1. [1.500] (IP:

Tamanho: px
Começar a partir da página:

Download "1. [1.500] (IP:"

Transcrição

1 1. [1.500] (IP: :00:40 20:43:53 43: ) Discuta como o ambiente pode afetar o coeficiente K, ou seja, o tempo de renovação da serrapilheira. A serrapilheira ou resteva é formada acúmulo de matéria orgânica na superfície do solo, proveniente principalmente da queda de material morto do dossel e também de restos culturais, portanto a vegetação é a principal responsável pela deposição de MO no solo. O tempo de renovação da serrapilheira ou coeficiente K sofre grande influencia das condições ambientais. Em regiões tropicais onde as condições de temperatura e umidade são mais elevadas e maiores índices de precipitação pluviométrica observa-se uma maior velocidade na renovação da serrapilheira, pois estas condições são favoráveis tanto para o crescimento vegetal e consequentemente uma maior deposição de MO no solo, como para o desenvolvimento de microorganismos que irão atuar na decomposição do material depositado, nestes ambientes os valores de K são superiores a 1, indicando a constante renovação da serrapilheira. Por outro lado, em regiões de clima temperado, onde as condições de temperatura e umidade são mais baixas a renovação se dá de forma mais lenta, devido as condições serem desfavoráveis ao desenvolvimento vegetal e microbiológico, portanto esse material tende a se acumular na superfície do solo, formando os chamados mantos florestais, pois a decomposição é menos eficiente, portanto nessas condições os valores de K são inferiores a 1, podendo chegar a 0,1 em florestas de coníferas. Além disso, o tipo de vegetação influencia diretamente na qualidade da MO depositada, assim como sua capacidade de ser processada pelos microorganismos. Materiais ricos em lignina são mais difíceis de serem decompostos, por isso o teor desse componente pode chegar a 45% no solo. realmente o ambiente afeta muito o K, mas você passou muito mais tempo discutindo outros aspectos, tais como o fornecimento de material do que o K propriamente dito 2. [2.000] (IP: :01:13 20:44:39 43: ) Discuta a figura 5.21 e suas implicações na disponibilidade de nutrientes, e no uso de adubação verde. De acordo com a figura 5.21 a decomposição e a mineralização da matéria orgânica no solo é um processo dinâmico realizado por microorganismos e estimulada pela disponibilidade de nutrientes no solo. O que se pode observar é que o aumento de um resíduo orgânico em um solo que se encontrava em equilíbrio, provoca o estimulo no crescimento da população microbiana, devido ao aumento da concentração de C- oxidável, e consequentemente o aumento da demanda por nutrientes por esses microorganismos. Com o aumento da população microbiana ocorre uma elevação na taxa de respiração do solo, portanto o CO2 é liberado, além disso, os microorganismos absorvem nutrientes minerais como NO3-, visando atender as suas exigências nutricionais, tornando esses nutrientes imobilizados em sua biomassa. Entretanto, a disponibilidade de N no solo irá depender também da relação C:N do material adicionado. A medida que a taxa de liberação de CO2 aumenta, a concentração de C diminui e a de N aumenta, pois está imobilizado na biomassa microbiana, causando uma redução na relação C:N. Quando a relação C:N estiver abaixo de 20 ocorre uma queda na atividade microbiana e o NO3- que estava imobilizado em sua biomassa, torna-se disponível no solo, devido ao aumento da mineralização liquida do N. O uso de adubação verde eleva a mineralização do N, isso ocorre devido ao chamado efeito priming que é a aceleração da mineralização que ocorre naturalmente causada por gatilho que limita a atividade dos microorganismos, no entanto esse efeito pode ser negativo temporário por causa da imobilização do N, devido a alta demanda desse nutriente pelos microorganismos ok 3. [2.000] (IP: :01:41 22:52:30 50: ) Resuma e discuta o artigo desta semana de modo a permitir um bom entendimento do mesmo por um leitor que não o leia. O artigo Enhancing soil carbon storage for carbon remediation: potential contributions and constraints by microbes expõe a problemática da emissão de gases para a atmosfera que tem contribuído para o aumento do aquecimento global, principalmente a emissão de CO2 pelo homem. Sabe-se que naturalmente os oceanos realizam o seqüestro de CO2, no entanto isso não é suficiente para diminuir os efeitos de mudanças climáticas. Diante disso, várias propostas têm sido sugeridas com o intuito de minimizar essa questão, como

2 o aumento da eficiência do seqüestro de CO2 pelos ecossistemas terrestres, inclusive por microorganismos. No entanto, ainda é necessário aprimorar os conhecimentos sobre os processos, mecanismos e grupos de organismos que podem ser utilizados para essa finalidade e se eles podem ser manipulados de forma eficiente. Muitos fatores influenciam no armazenamento de carbono no solo, porém a formação de microagregados dificulta as perdas de C. No entanto, a formação de microagregados depende de vários fatores tais como matéria orgânica, distúrbios mecânicos, disponibilidade de água e temperatura. Porém, alguns microorganismos como fungos micorrízicos arbusculares (MF) e bactérias produzem determinadas proteínas tais como glomalina, hidrofobinas e Chaplins que interagem com outros componentes do solo, auxiliando na formação dos microagregados. A diversidade microbiana tem sido alvo de diversos estudos, principalmente na parte molecular. No entanto, ainda não se sabe se para o seqüestro de carbono é mais importante uma grande diversidade na comunidade microbiana ou o potencial de alguns tipos mais específicos. Abordagens metagenômicas, especialmente metatranscriptômica, podem ser úteis para esclarecer essa incerteza. No entanto, alguns estudos afirmam que a diversidade por si só não pode ser usada para o seqüestro de carbono, enquanto que a composição especifica da comunidade pode ser muito mais importante, pois afetam o seqüestro de C independente da diversidade geral. Temperaturas elevadas aceleram o processo de decomposição da matéria orgânica e consequentemente a emissão de CO2, fazendo um feedback positivo para as alterações climáticas, sendo portanto um grande impasse para um eficiente modelo de seqüestro de carbono. O uso de microorganismos no seqüestro de carbono é promissor, no entanto ainda deve-se compreender os mecanismos, quais os organismos mais eficientes e como os fatores ambientais afetam nesse processo fundamental para evitar os problemas causados pelas mudanças climáticas no planeta. ok 4. [2.000] (IP: :02:01 20:44:48 42: ) Discuta a figura 5.11 em linhas gerais A figura 5.11 representa as várias transformações necessárias para a formação das substâncias húmicas no solo, representadas pelos ácidos fúlvicos, ácidos húmicos e humina. Essas substancias podem ser geradas pelas transformações de material vegetal e animal e matéria orgânica do solo, principalmente pela ação da microbiota do solo, que através do seu metabolismo processa componentes como a celulose, hemicelulose, amido, proteínas, açucares, componentes solúveis e oxidáveis entre outros, liberando C na forma de CO2. Substâncias recalcitrantes, bases nitrogenadas, lignina, ceras e gorduras são pouco metabolizadas por microorganismos, mas também entram no processo de formação das substâncias húmicas, de forma direta ou através de componentes celulares, metabólitos e subprodutos da microbiomassa. Dentre as substâncias húmicas, a humina possui maior estabilidade química, devido a características como polimerização, peso molecular, % de C e N. Enquanto que os ácidos flúvicos apresentam maior reatividade no solo, devido a sua maior solubilidade, acidez, CTC, grupos reativos e % de oxigênio. excelente, mas poderia detalhar um pouco mais 5. [2.000] (IP: :02:30 22:52:48 50: ) Porque discutimos mais a relação C/N do que a C/P quando pensamos em qualidade da serrapilhiera? Quando se pensa em qualidade da serrapilheira a relação C:N é mais discutida, pois o N costuma ser um fator mais limitante em relação ao P, pois grande parte do N orgânico do solo está em frações menos lábeis da matéria orgânica do solo, por isso apresenta baixa atividade no solo, contribuindo pouco na mineralização e para disponibilização de N para as plantas, logo a quantidade de P disponível no solo é bem maior do que a de N. Além disso, a relação C:N é muito mais baixa em comparação a relação C:P. A relação C:P é mais ampla pois a exigência de P pelos microorganismos é muito pequena em relação a C. É importante ressaltar que a imobilização do N por microorganismos, quando resíduos orgânicos são adicionados ao solo é um processo muito mais relevante do que para o P, pois a demanda de N é maior. De acordo com Marques et al. (2000) quanto menor a relação C:N, maior a quantidade de N e maior será a velocidade de decomposição,

3 portanto melhor a qualidade da serrapilheira. excelente em particular na primeira parte que é a principal justificativa para a maior importância relativa de C:N em relação a C:P 1. [2.000] (IP: :30:14 23:18:31 48: ) Resuma e discuta o artigo desta semana de modo a permitir um bom entendimento do mesmo por um leitor que não o leia. O aumento na emissão de CO2 e de outros gases como o metano e óxido nitroso para a atmosfera tem gerado preocupações ambientes, com contribuição para o efeito estufa que por sua vez pode alterar o clima em escala global. Entre as principais fontes que contribuir para a emissão do CO2 para atmosfera temos o uso de combustíveis fosseis e as praticas agrícolas inadequadas que resultam em perda da biomassa e matéria orgânica do solo. Diante disto varias opções para reduzir os impactos dos gases de efeito estufa tem sido proposta, incluindo as conhecidas como a geoengenharia que seria fazer o sequestro de carbono na geosfera, oceanos e na biosfera. Para que se consiga estabilizar os níveis de CO2 atmosfera podemos ter duas abordagens uma não biológica (engenharia) e outra abordagem biológica as quais tem vantagens e desvantagens distintas. Embora a engenharia apresente opções eficazes para a limitação da emissão de CO2 de fontes pontuais outras opções devem ser utilizadas para reduzir o impacto das fontes difusas (agricultura, queima de biomassa). O sequestro de carbono do ponto de vista das necessidades energéticas na biosfera representa uma opção potencialmente de baixo custo já que depende principalmente da energia solar para produzir matéria orgânica. Os ecossistemas terrestres e marinhos tem destaque para o sequestro de carbono atmosférico, embora o sequestro de carbono terrestre possa contribuir significativamente para minimizar a emissão de CO2 através as fontes difusas (agricultura). No entanto o potencial de sequestro de carbono no solo depende de inúmeras variáveis isto por que o solo é sujeito a perturbações através de práticas agrícolas, que refletem nas propriedades físicas, químicas e biológicas do solo. Este trabalho abordam alguns fatores da biologia microbiana do solo que favoreça o sequestro do carbono no sistema terrestre. Muitas variáveis afetam o armazenamento do carbono no solo, dentre esta podemos destacar a formação de microagregados já que limita substancialmente a decomposição. A formação destes microagregados dependem de inúmeros fatores incluídos a contribuição microbiana com a ação de fungos micorrizicos arbusculares (MF) e algumas bactérias. A contribuição das micorrizicas arbusculares na formação de microagregados envolve a interação entre matéria orgânica, superfície de minerais e proteínas especificas a mais especial destas proteínas parece ser a glomalina. Os efeitos da glomalina em microagregados podem ser devido aos seus efeitos sobre a hidratação (a penetração de água e hidrofobicidade) aumentando a estabilidade do microagregado, isto porque estas proteínas conferem propriedade hidrofóbica a superfície dos microagregados. Além da glomalina, outras proteínas tais como hidrofobinas e chaplins podem também ser importantes na formação dos microagregados. A relação entre a diversidade microbiana e o sequestro de carbono sugere que a diversidade microbiana por si só não pode ser um fator útil para estabelecer relação com o sequestro de carbono no solo, já que muitas vezes os índices de diversidade de bactérias ( por exemplo índice de Shannon) se correlaciona melhor com o ph e não com a matéria orgânica ou outros fatores que podem interferir no sequestro de carbono, então esses índices de diversidade como índice de Shannon podem não ser uteis para prever ou compreender o sequestro de carbono, a composição especifica das comunidade microbiana pode ser muito mais importante. Dentre os vários fatores ambientais que afetam a decomposição da matéria orgânica do solo o efeito da temperatura é considerado como uma das principais, pois pode aumentar a respiração microbiana, resultado assim em um possível aumento na perda de carbono através da respiração, afetando também a alocação de carbono por plantas. Portanto percebendo o potencial do sequestro de carbono na biosfera que pode ser utilizado como uma forma de mitigação das emissões de CO2 para atmosfera é importante que se tem uma compressão mais detalhada dos organismos e mecanismos específicos que podem contribuir para o sequestro de carbono. bastante superficial, mas cobre vários pontos de forma razoavelmente adequada. 2. [2.000] (IP: :30:32 23:19:16 48: ) Discuta como o ambiente pode afetar o coeficiente K, ou seja, o tempo de renovação da serrapilheira. A camada de resíduos orgânicos que se acumula sobre o solo dos ecossistemas florestais é a serapilheira. Vários fatores bióticos e abióticos afetam a produção de serapilheira tais como: tipo de vegetação,

4 precipitação temperatura, altitude, latitude, disponibilidade hídrica e características do solo e dependendo das características de cada ecossistema, um determinado fator pode prevalecer sobre os demais, já a decomposição desta serapilheira é controlada pela interação entre qualidade da serapilheira, o clima e a atividade da comunidade biótica do solo. O estoque de serapilheira é regulado pela quantidade de material que cai e pela sua decomposição na superfície do solo. Para o estudo de ciclagem de nutrientes em diversos ecossistemas um dos métodos mais utilizados para estimar a decomposição da camada da serapilheira é a determinação do coeficiente K este coeficiente é a razão entre a quantidade de material que cai do dossel e a que é encontrada na superfície, medindo a taxa de desaparecimento ou o tempo de renovação da serapilheira. Em ecossistemas de florestais tropicais, os valores de K geralmente são maiores que 1, valores de K acima de 1 sugere um rápido reaproveitamento de nutrientes por parte da vegetação. Já em florestas temperadas esse valor de K é inferior a 1 podendo chegar a valores abaixo de 0,1 para floresta de conífera, indicando assim que o tempo de renovação do material que compõe a serapilheira é mais lento, por isso ocorre a acumulo de material orgânico na superfície. Alguns estudos encontraram valores de K em florestas tropicais de baixa altitude variando de 1,1 a 3,3 em quanto que em florestas tropicais de maior altitude o valor de K se aproximaram mais de florestas de clima temperado do que das florestas tropicais de baixa altitude isso em decorrência do efeito da temperatura atuando na velocidade de decomposição da serapilheira. Sugerindo que o efeito da temperatura é marcante na velocidade na decomposição da serapilheira tendo ai uma influência da característica do ambiente no coeficiente k. Podemos ter também como exemplo de características ambientais que afetem o coeficiente k, uma certa área que apresenta condições climáticas bastante variáveis e extremas, como ocorrência de seca, temperaturas elevadas e baixo conteúdos de água no solo, além de espécies deciduais, com queda de matérias orgânico coreáceo e de composição diferente, todos esse fatores interagindo simultaneamente acabam limitando a atividade dos organismos decompositores, proporcionando decomposição mais lenta, quando comparada por exemplo com outros ambiente mais úmidos, então é visto ação dos fatores ambientes apresentando influência sobre a decomposição K. só foi começar a responder a pergunta nas últimas sete linhas, com o resto do material não tendo qualquer relação clara com a pergunta propriamente dita. no entanto, a resposta de um modo geral cobre bem a pergunta 3. [2.000] (IP: :30:40 23:19:40 49: ) Discuta a figura 5.11 em linhas gerais Na figura 5.11 é visto a transformação da MOS e a formação das frações das substâncias húmicas no solo. Os resíduos orgânicos podem ser prontamente decomponíveis (componentes solúveis e oxidáveis como exsudados radiculares) ou se apresentar como substratos mais resistentes (hemicelulose, celulose, proteínas, amido) ambos substratos sofrem inúmeras transformações (decomposição) que resulta em C-CO2 (perdido), C-biomassa e C-húmus. Na decomposição, todos os componentes do resíduo (fração decomponível e resistente) entram no processo de transformação pela biomassa microbiana, então o carbono orgânico passa primeiro pela biomassa microbiana, após está fase atingir a estádios mais avançados de humificação, resultando em substâncias húmicas que apresentam maior estabilidade física e/ou química. As substâncias húmicas em função da sua solubilidade relativa em álcali e ácidos são grosseiramente separadas em ácidos fúlvicos, ácidas húmicos e humina. Essas frações humificada exercem influencia em algumas propriedades do solo como melhoria de condições físicas (agregação, retenção de água e etc.) e químicas (CTC, reservatório de nutrientes N, P e etc), sendo observado que a estabilidade química aumenta em direção a fração humina e que a reatividade no solo aumenta em direção aos ácidos fúlvicos. embora não esteja muito clara, a resposta cobre os pontos principais de forma razoavelmente adequada 4. [2.000] (IP: :30:46 23:20:50 50: ) Discuta a figura 5.21 e suas implicações na disponibilidade de nutrientes, e no uso de adubação verde. A figura 5.21 se refere à dinâmica de processo de mineralização de resíduos orgânicos em relação à disponibilidade de nutrientes no solo. É visto no gráfico 1 de baixo para cima que ao se adicionar no solo um resíduo orgânico (adubo verde) de relação C:N alta (>30) que apresenta quantidade de carbono bem superior a quantidade de nitrogênio, tem-se no inicio um grande crescimento da população microbiana, seguida pela imobilização de nutriente, o crescimento microbiana é estimulado pela adição de carbono, já imobilização é reflexo da baixa disponibilidade de nutriente do resíduo e do aumento da população microbiana que necessitar de nutrientes para o seu crescimento imobilizando-os. Com o passar do tempo é visto no gráfico que a população microbiana vai diminuindo resultado da diminuição da disponibilidade de carbono e que

5 ocorre um aumento na mineralização aumentando a disponibilidade de nutrientes (mineralização, NO-3). No gráfico 2 é observado uma redução de nitrato (NO-3), no solo, coincidindo com uma alta taxa de liberação de CO2. Isto é resultado do crescimento microbiano onde a sua respiração resulta na liberação de CO2 e a redução do nitrato do solo é resultado do uso deste nutriente pelo microrganismo para o seu crescimento (imobilização). Só que com o passar do tempo se tem uma redução na população microbiana resultando em uma queda na taxa de liberação de CO2 e se tem um ganho de nitrato no solo (mineralização, NO-3), esse ganho de nitrato no solo é resultado da mineralização da matéria orgânica que foi adicionado ao solo (Nresíduo), ou seja, se tem um aumento na disponibilidade de nutriente no solo. No gráfico 3 é visto uma fase inicial em que se tem uma imobilização liquida (I>M) resultado do uso de um resíduo do pobre que apresenta alta relação C:N (>30) e da atividade microbiana, e que com o passar do tempo após algumas semanas passa a ter uma outra fase de mineralização liquida (I<M) isto porque carbono está saindo da através da atividade microbiana (respiração) e nitrogênio fica tendo assim uma redução da relação C:N (<20) favorecendo a mineralização. mas tinha de ser logo um que foi discutido em muito detalhe na aula:) ok 5. [1.500] (IP: :30:52 23:21:33 50: ) Discuta a figura 5.10 em linhas gerais Na figura 5.10 é estabelecida uma relação entre a composição e os principais fatores determinantes da quantidade da MOS e os prováveis efeitos desta (MOS) no sistema solo e planta. A matéria orgânica do solo é formada pela adição de resíduos de plantas, animais e microrganismos. E por produtos oriundos desses resíduos através da atividade metabólica dos microrganismos (decomposição). A vegetação, condições biológicas e clima e manejo são fatores determinantes para quantidade da material orgânica do solo, isto porque o estoque de serapilheira é regulado pela quantidade de material que cai e pela sua decomposição na superfície do solo, sabemos que a vegetação é a principal responsável pela deposição de materiais orgânicos no solo e o fator biológico é o grande responsável pela decomposição desses matérias orgânicos (macro e micro fauna). A matéria orgânica do solo exerce papel fundamental sobre as propriedades químicas, físicas e biológicas do solo, entre os prováveis efeitos podemos destaca-la como fonte de energia para os microrganismos esse material orgânico é fonte de carbono, nutrientes e energia para o metabolismo celular da microbiota do solo. Os organismos heterotróficos do solo utilizam resíduos de plantas, animais e outros microrganismos em vários estágios de decomposição. Por sua vez como este material orgânico e de fundamental importância para a microbiota do solo este material orgânico também se apresenta com agente de intemperização já que os microrganismos atuam como agentes pedogenéticos sendo importantes colonizadores de rochas. Este material orgânico do solo apresenta importante papel como condicionamento físico do solo melhorando junto com os microrganismos a estrutura do solo (agregação). O material orgânico é um importante reservatório de nutrientes como N, P, C e outro elementos ligados organicamente, a liberação destes elementos está relacionado com os processos de decomposição e mineralização. A matéria orgânica apresenta importância na troca iônica já que melhora a CTC do solo isto devido a alta CTC dos grupos carboxílicos e fenólicos presentes em ácidos húmicos e fúlvicos, melhorando assim a retenção de cátions. Através do metabolismo secundário vegetal e microbiano ocorre a produção de substâncias orgânicas que podem apresentar elevada atividade química atuando como fitotoxinas e aleloquímicos. E a melhoria na disponibilidade de nutrientes e nas propriedades físicas do solo proporcionar um melhor crescimento vegetativo e que por sua vez proporciona que este ciclo continue funcionando. um pouco superficial demais, e pouco ligado com a figura ] (IP: :55:33 22:20:20 24: ) Resuma e discuta o artigo desta semana de modo a permitir um bom entendimento do mesmo por um leitor que não o leia. O artigo trata de possíveis métodos para o sequestro (captura) de carbono através de microrganismos, objetivando uma diminuição da emissão de CO2. O grande desafio para o sucesso desses métodos é saber identificar o tipo de microrganismos e os mecanismos responsáveis pela captura de CO2, o comportamento da comunidade microbiana e a forma adequada de manejo com variáveis ambientais e temporais. A emissão de CO2 é aumentada por queima de combustíveis fósseis, degradação de matéria orgânica, perdas de biomassa, além do uso antropogênico onde o aumento desse gás ocasiona alterações climáticas bem como o aumento do efeito estufa. Diante da crescente emissão desse gás várias opções para reduzir os impactos ambientes tem sido sugeridas. A captura de carbono na geosfera, oceanos e biosfera (geoengenharia) são

6 praticas que visam capturar o CO2 da atmosfera e divide-se em seqüestro de engenharia (ou abiological) e sequestro biológico, porém é necessário observar as fontes de emissão desse gás o qual se dá na forma de fontes pontuais e difusas, cada um dos quais requer diferentes abordagens e tecnologias para a gestão. Fontes pontuais são Pontos de emissão contínua de um dado processo, cuja característica deste determina o perfil da emissão. Podem ser gerenciados através de vários métodos de captura de engenharia (abiological) de carbono, com várias opções para eliminação e armazenamento variando em segurança, custo e conveniência. Fontes difusas são Pontos eventuais de emissão cuja característica é normalmente variável e influenciada pelas condições ambientais locais podem ser mais bem geridos por uma ampla gama de abordagens de base biológica que variam em custo, capacidade, a eficiência e a forma de armazenamento. Seta tracejada indica que as emissões de fontes pontuais de CO2 também podem ser geridas através de abordagens biológicas (por exemplo, uso de CO2 como uma fonte de carbono para a agricultura de biocombustíveis). O seqüestro de engenharia (ou abiological) e sequestro biológico diferem em seus métodos, méritos e limitações. Na engenharia (abiological), o CO2 pode ser eficazmente limpo de gases de combustão, pois utilizam tecnologias adequadas de fontes pontuais. As quantidades de CO2 limpo de usinas de energia e processados para o seqüestro pode ter determinação eficaz e precisa. Além disso, o CO2 pode ser armazenado e lavado nos reservatórios de águas profundas ou geológicos e pode ser usado como uma matéria-prima para a biomassa ou biocombustíveis. As desvantagens é que a engenharia de sequestro tem alto custo, logo irá aumentar significativamente com os custos de combustível fóssil e seus derivados. Em contraste, o sequestro biológico pode compensar parcialmente a produção de CO2 a partir de fontes difusas a um custo relativamente baixo. No entanto, o sequestro biologico do CO2 pode ser restringido por variáveis que são de difícil controle (por exemplo, clima, nutrientes); CO2 seqüestrado biologicamente poderia ser muito estável em algumas formas, mas relativamente instável em outras. Existem dificudades significativas no nosso entendimento sobre previsões do comportamento orgânicos do carbono nos contextos de mudança de clima e paisagens. Isto, por sua vez, limita as perspectivas para manipular os processos e os organismos para a promoção do sequestro de carbono. Os problemas mais fundamentais para microbiana a este respeito incluem a identificação, os processos, mecanismos e grupos de organismos que são mais importantes para o seqüestro e determinar se eles podem ser gerenciados, em geral, espacial suficiente e tempo suficiente para alcançar os níveis desejados de armazenamento de carbono. Para tantas tecnologias e estudos moleculares tem sido usada a fim de indentificar comunidades microbianas e entender a respeito desses grupos. Muitas variáveis afetam o armazenamento de carbono no solo, mas formação dos microagregados limita substancialmente perdas de decomposição. Em grandes escalas (por exemplo, campo de ecossistema), formação dos microagregados depende de inúmeros fatores, incluindo as taxas de carregamento de matéria orgânica, distúrbios mecânicos (por exemplo, lavoura), temperatura e disponibilidade de água. No entanto, os fungos micorrízicos arbusculares e, possivelmente, algumas bactérias, desempenham papéis fundamentais adicionais. Naturalmente, micorrízicos arbusculares também respiram matéria orgânica, e, assim, participam de vários aspectos do ciclo do carbono abaixo do solo. No entanto os detalhes de contribuições dos micorrízicos arbusculares para formação dos microagregados em escalas moleculares não são claras, mas provavelmente envolvem interações entre a matéria orgânica, metais, superfícies minerais e proteínas específicas. A mais importante destas proteínas parece ser glomalina, uma glicoproteína. Os efeitos da glomalina sobre microagregados podem ser devidos de seus impactos sobre a hidratação e a acessibilidade de enzimas hidrolítica resultante para a matéria orgânica, porém é necessário estabelecer mecanismos, para melhor avaliar os controles para compreender os possíveis impactos ambientais da futura variabilidade. Além de glomalina, outras proteínas, tais como a hidrofobinas e Chaplins, também pode ser importante para microagregados de formação. Em contraste com glomalina, hidrofobinas aparecem muito mais difundida na sua distribuição entre os fungos, que ocorrem em vários basidiomicetos e ascomicetes. As hidrofobinas parecem relativamente onipresentes entre os fungos, identificar suas fontes específicas pode ser uma prioridade mais baixa de identificar fontes de glomalina e Chaplins. No entanto, existe uma clara necessidade de determinar o potencial funções e os mecanismos de hidrofobinas em microagregados. Esforço adicional também é necessário para identificar específicas fontes de Chaplins e compreender suas funções e dinâmica. Chaplins são produzidos por estreptomicetos (Domínio Bacteria, filo Actinobactérias), mas detalhes de interações Chaplin com matéria orgânica e

7 microagregados ainda não foi explorado nem se sabe como as suas propriedades variam entre streptomycetes. O que é conhecido é que essas proteínas, em apenas algumas taxas, é que conferem propriedades hidrófobas às superfícies, análogo aos efeitos das hidrofobinas. Enfim, O Seqüestro de carbono da biosfera oferece uma promessa futura na redução de impactos ambientais ocasionada pela emissão de CO2. Percebendo esse potencial, no entanto, exigem uma compreensão mais detalhada dos específicos organismos e mecanismos que podem contribuir para o armazenamento de carbono. Inúmeras questões básicas continuam a ser estudadas. A análise dos genes e as proteínas para as enzimas hidrolíticas, glomalina, hidrofobinas e Chaplins, quando combinada com alto rendimento, sequenciamento e métodos para as diversidades, fornecerá informações cruciais sobre alguns dos mecanismos de sequestro de carbono, mas também deve ser incorporada uma nova geração de modelos desenvolvidos a partir de colaborações de estudiosos das mais diversas áreas. excelente, em particular quanto à profundidade. Meus parabéns 2. [2.000] (IP: :56:21 22:20:56 24: ) Discuta a figura 5.10 em linhas gerais A figura 5.10 fornece uma visão simplificada das condições e fatores que favorecem a formação e a quantidade da matéria orgânica no solo bem como suas influências no solo. A matéria orgânica do solo (MOS) é proveniente da deposição de resíduos vegetais e animais. Sua quantidade e qualidade estão ligadas a influência do clima e manejo que o solo sofre bem como da atuação dos organismos que habitam o solo. A matéria orgânica do solo (MOS) possui uma constituição muito complexa, ela é formada por diversas frações, como a biomassa microbiana e húmus. A matéria orgânica do solo (MOS) é constituída por materiais adicionados, seus produtos de formação, células microbianas, metabólicos microbianos, produtos da sua interação ou com componentes inorgânicos do solo (minerais e argilas) e materiais recalcitrantes, aqueles resistentes à decomposição pelos microrganismos. Os efeitos da matéria orgânica do solo, quanto as características químicas é a disponibilidade de nutrientes para as culturas, a capacidade de troca de cátions e a complexação de elementos tóxicos e micronutrientes, fundamentais em solos tropicais, na sua maioria altamente intemperizados e ácidos. A matéria orgânica é uma fonte fundamental de nutrientes para as plantas, disponibilizando elementos como o N, P e S. A complexação de metais por substâncias húmicas, a diminuição da toxidez de elementos tóxicos e o aumento da disponibilidade de micronutrientes são muito influenciados pela presença de ácidos orgânicos de baixo peso molecular na solução do solo. Quanto aos micronutrientes, a formação de complexos com compostos orgânicos reduz a possibilidade da precipitação como óxidos no solo. Dessa forma, a complexação (quelação) de Zn e Cu, entre outros, por ácidos orgânicos de baixo peso molecular aumenta a sua disponibilidade, pois o quelato torna-se uma forma de depósito desses elementos. A meia-vida muito curta do quelato, decorrente da rápida decomposição do composto orgânico pelos microrganismos, resulta na liberação de forma contínua e gradativa dos micronutrientes para as plantas. A produção permanente de ácidos orgânicos pela atividade microbiana e rizosfera resulta na complexação dos micronutrientes não absorvidos. Fisicamente a matéria orgânica é muito afetada pela agragação do solo, afetando indiretamente as demais características físicas do solo, como a densidade, a porosidade, a aeração, a capacidade de retenção e a infiltração de água, entre outras, que são fundamentais à capacidade produtiva do solo. Quanto as características biológicas a matéria orgânica afeta diretamente, pois a mesma atua como fonte de carbono, energia e nutrientes para os microrganismos quimioheterotróficos e, através da mineralização do N e S orgânico atua como fonte de energia aos microrganismos quimiautotróficos. Esses dois tipos de microrganismos sobressaem em quantidade e importância no solo. O efeito da MO sobre os microrganismos pode ser avaliado a partir da biomassa e atividade microbiana, parâmetros que representam uma integração de efeitos desta sobre as condições biológicas do solo. A relação positiva entre teores de matéria orgânica e a biomassa microbiana pode ser resultante de efeitos diretos e indiretos, devido às diferentes condições de umidade e temperatura, aeração e agregação e conteúdo de nutrientes, tornando o ambiente edáfico mais adequado aos microrganismos. Logo a matéria orgânica do solo é um componente fundamental da capacidade produtiva dos solos, por causa dos seus efeitos sobre a disponibilidade de nutrientes, a capacidade de troca de cátions do solo, a complexação de elementos tóxicos e micronutrientes, a agregação, a infiltração e a retenção de água, a aeração e a atividade e a biomassa microbiana. Portanto podemos concluir que a adoção de sistemas de uso e manejo do solo deve levar em consideração,

8 entre outros aspectos, o seu efeito sobre os teores de matéria orgânica dos solos. excelente 3. [2.000] (IP: :56:45 22:21:39 24: ) Discuta a figura 5.11 em linhas gerais A figura 5.11 mostra as transformações que ocorrem na matéria orgânica do solo e a formação das frações das substâncias húmicas no solo. De acordo com a figura podemos observar que o processo de formação das substâncias húmicas pode ocorrer de duas formas. A primeira forma é quando a matéria orgânica (componentes solúveis e oxidáveis) e o material vegetal e animal do solo (celulose, hemicelulose, amido, açúcares e outros), de fácil decomposição, são decompostos através da biomassa microbiana gerando os (componentes celulares metabólitos e subprodutos) o qual irá compor parte dessas substâncias húmicas. A segunda forma é quando os materiais não decompostos pela microbiomassa do solo (como ligninas, ceras, gorduras, componentes recalcitrantes e bases nitrogenadas) se acumulam e acabam compondo parte do húmus. Por sua vez, as substâncias húmicas podem ser separadas em três frações de acordo com a sua solubilidade relativa em álcali e ácidos: ácidos fúlvicos (solúveis em base e em ácidos, são menos estável, portanto mais fácil de se decompor), ácido húmico (solúvel apenas em base) e humina (insolúvel em ácido e base, é mais estável, logo mais difícil de se decompor). As setas da figura indicam que a humina apresenta uma maior estabilidade química, enquanto que os ácidos fúlvicos apresentam uma maior reatividade no solo. Enfim, o húmus pode ser considerado um subproduto das transformações que os materiais orgânicos sofrem no solo, não apresentando substâncias químicas específicas, mas sim um estado indefinido e confuso da matéria orgânica. ok 4. [2.000] (IP: :57:05 22:22:11 25: ) Dentre os três métodos principais para avaliação da decomposição, qual o que provavelmente seria mais útil para previsão da liberação de nutrientes pela serrapilheira em decomposição? Justifique. Decomposição é a quebra do material orgânico particulado, geralmente na forma de polímeros, em materiais solúveis que são absorvidos pelas células microbianas. Sendo assim a decomposição é um processo complexo, dificultando a sua avaliação; a velocidade do processo pode ser medida através de três métodos principais, são eles: 1- quantidade de carbono evoluída como CO2 (C-CO2); 2- estimativa da biomassa formada com base na eficiência de conversão microbiológica dos substratos em decomposição; 3- empregando-se os modelos cinéticos de decomposição. Para a previsão da liberação de nutrientes pela serrapilheira em decomposição o método mais útil é o método de bolsas de decomposição, empregando os modelos cinéticos de decomposição, pois este método é capaz de determinar os nutrientes no início, além disso é possível determinar as curvas de liberação para cada nutriente desejado. já estava achando que não ia responder à pergunta. Só para esclarecer uma coisa, o uso do litter bag é independente e precede a definição de modelos cinéticos (também conhecidos como regressões não-lineares) descrevendo a decomposição, e na realidade são usados para gerar os dados que fundamentam as estimativas dos parâmetros dos modelos 5. [2.000] (IP: :57:33 22:22:58 25: ) Discuta a seguinte afirmativa: A matéria orgânica do solo pode ser considerada como formada por vários compartimentos completamente distintos entre si. Os compartimentos que formam a matéria orgânica são denominações distintas que representam frações semelhantes, sem levar em conta características químicas. As características comportamentais da matéria

9 orgânica está relacionada à diversidade de seus componentes e as suas vias de transformação e de estabilização. Esta diversidade de critérios utilizados induz a definição de compartimentos que são operacionais (frações obtidas por métodos químicos e/ou físicos) e funcionais (compartimentos com diferentes tempos de permanência no solo). A matéria orgânica pode ser dividida em uma fração lábil (ativa) e uma fração estável (passiva, humificada). A fração lábil é composta por resíduos de plantas e de animais e seus produtos primários de decomposição e pela biomassa microbiana. Estes compostos decompõem em semanas a meses e servem de fonte de nutrientes às plantas e de energia e C aos microorganismos do solo. Esta fração responde rapidamente às mudanças no uso e manejo do solo e pode ser usada como indicador da tendência do manejo à sustentabilidade ou à degradação. Enquanto que a fração estável é composta por substâncias húmicas e outras macromoléculas orgânicas resistentes ao ataque microbiano, devido a sua proteção química pela associação às superfícies minerais, ou pela localização no interior de agregados, em poros inacessíveis aos microorganismos. Estas estruturas complexas possuem alto grau de polimerização, alta reatividade de superfície e elevado peso molecular. Possuem maior tempo de permanência no solo. Pela sua ciclagem mais lenta, atuam como reservatório de nutrientes e na estabilização de agregados. Contudo a compartimentalização não corresponde á situação real da matéria orgânica, pois as divisões são artificiais, enquanto que o sistema natural funciona como um conjunto, isto é, a compartimentalização é utilizada em aspectos práticos para facilitar a aplicação dos modelos matemáticos ao estudo da matéria orgânica do solo. excelente pelo último parágrafo, que acerta na mosca, enquanto o que vem antes está perfeitamente certo também, mas não tem relação direta com a pergunta. 1. [2.000] (IP: :18:54 21:50:46 31: ) Resuma e discuta o artigo desta semana de modo a permitir um bom entendimento do mesmo por um leitor que não o leia. O artigo discute que o consumo de combustíveis fósseis e a perda de biomassa e de matéria orgânica do solo a partir de modificações de uso da terra e práticas agrícolas aumentaram substancialmente as reservas de CO2 atmosférico. Diversas opções para reduzir os impactos de gases de estufa têm sido propostas. Alguns, incluindo aqueles conhecidos como geoengenharia, que consiste em seqüestrar carbono na geosfera, oceanos e biosfera. O sequestro de carbono (processo de redução das emissões de CO2 para a atmosfera) terrestre representa uma importante opção para diminuir parcialmente as emissões de CO2 antropogênico, sendo potencialmente barato. O potencial para o armazenamento de carbono no solo depende de inúmeras variáveis, incluindo as capacidades intrínsecas de armazenamento s que refletem as propriedades físicas e químicas. Mudanças no armazenamento refletem perda devido a processos físicos (como erosão e transporte) e as diferenças entre as taxas de entradas de plantas e mineralização de matéria orgânica, que são ambos complexos processos dinâmicos controlados por vários fatores. Uma maior compreensão da biologia e ecologia microbiana pode contribuir para o sucesso da gestão de carbono. A formação de microagregados limita perdas de decomposição, e em grandes escalas a formação desses depende de fatores como distúrbios mecânicos e temperatura. Fungos micorrízicos arbusculares (participam da ciclagem do carbono) e, possivelmente, algumas bactérias, desempenham papéis adicionais fundamentais. Cita-se como uma importante proteína a glomalina (glicoproteína), sendo uma proteína de choque térmico. Os efeitos da glomalina em microagregados pode ter efeitos sobre a hidratação (penetração da água e hidrofobicidade) e a acessibilidade resultante de enzimas hidrolíticas à matéria orgânica. Também foi argumentado que o grau de estabilização fúngica da matéria orgânica subterrânea possa aumentar devido ao aumento futuro do CO2 atmosférico que poderá variar consideravelmente entre os sistemas. Além da glomalina, outras proteínas, como a hidrofobina (ocorre em basidiomicetos e ascomicetos) também pode ser importante para a formação de microagregados. As hidrofobinas desempenham papéis importantes na formação de micélio, alteram a hidrofobicidade dos esporos, superfícies celulares, entre outros. A manipulação das interações plantasfúngicos pode levar a ganhos adicionais no sequestro. Evidências sugerem que o ecossistema terrestre possa ser gerido para o sequestro de carbono, mas não é determinado até que ponto os micróbios dentro deles podem ser manipulados. Ainda é incerto se o que é mais importante para o sequestro de carbono, seja o limitado potencial genético de um pequeno número de filotipos comuns ou a maior diversidade genética de filotipos individualmente raras, mas coletivamente abundante. As previsões de dinâmica da matéria orgânica

10 e armazenamento de carbono são ainda mais restringidas pelas respostas de plantas e micróbios pelo CO2 elevado, tais respostas dependem de interações entre CO2 e outras variáveis, como o aumento do ozônio troposférico pode diminuir a produtividade vegetal. De acordo com o artigo, em alguns sistemas de vegetação, o CO2 elevado poderia levar a melhores taxas de ciclagem de carbono, incluindo mudanças na alocação de carbono acima e abaixo do solo. São necessárias abordagens que vão desde a área molecular a escalas de ecossistemas através da observação e experimentação para a compreensão de como as comunidades microbianas respondem sobre grande escalas espaciais e temporais. O crescente reconhecimento de que os micróbios produzem proteínas que limitam a degradação da matéria orgânica sugere objetivos para pesquisa. Manipular diretamente os micróbios para seqüestrar CO2 através de outros processos, tais como formação de minerais oferece alternativas interessantes que merecem mais atenção. ok, mas cairia bem destacar a grande diferença entre a geoengenharia, mais adequada para problemas pontuais, e os caminhos biológicos, mais adequados para fontes difusas, como transporte ou agricultura 2. [1.000] (IP: :59:23 22:17:34 18: ) Porque discutimos mais a relação C/N do que a C/P quando pensamos em qualidade da serrapilhiera? A relação C/N é a relação que controla o balanço entre os processos de mineralização e imobilização de N (processos que ocorrem ao mesmo tempo no solo, podendo ocorrer a morte de microrganismos durante o processo de decomposição). A eficiência de utilização de nutrientes pode ser calculada por meio da relação entre a biomassa da serapilheira produzida e a quantidade de nutrientes transferidos por esta fração. Dessa forma, a relação C/N é mais discutida do que a relação C/P, pois a relação favorável para decomposição microbiana está entre 10-30:1, sendo menor do que a relação C/P, entre :1, já que os microrganismos necessitam de pouca quantidade de fósforo em comparação a carbono. Materiais com relação C/N muito alta não são tão aproveitados pelos organismos quando nenhuma fonte de nitrogênio está disponível. a definição está meio circular, e não toca bem na diferença entre os dois. O ponto é que na maioria das condições a relação C:P vai estar mais próxima do ideal do que a C:N 3. [2.000] (IP: :59:33 21:51:14 51: ) Discuta a figura 5.10 em linhas gerais A figura representa de maneira geral, os possíveis efeitos envolvendo solo e planta, os fatores e as condições que favorecem a quantidade e composição da matéria orgânica do solo (MOS). A MOS (viva ou morta, formada pela deposição de restos vegetais e animais) tem constituição e origem complexa, sendo constituída por material adicionado, células microbianas, seus produtos de transformação, produtos de sua interação ou componentes inorgânicos do solo minerais e argilas, metabólitos microbianos, além de materiais recalcitrantes (resistentes à decomposição pelos microrganismos), e é influenciada pelo clima e manejo. É o maior reservatório de carbono da superfície terrestre, e composta por fatores como clima, manejo e vegetação que a determinam. A matéria orgânica do solo (MOS) é componente fundamental nos processos químicos (aumenta a capacidade de retenção de nutrientes e sua disponibilidade, retenção de cátions no solo), físicos (como retenção de umidade, retenção à erosão, penetração de raízes) e biológicos de ecossistemas terrestres (como a qualidade e quantidade de biomassa microbiana presentes no solo). A MOS possui grande importância na maior permeabilidade da água, ar formando agregados, aumento da capacidade de retenção de água, aumento da capacidade de troca de cátions e ânions, fornecimento de macroelementos e microelementos, efeito tampão (através do controle do ph), além de produzir substâncias ativadoras e inibidoras do crescimento de microrganismos, sendo a deterioração da matéria orgânica do solo realizada pelos microrganismos, estimulantes para o crescimento da planta.. Em relação aos efeitos às propriedades físicas pela matéria orgânica (fornece nutrientes às plantas nitrogênio e fósforo), a principal é agregação, uma vez que atua como um ligante na sua formação, devido ao número de cargas presentes no solo. Com isso, também sofrem efeito porosidade, aeração, entre outros. Já com relação às propriedades químicas, diversos nutrientes possuem interação com a matéria orgânica influenciando a adesão e ciclagem de nutrientes, o que evita perda por lixiviação, por exemplo. E com relação às propriedades biológicas, a matéria orgânica é uma fonte de carbono e energia, e os microrganismos são influenciados pelo manejo do solo e alterações do ambiente. ok

11 4. [2.000] (IP: :59:48 21:51:32 51: ) Dentre os três métodos principais para avaliação da decomposição, qual o que provavelmente seria mais útil para previsão da liberação de nutrientes pela serrapilheira em decomposição? Justifique. O método de bolsas de decomposição (litter bags) Esse método é muito utilizado para estimar a perda de biomassa, que pode ser utilizado tanto para serapilheira quanto para outros restos vegetais, onde o material é colocado em sacos ou bolsas feitos de nylon e incorporados ao solo. Através desse método é possível avaliar a decomposição e liberação de nutrientes, e pode ser determinada a curva de liberação de nutrientes, de acordo com o tempo e nutrientes utilizados. ok, embora muito sucinto para a quantidade de informações que existe sobre este método 5. [2.000] (IP: :00:34 22:20:49 20: ) Discuta a figura 5.21 e suas implicações na disponibilidade de nutrientes, e no uso de adubação verde. A figura apresenta um gráfico referente à resposta da microbiota e dinâmica de processos da mineralização de resíduos orgânicos com relação aos nutrientes disponíveis no solo. Inicialmente o solo está em equilíbrio, até que ocorre adição de um resíduo orgânico ao solo e assim, a população microbiana é estimulada, uma vez que foi adicionado carbono oxidável, aumentando a demanda de nutrientes pela microbiota decompositora. Também aumenta a taxa de liberação de CO2 do solo, e os nutrientes são absorvidos em grande quantidade, sendo imobilizados na nova biomassa. Pode ocorrer esgotamento do nitrogênio se a relação C:N é alta, sendo maior que 30, ou liberação do elemento mineralizado, se o resíduo tiver relação C:N for baixa, sendo menor que 20, dependendo da relação C:N do material que foi adicionado. Além disso, quando o carbono é liberado, como dióxido de carbono, a concentração relativa de nitrogênio no material que restou aumenta, reduzindo aa relação C:N. Conforme o resíduo é mineralizado, a relação C:N cai, até que o material possa estar em uma fase avançada de processo de formação húmus, caindo a taxa de liberação de CO2, e dos nutrientes presentes no material inicialmente depositado, tornando-se disponível e fornecendo uma maior quantidade de nutrientes ao solo. A mineralização e a decomposição da matéria orgânica do solo são influenciadas pelas intervenções que ocorrem no solo, que modificam a estrutura e atividade microbiana, podendo influenciar na ciclagem dos nutrientes e da matéria orgânica. Com relação à utilização do adubo verde (incorpora ao solo resíduos de leguminosas), este mineraliza rapidamente e libera nutrientes, fornecendo nitrogênio. ok

UNIVERSIDADE FEDERAL DO ACRE

UNIVERSIDADE FEDERAL DO ACRE UNIVERSIDADE FEDERAL DO ACRE DOCENTE: Dr. José Ribamar Silva Conceituação: D MATÉRIA ORGÂNICA. Todo material de origem vegetal ou animal que se encontre no solo independentemente de seu estado de decomposição.

Leia mais

MATÉRIA ORGÂNICA DO SOLO (MOS) Fertilidade do Solo Prof. Josinaldo

MATÉRIA ORGÂNICA DO SOLO (MOS) Fertilidade do Solo Prof. Josinaldo MATÉRIA ORGÂNICA DO SOLO (MOS) Fertilidade do Solo Prof. Josinaldo 1 ASPECTOS GERAIS - MOS todos os compostos orgânicos do solo - Influência os atributos do solo - Teor no solo amplamente variável (0,5

Leia mais

MATÉRIA ORGÂNICA DO SOLO (MOS) Fertilidade do Solo Prof. Josinaldo

MATÉRIA ORGÂNICA DO SOLO (MOS) Fertilidade do Solo Prof. Josinaldo MATÉRIA ORGÂNICA DO SOLO (MOS) Fertilidade do Solo Prof. Josinaldo Solo (pedosfera) como sistema integrador das quatro esferas fundamentais da terra 1 ASPECTOS GERAIS - MOS todos os compostos orgânicos

Leia mais

Matéria Orgânica do Solo. Everlon Cid Rigobelo

Matéria Orgânica do Solo. Everlon Cid Rigobelo Matéria Orgânica do Solo Everlon Cid Rigobelo 1 Solo receptáculo final Recebedor Resíduos orgânicos de origem Vegetal, animal Produtos de suas transformações 2 Solo receptáculo final Vegetação Responsável

Leia mais

CICLOS BIOGEOQUÍMICOS

CICLOS BIOGEOQUÍMICOS CICLOS BIOGEOQUÍMICOS É o trânsito da matéria entre o meio físico e os seres vivos. Quando os organismos vivos realizam os processos vitais essenciais, eles incorporam moléculas de água, carbono, nitrogênio

Leia mais

Uniersidade Federal de Santa Maria Centro de Ciências Rurais Departamento de Solos. Matéria orgânica do solo

Uniersidade Federal de Santa Maria Centro de Ciências Rurais Departamento de Solos. Matéria orgânica do solo Uniersidade Federal de Santa Maria Centro de Ciências Rurais Departamento de Solos Matéria orgânica do solo Definições e caracterização da MO Material orgânico todo o tipo de material de origem orgânica,

Leia mais

O SOLO COMO F0RNECEDOR DE NUTRIENTES

O SOLO COMO F0RNECEDOR DE NUTRIENTES O SOLO COMO F0RNECEDOR DE NUTRIENTES LIQUIDA (SOLUÇÃO DO SOLO) ÍONS INORGÂNICOS E ORGÂNICOS/MICROPOROS SÓLIDA - RESERVATORIO DE NUTRIENTES - SUPERFÍCIE QUE REGULA A CONCENTRAÇÃO DOS ELEMENTOS NA SOLUÇÃO

Leia mais

APRESENTAÇÃO: FERTILIZANTE TERRAPLANT

APRESENTAÇÃO: FERTILIZANTE TERRAPLANT APRESENTAÇÃO: FERTILIZANTE TERRAPLANT DESCRIÇÃO DO PRODUTO Fertilizante proveniente de cama de aviário; Fonte de macro e micro nutrientes; Fonte excepcional de matéria orgânica. DESCRIÇÃO DO PRODUTO Para

Leia mais

Ciclos Biogeoquímicos

Ciclos Biogeoquímicos Ciclos Biogeoquímicos Matéria orgânica: são os restos dos seres vivos. É composta essencialmente de compostos de carbono. Decompositores: são responsáveis pela degradação da matéria orgânica e favorecem

Leia mais

Fatores de Formação de Solos

Fatores de Formação de Solos Fatores de Formação de Solos De onde vem o solo? O solo resulta da ação simultânea do clima e organismos que atuam sobre um material de origem (rocha), que ocupa determinada paisagem ou relevo, durante

Leia mais

O SOLO E SUA COMPOSIÇÃO. O gráfico abaixo mostra a composição física média de um solo com boas condições de cultivo (% do volume).

O SOLO E SUA COMPOSIÇÃO. O gráfico abaixo mostra a composição física média de um solo com boas condições de cultivo (% do volume). O SOLO E SUA COMPOSIÇÃO O gráfico abaixo mostra a composição física média de um solo com boas condições de cultivo (% do volume). Composição Volumétrica de um solo com boas condições Solos Tropicais Cultivados

Leia mais

INTRODUÇÃO. Na natureza nada se cria, nada se perde, tudo se transforma. Antoine de Lavoisier

INTRODUÇÃO. Na natureza nada se cria, nada se perde, tudo se transforma. Antoine de Lavoisier INTRODUÇÃO Na natureza nada se cria, nada se perde, tudo se transforma. Antoine de Lavoisier Transferência de elementos químicos entre os seres vivos e o ambiente. Ciclo da Água Ciclo do Oxigênio Ciclo

Leia mais

FACULDADE VÉRTICE CURSO AGRONOMIA MICROBIOLOGIA DO SOLO TEMAS: BIOTA E AGREGAÇÃO DO SOLO E OS PRINCIPAIS MICROORGANISMOS DE IMPORTÂNCIA AGRÍCOLA

FACULDADE VÉRTICE CURSO AGRONOMIA MICROBIOLOGIA DO SOLO TEMAS: BIOTA E AGREGAÇÃO DO SOLO E OS PRINCIPAIS MICROORGANISMOS DE IMPORTÂNCIA AGRÍCOLA FACULDADE VÉRTICE CURSO AGRONOMIA MICROBIOLOGIA DO SOLO TEMAS: BIOTA E AGREGAÇÃO DO SOLO E OS PRINCIPAIS MICROORGANISMOS DE IMPORTÂNCIA AGRÍCOLA PROFESSORA: MARIA LITA P. CORREA EVOLUÇÃO DO SOLOS Cianob,

Leia mais

Ciclos Biogeoquímicos

Ciclos Biogeoquímicos Ciclos Biogeoquímicos DEFINIÇÃO Trata-se de movimentos cíclicos que envolvem elementos químicos presentes no meio biológico e o ambiente geológico; Elementos que são necessários ao desenvolvimento dos

Leia mais

BIOSFERA E SEUS ECOSSISTEMAS Cap.2

BIOSFERA E SEUS ECOSSISTEMAS Cap.2 BIOSFERA E SEUS ECOSSISTEMAS Cap.2 Conceitos Básicos ECOLOGIA Oikos =casa; logos= ciência É a ciência que estuda as relações entre os seres vivos entre si e com o ambiente onde eles vivem Estuda as formas

Leia mais

Photo gmeducation.org. Carbono como indicador

Photo gmeducation.org. Carbono como indicador Photo gmeducation.org Carbono como indicador Emissão Importância do solo no ciclo global do C Pg Atmosfera 750 + Vegetação 470-655 Solo (0-30cm) ~800 Solo (1m) 1500-2000 Valores em Gt de C (1Gt = 10 9

Leia mais

GEOGRAFIA. Prof. Daniel San.

GEOGRAFIA. Prof. Daniel San. GEOGRAFIA Prof. Daniel San daniel.san@lasalle.org.br SOLOS Solo é o substrato onde os seres humanos constroem suas vidas, por sobre a astenosfera (Crosta), abaixo da atmosfera. O solo é produto da intemperização

Leia mais

Tópico I - Composição da atmosfera da Terra. Notas de aula de Meteorologia Ambiental Profa. Maria de Fatima Andrade

Tópico I - Composição da atmosfera da Terra. Notas de aula de Meteorologia Ambiental Profa. Maria de Fatima Andrade Tópico I - Composição da atmosfera da Terra Notas de aula de Meteorologia Ambiental 2014 Profa. Maria de Fatima Andrade A composição da atmosfera da Terra é o resultado de vários processos que ocorreram

Leia mais

Solo características gerais. Definição: solo = f(rocha+ clima + relevo+biota)

Solo características gerais. Definição: solo = f(rocha+ clima + relevo+biota) Solo características gerais Definição: solo = f(rocha+ clima + relevo+biota) Constituintes do solo a matéria mineral a matéria orgânica, a água o ar 45% minerais 5% 20% ar 30% água Propriedades físico-químicas

Leia mais

Fatores de Formação do Solo

Fatores de Formação do Solo Clima Forma ativa e diferencial de atuação na formação do solo; Rochas iguais + condições climáticas diferentes = solos diferentes Rochas diferentes + condições climáticas iguais = solos iguais Sheila

Leia mais

Matéria Orgânica do solo (m.o.s)

Matéria Orgânica do solo (m.o.s) Matéria Orgânica do solo (m.o.s) Objetivos Proporcionar conhecimentos básicos sobre a origem e dinâmica da m.o. do solo; Conhecer suas características e propriedades; Discutir como algumas propriedades

Leia mais

Exercitando Ciências Tema: Solos. Esta lista de exercícios aborda o conteúdo curricular Solos Origem e Tipos de solos.

Exercitando Ciências Tema: Solos. Esta lista de exercícios aborda o conteúdo curricular Solos Origem e Tipos de solos. Exercitando Ciências Tema: Solos Esta lista de exercícios aborda o conteúdo curricular Solos Origem e Tipos de solos. 1. O solo é um componente terrestre essencial para os seres vivos e também para a realização

Leia mais

CIÊNCIAS DO AMBIENTE E ECOLOGIA

CIÊNCIAS DO AMBIENTE E ECOLOGIA CIÊNCIAS DO AMBIENTE E ECOLOGIA CIÊNCIAS DO AMBIENTE E ECOLOGIA INTRODUÇÃO E CONCEITOS DE ECOLOGIA: A CRISE AMBIENTAL, CONCEITOS BÁSICOS EM ECOLOGIA, FATORES LIMITANTES. DINÂMICA POPULACIONAL: CONCEITOS,

Leia mais

Eco new farmers. Módulo 2 Solos e nutrientes vegetais. Sessão 2 O sistema planta/solo

Eco new farmers. Módulo 2 Solos e nutrientes vegetais. Sessão 2 O sistema planta/solo Eco new farmers Módulo 2 Solos e nutrientes vegetais Sessão 2 O sistema planta/solo Module 2 Solos e Nutrientes Vegetais Sessão 2 O sistema planta/solo www.econewfarmers.eu 1. Introdução Combinar a disponibilidade

Leia mais

Matéria Orgânica do Solo e utilização de resíduos na agricultura

Matéria Orgânica do Solo e utilização de resíduos na agricultura Matéria Orgânica do Solo e utilização de resíduos na agricultura R O T E I R O - COMPOSIÇÃO DO SOLO - MATÉRIA ORGÂNICA DO SOLO (MOS) - IMPORTÂNCIA DA MOS - DECOMPOSIÇÃO/DEGRADAÇÃO DA MOS - ADIÇÃO DE MAT.

Leia mais

Prof. Everlon Cid Rigobelo. Ecologia do Solo

Prof. Everlon Cid Rigobelo. Ecologia do Solo Prof. Everlon Cid Rigobelo Ecologia do Solo Ecologia do Solo Ubiquidade dos micro-organismos Versatilidade metabólica Tolerância às condições ambientais adversas Fácil dispersão Características intrínsecas

Leia mais

Na natureza nada se cria, nada se perde, tudo se transforma. Antoine de Lavoisier

Na natureza nada se cria, nada se perde, tudo se transforma. Antoine de Lavoisier Na natureza nada se cria, nada se perde, tudo se transforma. Antoine de Lavoisier Transferência de elementos químicos entre os seres vivos e o ambiente. Ciclo da Água Ciclo do Oxigênio Ciclo do Fósforo

Leia mais

Propriedades Químicas

Propriedades Químicas Propriedades Químicas Fertilidade 1. Armazenar micro e macro nutrientes em moléculas estáveis no solo 2. Disponibilização desses nutrientes às plantas 3. ph 4. Depende da composição mineral e orgânica

Leia mais

Fluxos de Energia e de Materiais nos Ecossistemas

Fluxos de Energia e de Materiais nos Ecossistemas Fluxos de Energia e de Materiais nos Ecossistemas Uma vez que o fluxo de materiais é um fluxo cíclico nos ecossistemas, é possível analisar estes fluxos usando as técnicas de balanço de materiais: [Taxa

Leia mais

Bioindicadores de Qualidade do Solo. Simone Cristina Braga Bertini

Bioindicadores de Qualidade do Solo. Simone Cristina Braga Bertini Bioindicadores de Qualidade do Solo Simone Cristina Braga Bertini Degradação do solo Degradação dos solos (40% das terras cultivadas) Uso intenso do solo (manejo intensivo, monocultura, pesticidas e fertilizantes)

Leia mais

Ciclos em escala global, de elementos ou substâncias químicas que necessariamente contam com a participação de seres vivos.

Ciclos em escala global, de elementos ou substâncias químicas que necessariamente contam com a participação de seres vivos. Ciclos em escala global, de elementos ou substâncias químicas que necessariamente contam com a participação de seres vivos. Principais ciclos: Água Carbono Nitrogênio Mais abundante componente dos seres

Leia mais

NITROGÊNIO. Universidade Estadual Paulista Júlio de Mesquita Filho Campus Experimental de Dracena Faculdade de Zootecnia

NITROGÊNIO. Universidade Estadual Paulista Júlio de Mesquita Filho Campus Experimental de Dracena Faculdade de Zootecnia Universidade Estadual Paulista Júlio de Mesquita Filho Campus Experimental de Dracena Faculdade de Zootecnia NITROGÊNIO Curso : Zootecnia Disciplina: Fertilidade do Solo e Fertilizantes Prof. Dr. Reges

Leia mais

CALAGEM COMPACTA O SOLO? FATOS E HIPÓTESES

CALAGEM COMPACTA O SOLO? FATOS E HIPÓTESES DIAGNOSE NUTRICIONAL, FISIOLOGIA E ADUBAÇÃO PARA ALTA PRODUTIVIDADE DE MILHO E SOJA Julho 2001 CALAGEM COMPACTA O SOLO? FATOS E HIPÓTESES José Eloir Denardin Rainoldo Alberto Kochhann Norimar D'Ávila Denardin

Leia mais

A aplicação do composto Ferti Trás-os-Montes nas culturas dominantes na região

A aplicação do composto Ferti Trás-os-Montes nas culturas dominantes na região A aplicação do composto Ferti Trás-os-Montes nas culturas dominantes na região Manuel Ângelo Rodrigues Centro de Investigação de Montanha, ESA, Instituto Politécnico de Bragança Matéria orgânica Conjunto

Leia mais

8/14/2011. Conceito de solos. Levantamentos de solos. Processos pedogenéticos. Fatores pedogenéticos

8/14/2011. Conceito de solos. Levantamentos de solos. Processos pedogenéticos. Fatores pedogenéticos O SOLO NOS ECOSSISTEMAS (FLORESTAIS) Prof. J.Miguel Reichert (Prof. Ricardo Dalmolin) 1. O solo nos ecossistemas florestais 1.1. Funções gerais e ambientais do solo 1.2. O solo florestal Conceito de solos

Leia mais

Manejo da adubação nitrogenada na cultura do milho

Manejo da adubação nitrogenada na cultura do milho Manejo da adubação nitrogenada na cultura do milho Atualmente, pode-se dizer que um dos aspectos mais importantes no manejo da adubação nitrogenada na cultura do milho refere-se à época de aplicação e

Leia mais

1) Introdução CONCEITO:

1) Introdução CONCEITO: Rafael Montanari SOLOS 1) Introdução CONCEITO: Coleção de corpos naturais, constituido por partes sólidas, líquidas e gasosas, tridimensionais, dinâmicos. Formado por partes minerais e orgânicas, ocupando

Leia mais

Sedimentos Límnicos 15/06/2015. Disciplina: Limnologia Docente: Elisabete L. Nascimento. Integrantes: Gabriel Jussara Natalia Nilza Solange

Sedimentos Límnicos 15/06/2015. Disciplina: Limnologia Docente: Elisabete L. Nascimento. Integrantes: Gabriel Jussara Natalia Nilza Solange Sedimentos Límnicos 1 Autores: Francisco de Assis Esteves e Antônio Fernando Monteiro Camargo. Capítulo 19 Universidade Federal de Rondônia UNIR. 2 Disciplina: Limnologia Docente: Elisabete L. Nascimento

Leia mais

DECOMPOSIÇÃO DE RESÍDUOS DE PALHA DE MILHO, AVEIA E NABO FORRAGEIRO EM SISTEMA CONVENCIONAL E PLANTIO DIRETO

DECOMPOSIÇÃO DE RESÍDUOS DE PALHA DE MILHO, AVEIA E NABO FORRAGEIRO EM SISTEMA CONVENCIONAL E PLANTIO DIRETO DECOMPOSIÇÃO DE RESÍDUOS DE PALHA DE MILHO, AVEIA E NABO FORRAGEIRO EM SISTEMA CONVENCIONAL E PLANTIO DIRETO Rogerio Klein 1, Marcos Paulo Zambiazi 1, Joel Hennecka 1, Danilo Pavan 1, Neuri Antônio Feldmann

Leia mais

FERTILIDADE E MANEJO DE SOLOS. Prof. Iane Barroncas Gomes Engenheira Florestal

FERTILIDADE E MANEJO DE SOLOS. Prof. Iane Barroncas Gomes Engenheira Florestal FERTILIDADE E MANEJO DE SOLOS Prof. Iane Barroncas Gomes Engenheira Florestal CONTEÚDO Conceito e origem da matéria orgânica Composição e frações da matéria orgânica Funções da matéria orgânica no solo

Leia mais

Ciclos Biogeoquímicos Luciana Ramalho 2015

Ciclos Biogeoquímicos Luciana Ramalho 2015 Ciclos Biogeoquímicos Luciana Ramalho 2015 Ciclos biogeoquímicos Conceito: É o trajeto das substâncias do ambiente abiótico para biótico e o seu retorno ao mundo abiótico. Há um movimento cíclico de elementos

Leia mais

Ensaio de aceleração de compostagem de resíduos de podas de árvores urbanas através da adição de RINENBAC.

Ensaio de aceleração de compostagem de resíduos de podas de árvores urbanas através da adição de RINENBAC. Ensaio de aceleração de compostagem de resíduos de podas de árvores urbanas através da adição de RINENBAC. INFORMAÇÕES: Definições e Descrições do processo de compostagem: A compostagem é considerada um

Leia mais

Ciclos Biogeoquímicos

Ciclos Biogeoquímicos Ciclos Biogeoquímicos CICLOS BIOGEOQUÍMICOS Ciclos: troca e circulação de matéria entre os fatores bióticos e abióticos. Bio: síntese orgânica e decomposição dos elementos. Geo: o meio terrestre (solo)

Leia mais

BIOLOGIA. Ecologia e ciências ambientais. Ciclos biogeoquímicos Parte 2. Professor: Alex Santos

BIOLOGIA. Ecologia e ciências ambientais. Ciclos biogeoquímicos Parte 2. Professor: Alex Santos BIOLOGIA Ecologia e ciências ambientais Parte 2 Professor: Alex Santos Tópicos em abordagem: Parte 1 Introdução a biogeoquímica e ciclo do carbono: I Características gerais do nitrogênio II Ciclo do nitrogênio

Leia mais

School name first row second row third row

School name first row second row third row Test Results surname name user points Galdino Adeneide acg 8.000 ( 80%) test: Matéria Orgânica do Solo start time: 2010-05-13 15:09:01 end time: 2010-05-13 15:13:48 time: 00:04:47 test time [min]: 60000

Leia mais

SUMÁRIO. Capítulo 1 ESCOPO DA FERTILIDADE DO SOLO... 1

SUMÁRIO. Capítulo 1 ESCOPO DA FERTILIDADE DO SOLO... 1 SUMÁRIO Capítulo 1 ESCOPO DA FERTILIDADE DO SOLO... 1 1.1 Considerações gerais... 1 1.1.1 Importância da fertilidade do solo... 2 1.1.2 Relação com outras disciplinas... 3 1.1.3 Importância do método científico...

Leia mais

BIOLOGIA. Ecologia e ciências ambientais. Ciclos biogeoquímicos Parte 1. Professor: Alex Santos

BIOLOGIA. Ecologia e ciências ambientais. Ciclos biogeoquímicos Parte 1. Professor: Alex Santos BIOLOGIA Ecologia e ciências ambientais Parte 1 Professor: Alex Santos Tópicos em abordagem: Parte 1 Introdução a biogeoquímica e ciclo do carbono: I Características gerais dos ciclos biogeoquímicos II

Leia mais

Matriz de Referência da área de Ciências da Natureza II Ensino Fundamental

Matriz de Referência da área de Ciências da Natureza II Ensino Fundamental Matriz de Referência da área de Ciências da Natureza II Ensino Fundamental C1 Reconhecer a ciência como atividade humana que fundamenta os processos de construção e aplicação do conhecimento científico.

Leia mais

Degradação Bioquímica

Degradação Bioquímica Degradação de Polímeros e Corrosão Prof. Hamilton Viana Prof. Renato Altobelli Antunes 1. Introdução A degradação dos polímeros pode acontecer: Em presença de microorganismos (Biodegradação) Na ausência

Leia mais

Preparo convencional e Preparo reduzido do solo. Prof. Dr. Amauri N. Beutler

Preparo convencional e Preparo reduzido do solo. Prof. Dr. Amauri N. Beutler Preparo convencional e Preparo reduzido do solo Prof. Dr. Amauri N. Beutler PREPARO CONVENCIONAL Conceito Consiste no preparo do solo com aração ou subsolagens e gradagens (aradora e niveladora), cujos

Leia mais

O PAPEL DA MATÉRIA ORGÂNICA NA FERTILIDADE E CONSERVAÇÃO DOS SOLOS. LUSOFLORA SUSTENTABILIDADE E INOVAÇÃO 23 Fevereiro

O PAPEL DA MATÉRIA ORGÂNICA NA FERTILIDADE E CONSERVAÇÃO DOS SOLOS. LUSOFLORA SUSTENTABILIDADE E INOVAÇÃO 23 Fevereiro O PAPEL DA MATÉRIA ORGÂNICA NA FERTILIDADE E CONSERVAÇÃO DOS SOLOS 23 Fevereiro Aumento da população Alterações climáticas Aumento da produção https://www.jornaldobaixoguadiana.pt Aumento do Consumo alimentos

Leia mais

Troca de materiais entre os componentes bióticos e abióticos dos ecossistemas.

Troca de materiais entre os componentes bióticos e abióticos dos ecossistemas. Troca de materiais entre os componentes bióticos e abióticos dos ecossistemas. CICLO do FÓSFORO CICLO SEDIMENTAR APATITA Ca 3 (PO 4 ) 2 erosão de rochas fosfatadas CICLO RÁPIDO CICLO LENTO PICO DO FÓSFORO

Leia mais

FATORES DE FORMAÇÃO DO SOLO

FATORES DE FORMAÇÃO DO SOLO FATORES DE FORMAÇÃO DO SOLO DEFINIÇÕES DE SOLO Geólogo: Camada de materiais inconsolidados Engenheiro de Minas: material solto sobre o minério que precisa ser removido Engenheiro Civil: matéria-prima para

Leia mais

DESEQUILÍBRIOS EM ECOSSISTEMAS

DESEQUILÍBRIOS EM ECOSSISTEMAS 2º EM Biologia Professor João DESEQUILÍBRIOS EM ECOSSISTEMAS POLUIÇÃO Qualquer alteração nas propriedades físicas, químicas ou biológicas de um ecossistema, ocasionada ou não pela ação humana; Pode ser:

Leia mais

AS RELAÇÕES ENTRE MACRONUTRIENTES E MICRONUTRIENTES E A FERTILIDADE DO SOLO Pedro Lopes Ferlini Salles Orientadora: Marisa Falco Fonseca Garcia

AS RELAÇÕES ENTRE MACRONUTRIENTES E MICRONUTRIENTES E A FERTILIDADE DO SOLO Pedro Lopes Ferlini Salles Orientadora: Marisa Falco Fonseca Garcia AS RELAÇÕES ENTRE MACRONUTRIENTES E MICRONUTRIENTES E A FERTILIDADE DO SOLO Pedro Lopes Ferlini Salles Orientadora: Marisa Falco Fonseca Garcia Coorientador: Flávio Ferlini Salles RELEVÂNCIA O solo é importante

Leia mais

FORMAÇÃO DO SOLO. *Vieira, M. A. RESUMO

FORMAÇÃO DO SOLO. *Vieira, M. A. RESUMO FORMAÇÃO DO SOLO *Vieira, M. A. RESUMO O solo é a superfície inconsolidada, constituído por camadas que diferem pela natureza física, química, biológica e mineralógica. Com a ação de quatro agentes formadores

Leia mais

1. Objetivo. 2. Introdução

1. Objetivo. 2. Introdução MINISTERIO DA EDUCAÇAO UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE QUÍMICA E GEOCIÊNCIAS DEPARTAMENTO DE QUÍMICA ANALÍTICA E INORGÂNICA CURSO DE LICENCIATURA PLENA EM QUÍMICA (1) CURSO DE BACHARELADO

Leia mais

UNIVERSIDADE FEDERAL DO PAMPA TRANSFORMAÇÕES DA MATÉRIA E QUANTIDADES LICENCIATURA EM CIÊNCIAS DA NATUREZA. Uruguaiana, maio de 2016.

UNIVERSIDADE FEDERAL DO PAMPA TRANSFORMAÇÕES DA MATÉRIA E QUANTIDADES LICENCIATURA EM CIÊNCIAS DA NATUREZA. Uruguaiana, maio de 2016. UNIVERSIDADE FEDERAL DO PAMPA TRANSFORMAÇÕES DA MATÉRIA E QUANTIDADES LICENCIATURA EM CIÊNCIAS DA NATUREZA CICLOS BIOGEOQUÍMICOS Uruguaiana, maio de 2016. 1 Na natureza nada se cria, nada se perde, tudo

Leia mais

Ciclos Biogeoquímicos

Ciclos Biogeoquímicos Ciclos Biogeoquímicos Disciplina de Biologia Profa. Daniela Bueno Sudatti Livro 3, Parte III Cap 10.4 O Que é? Circulação de matéria (orgânica e inorgânica) no planeta. BIOSFERA HIDROSFERA ATMOSFERA LITOSFERA

Leia mais

Aula ao vivo de Biologia (22/7/2013) - Problemas Ambientais

Aula ao vivo de Biologia (22/7/2013) - Problemas Ambientais Aula ao vivo de Biologia (22/7/2013) - Problemas Ambientais 1) Um dos grandes problemas da atualidade se reporta às fontes energéticas. A busca de novas alternativas tem sido contínua e todas têm apresentado

Leia mais

O metabolismo microbiano na dinâmica de difusão de gases no solo

O metabolismo microbiano na dinâmica de difusão de gases no solo Universidade Federal de Santa Maria Programa de Pós-Graduação em Ciência do Solo O metabolismo microbiano na dinâmica de difusão de gases no solo Doutorando: Daniel Pazzini Eckhardt Introdução Aeração:

Leia mais

A Terra como um sistema

A Terra como um sistema A Terra como um sistema Subsistemas fundamentais Geosfera Atmosfera Hidrosfera Biosfera Os subsistemas constituintes do sistema Terra são a atmosfera, a hidrosfera, a geosfera e a biosfera, que interagem

Leia mais

Prof. Marcelo Langer. Curso de Biologia. Aula 12 Ecologia

Prof. Marcelo Langer. Curso de Biologia. Aula 12 Ecologia Prof. Marcelo Langer Curso de Biologia Aula 12 Ecologia Fundamental na constituição bioquímica dos organismos vivos. Faz parte das moléculas orgânicas (DNA, RNA, Proteínas, ATP, ADP, vitaminas, clorofila

Leia mais

QUÍMICA ENSINO MÉDIO PROF.ª DARLINDA MONTEIRO 3 ANO PROF.ª YARA GRAÇA

QUÍMICA ENSINO MÉDIO PROF.ª DARLINDA MONTEIRO 3 ANO PROF.ª YARA GRAÇA QUÍMICA 3 ANO PROF.ª YARA GRAÇA ENSINO MÉDIO PROF.ª DARLINDA MONTEIRO CONTEÚDOS E HABILIDADES Unidade I Vida e ambiente 2 CONTEÚDOS E HABILIDADES Aula 6 Conteúdos Efeito estufa. Fontes de energia alternativa.

Leia mais

Apresentação: Jorge Aurélio Macedo Araújo

Apresentação: Jorge Aurélio Macedo Araújo Apresentação: Jorge Aurélio Macedo Araújo COMÉRCIO E REPRESENTAÇÕES LTDA. Fertilizantes Defensivos Sementes CORPA COMERCIO E REPRESENTAÇÕES LTDA. Rua JK, Quadra 08 lote 06 Jardim Paraíso L. E. Magalhães

Leia mais

INTERAÇÃO MICRO-ORGANISMOS E MEIO AMBIENTE - CICLOS BIOGEOQUÍMICOS

INTERAÇÃO MICRO-ORGANISMOS E MEIO AMBIENTE - CICLOS BIOGEOQUÍMICOS INTERAÇÃO MICRO-ORGANISMOS E MEIO AMBIENTE - CICLOS BIOGEOQUÍMICOS Profa. Dra. Vivian C. C. Hyodo 1 Diagrama de produção fotossintética e do consumo orgânico numa floresta, mostrando fontes, fluxos de

Leia mais

Bases conceituais úteis a fertilidade do solo. Prof. Dr. Gustavo Brunetto DS-UFSM

Bases conceituais úteis a fertilidade do solo. Prof. Dr. Gustavo Brunetto DS-UFSM Bases conceituais úteis a fertilidade do solo Prof. Dr. Gustavo Brunetto DS-UFSM brunetto.gustavo@gmail.com Aula 1- Bases conceituais úteis a fertilidade do solo Rendimento e necessidades das culturas

Leia mais

FUNÇÕES MICROBIANAS NOS SOLOS: ciclos biogeoquímicos

FUNÇÕES MICROBIANAS NOS SOLOS: ciclos biogeoquímicos UNIVERSIDADE DE SÃO PAULO Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciência do Solo LSO - 0257 - Fundamentos de Ciência do Solo FUNÇÕES MICROBIANAS NOS SOLOS: ciclos biogeoquímicos

Leia mais

PROJETO URSA UNIDADES RECIRCULAÇÃO SUBPRODUTOS DE ALQUEVA. EDIA - Departamento de Ambiente e Ordenamento do Território David Catita

PROJETO URSA UNIDADES RECIRCULAÇÃO SUBPRODUTOS DE ALQUEVA. EDIA - Departamento de Ambiente e Ordenamento do Território David Catita PROJETO URSA UNIDADES RECIRCULAÇÃO SUBPRODUTOS DE ALQUEVA EDIA - Departamento de Ambiente e Ordenamento do Território David Catita dcatita@edia.pt A IMPORTÂNCIA DA MATÉRIA ORGÂNICA NO SOLO Matéria orgânica;

Leia mais

4 Reciclagem do lodo para utilização final na agricultura

4 Reciclagem do lodo para utilização final na agricultura 24 4 Reciclagem do lodo para utilização final na agricultura A reciclagem agrícola tem proporcionado inúmeros benefícios tanto para o homem quanto a natureza, logo a reciclagem transforma um simples resíduo

Leia mais

Bio. Semana 4. Nelson Paes (Rebeca Khouri)

Bio. Semana 4. Nelson Paes (Rebeca Khouri) Semana 4 Nelson Paes (Rebeca Khouri) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 07/03

Leia mais

INDICADORES DA QUALIDADE DO SOLO EM AGROECOSSISTEMAS

INDICADORES DA QUALIDADE DO SOLO EM AGROECOSSISTEMAS INDICADORES DA QUALIDADE DO SOLO EM AGROECOSSISTEMAS Marx L.N. Silva Apesar da atuação progressiva e contínua dos agentes de formação do solo sobre os mais variados materiais de origens presentes na crosta

Leia mais

Respostas dos Problemas 1- Respostas: C-A-B-C-B-C Conceitos relacionados: fotossíntese e respiração celular

Respostas dos Problemas 1- Respostas: C-A-B-C-B-C Conceitos relacionados: fotossíntese e respiração celular Respostas dos Problemas 1- Respostas: C-A-B-C-B-C Conceitos relacionados: fotossíntese e respiração celular 2- No processo de fabricação do pão é utilizado o mesmo fungo (Saccharomyces Cerevisae) que é

Leia mais

Recursos minerais explorados para a obtenção de um determinado elemento metálico que faz parte da sua constituição.

Recursos minerais explorados para a obtenção de um determinado elemento metálico que faz parte da sua constituição. Recursos minerais explorados para a obtenção de um determinado elemento metálico que faz parte da sua constituição. Ouro Prata Ferro Magnésio Manganês Cobre Exemplos: ouro, prata, cobre, alumínio, ferro,

Leia mais

Melhoria sustentável das condições biológicas, químicas e físicas do solos dos Cerrados

Melhoria sustentável das condições biológicas, químicas e físicas do solos dos Cerrados Melhoria sustentável das condições biológicas, químicas e físicas do solos dos Cerrados Eng. Agr. Nilvo Altmann Sócio Proprietário e Diretor Técnico SIGMA SOLUÇÕES AGRONÔMICAS LTDA FOCO: ROTEIRO DA PALESTRA

Leia mais

Aula 7 PRODUTIVIDADE DOS ECOSSISTEMAS

Aula 7 PRODUTIVIDADE DOS ECOSSISTEMAS PRODUTIVIDADE DOS ECOSSISTEMAS Aula 7 META Apresentar produtividade primária nos ecossistemas terrestres, os fatores limitantes da produtividade e os padrões de produção primária nos ecossistemas aquáticos.

Leia mais

ARMAZENAGEM E EMBALAGEM EM ATMOSFERA CONTROLADA OU MODIFICADA

ARMAZENAGEM E EMBALAGEM EM ATMOSFERA CONTROLADA OU MODIFICADA ARMAZENAGEM E EMBALAGEM EM ATMOSFERA CONTROLADA OU MODIFICADA Atmosfera controlada Uma redução na concentração de oxigênio ou um aumento na de dióxido de carbono na atmosfera de armazenamento de alimentos

Leia mais

Formação do Solo. Luciane Costa de Oliveira

Formação do Solo. Luciane Costa de Oliveira Formação do Solo Luciane Costa de Oliveira Solo É o sustentáculo da vida e todos os organismos terrestres dele dependem direta ou indiretamente. É um corpo natural que demora para nascer, não se reproduz

Leia mais

Clima(s) CLIMAS - SOLOS E AGRICULTURA TROPICAL. Mestrado em Direito à Alimentação e Desenvolvimento Rural UC: Agricultura Tropical.

Clima(s) CLIMAS - SOLOS E AGRICULTURA TROPICAL. Mestrado em Direito à Alimentação e Desenvolvimento Rural UC: Agricultura Tropical. CLIMAS - SOLOS E AGRICULTURA TROPICAL Mestrado em Direito à Alimentação e Desenvolvimento Rural UC: Agricultura Tropical Óscar Crispim Machado (omachado@esac.pt) ESAC, abril de 2012 Clima(s) Aula 5 Zonas

Leia mais

MANEJO DO SOLO PARA O CULTIVO DE HORTALIÇAS

MANEJO DO SOLO PARA O CULTIVO DE HORTALIÇAS MANEJO DO SOLO PARA O CULTIVO DE HORTALIÇAS Vinícius Macedo Msc. em Agroecologia SOLO Ao longo da história da humanidade, o homem sempre conviveu com o solo. No começo, ele apenas colhia os produtos da

Leia mais

LISTA DE EXERCÍCIOS CIÊNCIAS

LISTA DE EXERCÍCIOS CIÊNCIAS LISTA DE EXERCÍCIOS CIÊNCIAS P2-4º BIMESTRE 6º ANO FUNDAMENTAL II Aluno (a): Turno: Turma: Unidade Data: / /2016 HABILIDADES E COMPETÊNCIAS Identificar os principais poluentes atmosféricos; Identificar

Leia mais

CURSO DE AGRONOMIA FERTILIDADE DO SOLO

CURSO DE AGRONOMIA FERTILIDADE DO SOLO CURSO DE AGRONOMIA FERTILIDADE DO SOLO Prof. Leandro Souza da Silva Prof. Carlos Alberto Ceretta Prof. Danilo R. dos Santos Aula 1 Bases conceituais à fertilidade do solo Fertilidade do solo Solo -Sistema

Leia mais

Ciclos biogeoquímicos: P e S

Ciclos biogeoquímicos: P e S UNIVERSIDADE FEDERAL DO PAMPA Ciclos biogeoquímicos: P e S Profª. Renata Canuto de Pinho Ciclo do fósforo O fósforo é essencial para plantas e animais na forma dos íons PO 4 3- e H 2 PO 4- (ortofosfato)

Leia mais

FUNDAMENTOS DE ECOLOGIA. Profa. Dra. Vivian C. C. Hyodo

FUNDAMENTOS DE ECOLOGIA. Profa. Dra. Vivian C. C. Hyodo FUNDAMENTOS DE ECOLOGIA Profa. Dra. Vivian C. C. Hyodo Produtividade primária Energia solar Produtores Fotossíntese Compostos orgânicos Produtividade primária Produtividade bruta quantidade de material

Leia mais

Ciclos biogeoquímicos

Ciclos biogeoquímicos Ciclos biogeoquímicos Conceitos Os elementos químicos essenciais à vida são aproximadamente 40. São incorporados nos seres na forma de compostos orgânicos. - ciclos sedimentares: quando o elemento circula

Leia mais

APRESENTAÇÃO SEMINÁRIO - QUI193 TIPOS DE BIORREMEDIAÇÃO E EXEMPLOS DE APLICAÇÃO EM SOLOS CONTAMINADOS

APRESENTAÇÃO SEMINÁRIO - QUI193 TIPOS DE BIORREMEDIAÇÃO E EXEMPLOS DE APLICAÇÃO EM SOLOS CONTAMINADOS 1 APRESENTAÇÃO SEMINÁRIO - QUI193 TIPOS DE BIORREMEDIAÇÃO E EXEMPLOS DE APLICAÇÃO EM SOLOS CONTAMINADOS INTRODUÇÃO 2 Macau, China O aumento da população levou ao aumento da quantidade de resíduos produzidos;

Leia mais

Manejo do Nitrogênio como percussor de melhoria nas produtividades de Milho

Manejo do Nitrogênio como percussor de melhoria nas produtividades de Milho Manejo do Nitrogênio como percussor de melhoria nas produtividades de Milho Elevadas produtividades de grãos de milho são possíveis a partir do conhecimento da fisiologia, fenologia e manejo da cultura.

Leia mais

Economia Rural: os solos. Geografia 7º ano Professor André

Economia Rural: os solos. Geografia 7º ano Professor André Economia Rural: os solos Geografia 7º ano Professor André Solo camada superficial das terras emersas do planeta, com espessura que varia de alguns centímetros a alguns metros. É a parte da crosta terrestre

Leia mais

Cópia autorizada. II

Cópia autorizada. II II Sugestões de avaliação Ciências 7 o ano Unidade 2 5 Unidade 2 Nome: Data: 1. As cores das flores e o período do dia em que elas abrem são duas adaptações importantes das plantas e que facilitam a sua

Leia mais

ATIVIDADE AVALIATIVA

ATIVIDADE AVALIATIVA ATIVIDADE AVALIATIVA Valor: 2,0 Tempo para responder: 20min Sabendo que o clima não é algo estático, mas sim, um complexo e intrincado sistema de infinitas variáveis agindo simultaneamente e considerando

Leia mais

POLUIÇÃO SUBSTÂNCIA CERTA + LUGAR ERRADO

POLUIÇÃO SUBSTÂNCIA CERTA + LUGAR ERRADO POLUIÇÃO SUBSTÂNCIA CERTA + LUGAR ERRADO POLUIÇÃO Formas do homem degradar o ambiente: Queimadas Desmatamento Indústria (chuva ácida, CFC, queimadas de produtos fósseis, DDT) Aterros clandestinos Derramamento

Leia mais

NUTRIÇÃO MINERAL GÊNESE DO SOLO. Rochas da Litosfera expostas ao calor, água e ar. Alterações físicas e químicas (intemperismo)

NUTRIÇÃO MINERAL GÊNESE DO SOLO. Rochas da Litosfera expostas ao calor, água e ar. Alterações físicas e químicas (intemperismo) NUTRIÇÃO MINERAL GÊNESE DO SOLO Rochas da Litosfera expostas ao calor, água e ar Alterações físicas e químicas (intemperismo) Físico (Altera o tamanho) Químico (Altera a composição) Intemperismo Físico

Leia mais

BIOLOGIA - 2 o ANO MÓDULO 22 CICLOS DA ÁGUA, DO CARBONO E DO OXIGÊNIO

BIOLOGIA - 2 o ANO MÓDULO 22 CICLOS DA ÁGUA, DO CARBONO E DO OXIGÊNIO BIOLOGIA - 2 o ANO MÓDULO 22 CICLOS DA ÁGUA, DO CARBONO E DO OXIGÊNIO Nuvens Resfriamento Sol Transpiração Oceano Vegetais Animais Precipitação: chuva neve, granizo Oceano, lago, lençol freático Rio Fixação

Leia mais

PROCESSO DE TRATAMENTO

PROCESSO DE TRATAMENTO PROCESSO DE TRATAMENTO Consiste em separar a parte líquida da parte sólida do esgoto, e tratar cada uma delas separadamente, reduzindo ao máximo a carga poluidora, de forma que elas possam ser dispostas

Leia mais

COMPOSTAGEM DE RESÍDUOS DE ANIMAIS. Karolina Von Zuben Augusto Zootecnista Dra em Engenharia Agrícola B.I.T.A. Busca Inteligente em Tecnologia Animal

COMPOSTAGEM DE RESÍDUOS DE ANIMAIS. Karolina Von Zuben Augusto Zootecnista Dra em Engenharia Agrícola B.I.T.A. Busca Inteligente em Tecnologia Animal COMPOSTAGEM DE RESÍDUOS DE ANIMAIS Karolina Von Zuben Augusto Zootecnista Dra em Engenharia Agrícola B.I.T.A. Busca Inteligente em Tecnologia Animal III Simpósio em Produção Animal e Recursos Hídricos

Leia mais

O SOLO. Profa. Dra. Marciléia Silva do Carmo. Geologia Aplicada a Pedologia

O SOLO. Profa. Dra. Marciléia Silva do Carmo. Geologia Aplicada a Pedologia O SOLO Profa. Dra. Marciléia Silva do Carmo Geologia Aplicada a Pedologia Sumário da Aula 1. Conceitos de Solo 2. Formação do solo 3. Solo como um ser vivo 4. Tamanho do Solo 5. Perfil do Solo: camadas

Leia mais

AGRICULTURA GERAL. Conceito COMPOSTAGEM COMPOSTAGEM POMBAL PB. Prof. Dr. Francisco Hevilásio F. Pereira (UAGRA/CCTA/UFCG)

AGRICULTURA GERAL. Conceito COMPOSTAGEM COMPOSTAGEM POMBAL PB. Prof. Dr. Francisco Hevilásio F. Pereira (UAGRA/CCTA/UFCG) AGRICULTURA GERAL COMPOSTAGEM POMBAL PB COMPOSTAGEM Conceito 1) Processo de transformação de materiais orgânicos grosseiros (palhas, estercos, etc.) em composto orgânico prontamente utilizáveis na agricultura

Leia mais

Geologia e conservação de solos. Luiz José Cruz Bezerra

Geologia e conservação de solos. Luiz José Cruz Bezerra Geologia e conservação de solos Luiz José Cruz Bezerra SOLO É a parte natural e integrada à paisagem que dá suporte às plantas que nele se desenvolvem. Parte mais superficial e fina da crosta terrestre.

Leia mais