do resultado obtido com o modelo de Helmert Tabela 11 - Coordenadas topocêntricas Tabela 12 - Teste qui-quadrado do ajustamento do modelo para obtenção do desvio da vertical Tabela 13 - Desvio da vertical e suas componentes Tabela 14 - Validação do resultado obtido com o modelo

9 9 LISTA DE ABREVIATURAS E SIGLAS ARP CCD GNSS GPS IBGE LPS MMQ SAL SGB SGL SVD UFRRJ WGS84 Antenna Reference Point Charge Couple Device Global Navigation Satellite System Global Positioning System Instituto Brasileiro de Geografia e Estatística Local Positioning System Método dos Mínimos Quadrados Sistema Astronômico Local Sistema Geodésico Brasileiro Sistema Geodésico Local Decomposição em Valores Singulares Universidade Federal Rural do Rio de Janeiro World Geodetic System1984

10 10 Sumário 1. INTRODUÇÃO JUSTIFICATIVA OBJETIVO OBJETIVO ESPECÍFICO REVISÃO BIBLIOGRÁFICA SISTEMA DE REFERÊNCIA GLOBAL SISTEMAS DE COORDENADAS ESFÉRICAS MODELOS TERRESTRES COORDENADAS GEODÉSICAS E CARTESIANAS TRIDIMENSIONAIS TRANSFORMAÇÃO DE COORDENADAS GEODÉSICAS PARA COORDENADAS CARTESIANAS TRIDIMENSIONAIS E VICE-VERSA SISTEMA GEODÉSICO LOCAL (SGL) OU TOPOCÊNTRICO TRANSFORMAÇÃO DE COORDENADAS ENTRE O SISTEMA GEOCÊNTRICO E O SISTEMA GEODÉSICO LOCAL SISTEMA DE COORDENADAS ASTRONÔMICAS SISTEMA ASTRONÔMICO LOCAL OU SISTEMA TOPOGRÁFICO ONDULAÇÃO GEOIDAL REDUÇÕES A SEREM APLICADAS NAS MEDIDAS DE ÂNGULOS DESVIO DA VERTICAL MÉTODO ASTRO-GEODÉSICO DE DETERMINAÇÃO DO DESVIO DA VERTICAL DETERMINAÇÃO DO DESVIO DA VERTICAL ATRAVÉS DE MEDIDAS GPS/LPS UTILIZANDO OS FUNDAMENTOS DO PROBLEMA PROCRUSTES SIMPLES DETERMINAÇÃO DO DESVIO DA VERTICAL EMPREGANDO OBSERVÁVEIS DA TOPOGRAFIA CLÁSSICA E DO POSICIONAMENTO POR SATÉLITES ATRAVÉS DO MODELO PARAMÉTRICO DETERMINAÇÃO DO DESVIO DA VERTICAL EMPREGANDO O MÉTODO DE HELMERT AJUSTAMENTO PELO MÉTODO DE MÍNIMOS QUADRADOS MMQ ATRAVÉS DO MODELO PARAMÉTRICO NIVELAMENTO TRIGONOMÉTRICO MATERIAIS E MÉTODOS... 50

11 REDE DE PONTOS EQUIPAMENTOS UTILIZADOS SOFTWARES UTILIZADOS METODOLOGIA LEVANTAMENTO TOPOGRÁFICO E PROCESSAMENTO DETERMINAÇÃO DAS COORDENADAS ATRAVÉS DE POSICIONAMENTO POR SATÉLITES APLICAÇÃO DO MÉTODO DE HELMERT DETERMINAÇÃO DO DESVIO DA VERTICAL APLICANDO O MMQ EM PONTOS NO SGL E SAL ANÁLISE DO AJUSTAMENTO APLICAÇÃO DO MODELO DO MÉTODO DE PROCRUSTES VALIDAÇÃO DOS MÉTODOS RESULTADOS E DISCUSSÕES COORDENADAS TOPOGRÁFICAS COORDENADAS ORIUNDA DO POSICIONAMENTO POR SATÉLITES DESVIO DA VERTICAL PELO MÉTODO DE HELMERT DESVIO DA VERTICAL PELO MMQ COM PONTOS NO SGL E SAL DESVIO DA VERTICAL PELO MÉTODO DE PROCRUSTES CONCLUSÕES E RECOMENDAÇÕES REFERÊNCIAS BIBLIOGRÁFICAS ANEXO DIGITAL... 78

12 12 1. INTRODUÇÃO A Geodésia e a Topografia têm como uma das tarefas a determinação da posição de um ou mais pontos sobre a superfície da Terra (ANDRADE, 2008). Sendo que a topografia trabalha com um sistema local e a geodésia com um sistema global. No posicionamento por satélites as coordenadas obtidas são as cartesianas tridimensionais geocêntricas, podendo estas ser transformadas para latitude (Φ), longitude (λ) e altitude geométrica (h) quando referenciadas a um elipsóide de revolução. Adicionalmente as coordenadas obtidas em um sistema local são as coordenadas cartesianas retangulares que traduz a posição de um ponto em relação a um ponto de referência sobre a superfície física terrestre (ANDRADE, 2008), podendo este também ser representado por coordenadas esféricas (ângulo horizontal, ângulo vertical e distância ou raio). Devido às irregularidades da superfície física da Terra e a sua descontinuidade a modelagem precisa da mesma matematicamente se torna difícil, logo se utiliza um elipsóide achatado nos pólos como figura matemática que mais se aproxima da superfície terrestre (ANDRADE, 2008). Sob a força da gravidade encontram-se todos os corpos vinculados a Terra, esta é a resultante da força de atração gravitacional e da força centrífuga decorrente do movimento de rotação (ANDRADE, 2008). O modelo matemático que melhor representaria a Terra se fosse possível ser modelada seria o geóide, este é uma superfície equipotencial do campo gravitacional que mais se aproxima do nível médio dos mares não perturbado (ELOI e SILVA, 2010). As observações nos levantamentos geodésicos são efetuadas na superfície física da Terra, entretanto para realização de cálculos e avaliação de medições é adotado o modelo elipsoidal definido pelo elipsóide de revolução e o geoide estabelecido pela superfície equipotencial do campo da gravidade da Terra (SOUZA e GARNÉS, 2012). Contudo tais superfícies, geralmente, não são coincidentes e nem paralelas ocasionando uma separação entre si denominada ondulação geoidal e uma inclinação conhecida como desvio da vertical (SOUZA e GARNÉS, 2012). A vertical de um ponto é a reta tangente à linha de força nesse ponto que representa a direção do vetor gravidade e a normal é a linha perpendicular à superfície geodésica.

13 13 Tanto o desvio da vertical, ângulo formado entre a normal e a vertical em um ponto e a ondulação geoidal estabelece a relação geométrica entre um sistema de referencia global, onde o elipsoide é o modelo de superfície adotado e um sistema de referencia local, estando este relacionado com a direção da vertical (ANDRADE, 2008). A determinação do desvio da vertical em um ponto qualquer tradicionalmente é obtida através da integração de observações astronômicas de estrelas e geodésicas advindas da utilização da técnica GPS. A obtenção das coordenadas astronômicas pelo método tradicional segundo Awange (2003) é cansativa e dispendiosa, logo uma alternativa para a determinação dessas coordenadas é a utilização integrada das técnicas GPS (Sistema de Posicionamento Global) e LPS (Sistema de Posicionamento Local). Segundo Awange (2003), Granfarend através da associação destas duas técnicas resolve o problema de orientação tridimensional de forma única. No problema de orientação tridimensional a determinação das coordenadas astronômicas, sendo estas referenciadas a vertical do ponto é obtida através de observações do tipo ângulo horizontal, ângulo vertical e distancias espaciais referenciadas ao Sistema de Posicionamento Local. E as coordenadas cartesianas tridimensionais são conseguidas via observações de satélites (AWANGE, 2003). Conforme Awange (2003), procedimentos anteriores para resolver o problema de orientação tridimensional estavam em princípio baseados na interação e posteriormente atualizados para procedimentos que parametriza os dados desconhecidos sem linearização. Além da solução do desvio da vertical pelo problema parcial de Procrustes, existem outras metodologias aplicadas para tal finalidade e que também utilizam dados provenientes do sistema de posicionamento por satélites e topografia clássica, como o caso similar ao de Procustes apresentado por Andrade (2008), onde são realizados os cálculos relacionando observações no sistema topocêntrico e topográfico, e o método de Helmert que tem como princípio que o desvio da vertical pode ser determinado a partir da diferença entre os ângulos zenitais geodésicos e astronômicos em uma dada direção, estando ambos localizados na superfície terrestre (SOUZA e GARNÉS, 2012).

14 JUSTIFICATIVA Segundo Medeiros 1 et al (1998) apud Andrade (2008), relacionar coordenadas entre os sistemas de referência físicos e geométricos é uma necessidade prática atual. As metodologias atuais que não consideram o desvio da vertical como parâmetro de transformação causam prejuízo na ordem do milímetro ou superior nas coordenadas transformadas, não aproveitando todo o potencial tecnológico hoje disponível e piorando a qualidade das coordenadas originais. Os métodos convencionais de determinação de desvio da vertical são trabalhosos ou caros, pois envolvem observações astronômicas, geodésicas ou a partir de câmeras digitais zenitais. A utilização de uma metodologia em que fosse possível o relacionamento entre o sistema global e o topográfico de forma direta e sem a necessidade das laboriosas observações astronômicas se torna uma alternativa promissora a um aumento na utilização das correções a serem aplicadas às medidas dos ângulos, fato este tão importante quando se integra técnicas de posicionamento por satélites e topográficas simultaneamente. Atualmente os profissionais utilizam-se de técnicas de posicionamento por satélites para apoiar seus levantamentos topográficos, entretanto na maioria das vezes o devido cuidado na compatibilização entre os diferentes sistemas adotados não é considerado, ocasionando um aumento de erros sistemáticos nos valores das coordenadas finais de seus trabalhos. Neste contexto, este estudo propõe uma alternativa para determinação do desvio da vertical a partir do emprego de técnicas posicionamento por satélites e topográficas usualmente utilizadas OBJETIVO O objetivo desta pesquisa é estabelecer os procedimentos necessários para determinar os elementos fundamentais no cálculo do desvio da vertical. Neste estudo serão apresentadas e aplicadas na prática três técnicas para determinação do mesmo. 1 MEDEIROS, Z. F.; FREITAS, S. R. C.; MORAES, C. V. Discussão do Projeto de Normatização da Rede Cadastral Municipal. Anais Congresso Brasileiro de Cadastro Técnico Multifinalitário COBRAC1998. Florianópolis

15 OBJETIVO ESPECÍFICO Com base no objetivo geral proposto apresentam-se como objetivos específicos deste trabalho: Quantificar a correção devida ao desvio da vertical a ser aplicada às medidas de ângulos; Aplicar metodologias para determinação do desvio da vertical empregando observações advindas de topografia clássica, ângulos, distancias e desníveis em vez de observações astronômicas, assim como a utilização de observações realizadas através de satélites, empregando a técnica GPS. 2. REVISÃO BIBLIOGRÁFICA 2.1. SISTEMA DE REFERÊNCIA GLOBAL Os sistemas de referência possuem importância quando se deseja determinar espacialmente a posição de pontos. Um referencial ideal é aquele cuja origem esteja em repouso ou em movimento retilíneo uniforme, conforme a mecânica clássica de Newton. A aceleração sobre o movimento de translação ao redor do sol é o motivo pelo qual os sistemas terrestres cuja origem sejam no geocentro se apresente como sistemas quase-inerciais, contudo estes sistemas ainda são os mais adequados para descrever a trajetória de satélites próximos a Terra (ANDRADE, 2008). Um sistema de referência global é aquele cuja origem seja definida como geocêntrica, caso contrário, se a origem não é geocêntrica e o mesmo for obtido por orientação topocêntrica em um ponto DATUM o sistema será regional ou local (COSTA 2, 1999 apud ZANETTI, 2006). 2 COSTA, S.M.A. Integração da Rede Geodésica Brasileira aos Sistemas de Referência Terrestres. Curitiba. 156 p. Tese (Doutorado em Ciências Geodésicas). Curso de Pós-Graduação em Ciências Geodésicas. Universidade Federal do Paraná

16 16 Um sistema de coordenadas espaciais X, Y, Z, geocêntrico e fixo a Terra é um sistema de coordenadas cartesianas associado a um sistema global qualquer, podendo ser caracterizado por (ZANETTI, 2006): Origem no geocentro (O), centro de massa da Terra, incluindo hidrosfera e atmosfera; Eixo Z direcionado para o Pólo Norte terrestre médio; Plano equatorial médio perpendicular ao eixo Z e que contém os eixos X e Y; Plano XZ gerado pelo plano que contém o meridiano médio de Greenwich (Gr), obtido pelo eixo de rotação médio e pelo meridiano origem de Greenwich (referência do Tempo Universal); Eixo Y que torna o sistema dextrógiro. Segundo Zanetti (2006), este sistema utiliza o eixo de rotação médio e o plano equatorial médio, devido às alterações no movimento de rotação da Terra. A Figura 1 ilustra um sistema de coordenadas cartesianas associado ao sistema global. Figura 1 - Sistema de Coordenadas Cartesianas Associado ao Sistema Global. Fonte: ZANETTI, 2006.

17 SISTEMAS DE COORDENADAS ESFÉRICAS A determinação de forma unívoca de um ponto do espaço tridimensional através do vetor posição entre a origem do sistema e o ponto R considerado, é obtida por meio do ângulo β formado entre o segmento e a projeção ortogonal deste sobre o plano xy e pelo ângulo α formado pela projeção do segmento sobre o plano xy com o semi-eixo OX (ZANETTI, 2006). A Figura 2 apresenta o sistema de coordenadas esféricas e cartesianas, e mostra como são dadas as coordenadas esféricas de um ponto R. Figura 2 - Sistema de Coordenadas Cartesianas e Esféricas Fonte: ZANETTI, Na Figura 2 supõe-se o sistema de coordenadas esféricas sobreposto a um sistema de coordenadas cartesianas. Com base nesta suposição temos que o ponto R determinado pelo terno cartesiano (x, y, z) poderá ser expresso pelas coordenadas esféricas (, α, β), sendo o relacionamento entre os dois sistemas obtidos pela igualdade (ZANETTI, 2006): cos cos = = sin cos (01) sin

18 MODELOS TERRESTRES Devido à descontinuidade e irregularidade da superfície física da Terra, a mesma não pode ser definida matematicamente com exatidão (COOPER 3, 1987 apud ANDRADE, 2008). O elipsóide de revolução com seu eixo menor coincidente com o eixo de rotação da Terra é a aproximação matemática da superfície física da Terra. Existem dezenas de elipsóides de revolução adotados pela comunidade para as atividades de geodésia e cartografia (ANDRADE, 2008). Os parâmetros de definição do elipsóide poderão ser o raio equatorial a e o raio polar b, assim como os derivados destes como o achatamento f, a primeira excentricidade e a segunda excentricidade, FILHO (2009). Existem outras características sobre os elipsóides de revolução, como o fato de qualquer reta perpendicular ao modelo elipsoidal que passa por um ponto é denominado de Reta Normal ou Normal do ponto, e que passando por qualquer elipsóide existem duas seções principais denominadas, seção do primeiro vertical e seção meridiana, (ANDRADE, 2008). A seção meridiana é gerada pelo plano normal de um ponto e passa pelos dois pólos, assim como a seção do primeiro vertical também é gerada pelo plano normal de um ponto, contudo esta é perpendicular ao plano do meridiano (FILHO, 2009) COORDENADAS GEODÉSICAS E CARTESIANAS TRIDIMENSIONAIS As coordenadas geodésicas latitude (Φ), longitude (λ) e altitude geométrica (h) são definidas sobre um elipsóide de revolução, adotado como modelo matemático da Terra. As mesmas permitem descrever a posição de um ponto sobre o modelo geométrico, o elipsóide (GEMAEL 4, 2004 apud ANDRADE, 2008). A latitude geodésica ou elipsóidica Φ de um ponto P pode ser definida como o ângulo entre a normal ao elipsóide que passa por P e o plano equatorial elipsóidico, de tal modo que a longitude geodésica λ do mesmo ponto P considerado é o ângulo formado entre o eixo e a projeção sobre o plano equatorial, da normal ao elipsóide 3 COOPER, M. A. R. Control surveys in civil engineering. 1 ed. London Collins, GEMAEL, C.; ANDRADE, J. B. Geodésica Celeste. 1 ed. Curitiba: Ed. UFPR, 2004.

19 19 nesse ponto (ZANETTI, 2006). Contudo para definição de um ponto sobre a superfície física da Terra em relação ao elipsóide é necessário o conhecimento de uma terceira coordenada, a altitude geométrica (h), sendo esta a distância medida sobre a normal entre o ponto na superfície física da Terra e a superfície do elipsóide. A Figura 3 ilustra as coordenadas geodésicas ou elipsóidicas. Figura 3 - Sistema de Coordenadas Geodésicas. Fonte: Adaptado, ZANETTI (2006). As coordenadas cartesianas tridimensionais X, Y e Z também permitem descrever a posição de um ponto (ANDRADE, 2008). Esse sistema é definido no elipsóide de revolução e possui sua origem coincidente com o centro do mesmo, o eixo coincide com o eixo de rotação do elipsóide, o eixo situa-se na interseção do plano equatorial do elipsóide com o plano do meridiano de Greenwich e o eixo é escolhido de forma a tornar o sistema dextrógiro (ZANETTI, 2006). A Figura 4 apresenta os elementos que caracterizam este sistema e as coordenadas para um ponto P situado na superfície terrestre.

20 20 Figura 4 - Coordenadas cartesianas tridimensionais. Fonte: ANDRADE, TRANSFORMAÇÃO DE COORDENADAS GEODÉSICAS PARA COORDENADAS CARTESIANAS TRIDIMENSIONAIS E VICE-VERSA Muitas das vezes existe a necessidade de transformar coordenadas geodésicas em cartesianas tridimensionais e vice-versa. Essas transformações são realizadas com diversas finalidades, tais como: transformação de coordenadas em diferentes sistemas, atualização de coordenadas entre outras aplicações na geodésia. A equação 02 apresenta o modelo matemático extraído do IBGE (1989) utilizado para transformar coordenadas geodésicas em cartesianas. + h. cos. cos = + h. cos. sin (02) h. sin =. / (03) = 2 (04)

21 21 Onde, X, Y, Z coordenadas cartesianas tridimensionais; N - representado na equação 03 é o raio da seção primeiro vertical; - representada pela equação 04 é a primeira excentricidade; Φ latitude geodésica do ponto λ longitude geodésica do ponto h altitude geométrica a semi-eixo equatorial do elipsóide de revolução f achatamento do elipsóide A transformação inversa de coordenadas cartesianas para geodésicas possuem dois tipos de soluções, uma solução direta e uma interativa (ZANETTI, 2007). Será aqui apresentado o método direto, conforme formulário do IBGE (1989). A equação 05 exibe o cálculo da longitude geodésica, adicionalmente com a equação 06 calcula-se a latitude geodésica em função das coordenadas cartesianas geocêntricas, da primeira e segunda excentricidade, dos semi-eixos do elipsóide de referência e da grandeza u. = tan (05) = tan.... (06) A grandeza angular u é calculada através das Equações 07, 08 e 09. Segundo Andrade (2008) a partir destas equações é possível analisar o quadrante desta grandeza. tan =. (07) cos = (08)

22 22 sin = (09) A última coordenada geodésica a ser calculada é a altitude geométrica (Equação 10), esta se encontra em função das coordenadas cartesianas geocêntricas, da latitude geodésica e do raio da seção do primeiro vertical ou também denominado de Grande Normal. h = (10) 2.6. SISTEMA GEODÉSICO LOCAL (SGL) OU TOPOCÊNTRICO Segundo Rodrigues (2002), o sistema geodésico local é semelhante ao sistema topográfico e por este motivo também é denominado de sistema topocêntrico. O mesmo possui grande aplicação no desenvolvimento de modelos matemáticos que integram observações por satélites e terrestres. Este sistema de coordenadas possui origem na superfície terrestre em um ponto O ; eixo u coincide com a normal ao elipsóide, dirigido para o zênite, eixo n na direção da tangente ao meridiano geodésico, dirigido para o norte e eixo e perpendicular a u e n, tornando o sistema dextrógiro. O horizonte geodésico é definido pelos eixos e e n (RODRIGUES, 2002). A Figura 5 mostra as coordenadas geodésicas com origem O do sistema (, h ) e a sobreposição do sistema geodésico local em um sistema geocêntrico.

23 23 Figura 5 - Sistema Topocêntrico Fonte: Andrade, 2008 A posição do ponto P neste sistema pode ser representada pelas coordenadas cartesianas e, n e u TRANSFORMAÇÃO DE COORDENADAS ENTRE O SISTEMA GEOCÊNTRICO E O SISTEMA GEODÉSICO LOCAL A expressão matemática que expressa a relação entre as coordenadas cartesianas,, em um sistema geocêntrico e,, num sistema topocêntrico com origem em um ponto com coordenadas geodésicas, e h, referentes ao elipsóide associado aos sistemas cartesianos é (ANDRADE, 2008): = 90º. 90º +. (11)

24 24 Onde,, são coordenadas cartesianas associadas ao elipsóide de revolução, do ponto de origem do sistema topocêntrico.,, são coordenadas cartesianas associadas ao elipsóide de revolução, do ponto P., são as coordenadas geodésicas do ponto de origem do sistema topocêntrico., são as matrizes rotação em torno dois eixos X e Z respectivamente, do sistema cartesiano transladado até o ponto O. As matrizes de rotação são transformações geométricas que permitem interligar sistemas de referencias (ANDRADE, 2008). As equações 12 e 13 apresentam respectivamente as matrizes º = 0 cos90º sin90º (12) 0 sin90º cos90º cos90º + sin90º º + = sin90º + cos90º + 0 (13) Ao se efetuar a multiplicação das matrizes e desenvolvendo a equação (11) tem-se: sin cos 0 = sin cos sin sin cos. (14) cos cos cos sin sin Cuja notação pode ser simplificada para: =. (15)

25 25 onde sin cos 0 = sin cos sin sin cos (16) cos cos cos sin sin 2.8. SISTEMA DE COORDENADAS ASTRONÔMICAS As coordenadas astronômicas são a latitude astronômica ϕ e a longitude astronômica Λ. A latitude astronômica é o ângulo formado pela vertical do ponto com sua projeção equatorial. Por convenção a latitude é positiva no hemisfério norte e negativa no hemisfério sul. A longitude astronômica é o ângulo diedro formado pelo meridiano astronômico do ponto com o meridiano origem de Greenwich. Uma característica do plano do meridiano astronômico do ponto é que o mesmo contém a vertical que passa pelo ponto e uma linha paralela ao eixo de rotação, pois a vertical e o eixo de rotação não são co-planares (ZANETTI, 2006). A Figura 6 ilustra as coordenadas astronômicas de um ponto P qualquer. Figura 6 - Sistema de Coordenadas Astronômicas Fonte: Zanetti, 2006

26 SISTEMA ASTRONÔMICO LOCAL OU SISTEMA TOPOGRÁFICO As observações quando referenciadas a um sistema astronômico local estão relacionadas com a direção da vertical no ponto de observação e consequentemente ao campo da gravidade terrestre. Tais observações são do tipo azimute astronômico, distancias, ângulos e direções horizontais, ângulos verticais e diferença de altura (ZANETTI, 2006). Segundo Andrade (2008), o sistema cartesiano tridimensional denominado Sistema Astronômico Local é o sistema das observações terrestre, comumente tratado como Sistema Topográfico pelo fato das observações da topografia clássica serem as próprias observações terrestres. O sistema topográfico é um sistema levógiro, com o eixo x orientado para o norte e o eixo y para leste, possui origem em um ponto P na superfície física, seu eixo z coincide com a direção da vertical local com sentido positivo na direção do zênite, o eixo x é perpendicular ao eixo z e está contido no plano do meridiano astronômico do ponto P, e por fim seu eixo y é perpendicular aos eixos x e z e é contado positivamente para o leste astronômico (TORGE 5, 2001 apud ZANETTI, 2006). A Figura 7 apresenta as coordenadas polares de um ponto P, observáveis da topografia em um sistema astronômico local. 5 TORGE, W. Geodesy. Berlin, New York: Walter de Gruyter, p.

27 27 Figura 7 - Observações terrestres A, Z e s no sistema astronômico local x, y, z. Fonte: Zanetti, 2006 A distância zenital ou ângulo zenital (Z) é o ângulo formado entre o zênite (eixo z) e a linha que une P a. O azimute astronômico (A) é o ângulo formado no plano horizontal definido pelos eixos x e y (plano do horizonte), entre o meridiano do ponto P e a projeção da vertical do ponto sobre o referido plano. Este é contado no sentido horário a partir do eixo X. A distância espacial representa o comprimento entre P e. Considerando a Figura 07 o vetor posição entre P e pode ser obtido pela equação 17 (ZANETTI, 2006): cos. sin = = sin. sin (17) cos ONDULAÇÃO GEOIDAL Segundo Andrade (2008) o geóide é uma superfície equipotencial do campo da gravidade, sendo o mesmo o geope que mais se aproxima do nível médio dos mares. Considerando a Figura (08), um ponto P sobre o geóide é projetado ao longo

28 28 da normal sobre o elipsóide resultando no ponto. A distância ao longo da normal é denominada ondulação geoidal ou altura geoidal, e é obtido pela equação (18). Observa-se que quando a altitude geométrica (h) é maior que a altitude ortométrica (H), ou seja, quando o geóide está acima do elipsóide o valor de N é positivo (ANDRADE, 2008). A Figura 8 ilustra um ponto P sobre o geóide e a respectiva ondulação geoidal no mesmo. = h (18) Figura 8 - Ondulação geoidal Fonte: Adaptado de Andrade, REDUÇÕES A SEREM APLICADAS NAS MEDIDAS DE ÂNGULOS O transporte de ângulos e distâncias medidas na superfície da Terra para seus correspondentes valores na superfície de referencia, que normalmente é o elipsóide de revolução é denominado em Geodésia de redução (ZAKATOV 6, 1981 apud ZANETTI, 2006). Segundo Zanetti (2006), o problema de redução será mais complexo na medida em que a superfície terrestre se afasta da superfície de referencia. Quanto mais próximas e paralelas forem às mesmas, menor será a 6 ZAKATOV, P.S. Curso de Geodesia Superior. Tradução do original russo de Rússia: Editorial Mir, p.

29 29 diferença entre os valores medidos na superfície terrestre e de referencia, tornando assim as reduções de menor valor e complexidade. As reduções poderão ser aplicadas nas medidas de distancias e ângulos, contudo neste trabalho serão apenas abordadas as relativas às medidas angulares. As principais reduções a serem aplicadas nos ângulos mensurados sobre a superfície terrestre são as devidas à convergência meridiana e ao desvio da vertical (ZANETTI, 2006). A convergência meridiana (ϒ) é a diferença angular existente entre o norte verdadeiro ou geográfico (NV) e o norte da quadrícula (NQ), (CORRÊA, 2012). E o desvio da vertical é o ângulo formado entre a normal ao elipsóide e a vertical local passante pelo ponto. Devido o objetivo do trabalho, somente o desvio da vertical será abordado mais detalhadamente DESVIO DA VERTICAL A inclinação do geóide em relação ao elipsóide de referencia é mensurada através do desvio da vertical ou também conhecido por deflexão da vertical, (GEMAEL 7, 2002 apud SOUZA e GARNÉS, 2012). A Figura 9 apresenta o desvio da vertical, a normal e a vertical em um ponto e as superfícies de referencia. Figura 9 - Desvio da Vertical Fonte: Zanetti, GEMAEL,C., Introdução à Geodésia Física. 2ª Ed. UFPR Editora, 302pp.

30 30 A necessidade de determinação do desvio da vertical se dá pelo fato dos cálculos geodésicos para obtenção de coordenadas dos vértices serem sobre o elipsóide, e as observações executadas com um aparelho colocado em uma estação se referir à direção da vertical astronômica (ZANETTI, 2006). O desvio da vertical pode ser decomposto em duas componentes, a meridiana ξ e a componente do primeiro vertical η, tendo a direção vertical definida pelas coordenadas astronômicas, latitude ϕ e longitude Λ (ANDRADE, 2008). Segundo Featherstone e Rueger 8 (2000) apud Zanetti (2006), o desvio da vertical possui seis utilizações principais em levantamentos de campo, são elas: Transformação entre coordenadas astronômicas em geodésicas; Transformação de azimutes astronômicos em azimutes geodésicos; Redução de direções horizontais e ângulos medidos ao elipsóide; Redução de ângulos zenitais medidos ao elipsóide; Redução de distâncias inclinadas medidas eletronicamente ao elipsóide, através de ângulos zenitais; Determinação de diferenças de altura a partir de ângulos zenitais e distâncias inclinadas. São usualmente aplicados cinco métodos de determinação do desvio da vertical segundo Zanetti (2006), são eles: Método astro-geodésico, onde as componentes do desvio da vertical são determinadas através de coordenadas geodésicas e astronômicas em um mesmo ponto; Método através de câmera zenital digital, onde neste sistema é utilizado moderna tecnologia CCD para visualização de estrelas integrado com um receptor GPS, permitindo a determinação do desvio da vertical através de um processo totalmente automatizado e em tempo-real (HIRT 9, C. e BURKI, B., 2006 apud ZANETTI, 2006). 8 FEATHERSTONE, W.E.; RÜEGER, J. M. The Importance of Using Deviations of the Vertical for the Reduction of Survey Data to a Geocentric Datum. The Australian Surveyor, vol. 45, n.2, p dec HIRT,C.; BÜRKI, B. Status of Geodetic Astronomy at the beginning of the 21st Century. In: Wissenschainftliche Arbeitende Fachrichtung Geodäsie und Geoinformatik de Universtät Hannover Nr258. Ed. C. Hirt, pp , 2006.

31 31 Gravimétrico, onde o desvio da vertical é obtido em função de anomalias da gravidade, utilizando-se a fórmula de Venning-Meinesz (GEMAEL 10, 2000). Astro-gravimétrico, que conjuga determinações astro-geodésicas com gravimétricas (GEMAEL, 2000). Método através de medidas GPS/LPS, neste é utilizado para o cálculo o Problema de Procrustes simples (GRAFAREND 11 e AWANGE, 2000). Em Andrade (2008) o mesmo apresenta outra forma de determinação do desvio da vertical, com metodologia similar ao apresentado por Procrustes. Neste caso a partir da relação geométrica entre os sistemas geodésico local e o astronômico local é obtido um modelo funcional que os interligam, tendo como incógnitas a componente meridiana, a componente do primeiro vertical e uma diferença angular horizontal plana. A determinação do desvio da vertical também pode ser obtida através do emprego da metodologia de Helmert, neste considera-se que o desvio da vertical pode ser calculado a partir da diferença entre os ângulos zenitais geodésicos e astronômicos em uma dada direção, estando os pontos localizados na superfície terrestre (SOUZA e GARNÉS, 2012). A diante apenas serão detalhados os métodos de determinação do desvio da vertical pelo método astro-geodésico, de Procrustes, com a metodologia de Andrade (2008) e por fim a de Helmert MÉTODO ASTRO-GEODÉSICO DE DETERMINAÇÃO DO DESVIO DA VERTICAL Segundo Andrade (2008) as coordenadas astronômicas se relacionam com as coordenadas geodésicas pelas componentes sobre as seções normais principais, conforme as equações 19 e 20. A equação 21 apresenta o cálculo do desvio da vertical com base nas componentes. 10 GEMAEL, C. Geodésia Física. 1. Ed. Curitiba: Editora UFPR GRAFAREND, E.W.; AWANGE, J.L. Determination of vertical deflections by GPS/LPS Measurements. Zfv. v.8, p

32 32 = (19) =. cos (20) = + (21) Tem-se em (19), (20) e (21) que: ξ = componente meridiana η = componente 1º vertical Φ = latitude geodésica ϕ = latitude astronômica Λ = longitude astronômica λ = longitude geodésica DETERMINAÇÃO DO DESVIO DA VERTICAL ATRAVÉS DE MEDIDAS GPS/LPS UTILIZANDO OS FUNDAMENTOS DO PROBLEMA PROCRUSTES SIMPLES Inicialmente consideram-se duas configurações distintas que representam o mesmo conjunto de objetos, entretanto obtidos por meio de dois diferentes métodos. Segundo Filho (2003), a análise Geral de Procrustes dilata, translada, espelha e rotaciona uma das configurações para que os pontos se ajustem, da melhor maneira possível, à outra, permitindo a comparação dos resultados. O algoritmo parcial de Procrustes ou o Problema de Procrustes simples consiste na simplificação da análise geral de Procrustes e refere-se a uma rotação ideal (AWANGE, 2003). Segundo Zanetti (2006), o problema de orientação tridimensional é a determinação da matriz de rotação (3x3) cujas incógnitas são a longitude astronômica, a latitude astronômica e a orientação horizontal no plano horizontal. O problema de Procrustes simples é utilizado para se obter o relacionamento entre latitude e longitude astronômica e geodésica, e a partir deste determinar as componentes do desvio da vertical. As coordenadas utilizadas na aplicação deste método encontram-se tanto no sistema astronômico local, como no sistema global geocêntrico. Estas coordenadas podem ser obtidas a partir de medidas de direções horizontais, verticais e distâncias obtidas através de teodolitos e/ou estações totais e medidas de posicionamento por

33 33 satélites respectivamente. Para solução mínima do Problema de Procrustes é necessário uma estação a qual se deseja determinar o desvio da vertical e pelo menos três alvos (ZANETTI, 2006). As coordenadas cartesianas (X, Y e Z) da estação base e as (, dos alvos quando referenciadas a um Sistema Global, fixo ao centro de massa da Terra, formam um conjunto de vetores denominados de [,, e são obtidas a partir de levantamento GNSS. Adicionalmente, coordenadas obtidas por um levantamento realizado com estação total, proporciona a partir de coordenadas esféricas, coordenadas cartesianas que formam um conjunto de vetores [, fixos à superfície física da Terra (ZANETTI, 2006). A equação 22 ilustra o relacionamento entre o conjunto de vetores (V) formado por coordenadas no sistema global e ( ) formado por coordenadas no sistema astronômico local. As matrizes Λ, ϕ Ʃ representam as rotações sofridas pelo sistema cartesiano global para se ajustar ao sistema astronômico local, as mesmas são exibidas nas equações 23, 24 e 25 respectivamente. A Figura 10 ilustra como ocorre o relacionamento entre os dois sistemas de coordenadas envolvidos., =,. Λ, ϕ Ʃ (22) cosλ sinλ 0 Λ = sinλ cosλ 0 (23) cos ϕ 0 sin ϕ = ϕ (24) sin ϕ 0 cos ϕ cosʃ sinʃ 0 Ʃ = sinʃ cosʃ 0 (25) 0 0 1

34 34 Figura 10 - Relacionamento entre sistema global e sistema astronômico local Fonte: Adaptado Zanetti (2006) Segundo Awange (2003), a transformação de coordenadas esféricas referenciadas ao sistema astronômico local para coordenadas cartesianas poderão ser obtidas com a equação 26. As equações 27 e 28 representam respectivamente: cálculo da distância espacial entre a estação base e a estação alvo e a fórmula geral para determinação do Problema de Procrustes Parcial. cos. cos. cos. sin = 1,2,, (26) sin Tem-se que representa a direção vertical e a direção horizontal, tendo sido ambas mensuradas. =., = + + (27) =.,, Ʃ. (28)

35 35 Expandindo a equação 28 para n vetores, tem-se que a matriz H das equações 29 e 30 representa os vetores de coordenadas no sistema astronômico local, R a matriz rotação em função de,, Ʃ e B a matriz dos vetores de coordenadas no sistema global. Finalmente tem-se a relação: Equação 29: = =. =. Equação 30: = =,, =. =. Segundo Awange (2003) o Problema de Procrustes está preocupado com a montagem da configuração de B em H tão próximo quanto possível. E que o caso mais simples de Procrustes é aquele em que ambas as configurações têm a mesma dimensionalidade e o mesmo número de pontos e podem ser trazidos para uma correspondência um para um por considerações. Neste trabalho considera-se o problema reduzido na determinação da matriz rotação T e que H e B pertencem ao espaço (Equação 31). =. (31) Segundo Lawson (1997), uma solução de T que resolve a equação =. e minimiza a norma. é obtida pelo método dos mínimos quadrados. Ou seja, procura-se uma matriz T pertencente ao espaço R³ tal que. seja mínimo. A transformação de T que irá minimizar a soma dos quadrados da norma. é procurada usando o Problema Parcial de Procrustes. Para alcançar tal objetivo considera-se a propriedade de invariância da função de rastreamento sob

36 36 permutação cíclica, utiliza-se a Norma de Frobenius e a Decomposição por valores singulares (SVD) (AWANGE, 2003). A norma Frobenius da uma matriz. qualquer é definida pela equação 32:. =. (32) A simplificação de. = é alcançada através da consideração da propriedade de invariância da função sob permutação cíclica (AWANGE, 2003). Seguindo a sequência matemática exibida em Awange (2003), a equação 33 consiste na utilização da norma Frobenius em., e a equação 34 apresenta a minimização da função obtida após aplicação de Frobenius. Os termos. e. não são dependentes de T, logo não são considerados. No entanto o único termo considerado. na equação 34 é dependente de T, (AWANGE, 2003).. =.. (33). = min = (34) O mínimo da função (34) considerando que apenas o termo. é dependente de T, segundo Awange (2003) terá a seguinte forma (Equação 35).. = min.. = (35) Minimizada a norma., o passo seguinte consisti em empregar a decomposição por valores singulares (SVD) na determinação da matriz T. Segundo Zuben (2013), a SVD vale tanto para matrizes quadradas quanto retangulares. Uma definição para SVD é apresentada em Lawson (1997): A SVD de A é uma decomposição. Ʃ., onde Q1 e Q2 são matrizes ortogonais de tamanhos m por m e n por n, respectivamente, e Ʃ é uma matriz diagonal de tamanho m por n. Os elementos diagonais não nulos de Ʃ chamam-se os valores singulares de A.

37 37 Outra propriedade da SVD exibida em Zuben (2013) de significativa importância no calculo da matriz rotação T é que as colunas de são autovetores de. e as colunas de são os autovetores de.. Prosseguindo na sequência de cálculos apresentada em Awange (2003) para determinação da matriz T, temos que a equação 36 ilustra que. Ʃ., é a decomposição em valores singulares de.. Segundo Awange (2003) a abordagem de Mathar 12 (1997 p.34) é utilizada para determinar os valores da matriz T e encontra-se apresentada pelas equações 37, 38, 39, 40 e 41 a seguir:. =. Ʃ.,, ϵ SO(3) (36).. =. Ʃ.. = Ʃ... (37) = 1, =. Ʃ. 1 (38) Então Ʃ... =. (39) A partir de (38).. = max.. (40) Finalmente, o máximo valor:.. = =. (41) A equação 42 ilustra a solução da matriz rotação obtida através do Problema de Procrustes parcial: =. (42) 12 MATHAR, R. (1997): Multidimensionale Skalierung, B

38 38 Existe um método diferente do exposto de se obter a solução da matriz T. Nessa metodologia o calculo de T é baseada nas derivadas parciais abordadas segundo Awange (2003) em P.H Schõnemann 13 (1996), tendo como operações envolvidas: Solução de =. Obtenção dos elementos de rotação a partir de = Neste método é a melhor matriz fora do conjunto de todas as matrizes ortogonais T, obtida através da imposição da restrição. =. = (AWANGE, 2003). Finalmente determinada a matriz rotação R, sendo esta apresentada em sua forma geral pela equação 43, pode-se determinar a latitude (ϕ) e longitude (Λ) astronômica, assim como a orientação horizontal no plano horizontal (Ʃ). Equação (43): = Ʃ ϕ Ʃ Ʃ ϕ + Ʃ Ʃ ϕ Ʃ ϕ Ʃ Ʃ ϕ + Ʃ Ʃ ϕ ϕ ϕ ϕ Os valores da latitude, longitude e da orientação horizontal desconhecida variam nos intervalos mostrados nas equações 44, 45 e 46 respectivamente. As equações 47, 48 e 49 ilustram os cálculos para determinação dos três parâmetros de orientação a partir da matriz R (ZANETTI, 2006). 0 2 (44) ϕ (45) 0 Ʃ 2 (46) 13 SCHONEMANN, P. H. (1996): Generalised solution of the orthogonal Procrustes problem, Psychometrika 31 Nº 1 (1996) 1-10.

39 39 tan = = (47) tanϕ = ϕ = atan (48) tanʃ = Ʃ = (49) De posse dos valores da longitude astronômica Λ, da latitude astronômica ϕ e da orientação desconhecida Ʃ obtidas através de Procrustes, assim como da latitude elipsóidica Φ e da longitude elipsóidica λ obtidas por meio de observações de satélites pode-se enfim determinar a componente meridiana ξ e a componente primeiro vertical η através das equações 19 e 20 respectivamente. Tendo calculadas as componentes (ξ, η), a determinação do valor final para o desvio da vertical poderá ser obtido através da equação (21) DETERMINAÇÃO DO DESVIO DA VERTICAL EMPREGANDO OBSERVÁVEIS DA TOPOGRAFIA CLÁSSICA E DO POSICIONAMENTO POR SATÉLITES ATRAVÉS DO MODELO PARAMÉTRICO. Neste método considera-se as coordenadas topocêntricas e topográficas como observações, e posteriormente realiza-se o ajustamento das observações pelo MMQ para obter os parâmetros da transformação entre os sistemas (ANDRADE, 2008). O modelo funcional que interliga a relação geométrica entre os sistemas geodésicos locais (SGL) e o sistema astronômico local (SAL) com seus respectivos vetores posição assume que os dois sistemas possuem a mesma origem O e que ambos se relacionam pelas componentes do desvio da vertical e por uma diferença angular horizontal plana (ANDRADE, 2008). A Figura 11 ilustra o sistema geodésico local com vetor posição dado por =,, e o sistema astronômico local com vetor posição dado por =,,.

Hoje adota novas tecnologias no posicionamento geodésico, como por exemplo o Sistema de Posicionamento Global (GPS)

Hoje adota novas tecnologias no posicionamento geodésico, como por exemplo o Sistema de Posicionamento Global (GPS) Geodésia A Geodésia é uma ciência que se ocupa do estudo da forma e tamanho da Terra no aspecto geométrico e com o estudo de certos fenômenos físicos relativos ao campo gravitacional terrestre, visando

Leia mais

Engenharia Civil Topografia e Geodésia. Curso Técnico em Edificações Topografia GEODÉSIA

Engenharia Civil Topografia e Geodésia. Curso Técnico em Edificações Topografia GEODÉSIA e Geodésia GEODÉSIA e Geodésia GEODÉSIA O termo Geodésia, em grego Geo = terra, désia = 'divisões' ou 'eu divido', foi usado, pela primeira vez, por Aristóteles (384-322 a.c.), e pode significar tanto

Leia mais

I Seminário SIGCidades: Cadastro Territorial Multifinalitário. Fundamentos de Cartografia aplicados aos SIGs

I Seminário SIGCidades: Cadastro Territorial Multifinalitário. Fundamentos de Cartografia aplicados aos SIGs I Seminário SIGCidades: Cadastro Territorial Multifinalitário Fundamentos de Cartografia aplicados aos SIGs 1. FORMA DA TERRA Geóide Elipsóide Esfera Modelos de representação da Terra O modelo que mais

Leia mais

Altera a caracterização do Sistema Geodésico Brasileiro

Altera a caracterização do Sistema Geodésico Brasileiro Altera a caracterização do Sistema Geodésico Brasileiro R.PR 1/2005 FOLHA 1/1 Competência: Artigo 24 do Estatuto aprovado pelo Decreto nº 4.740, de 13 de junho de 2003. O PRESIDENTE da FUNDAÇÃO INSTITUTO

Leia mais

Laboratório de Cartografia Digital - CTUFES

Laboratório de Cartografia Digital - CTUFES Geotecnologias Planejamento e Gestão AULA 05 Fundamentos de Geodésia Geodésia - Definição: Geodésia é a ciência de medida e mapeamento das variações temporais da superfície da Terra, considerando seu campo

Leia mais

Introdução à Geodésia

Introdução à Geodésia UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE GEOCIÊNCIAS Disciplina: Leitura e Interpretação de Cartas Introdução à Geodésia Prof. Dr. Richarde Marques richarde@geociencias.ufpb.br

Leia mais

Escola Politécnica da Universidade de São Paulo. PTR 2202 Informações Espaciais

Escola Politécnica da Universidade de São Paulo. PTR 2202 Informações Espaciais Escola Politécnica da Universidade de São Paulo Departamento de Engenharia de Transportes PTR Laboratório de Topografia e Geodésia LTG PTR 2202 Informações Espaciais 1/34 Denizar Blitzkow Edvaldo Simões

Leia mais

CONCEITO DE GEODÉSIA A FORMA DA TERRA SUPERFÍCIES DE REFERÊNCIA MARCOS GEODÉSICOS REFERÊNCIAS BIBLIOGRÁFICAS SISTEMA GEODÉSICO DE REFERÊNCIA

CONCEITO DE GEODÉSIA A FORMA DA TERRA SUPERFÍCIES DE REFERÊNCIA MARCOS GEODÉSICOS REFERÊNCIAS BIBLIOGRÁFICAS SISTEMA GEODÉSICO DE REFERÊNCIA Sumário P r o f. Ti a g o B a d r e M a r i n o G e o p r o c e s s a m e n t o D e p a r t a m e n t o d e G e o c i ê n c i a s I n s t i t u t o d e A g r o n o m i a U F R R J 2 Conceito de Geodésia

Leia mais

AULA 4 SISTEMAS DE REFERÊNCIA

AULA 4 SISTEMAS DE REFERÊNCIA AULA 4 SISTEMAS DE REFERÊNCIA Objetivos TOPOGRAFIA Gerais Visão geral de Sistemas de Referência Específicos Sistemas de Coordenadas; Sistema de Referência; Datum Geodésico; Sistemas de Referência De acordo

Leia mais

6. Geometria, Primitivas e Transformações 3D

6. Geometria, Primitivas e Transformações 3D 6. Geometria, Primitivas e Transformações 3D Até agora estudamos e implementamos um conjunto de ferramentas básicas que nos permitem modelar, ou representar objetos bi-dimensionais em um sistema também

Leia mais

CENTRO UNIVERSITÁRIO CATÓLICA DE SANTA CATARINA Pró-Reitoria Acadêmica Setor de Pesquisa

CENTRO UNIVERSITÁRIO CATÓLICA DE SANTA CATARINA Pró-Reitoria Acadêmica Setor de Pesquisa FORMULÁRIO PARA INSCRIÇÃO DE PROJETO DE INICIAÇÃO CIENTÍFICA. Coordenação/Colegiado ao(s) qual(is) será vinculado: Curso (s) :Engenharia Civil Nome do projeto: Implantação de uma rede planialtimétrica

Leia mais

NOTA TÉCNICA. Sistema Geodésico de Referência: Figura geométrica da superfície terrestre: Época de referência das coordenadas:

NOTA TÉCNICA. Sistema Geodésico de Referência: Figura geométrica da superfície terrestre: Época de referência das coordenadas: NOTA TÉCNICA TÉRMINO DO PERÍODO DE TRANSIÇÃO PARA ADOÇÃO NO BRASIL DO SISTEMA DE REFERÊNCIA GEOCÊNTRICO PARA AS AMÉRICAS (SIRGAS), EM SUA REALIZAÇÃO DE 2,4 (SIRGAS2) A definição, implantação e manutenção

Leia mais

A figura da Terra. Da esfera ao Geóide (passando pelo elipsóide)

A figura da Terra. Da esfera ao Geóide (passando pelo elipsóide) A figura da Terra Da esfera ao Geóide (passando pelo elipsóide) Uma primeira aproximação: a Terra esférica Esfera: Superfície curva fechada cujos pontos se encontram todos a igual distância, R, de um ponto

Leia mais

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e MÓDULO 2 - AULA 13 Aula 13 Superfícies regradas e de revolução Objetivos Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas

Leia mais

RESUMO 2 - FÍSICA III

RESUMO 2 - FÍSICA III RESUMO 2 - FÍSICA III CAMPO ELÉTRICO Assim como a Terra tem um campo gravitacional, uma carga Q também tem um campo que pode influenciar as cargas de prova q nele colocadas. E usando esta analogia, podemos

Leia mais

4/12/2013 ELEMENTOS DE GEODÉSIA E CARTOGRAFIA SISTEMAS DE REFERÊNCIA. Geóide -Gauss 1828. Modelo esférico Astronomia

4/12/2013 ELEMENTOS DE GEODÉSIA E CARTOGRAFIA SISTEMAS DE REFERÊNCIA. Geóide -Gauss 1828. Modelo esférico Astronomia FUNDAÇÃO UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL ELEMENTOS DE GEODÉSIA E CARTOGRAFIA Curso: Agronomia 6º Semestre / Eng. Florestal 7º Semestre Prof. responsável: Lorena Stolle Pitágoras(580-500 ac)

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

Aula 8 : Desenho Topográfico

Aula 8 : Desenho Topográfico Aula 8 : Desenho Topográfico Topografia, do grego topos (lugar) e graphein (descrever), é a ciência aplicada que representa, no papel, a configuração (contorno,dimensão e posição relativa) de um porção

Leia mais

Levantamento topográfico

Levantamento topográfico MA092 - Geometria plana e analítica - Segundo projeto Levantamento topográfico Francisco A. M. Gomes Outubro de 2014 1 Descrição do projeto Nessa atividade, vamos usar a lei dos senos e a lei dos cossenos

Leia mais

FACULDADE SUDOESTE PAULISTA CURSO - ENGENHARIA CIVIL DISCIPLINA- TOPOGRAFIA

FACULDADE SUDOESTE PAULISTA CURSO - ENGENHARIA CIVIL DISCIPLINA- TOPOGRAFIA FACULDADE SUDOESTE PAULISTA CURSO - ENGENHARIA CIVIL DISCIPLINA- TOPOGRAFIA EXERCÍCIO DE REVISÃO 1. Com base nos seus conhecimentos, complete a lacuna com a alternativa abaixo que preencha corretamente

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

Disciplina: Topografia I

Disciplina: Topografia I Curso de Graduação em Engenharia Civil Prof. Guilherme Dantas Fevereiro/2014 Disciplina: Topografia I Indrodução atopografia definição Definição: a palavra "Topografia" deriva das palavras gregas "topos"

Leia mais

LEVANTAMENTOS TOPOGRÁFICOS ESTAÇÃO TOTAL x GPS RTK

LEVANTAMENTOS TOPOGRÁFICOS ESTAÇÃO TOTAL x GPS RTK LEVANTAMENTOS TOPOGRÁFICOS ESTAÇÃO TOTAL x GPS RTK Douglas Luiz Grando 1 ; Valdemir Land 2, Anderson Clayton Rhoden 3 Palavras-chave: Topografia; Geodésia; GPS de Precisão. INTRODUÇÃO Com a evolução das

Leia mais

4 Navegação Inercial (INS)

4 Navegação Inercial (INS) 4 Navegação Inercial (INS) A fusão de sensores só pode ser realizada quando os mesmos medem a mesma variável, logo primeiramente é necessário a escolha do modelo sobre o qual irá se representar as medidas

Leia mais

Faculdade de Administração e Negócios de Sergipe

Faculdade de Administração e Negócios de Sergipe Faculdade de Administração e Negócios de Sergipe Disciplina: Física Geral e Experimental III Curso: Engenharia de Produção Assunto: Gravitação Prof. Dr. Marcos A. P. Chagas 1. Introdução Na gravitação

Leia mais

Ponto, reta e plano no espaço tridimensional, cont.

Ponto, reta e plano no espaço tridimensional, cont. Ponto, reta e plano no espaço tridimensional, cont. Matemática para arquitetura Ton Marar 1. Posições relativas Posição relativa entre pontos Dois pontos estão sempre alinhados. Três pontos P 1 = (x 1,

Leia mais

PROPOSTA PRELIMINAR PARA A ADOÇÃO DE UM REFERÊNCIAL GEOCÊNTRICO NO BRASIL

PROPOSTA PRELIMINAR PARA A ADOÇÃO DE UM REFERÊNCIAL GEOCÊNTRICO NO BRASIL PROPOSTA PRELIMINAR PARA A ADOÇÃO DE UM REFERÊNCIAL GEOCÊNTRICO NO BRASIL 1 Seminário sobre Referencial Geocêntrico no Brasil Rio de Janeiro - IBGE/CDDI 1 O que é um sistema geodésico de referência? É

Leia mais

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar)

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) 1. OBJETIVOS DA EXPERIÊNCIA 1) Esta aula experimental tem como objetivo o estudo do movimento retilíneo uniforme

Leia mais

Como escrever um bom RELATÓRIO

Como escrever um bom RELATÓRIO Como escrever um bom RELATÓRIO Mas o que é uma EXPERIÊNCIA? e um RELATÓRIO? Profa. Ewa W. Cybulska Profa. Márcia R. D. Rodrigues Experiência Relatório Pergunta à Natureza e a procura da Resposta Divulgação

Leia mais

Capítulo I GENERALIDADES

Capítulo I GENERALIDADES Topografia I Profa. Andréa Ritter Jelinek 1 Capítulo I GENERALIDADES 1. Conceitos Fundamentais Definição: a palavra Topografia deriva das palavras gregas topos (lugar) e graphen (descrever), que significa

Leia mais

Conceitos de Geodésia

Conceitos de Geodésia Sumário P r o f. Ti a g o B a d r e M a r i n o G e o p r o c e s s a m e n t o D e p a r t a m e n t o d e G e o c i ê n c i a s I n s t i t u t o d e A g r o n o m i a U F R R J SISTEMAS DE COORDENADAS

Leia mais

Topografia Levantamentos Topográficos. Sistema de Referência. Coordenadas Geodésicas (j, l, h) Projecção Cartográfica

Topografia Levantamentos Topográficos. Sistema de Referência. Coordenadas Geodésicas (j, l, h) Projecção Cartográfica LEVANTAMENTOS TOPOGRÁFICOS OBJECTIVO O objectivo desta disciplina é a aprendizagem de métodos e técnicas de aquisição de dados que possibilitem a determinação das coordenadas cartográficas de um conjunto

Leia mais

muito como cartas náuticas faça para o watercraft, ou o a mapa rodoviário para excitadores. Usando estas cartas e outras ferramentas pilotos possa

muito como cartas náuticas faça para o watercraft, ou o a mapa rodoviário para excitadores. Usando estas cartas e outras ferramentas pilotos possa Carta Aeronáutica é a mapa projetou ajudar dentro navegação de avião, muito como cartas náuticas faça para o watercraft, ou o a mapa rodoviário para excitadores. Usando estas cartas e outras ferramentas

Leia mais

RADIAÇÃO SOLAR E TERRESTRE. Capítulo 3 Meteorologia Básica e Aplicações (Vianello e Alves)

RADIAÇÃO SOLAR E TERRESTRE. Capítulo 3 Meteorologia Básica e Aplicações (Vianello e Alves) RADIAÇÃO SOLAR E TERRESTRE Capítulo 3 Meteorologia Básica e Aplicações (Vianello e Alves) INTRODUÇÃO A Radiação Solar é a maior fonte de energia para a Terra, sendo o principal elemento meteorológico,

Leia mais

COMBINAÇÃO DOS SISTEMAS DE COORDENADAS UTILIZADOS EM NAVEGAÇÃO ASTRONÔMICA. O TRIÂNGULO ASTRONÔMICO OU TRIÂNGULO DE POSIÇÃO

COMBINAÇÃO DOS SISTEMAS DE COORDENADAS UTILIZADOS EM NAVEGAÇÃO ASTRONÔMICA. O TRIÂNGULO ASTRONÔMICO OU TRIÂNGULO DE POSIÇÃO COMBINAÇÃO DOS SISTEMAS DE COORDENADAS UTILIZADOS EM NAVEGAÇÃO ASTRONÔMICA. O TRIÂNGULO ASTRONÔMICO OU TRIÂNGULO DE POSIÇÃO 20 20.1 PROCESSO DE OBTENÇÃO DE LINHAS DE POSIÇÃO (LDP) E DE UMA POSIÇÃO ASTRONÔMICA

Leia mais

APOSTILA TOPOGRAFIA PRÁTICA

APOSTILA TOPOGRAFIA PRÁTICA APOSTILA TOPOGRAFIA PRÁTICA 1. INTRODUÇÃO A TOPOGRAFIA O verdadeiro nascimento da topografia veio da necessidade de o homem ter conhecimento do meio em que vive. Este desenvolvimento ocorreu desde os primeiros

Leia mais

SESSÃO 5: DECLINAÇÃO SOLAR AO LONGO DO ANO

SESSÃO 5: DECLINAÇÃO SOLAR AO LONGO DO ANO SESSÃO 5: DECLINAÇÃO SOLAR AO LONGO DO ANO Respostas breves: 1.1) 9,063 N 1.2) norte, pois é positiva. 1.3) São José (Costa Rica). 2) Não, porque Santa Maria não está localizada sobre ou entre os dois

Leia mais

27 Tolerância geométrica

27 Tolerância geométrica A U A UL LA Tolerância geométrica de posição Um problema Como se determina a tolerância de posição de peças conjugadas para que a montagem possa ser feita sem a necessidade de ajustes? Essa questão é abordada

Leia mais

UNIVERSIDADE DO EXTREMO SUL CATARINENSE. Correção geométrica de imagens

UNIVERSIDADE DO EXTREMO SUL CATARINENSE. Correção geométrica de imagens Correção geométrica de imagens O georreferenciamento descreve a relação entre os parâmetros de localização dos objetos no espaço da imagem e no sistema de referência, transformando as coordenadas de cada

Leia mais

Introdução À Astronomia e Astrofísica 2010

Introdução À Astronomia e Astrofísica 2010 CAPÍTULO 1 ESFERA CELESTE E O SISTEMA DE COORDENADAS Esfera Celeste. Sistema de Coordenadas. Coordenadas Astronómicas. Sistema Horizontal. Sistema Equatorial Celeste. Sistema Equatorial Horário. Tempo

Leia mais

Unidade: Vetores e Forças. Unidade I:

Unidade: Vetores e Forças. Unidade I: Unidade I: 0 Unidade: Vetores e Forças 2.VETORES 2.1 Introdução Os vetores são definidos como entes matemáticos que dão noção de intensidade, direção e sentido. De forma prática, o conceito de vetor pode

Leia mais

Sistemas de coordenadas e tempo. 1 Sistema de coordenadas horizontal local

Sistemas de coordenadas e tempo. 1 Sistema de coordenadas horizontal local José Laurindo Sobrinho Grupo de Astronomia da Universidade da Madeira Fevereiro 2014 Sistemas de coordenadas e tempo 1 Sistema de coordenadas horizontal local O sistema de coordenadas horizontal local

Leia mais

PROPRIEDADES DOS DETERMINANTES E O CÁLCULO DA ÁREA DE TRIÂN- GULOS: EXEMPLOS SIGNIFICATIVOS

PROPRIEDADES DOS DETERMINANTES E O CÁLCULO DA ÁREA DE TRIÂN- GULOS: EXEMPLOS SIGNIFICATIVOS A RTIGO PROPRIEDADES DOS DETERMINANTES E O CÁLCULO DA ÁREA DE TRIÂN- GULOS: EXEMPLOS SIGNIFICATIVOS Fábio Marson Ferreira e Walter Spinelli Professores do Colégio Móbile, São Paulo Recentemente nos desafiamos

Leia mais

RESUMO O trabalho apresenta resultados de um estudo sobre o texto A Geometria do Globo Terrestre

RESUMO O trabalho apresenta resultados de um estudo sobre o texto A Geometria do Globo Terrestre Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 43 O ÂNGULO DE ELEVAÇÃO DO SOL E A ENERGIA SOLAR Antonio da Silva Gomes Júnior 1, José Paulo Rodrigues da Silveira,

Leia mais

SISTEMAS DE 18 COORDENADAS UTILIZADOS EM ASTRONOMIA NÁUTICA E NAVEGAÇÃO ASTRONÔMICA

SISTEMAS DE 18 COORDENADAS UTILIZADOS EM ASTRONOMIA NÁUTICA E NAVEGAÇÃO ASTRONÔMICA SISTEMAS DE 18 COORDENADAS UTILIZADOS EM ASTRONOMIA NÁUTICA E NAVEGAÇÃO ASTRONÔMICA 18.1 CONCEITOS FUNDAMENTAIS Conforme visto no capítulo anterior, para determinar a posição de qualquer ponto na superfície

Leia mais

Hoje estou elétrico!

Hoje estou elétrico! A U A UL LA Hoje estou elétrico! Ernesto, observado por Roberto, tinha acabado de construir um vetor com um pedaço de papel, um fio de meia, um canudo e um pedacinho de folha de alumínio. Enquanto testava

Leia mais

1. INTRODUÇÃO 3. SISTEMAS DE REFERÊNCIA CLÁSSICOS 4. SISTEMAS DE REFERÊNCIA MODERNOS 5. MATERIALIZAÇÃO DE UM SISTEMA DE REFERÊNCIA

1. INTRODUÇÃO 3. SISTEMAS DE REFERÊNCIA CLÁSSICOS 4. SISTEMAS DE REFERÊNCIA MODERNOS 5. MATERIALIZAÇÃO DE UM SISTEMA DE REFERÊNCIA SISTEMAS DE REFERÊNCIA 1. INTRODUÇÃO 2. SISTEMAS COORDENADOS E SUPERFÍCIES UTILIZADOS EM GEODÉSIA 2.1 Sistema de Coordenadas Cartesianas 2.2 Sistema de Coordenadas Geodésicas 2.3 Sistema de Coordenadas

Leia mais

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea 2 O objetivo geral desse curso de Cálculo será o de estudar dois conceitos básicos: a Derivada e a Integral. No decorrer do curso esses dois conceitos, embora motivados de formas distintas, serão por mais

Leia mais

3.3 Espaço Tridimensional - R 3 - versão α 1 1

3.3 Espaço Tridimensional - R 3 - versão α 1 1 1 3.3 Espaço Tridimensional - R 3 - versão α 1 1 3.3.1 Sistema de Coordenadas Tridimensionais Como vimos no caso do R, para localizar um ponto no plano precisamos de duas informações e assim um ponto P

Leia mais

1 COMO ESTUDAR GEOMETRIA

1 COMO ESTUDAR GEOMETRIA Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL I 1 COMO ESTUDAR GEOMETRIA Só relembrando a primeira aula de Geometria Plana, aqui vão algumas dicas bem úteis para abordagem geral de uma questão de geometria:

Leia mais

Unidade IX: Gravitação Universal

Unidade IX: Gravitação Universal Página 1 de 5 Unidade IX: Gravitação Universal 9.1 Introdução: Até o século XV, o homem concebia o Universo como um conjunto de esferas de cristal, com a Terra no centro. Essa concepção do Universo, denominada

Leia mais

ESTUDO SOBRE O MODELO GEOIDAL BRASILEIRO EM ESTAÇÕES ALTIMÉTRICAS DE PRIMEIRA ORDEM LOCALIZADAS NO LITORAL E AGRESTE DO ESTADO DE PERNAMBUCO

ESTUDO SOBRE O MODELO GEOIDAL BRASILEIRO EM ESTAÇÕES ALTIMÉTRICAS DE PRIMEIRA ORDEM LOCALIZADAS NO LITORAL E AGRESTE DO ESTADO DE PERNAMBUCO ESTUDO SOBRE O MODELO GEOIDAL BRASILEIRO EM ESTAÇÕES ALTIMÉTRICAS DE PRIMEIRA ORDEM LOCALIZADAS NO LITORAL E AGRESTE DO ESTADO DE PERNAMBUCO Aluno: Charles Silva de Albuquerque Orientador: Prof. MSc. Glauber

Leia mais

Simetria de Figuras Planas e Espaciais

Simetria de Figuras Planas e Espaciais Simetria de Figuras Planas e Espaciais Introdução A maioria das pessoas acreditam que a simetria está ligada mais a pensamentos sobre Arte e Natureza do que sobre Matemática. De fato, nossas ideias de

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

Introdução À Astronomia e Astrofísica 2010

Introdução À Astronomia e Astrofísica 2010 CAPÍTULO 3 ESTAÇÕES DO ANO E INSOLAÇÃO SOLAR. Movimento Anual do Sol e as Estações do Ano. Estação em diferentes latitudes. Insolação Solar. Recapitulando a aula anterior: Capítulo 2 Trigonometria Esférica

Leia mais

No caso de existência no BDG, surgirá a seguinte mensagem: Visualize o resultado da pesquisa no final da página. Clicar sobre o botão OK.

No caso de existência no BDG, surgirá a seguinte mensagem: Visualize o resultado da pesquisa no final da página. Clicar sobre o botão OK. Sistema Geodésico Brasileiro Banco de Dados Geodésicos Opções de consulta: Para realizar este tipo de consulta, deve-se digitar o(s) código(s) da(s) estação(ões) a serem pesquisadas e clicar sobre o botão

Leia mais

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y 5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas

Leia mais

GPS (Global Positioning System) Sistema de Posicionamento Global

GPS (Global Positioning System) Sistema de Posicionamento Global GPS (Global Positioning System) Sistema de Posicionamento Global 1 Sistema de Posicionamento Global é um sistema de posicionamento por satélite que permite posicionar um corpo que se encontre à superfície

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO Jorge Costa do Nascimento Introdução Na produção desse texto utilizamos como fonte de pesquisa material

Leia mais

GPS Global positioning system

GPS Global positioning system GPS Global positioning system O Sistema de Posicionamento Global GPS-NAVSTAR (Navigation Satellite Time And Ranging) foi concebido inicialmente para substituir o sistema NNNS/TRANSIT que apresentava várias

Leia mais

3 Classificação. 3.1. Resumo do algoritmo proposto

3 Classificação. 3.1. Resumo do algoritmo proposto 3 Classificação Este capítulo apresenta primeiramente o algoritmo proposto para a classificação de áudio codificado em MPEG-1 Layer 2 em detalhes. Em seguida, são analisadas as inovações apresentadas.

Leia mais

Universidade do Vale do Rio dos Sinos Programa de Pós-Graduação em Geologia Laboratório de Sensoriamento Remoto e Cartografia Digital

Universidade do Vale do Rio dos Sinos Programa de Pós-Graduação em Geologia Laboratório de Sensoriamento Remoto e Cartografia Digital Universidade do Vale do Rio dos Sinos Programa de Pós-Graduação em Geologia Laboratório de Sensoriamento Remoto e Cartografia Digital Diagnóstico Ambiental do Município de São Leopoldo (Relatório da Implantação

Leia mais

Tenha isso muito claro na cabeça!

Tenha isso muito claro na cabeça! Tenha isso muito claro na cabeça! Existem duas formas de representar a Terra (existem mais, mas vamos tratar de duas): - modelo matemático = elipsóide - modelo quase real = geóide. O elipsóide é uma figura

Leia mais

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA UNIDADE DE FLORIANÓPOLIS DEPARTAMENTO ACADÊMICO DE CONSTRUÇÃO CIVIL

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA UNIDADE DE FLORIANÓPOLIS DEPARTAMENTO ACADÊMICO DE CONSTRUÇÃO CIVIL CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA UNIDADE DE FLORIANÓPOLIS DEPARTAMENTO ACADÊMICO DE CONSTRUÇÃO CIVIL CURSO TÉCNICO DE GEOMENSURA MÓDULO I UNIDADE CURRICULAR TOPOGRAFIA I 5.7 Medição

Leia mais

GNSS: CONCEITOS, MODELAGEM E PERSPECTIVAS FUTURAS DO POSICIONAMENTO POR SATÉLITE

GNSS: CONCEITOS, MODELAGEM E PERSPECTIVAS FUTURAS DO POSICIONAMENTO POR SATÉLITE GNSS: CONCEITOS, MODELAGEM E PERSPECTIVAS FUTURAS DO POSICIONAMENTO POR SATÉLITE Prof. Dra. Daniele Barroca Marra Alves Departamento de Cartografia SUMÁRIO Posicionamento Sistemas de Posicionamento GPS,

Leia mais

Integrais Duplas e Coordenadas Polares. 3.1 Coordenadas Polares: Revisão

Integrais Duplas e Coordenadas Polares. 3.1 Coordenadas Polares: Revisão Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Integrais Duplas e Coordenadas Polares Nas primeiras aulas discutimos integrais duplas em algumas regiões bem adaptadas às coordenadas

Leia mais

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 3.2 O Espaço Nulo de A: Resolvendo Ax = 0 11 O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 Esta seção trata do espaço de soluções para Ax = 0. A matriz A pode ser quadrada ou retangular. Uma solução imediata

Leia mais

Estudos Ambientais. Aula 4 - Cartografia

Estudos Ambientais. Aula 4 - Cartografia Estudos Ambientais Aula 4 - Cartografia Objetivos da aula Importância da cartografia; Conceitos cartográficos. O que é cartografia Organização, apresentação, comunicação e utilização da geoinformação nas

Leia mais

Unidade IX: Gravitação Universal

Unidade IX: Gravitação Universal Colégio Santa Catarina Unidade IX: Gravitação Universal 143 Unidade IX: Gravitação Universal 9.1 Introdução: Até o século XV, o homem concebia o Universo como um conjunto de esferas de cristal, com a Terra

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3 Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as

Leia mais

Topografia. Conceitos Básicos. Prof.: Alexandre Villaça Diniz - 2004-

Topografia. Conceitos Básicos. Prof.: Alexandre Villaça Diniz - 2004- Topografia Conceitos Básicos Prof.: Alexandre Villaça Diniz - 2004- 1 ÍNDICE ÍNDICE...1 CAPÍTULO 1 - Conceitos Básicos...2 1. Definição...2 1.1 - A Planta Topográfica...2 1.2 - A Locação da Obra...4 2.

Leia mais

As fórmulas para a determinação da gravidade teórica (ou normal) sobre a terra normal são do tipo

As fórmulas para a determinação da gravidade teórica (ou normal) sobre a terra normal são do tipo . A FÓRMULA INTERNACIONAL DA GRAVIDADE NORMAL As fórmulas para a determinação da gravidade teórica (ou normal) sobre a terra normal são do tipo γ = γ e β sin 2 φ + termos de ordem superior [.] Com precisão

Leia mais

Aula 18 Elipse. Objetivos

Aula 18 Elipse. Objetivos MÓDULO 1 - AULA 18 Aula 18 Elipse Objetivos Descrever a elipse como um lugar geométrico. Determinar a equação reduzida da elipse no sistema de coordenadas com origem no ponto médio entre os focos e eixo

Leia mais

Departamento de Engenharia Civil Implantação de Pontos

Departamento de Engenharia Civil Implantação de Pontos Departamento de Engenharia Civil Implantação de Pontos Rosa Marques Santos Coelho Paulo Flores Ribeiro 2006 / 2007 1. Implantação A implantação de pontos ou quaisquer outros detalhes consiste na materialização

Leia mais

Sistema GNSS. (Global Navigation Satellite System)

Sistema GNSS. (Global Navigation Satellite System) Sistema GNSS (Global Navigation Satellite System) POSICIONAR UM OBJETO NADA MAIS É DO QUE LHE ATRIBUIR COORDENADAS O Sol, os planetas e as estrelas foram excelentes fontes de orientação, por muito tempo.

Leia mais

VIII CONGRESSO BRASILEIRO DE CARTOGRAFIA FORTALEZA 24 a 31 DE JULHO DE 1977 O DATUM GEODÉSICO DE CHUÁ ENGENHEIRO LYSANDRO VIANA RODRIGUEZ

VIII CONGRESSO BRASILEIRO DE CARTOGRAFIA FORTALEZA 24 a 31 DE JULHO DE 1977 O DATUM GEODÉSICO DE CHUÁ ENGENHEIRO LYSANDRO VIANA RODRIGUEZ VIII CONGRESSO BRASILEIRO DE CARTOGRAFIA FORTALEZA 24 a 31 DE JULHO DE 1977 O DATUM GEODÉSICO DE CHUÁ ENGENHEIRO LYSANDRO VIANA RODRIGUEZ O DATUM GEODÉSICO DE CHUÁ I GENERALIDADES: O ideal de unificação

Leia mais

SECRETARIA DE ESTADO DA EDUCAÇÃO SUPERINTENDÊNCIA DE EDUCAÇÃO DIRETORIA DE TECNOLOGIA EDUCACIONAL PORTAL DIA A DIA EDUCAÇÃO Natel Marcos Ferreira

SECRETARIA DE ESTADO DA EDUCAÇÃO SUPERINTENDÊNCIA DE EDUCAÇÃO DIRETORIA DE TECNOLOGIA EDUCACIONAL PORTAL DIA A DIA EDUCAÇÃO Natel Marcos Ferreira SECRETARIA DE ESTADO DA EDUCAÇÃO SUPERINTENDÊNCIA DE EDUCAÇÃO DIRETORIA DE TECNOLOGIA EDUCACIONAL PORTAL DIA A DIA EDUCAÇÃO Natel Marcos Ferreira Movimento 1. Nível de ensino: Ensino Médio 2. Conteúdo

Leia mais

Utilização do SOLVER do EXCEL

Utilização do SOLVER do EXCEL Utilização do SOLVER do EXCEL 1 Utilização do SOLVER do EXCEL José Fernando Oliveira DEEC FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO MAIO 1998 Para ilustrar a utilização do Solver na resolução de

Leia mais

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções 1. INTRODUÇÃO Ao se obter uma sucessão de pontos experimentais que representados em um gráfico apresentam comportamento

Leia mais

Por que os cartógrafos e os geógrafos têm necessidade de conhecer topografia? Os levantamentos de base não existem em todos os lugares;

Por que os cartógrafos e os geógrafos têm necessidade de conhecer topografia? Os levantamentos de base não existem em todos os lugares; 1 - ELEMENTOS DE TOPOGRAFIA Definição: É o conjunto de técnicas aplicadas ao terreno, cujo objeto é o estabelecimento das cartas e das plantas. Conforme a etimologia da palavra, topografia é a arte de

Leia mais

ROTEIRO 20 PÊNDULO SIMPLES E PÊNDULO FÍSICO

ROTEIRO 20 PÊNDULO SIMPLES E PÊNDULO FÍSICO ROTEIRO 20 PÊNDULO SIMPLES E PÊNDULO FÍSICO INTRODUÇÃO Estamos cercados de oscilações, movimentos que se repetem. Neste roteiro vamos abordar oscilações mecânicas para uma classe de osciladores harmônicos

Leia mais

ENSINO MÉDIO 01 - PLANETA TERRA FORMA E MOVIMENTO

ENSINO MÉDIO 01 - PLANETA TERRA FORMA E MOVIMENTO ENSINO MÉDIO 01 - PLANETA TERRA FORMA E MOVIMENTO QUESTÃO 01 - Sobre as características gerais dos movimentos terrestres, julgue os itens: a) É incorreto dizer que o Sol nasce a leste e se põe a oeste,

Leia mais

Nosso objetivo será mostrar como obter informações qualitativas sobre a refração da luz em um sistema óptico cilíndrico.

Nosso objetivo será mostrar como obter informações qualitativas sobre a refração da luz em um sistema óptico cilíndrico. Introdução Nosso objetivo será mostrar como obter informações qualitativas sobre a refração da luz em um sistema óptico cilíndrico. A confecção do experimento permitirá também a observação da dispersão

Leia mais

Noções de cartografia aplicada ao Google Earth

Noções de cartografia aplicada ao Google Earth Noções de cartografia aplicada ao Google Earth Sobre a Cartografia A cartografia está diretamente relacionada à nossa evolução, pois nos acompanha desde os primeiros deslocamentos da espécie humana sobre

Leia mais

Os caracteres de escrita

Os caracteres de escrita III. Caracteres de Escrita Os caracteres de escrita ou letras técnicas são utilizadas em desenhos técnicos pelo simples fato de proporcionarem maior uniformidade e tornarem mais fácil a leitura. Se uma

Leia mais

QUEDA LIVRE. Permitindo, então, a expressão (1), relacionar o tempo de queda (t), com o espaço percorrido (s) e a aceleração gravítica (g).

QUEDA LIVRE. Permitindo, então, a expressão (1), relacionar o tempo de queda (t), com o espaço percorrido (s) e a aceleração gravítica (g). Protocolos das Aulas Práticas 3 / 4 QUEDA LIVRE. Resumo Uma esfera metálica é largada de uma altura fixa, medindo-se o tempo de queda. Este procedimento é repetido para diferentes alturas. Os dados assim

Leia mais

Desempenho Térmico de edificações Aula 5: Orientação e Diagrama Solar

Desempenho Térmico de edificações Aula 5: Orientação e Diagrama Solar Desempenho Térmico de edificações Aula 5: Orientação e Diagrama Solar PROFESSOR Roberto Lamberts ECV 5161 UFSC FLORIANÓPOLIS estrutura Introdução Movimentos da terra Diagramas solares Análises de proteções

Leia mais

Questão 01) A linha imaginária que circula a Terra a 23 27 de latitude norte denomina-se:

Questão 01) A linha imaginária que circula a Terra a 23 27 de latitude norte denomina-se: Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno(a): Nº. Professor: Anderson José Soares Série: 1º Disciplina: GEOGRAFIA Data da prova: 22/02/14 Questão 01) A linha imaginária que circula a Terra

Leia mais

Palavras-Chave: Sistema de Posicionamento Global. Sistemas de Localização Espacial. Equação de Superfícies Esféricas.

Palavras-Chave: Sistema de Posicionamento Global. Sistemas de Localização Espacial. Equação de Superfícies Esféricas. METODOS MATEMÁTICOS PARA DEFINIÇÃO DE POSICIONAMENTO Alberto Moi 1 Rodrigo Couto Moreira¹ Resumo Marina Geremia¹ O GPS é uma tecnologia cada vez mais presente em nossas vidas, sendo que são inúmeras as

Leia mais

AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA

AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA CAPÍTULO 1 AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA Talvez o conceito físico mais intuitivo que carregamos conosco, seja a noção do que é uma força. Muito embora, formalmente, seja algo bastante complicado

Leia mais

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente: Rumo ao ITA Física Análise Dimensional Ivan Guilhon Mitoso Rocha A análise dimensional é um assunto básico que estuda as grandezas físicas em geral, com respeito a suas unidades de medida. Como as grandezas

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL Física Experimental IV Lentes Delgadas Objetivo Determinar as distâncias focais de lentes delgadas convergentes e divergentes.

Leia mais

Lei de Gauss Origem: Wikipédia, a enciclopédia livre.

Lei de Gauss Origem: Wikipédia, a enciclopédia livre. Lei de Gauss Origem: Wikipédia, a enciclopédia livre. A lei de Gauss é a lei que estabelece a relação entre o fluxo de campo elétrico que passa através de uma superfície fechada com a carga elétrica que

Leia mais

Aula 1: Conceitos Introdutórios. EAC-066: Geodésia Espacial

Aula 1: Conceitos Introdutórios. EAC-066: Geodésia Espacial EAC-066: Geodésia Espacial Prof. Paulo Augusto Ferreira Borges https://intranet.ifs.ifsuldeminas.edu.br/~paulo.borges/ 1 1/35 A Geodésia é a ciência que tem por objeto determinar a forma e as dimensões

Leia mais

REPRESENTAÇÃO FASORIAL DE SINAIS SENOIDAIS

REPRESENTAÇÃO FASORIAL DE SINAIS SENOIDAIS REPRESENTAÇÃO FASORIAL DE SINAIS SENOIDAIS Neste capítulo será apresentada uma prática ferramenta gráfica e matemática que permitirá e facilitará as operações algébricas necessárias à aplicação dos métodos

Leia mais

DIFERENTES POVOS E SUAS TÉCNICAS DE MULTIPLICAR. Palavras-chave: Multiplicação; Egípcio; Russo; Chinês; Gelosia.

DIFERENTES POVOS E SUAS TÉCNICAS DE MULTIPLICAR. Palavras-chave: Multiplicação; Egípcio; Russo; Chinês; Gelosia. DIFERENTES POVOS E SUAS TÉCNICAS DE MULTIPLICAR Micheli Cristina Starosky Roloff Instituto Federal Catarinense Campus Camboriú micheli_roloff@ifc-camboriu.edu.br Resumo: Ao longo dos tempos, diferentes

Leia mais

Coordenadas Geográficas

Coordenadas Geográficas Orientação A rosa-dos-ventos possibilita encontrar a direção de qualquer ponto da linha do horizonte. Por convenção internacional, a língua inglesa é utilizada como padrão, portanto o Leste muitas vezes

Leia mais

A equação da posição em função do tempo t do MRUV - movimento retilíneo uniformemente variado é:

A equação da posição em função do tempo t do MRUV - movimento retilíneo uniformemente variado é: Modellus Atividade 3 Queda livre. Do alto de duas torres, uma na Terra e outra na Lua, deixaram-se cair duas pedras, sem velocidade inicial. Considerando que cada uma das pedras leva 3,0s atingir o solo

Leia mais