Metabolismo de Carboidratos

Tamanho: px
Começar a partir da página:

Download "Metabolismo de Carboidratos"

Transcrição

1 Metabolismo de Carboidratos 1. Introdução Os carboidratos são compostos que, em geral, apresentam a fórmulas empírica (CH2O)n e cujos representantes mais simples são chamados açúcares, como, por exemplo, a glicose. O tipo mais simples de carboidrato é constituído pelos monossacarídeos, chamados aldoses ou cetoses, segundo o grupo funcional que apresentam: aldeído ou cetona. A glicose é o principal carboidrato na Terra, entrando na constituição monomérica de celulose e amido. É também o único combustível utilizado por todas as células do nosso corpo. A glicose é, quantitativamente, o principal substrato oxidável para a maioria dos organismos, quase todas as células são potencialmente capazes de atender suas demandas energéticas apenas a partir deste açúcar. Apesar de a dieta humana conter pouca glicose livre, esta aparece em proporções consideráveis como amido, sacarose e lactose. A glicólise se caracteriza como uma via metabólica utilizada por todas as células do corpo, para extrair parte da energia contida na molécula da glicose, e gerar duas moléculas de lactato. A glicólise se constitui na etapa inicial no processo da oxidação completa de carboidratos envolvendo oxigênio molecular. Trata-se de uma rota central quase universal do catabolismo da glicose, a rota com o maior fluxo de carbono na maioria das células. A quebra glicolítica de glicose é a única fonte de energia metabólica em alguns tecidos de mamíferos e tipos celulares (hemácias, medula renal, cérebro e esperma, por exemplo). Nos próximos tópicos, descreveremos a oxidação total da glicose, bem como seu armazenamento e mobilização na forma de glicogênio (glicogênese e glicogenólise) e sua síntese de novo para suprir o cérebro (neoglicogênese). 2. Via glicolítica Para obterem ATP a partir de glicose, todas as células lançam mão de sua oxidação parcial a piruvato. Nas células anaeróbicas, a oxidação pára neste ponto. A conversão de glicose a piruvato permite aproveitar apenas uma parcela da energia total da glicose. Nas células aeróbicas, entretanto, o piruvato é subsequentemente oxidado, trazendo, naturalmente, um enorme ganho na produção de ATP. A etapa inicial da oxidação da glicose (até piruvato) ocorre através de uma sequência 1

2 de reações denominada glicólise, uma via metabólica que se processa no citossol. Seus produtos são ATP, (H + e ), recebido por coenzimas, e piruvato. A quebra dos seis carbonos da glicose em duas moléculas de piruvato com três carbonos ocorre em dez passos; os primeiros cinco dos quais constituem a fase preparatória (fase de investimento) e os cinco seguintes, a fase de geração de ATP (fase de rendimento). A sequencia de reações pode ser acompanhada na figura 1. Na primeira etapa a glicose é fosforilada sob a ação da enzima hexocinase e a glicose-6-fosfato (G6P), gerada no citosol, não pode sair da célula. Essa reação é irreversível. Quando o fígado necessita exportar glicose para outros tecidos, a G6P sofre a ação da enzima glicose-6-fosfatase, que catalisa a reação reversa daquela catalisada pela hexocinase. A G6P é transformada, em seguida, no seu isômero frutose-6-fostato (F6P), por ação da enzima fosfoglicose isomerase. Finalmente a F6P recebe mais um grupamento fosfato e é transformada no composto frutose-1,6-bisfosfato. Esta reação também é irreversível e é catalisada pela fosfofruto-cinase, uma enzima alostérica. Na segunda etapa a frutose-1,6-bisfosfato sofre a ação da aldolase gerando uma molécula de diidroxiacetona fosfato e uma molécula de gliceraldeído-3-fosfato (GAP). Sob a ação da triose fosfato isomerase, diidroxiacetona fosfato é convertida em gliceraldeído-3-fosfato. Após, ocorre a produção de 1,3-bisfosfoglicerato, composto gerado pela ação da enzima gliceraldeído-3-fosfato desidrogenase sobre o GAP. Essa enzima tem como coenzima o NAD (Nicotinamida adenina di-nucleotídeo). O composto 1,3-bisfosfoglicerato é um anidrido misto de um ácido carboxílico e ácido fosfórico, com um alto potencial energético permitindo que, na reação seguinte, catlisada pela fosfoglicerato cinase haja produção de ATP. Na reação 8, a enzima fosfogliceromutase reaposiciona a posição do grupo fosfato 3- Fosfoglicerato, dando origem a 2-fosfoglicerato (grupo fosfato ligado ao carbono 2), preparando o substrato para a próxima reação. A reação 9 é uma reação de desidratação catalisada pela enzima enolase. O 2-fosfoglicerato é desidratado formando uma molécula de água e fosfoenolpiruvato (PEP), um composto altamente energético. Foi devido a esta configuração energética que o grupo fosfato foi transferido da posição 3 para 2 na reação anterior. A outra reação onde ocorre síntese de ATP é catalisada pela piruvato cinase, enzima que transforma fosfoenolpiruvato em piruvato. Esta é a terceira reação irreversível da via glicolítica. 2

3 Figura 1. Via glicolítica 3. Destinos do Piruvato Em condições aeróbicas, o primeiro passo para a oxidação total do piruvato é a sua conversão a acetil CoA. Nas células eucarióticas, o piruvato do citossol entra na mitocôndria, onde é transformado em acetil CoA, conectando, portanto, a glicólise e o ciclo de Krebs. O piruvato é convertido a acetil CoA, através de uma descarboxilação oxidativa, de acordo com a equação (figura 2): 3

4 Figura 2. Formacao de Acetil-CoA A reação de formação de acetil CoA a partir de piruvato é irreversível e ocorre em quatro etapas sequ enciais, catalisadas por um sistema multienzimático, chamado complexo piruvato desidrogenase. Uma única partícula do complexo piruvato desidrogenase é maior do que um ribossomo e consiste em um núcleo central formado por dezenas de moléculas de diidrolipoil transacetilase cada uma com dois resíduos de ácido lipóico), as quais se associam dezenas de moléculas de piruvato desidrogenase e diidrolipoil desidrogenase. Fazem parte ainda da partícula várias moléculas de quinase e fosfatase, responsáveis pela regulação da atividade do próprio complexo, através de fosforilação e desfosforilação. A primeira etapa é a descarboxilação do piruvato pela piruvato desidrogenase, que transfere o grupo hidroxietil para o TPP, em uma reação análoga à do piruvato descarboxilase, que participa da fermentação alcóolica. Em seguida, a diidrolipoil transacetilase oxida o grupo hidroxietil a acetil, ligando-o ao ácido lipóico. Nesta oxidação, os elétrons são transferidos para o ácido lipóico (forma dissulfeto), reduzindoo a ácido acetil lipóico. A mesma enzima transfere o grupo acetil para coenzima. A, formando acetil CoA. O ácido lipóico (forma ditiol) é reoxidado pela diidrolipoli desidrogenase, uma flaoproteína contendo FAD como grupo prostético, que recebe os (H+ + e-) e os transfere finalmente para o NAD+. O NADH formado será oxidado na cadeia de transporte de elétrons. Em condições de anaerobiose, por outro lado, o piruvato serve como aceptor de elétrons do NADH, reciclando o NAD+. Esse processo é denominado de fermentação que pode ser lática ou alcoólica. Na fermentação lática o piruvato é reduzido a lactato através da enzima lactato desidrogenase. Essa redução é o que permite a reoxidação das moléculas de NADH, 4

5 sendo o próprio piruvato o aceptor de elétrons (figura 3). Este processo é observado em algumas espécies de bactérias, nas hemácias sanguíneas, nas fibras musculares de contração rápida e nas fibras musculares em geral, neste último caso quando a quantidade de oxigênio torna-se insuficiente (anaerobiose relativa), devido a um trabalho muscular muito intenso. O acúmulo de ácido láctico oriundo desse processo no músculo é o que causa a dor característica posterior aos exercícios físicos de grande intensidade. Tal mecanismo é muito importante, uma vez que permite a continuidade do exercício, mesmo em ausência relativa de oxigênio. Figura 3. Fermentação lática. Em certos organismos, como as leveduras e alguns tipos de bactérias, a regeneração do NAD+ é feita por meio da fermentação alcoólica. Nesse processo, inicialmente, cada molécula de piruvato é convertida a um composto com dois carbonos (acetaldeído) em uma reação de descarboxilação através da ação da enzima Piruvato Descarboxilase (PPP), que gera uma molécula de CO2 e uma molécula de NADH. Esse acetaldeído serve de aceptor dos elétrons do NADH e reduz-se a álcool etílico (etanol) a partir da ação da enzima álcool desidrogenase (figura 4). 5

6 Figura 4. Fermentação alcoólica. 4. Ciclo de Krebs O piruvato proveniente de glicose origina acetil-coa mitocondrial. Além da glicose, vários aminoácidos produzem piruvato e, portanto, acetil-coa, ao serem degradados. A acetil-coa pode, portanto, ser originária de carboidratos, aminoácidos e ácidos graxos e, qualquer que seja sua proveniência, será totalmente oxidada a CO2 pelo ciclo de Krebs, com a concomitante produção de coenzimas reduzidas. O ciclo de Krebs inicia-se com a condensação de acetil CoA e oxaloacetato, formando citrato, uma reação catalisada pelo citrato sintase (figura 5). O citrato é isomerizado a isocitrato por ação da aconitase, com a formação intermediária de cis-aconitato. A isocitrato desidrogenase catalisa a oxidação de isocitrato a α-cetoglutrato, com redução de NDA+ e liberação de CO2. O α-cetoglutrato é então transformado a succinil-coa, numa reação catalisada pela α-cetoglutrato desidrogenase, um complexo enzimático semelhante ao complexo piruvato desidrogenase. A succinil CoA sintetase catalisa a transformação de succinil CoA a succinato, numa reação que forma GTP (guanosina trifosfato), a partir de GDP (guanosina difosfato) e P. O GTP tem o mesmo nível energético do ATP e, portanto, a formação de GTP equivale à formação de ATP: o GTP pode reagir com ADP, dando ATP e regenerando GDP, por ação da nucleosídio difosfato quinase. A succinato desidrogenase é a única enzima do ciclo de Krebs que é parte integrante da membrana interna da mitocôndria: as demais estão em forma solúvel na matriz mitocondrial. O fumarato é hidratado a malato pela furmarase. Por fim o malato é oxidado a oxaloacetato pela acao 6

7 da malato desidrogenase e formação de NADH (figura 5). Como o oxaloacetato é sempre regenerado ao final de cada volta, o ciclo de Krebs pode oxidar acetil-coa continuamente, sem gasto efetivo de oxaloacetato. Figura 5. Ciclo de Krebs Embora o ciclo de Krebs produza diretamente apenas 1 ATP, contribui para a formação de grande parte do ATP produzido pela célula, pois a energia da oxidação da acetil-coa é conservada sob a forma de coenzimas reduzidas e, posteriormente, usada para síntese de ATP. A oxidação das coenzimas é obrigatoriamente feita pela cadeia de transporte de elétrons e, portanto, o ciclo de Krebs, ao contrário da glicose, só pode funcionar em condições aeróbicas. Os compostos intermediários do ciclo de Krebs podem ser utilizados como precursores em vias biossintéticas: oxaloacetato e α-cetoglutarato vão formar 7

8 respectivamente aspartato e glutamato. A eventual retirada desses intermediários pode ser compensada por reações que permitem restabelecer o seu nível. Entre essas reações, que são chamadas de anapleróticas por serem reações de preenchimento, a mais importante é a que leva à formação de oxaloacetato a partir do piruvato e que é catalisada pela piruvato carboxilase. O oxaloacetato além de ser um intermediário do ciclo de Krebs, participa também da gliconeogênese. A degradação de vários aminoácidos também produz intermediários do ciclo de Krebs, funcionando como reações anapleróticas adicionais (figura 5). 5. Gliconeogênese Gliconeogênese ou neoglicogénese ou ainda neoglucogénese ("formação de novo açúcar") é a rota pela qual é produzida glicose a partir de compostos aglicanos (nãoaçúcares ou não-carboidratos), sendo a maior parte deste processo realizado no fígado (principalmente sob condições de jejum) e uma menor parte no córtex dos rins. Em humanos, os principais precursores são: lactato, glicerol e aminoácidos, principalmente alanina. Exceto por três sequências específicas (Piruvato para PEP, Frutose1.6-bifosfato para frutose-6-p, Glicose-6-p para glicose), as reações da gliconeogênese são inversas às da glicólise. Em mamíferos, a maioria dos tecidos é capaz de suprir suas necessidades energéticas a partir da oxidação de vários compostos, tais como aminoácidos, açúcares e ácidos graxos, porém alguns tecidos dependem quase completamente de glicose como fonte de energia metabólica. Para o cérebro humano e o sistema nervoso, assim como os eritrócitos, testículos, medula renal e tecidos embriônicos, a glicose sanguínea é a única ou principal fonte de energia. Apenas o cérebro requer cerca de 120g de glicose a cada dia - mais do que metade de toda a glicose armazenada como glicogênio em músculos e fígado. A longo prazo, todos os tecidos também requerem glicose para outras funções, tais como a síntese da ribose dos nucleotídeos ou da porção carboidrato de glicoproteínas e glicolipídeos. Portanto, para sobreviver, os organismos precisam ter mecanismos para manutenção dos níveis sanguíneos de glicose. Quando a concentração de glicose circulante vinda da alimentação diminui, o glicogênio hepático e muscular é degradado (glicogenólise) fazendo com que a glicemia volte a valores normais. Entretanto, o suprimento de glicose desses reservatórios não é sempre suficiente; entre as refeições e durante longos jejuns, ou após exercícios vigorosos, o glicogênio é depletado (consumido), situação que também ocorre quando há 8

9 deficiência do suprimento de glicose pela dieta ou por dificuldade na absorção pelas células. Nessas situações, os organismos necessitam de um método para sintetizar glicose a partir de precursores não-carboidratos. Isso é realizado pela via chamada gliconeogênese, a qual converte piruvato e compostos relacionados de três e quatro carbonos em glicose. A maioria das etapas da gliconeogênese usa as mesmas enzimas que catalizam o processo da glicólise, porém, o fluxo de carbonos, é claro, é na direção reversa. Entretanto, em três pontos as reações da glicólise são irreversíveis in vivo (por liberarem energia livre em forma de calor): conversão de glicose em glicose 6-fosfato pela hexoquinase, a fosforilação da frutose 6-fosfato em frutose 1,6-bisfosfato pela fosfofrutoquinase-1 e a conversão de fosfoenolpiruvato em piruvato pela piruvato quinase. Para contornar essas barreiras energéticas, reações e enzimas especiais são necessárias em três desvios (figura 6): 1 desvio: Dentro da mitocôndria, a piruvato-carboxilase catalisa a formação de oxalacetato a partir de ATP e CO2, liberando ADP + Pi. A partir daí, pode-se tomar 2 caminhos: a) Ação da PEP-carboxilase (PEPCK) mitocondrial, formando fosfoenolpiruvato a partir de GTP, e liberando GDP + CO2. b) Redução do oxalacetato para produção de malato, ganhando dois H. O malato, por sua vez, irá sair da mitocôndria e será oxidado, perdendo 2 H e voltando a ser oxalacetato. Este oxalacetato sofrerá ação da PEP-carboxilase citosólica, que o transformará em fosfoenolpiruvato. O caminho a ser tomado depende da concentração de NADH citosólico. Se for alta, a via b é inibida, pois causa acúmulo de produtos (malato e oxalacetato). O piruvato então toma a via a, transformando-se em fosfoenolpiruvato ainda dentro da mitocôndria. Caso a concentração de NADH no citosol seja baixa, acontece o contrário, e a via b é estimulada por falta de produtos. 2º desvio: No citosol, a frutose-1,6-bifosfato é hidrolisada pela frutose-1,6- bifosfatase, liberando um Pi e formando frutose-6-fosfato, que logo em seguida será isomerizada a glicose-6-fosfato pela fosfoglicose-isomerase. 9

10 3º desvio: Nesta etapa faz-se a conversão de glicose-6-fosfato em glicose. O grupo fosfato ligado ao carbono 6 da glicose-6-fosfato sofre hidrólise catalisada pela glicose-6- fosfatase. O produto dessa reação é a glicose não fosforilada que, assim, pode atravessar a membrana plasmática. A enzima glicose-6-fosfatase só ocorre no fígado e rins. Figura 6. Gliconeogênese A neoglicogênese é uma reação de síntese porque utiliza um precursor de 3 carbonos e tem como produto final a glicose, com seis carbonos. Assim como as demais 10

11 reações de síntese, a neoglicogênese consome energia na forma de ATP. Para cada molécula de glicose formada a partir de piruvato, seis moles de pontes de fosfato de alta energia são clivadas : quatro ATP, dois GDP, e dois NADH, que são utilizados nas reações catalisadas por piruvato carboxilase, fosfoenolpiruvato carboxiquinase e fosfoglicerato quinase. Dois moles de ácido pirúvico são requeridos para a síntese de um mol de glicose. Reação Global 2 Ácido pirúvico + 4 ATP + 2 GTP + 2 NADH + 6 H2O > Glicose + 4 ADP + 2 GDP + 6 Pi + 2 NAD + 2 H+ 6. Glicogênese e glicogenólise O glicogênio é um polímero de glicose e constitui uma forma de armazenamento deste açúcar; é utilizado principalmente pelo fígado e músculos quando a oferta de glicose supera as necessidades energéticas imediatas destes órgãos. O glicogênio hepático degradado produzindo glicose, que é exportada para manter a glicemia (concentração de glicose sanguínea) nos períodos entre as refeições e no jejum noturno. O glicogênio muscular provê energia exclusivamente para a própria fibra muscular em contração intensa, quando a demanda energética ultrapassa o aporte de oxigênio, sendo, então, convertido a lactato. O glicogênio é um polissacarídeo altamente ramificado. Os resíduos de glicose são unidos por ligações glicosídicas entre os carbonos 1 e 4 (ligações α - 1, 4) nos segmentos lineares, e as ramificações são formadas por ligações entre os carbonos 1 e 6 (ligações α - 1, 6). O glicogênio apresenta dois tipos de extremidades, chamadas redutora e não redutora. A degradação do glicogênio consiste na remoção sucessiva de resíduos de glicose, apartir das extremidades não redutoras, por ação da glicogênio fosforilase. Esta enzima quebra a ligação α - 1,4 por reação com fosfato, liberando um resíduo de glicose como glicose 1-fosfato (figura 7). A ação da glicogênio fosforilase prossegue ao longo da cadeia, terminando 4 resíduos antes de uma ramificação. Uma transferase transfere 3 destes resíduos para uma outra extremidade do glicogênio, neste ponto, um resíduo de glicose unido por uma ligação α-1,6. Esta ligação é hidrolisada por uma α-1,6 glicosidase, também chamada enzima desramificadora. 11

12 A degradação, entretanto, não é completa, restando um núcleo não degradado que serve de ponto de partida para a ressíntese. O glicogênio é sintetizado por uma via diferente da via de degradação. A síntese consiste na repetida adiação de resíduos de glicose às extremidades não redutoras de um núcleo de glicogênio. A glicose a ser incorporada deve estar sob uma forma ativada, ligada a um nucleotídio de uracila, constituindo a uridina difosfato (UDP-G). O UDP-G é produzido, a partir de glicose, por uma série de reações (figura 7). O primeiro passo envolve a síntese de glicose-1-fosfato e UTP: Glicose 1-fosfato + UTP + H2O UDP-glicose + 2 Pi Essa reação é catalisada pela UDP-glicose pirofosfatase. Essa reação seria reversível se não fosse pela rápida hidrólise exergônica (o que implica a necessidade de água) do pirofosfato a ortofosfato (catalisada pela pirofosfatase). Na segunda reação, UDP-glicose é transferida ao grupo hidroxila da cadeia de glicogênio existente, formado uma ligação glicosídica α-1,4. Essa reação é catalisada pela glicogênio sintetase. Essa enzima só consegue promover essa adição se a cadeia contiver no mínimo quatro unidades. Assim, a proteína glicogenina é utilizada como uma "molécula primária". Ligações α-1,6 são criadas pela enzima glycogen branching Figura 7. Esquema geral da síntese e degradação de glicogênio. 12

13 Várias doenças hereditárias relacionadas ao armazenamento de glicogênio são conhecidas. Isso se deve a ausência ou diminuição de uma das enzimas envolvidas no metabolismo do glicogênio. A tabela abaixo mostra as doenças hereditárias bem como suas consequências. 7. Via das Pentoses Fosfato A via das pentoses fosfato é uma via alternativa de oxidação de glicose e a única via de produção de ribose 5-fosfato, a pentose constituinte dos nucleotídios que compõe os ácidos nucleicos e várias coenzimas. A glicólise e em outras vias degradativas, o substrato é oxidado, gerando coenzimas reduzidas cuja oxidação produz ATP. Na síntese de muitos compostos ocorre o reverso: há consumo de ATP e redução do substrato. O doador de elétrons para esta redução não é o NADH, mas uma coenzima semelhante: a nicotinamida adenina dinucleotídio fosfato (NADPH). É na via das pentoses fosfato que o NADP+ é reduzido a NADPH. De fato, nesta via, a energia derivada da oxidação da glicose é armazenada sob a forma de poder redutor (NADPH) e não de ATP como na glicólise. A via das pentoses consta de uma parte oxidativa, que produz NADPH, e uma parte não oxidativa, que interconverte açúcares fosforilados. A via das pentoses fosfato compreende uma etapa inicial, oxidativa, em que a glicose 6-fosfato é convertida a ribulose 5-fosfato por suas oxidações sucessivas, catalisadas por desidrogenase específicas para NADP+. A equação geral desta etapa é: Glicose 6-fosfato + 2 NADP+ + H2O Ribulose 5-fosfato + 2(NADPH + H+) + CO2 8. Metabolismo de outros carboidratos importantes 13

14 A sacarose dietária constitui uma fonte quantativamente importante de monossacarídios para o homem; a lactose, o açúcar presente no leite, tem importância principalmente nos primeiros meses de vida. Estes dissacarídios são hidrolisados no intestino delgado, por sacarose e lactose, respectivamente. A sacarose produz glicose e frutose; lactose libera glicose e galactose. Não sendo hidrolisada, a lactose permanece no intestino delgado, onde sofre fermentação bacteriana de sua conversão a intermediários da glicólise. A frutose é convertida a diidroxiacetona fosfato e gliceraldeído 3-fosfato e entra na via glicolítica. Em outros tecidos (adiposo e músculo), a frutose é convertida a frutose 6- fosfato pela hexoquinase. Algumas doenças metabólicas relacionadas aos carboidratos são comuns, tais como, galactosemia, deficiência hereditária de galactose 1-fosfato uridil transferase, que causa uma serie de problemas devido ao acumulo de galactitol e frutosonuria, pelo defeito no metabolismo de frutose. Um resumo do metabolismo dos carboidratos é mostrado na figura 8. 14

15 Figura 8. Resumo do metabolismo dos carboidratos. 9. Regulação do metabolismo de açúcares A regulação do metabolismo de açucares depende na sua maior parte da ação hormonal da insulina e do glucagon. O músculo possui algumas diferenças com o fígado, principalmente no que se refere a exportação de glicose, onde esse é o papel do fígado para manter a glicemia normal. A regulação da glico lise é complexa pela sua importa ncia na geração de energia na forma de ATP e pela produção de vários intermediários glicolíticos destinados a biossíntese. Na maioria das células, a velocidade da glico lise é determinada, principalmente, pela regulação alostérica das enzimas hexocinase, fosfofrutocinase 1 (PFK 1) e piruvato cinase. As reações catalisadas por essas enzimas são irreversíveis e podem ser ligadas ou desligadas por efetores alostéricos. Por exemplo, a hexocinase é inibida pelo excesso de glicose-6-fosfato. Vários compostos de alta energia atuam como efetores alostéricos. Por exemplo, elevadas concentrações de AMP (um indicador de baixa produção de energia) ativa a PFK 1 e apiruvato cinase. Por outro lado, teores elevados de ATP (um indicador que as necessidades energéticas das células foram atingidas) inibem as duas enzimas. O citrato e a acetil CoA, que acumulam quando existe ATP em quantidade suficiente, inibem a PFK 1 e a piruvato cinase, respectivamente. A frutose 2,6 bifosfato, produzida por indução de hormo nio da PFK 2, é um indicador de altos níveis de glicose disponível e alostericamente ativa a PFK 1. O acu mulo de 15

16 frutose 1,6 bifosfato ativa a piruvato cinase, promove um mecanismo de controle (a frutose 1,6 bifosfato é um ativador alostérico). Além disso, apo s uma refeição rica em carboidratos, a insulina promove o aumento na síntese das enzimas glicocinase, fosfofrutocinase 1 e piravato cinase. Por outro lado, a síntese dessas mesmas enzimas é reduzida quando o glucagon plasmático está aumentado e a insulina reduzida, como no jejum ou diabetes. A síntese e a degradação do glicogênio são cuidadosamente reguladas para evitar a perda de energia. As enzimas das diferentes vias, a glicogênio fosforilase e a glicogênio sintase nas formas a (ativa) e b (inativa ou pouco ativa), são reguladas pelo controle alostérico e pela modificação covalente das enzimas modulada por hormo nios. A atividade dessas enzimas é, também, amplamente dependente da disponibilidade de vários intermediários e co-fatores. Portanto, a glicogênese e a glicogeno lise são reguladas de tal modo que as quantidades de glicose liberadas são ajustadas segundo as necessidades do organismo. A glicogênio-sintase e a glicogênio- fosforilase estão sob controle alostérico por diferentes efetores. A forma inativa (ou pouco ativa) da glicogênio-fosforilase encontrada no mu sculo em repouso, é denominada glicogênio fosforilase b, e é ativada por AMP e inibida por ATP e glicose 6 fosfato. A glicogênio sintase, ao contrário, é ativada pela glicose 6 fosfato. A interconversão das formas a e b da glicogênio-sintase e da glicogênio fosforilase é regulada reciprocamente por meio de fosforilação defosforilação (quando uma enzima é estimulada a outra é inibida) e são catalisadas por enzimas que estão sob controle hormonal (insulina, glucagon e adrenalina) ou estímulo nervoso (íons Ca2+). Devido a seu efeito sobre a proteína-cinase dependente de AMPc, através da geração de AMP cíclico, a adrenalina inibe a síntese do glicogênio. A glicogênio-sintase e a glicogênio-fosforilase são afetadas pela fosforilação de modo diferente: a glicogêniofosforilase a (ativa) está ligada ao fosfato, enquanto a glicogênio-sintase (ativa) está na forma desforilada (figura 9). 16

17 Figura 9. Regulação do metabolismo do glicogênio por modificação covalente das enzimas moduladas por hormo nios. A velocidade da gliconeogênese é afetada principalmente pela disponibilidade de substratos, efetores alostéricos e hormo nios. Dietas ricas em gorduras, a inanição e o jejum prolongado elevam as concentrações de lactato, glicerol e aminoácidos e estimulam a gliconeogênese. As quatro enzimas-chave da gliconeogênese (piruvato carboxilase, fosfoenolpiruvato carboxicinase, frutose 1,6 bifosfatase e glicose 6 fosfatase) são afetadas em diferentes graus por moduladores alostéricos. Por exemplo, a frutose 1,6 bifosfatase é ativada pelo ATP e inibida pelo AMP e pela frutose 2,6 bifosfato. A acetil CoA é um modulador alostérico positivo da piruvato carboxilase. A concentração da acetil CoA, um produto da degradação dos ácidos graxos, está elevada durante a inanição. Como em outras vias bioquímicas, os hormo nios afetam a gliconeogênese por alterações na concentração dos efetores alostéricos e por modificações na velocidade de síntese das enzimas chave. O glucagon (elevado quando o nível de glicose diminui) 17

18 reduz a síntese da frutose 2,6 bifosfato, ativando a função fosfatase da PFK 2. A redução do teor da frutose 2,6 bifosfato reduz a ativação da PFK 1 e desinibe a frutose 1,6 bifosfatase. Outro efeito do glucagon nas células hepáticas é a inativação da enzima glicolítica piruvato cinase. (A proteína cinase C, uma enzima ativada pelo AMPc, converte a piruvato cinase em sua conformação fosforilada inativa). Os hormo nios também influenciam a gliconeogênese por alterações na síntese de enzimas. Por exemplo, a síntese de enzimas gliconeogênicas é estimulada pelo cortisol (um hormo nio estero ide produzido no co rtex da supra-adrenal). A ação da insulina promove a síntese de novas moléculas de glicocinase, PFK 1 e PFK-2. O glucagon promove a síntese de novas moléculas de PEP carboxicinase, frutose 1,6 bifosfatatase e glicose 6 fosfatase. O controle hormonal da gliconeogênese é importante no suprimento de ácidos graxos para o fígado além de regular as enzimas, tanto glicolíticas como gliconeogênicas. O glucagon aumenta a concentração dos ácidos graxos no plasma pela lipo lise no tecido adiposo, em ação oposta da insulina. A grande disponibilidade de ácidos graxos, estimulada pelo glucagon, resulta em maior oxidação dos ácidos graxos para formar acetil CoA pelo fígado, permitindo a síntese da glicose. Por outro lado, a insulina tem efeito oposto. O glucagon e a insulina também regulam a gliconeogênese no fígado por influenciar o estado de fosforilação de enzimas hepáticas, tais como, a piruvato cinase e fosfofrutocinase. A figura 10 mostra de forma esquemática a regulação do metabolismo dos carboidratos no fígado pela ação dos hormônios insulina e glucagon 18

19 Figura 10. Metabolismo dos carboidratos no fígado pela ação da insulina e glucagon. Resumo O metabolismo dos carboidratos está centrado na glicose porque esse açu car é uma molécula combustível importante para a maioria dos organismos. Se as reservas de energia são baixas, a glicose é degradada pela via glicolítica. As moléculas de glicose não utilizadas para a produção imediata de energia são armazenadas como glicogênio (em animais) ou amido (em vegetais). Durante a glico lise (sequ ência de 10 reações), a glicose é fosforilada e clivada para formar duas moléculas de gliceraldeído 3 fosfato. Cada gliceraldeído 3 fosfato é então convertido em uma molécula de piruvato. Uma 19

20 pequena quantidade de energia é armazenada em moléculas de ATP e NADH. Em organismos anaero bicos, o piruvato é reduzido a lactato. Durante esse processo, o NAD+ é regenerado para a continuação da glico lise. Na presença de O2, os organismos aero bicos convertem o piruvato a acetil CoA e, então, a CO2 e H2O. A glico lise é controlada principalmente por regulação alostérica de três enzimas hexocinase, fosfofrutocinase 1 (PFK 1) e piruvato cinase e pelos hormo nios insulina e glucagon. Durante a gliconeogênese, moléculas de glicose são sintetizadas a partir de precursores não carboidratos (lactato, piruvato, glicerol e certos aminoácidos). A sequ ência de reações na gliconeogênese corresponde a reações da via glicolítica, mas no sentido inverso. As três reações irreversíveis da glico lise (síntese do piruvato, conversão da frutose 1,6 bifosfato a frutose 6 fosfato e a formação de glicose a partir da glicose 6 fosfato) são substituídas na gliconeogênese por reações energeticamente favoráveis. A via das pentoses-fosfato, na qual a glicose-6-fosfato é oxidada, ocorre em duas etapas. Na etapa oxidativa, duas moléculas de NADPH são produzidas enquanto a glicose 6 fosfato é convertida em ribulose 5 fosfato. Na etapa não oxidativa, a ribose 5 fosfato e outros açu cares são sintetizados. Se a célula necessita mais NADPH que ribose 5 fosfato (componente dos nucleotídeos e ácidos nucléicos) então os metabo litos da etapa não oxidativa são convertidos em intermediários glicolíticos. Vários açu cares diferentes da glicose são importantes no metabolismo dos vertebrados. Entre eles estão: frutose, galactose e a manose. 20

Profª Eleonora Slide de aula. Metabolismo de Carboidratos

Profª Eleonora Slide de aula. Metabolismo de Carboidratos Metabolismo de Carboidratos Metabolismo de Carboidratos Profª Eleonora Slide de aula Condições de anaerobiose Glicose 2 Piruvato Ciclo do ácido cítrico Condições de anaerobiose 2 Etanol + 2 CO 2 Condições

Leia mais

Revisão do Metabolismo da Glicose

Revisão do Metabolismo da Glicose Gliconeogênese Revisão do Metabolismo da Glicose Esquema Geral da Glicólise lise 1 açúcar de 6 C 2 açúcares de 3 C A partir deste ponto as reações são duplicadas 2 moléculas de Piruvato (3C) Saldo 2 moléculas

Leia mais

Glicólise. Professora Liza Felicori

Glicólise. Professora Liza Felicori Glicólise Professora Liza Felicori Glicose Glicose (combustível metabólico) Fígado: Serve como tampão para manter o nível de glicose no sangue (liberação controlada de glicose) Glicose GLICOGÊNIO Estoque

Leia mais

Metabolismo de Glicídeos

Metabolismo de Glicídeos Universidade Federal de Pelotas Instituto de Química e Geociências Departamento de Bioquímica Metabolismo de Glicídeos Professora Ana Chaves Introdução Boca Enzima Ligação Substrato Produto α-amilase (glândulas

Leia mais

PRINCIPAIS VIAS METABÓLICAS

PRINCIPAIS VIAS METABÓLICAS PRINCIPAIS VIAS METABÓLICAS DEGRADAÇÃO DO GLIGOGÊNIO GLICÓLISE VIA DAS PENTOSES FOSFATO GLICONEOGÊNESE SÍNTESE DE CORPOS CETÔNICOS DEGRADAÇÃO DE AMINOÁCIDOS E CICLO DA URÉIA CICLO DE KREBS Β-OXIDAÇÃO DE

Leia mais

Acetil CoA e Ciclo de Krebs. Prof. Henning Ulrich

Acetil CoA e Ciclo de Krebs. Prof. Henning Ulrich Acetil CoA e Ciclo de Krebs Prof. Henning Ulrich Glicose + Consumo de 2 ATP 2 Ácidos Pirúvicos + 4H + + Produção de 4 ATP (2C 3 H 4 O 3 ) 2H + são Transportados pelo NAD passando Para o estado reduzido

Leia mais

METABOLISMO DOS CARBOIDRATOS - GLICÓLISE

METABOLISMO DOS CARBOIDRATOS - GLICÓLISE Após a absorção dos carboidratos no intestino, a veia porta hepática fornece glicose ao fígado, que vai para o sangue para suprir as necessidades energéticas das células do organismo. GLICÓLISE principal

Leia mais

Metabolismo de Glicídios

Metabolismo de Glicídios Universidade Federal de Pelotas Núcleo de Pesquisa, Ensino e Extensão em Pecuária Doenças Metabólicas Metabolismo de Glicídios Lucas Balinhas Mozer Ávila Patrícia Mattei Uriel Londero Pelotas, abril 2015

Leia mais

Doenças Metabólicas. Revisão Bioquímica. Bruna Mion

Doenças Metabólicas. Revisão Bioquímica. Bruna Mion Doenças Metabólicas Revisão Bioquímica Bruna Mion GLICÓLISE Glicólise GLICOSE Armazenamento Polissacarídeo Sacarose Glicólise Piruvato ATP Intermediários Via das Pentoses Fosfato Ribose 5 fosfato NADPH

Leia mais

Universidade Federal do Pampa Campus Itaqui Bioquímica GLICONEOGÊNESE. Profa. Dra. Marina Prigol

Universidade Federal do Pampa Campus Itaqui Bioquímica GLICONEOGÊNESE. Profa. Dra. Marina Prigol Universidade Federal do Pampa Campus Itaqui Bioquímica GLICONEOGÊNESE Profa. Dra. Marina Prigol GLICONEOGÊNESE PROCESSO DE SÍNTESE DE GLICOSE A PARTIR DE COMPOSTOS NÃO GLICÍDICOS OCORRÊNCIA: Citosol do

Leia mais

Aula Neoglicogênese Gliconeogênese

Aula Neoglicogênese Gliconeogênese Aula 22.10.09 Neoglicogênese Gliconeogênese Metabolismo de açúcares Visão Geral Galactose Frutose Ácido láctico Fermentação Glicólise Glicose Piruvato Glicogenólise Gliconeogênese Glicogênese Glicogênio

Leia mais

Resumo esquemático da glicólise

Resumo esquemático da glicólise Resumo esquemático da glicólise Destino do piruvato em condições aeróbicas e anaeróbicas Glicólise Fermentação Oxidação completa Em condições aeróbicas o piruvato é oxidado a acetato que entra no ciclo

Leia mais

Utilização de glicose pelas células. A glicólise é a via metabólica mais conservada nos sistemas biológicos

Utilização de glicose pelas células. A glicólise é a via metabólica mais conservada nos sistemas biológicos Utilização de glicose pelas células A glicólise é a via metabólica mais conservada nos sistemas biológicos A glicose é o combustível preferencial e mais versátil disponível nas células vivas. Principais

Leia mais

Glicogênese, Glicogenólise e Gliconeogênese. Profa. Alessandra Barone

Glicogênese, Glicogenólise e Gliconeogênese. Profa. Alessandra Barone Glicogênese, Glicogenólise e Gliconeogênese Profa. Alessandra Barone www.profbio.com.br Polissacarídeo de reserva animal Constituído por moléculas de α-d-glicose ligadas entre si por ligações glicosídicas

Leia mais

QBQ 0204 Bioquímica. Carlos Hotta. Glicólise 13/05/17

QBQ 0204 Bioquímica. Carlos Hotta. Glicólise 13/05/17 QBQ 0204 Bioquímica Carlos Hotta Glicólise 13/05/17 Uma visão geral do metabolismo Ribose 5P (5) NUCLEOTÍDEOS Algumas reações são irreversíveis Vias de síntese e degradação precisam ser separadas Uma visão

Leia mais

Funções do Metabolismo

Funções do Metabolismo Universidade Federal de Mato Grosso Disciplina de Bioquímica Conceito de Metabolismo METABOLISMO DOS CARBOIDRATOS Prof. Msc. Reginaldo Vicente Ribeiro Atividade celular altamente dirigida e coordenada,

Leia mais

Faculdade de Tecnologia de Araçatuba. Curso Superior de Tecnologia em Bioenergia Sucroalcooleira

Faculdade de Tecnologia de Araçatuba. Curso Superior de Tecnologia em Bioenergia Sucroalcooleira Faculdade de Tecnologia de Araçatuba Curso Superior de Tecnologia em Bioenergia Sucroalcooleira SÍNTESE DE CARBOIDRATOS Gliconeogênese Biossíntese de glicogênio, amido e sacarose Glicose sanguínea glicogênio

Leia mais

12/11/2015. Disciplina: Bioquímica Prof. Dr. Vagne Oliveira

12/11/2015. Disciplina: Bioquímica Prof. Dr. Vagne Oliveira Disciplina: Bioquímica Prof. Dr. Vagne Oliveira 2 1 ATP ADP Glicose (6C) C 6 H 12 O 6 ATP ADP P ~ 6 C ~ P 3 C ~ P 3 C ~ P Pi NAD NADH P ~ 3 C ~ P ADP P ~ 3 C ATP ADP ATP NAD Pi NADH P ~ 3 C ~ P ADP ATP

Leia mais

GLICONEOGÊNESE ou NEOGLICOGÊNESE

GLICONEOGÊNESE ou NEOGLICOGÊNESE GLICONEOGÊNESE ou NEOGLICOGÊNESE GLICONEOGÊNESE OU NEOGLICOGÊNESE Definição: é a via de biossíntese de Glicose a partir de Piruvato Esta via faz parte do ANABOLISMO A Gliconeogênese ocorre no CITOSSOL

Leia mais

O cérebro necessita de cerca de 120 g de glicose/dia, isso é mais que a metade de toda a glicose estocada no fígado e músculo.

O cérebro necessita de cerca de 120 g de glicose/dia, isso é mais que a metade de toda a glicose estocada no fígado e músculo. O cérebro necessita de cerca de 120 g de glicose/dia, isso é mais que a metade de toda a glicose estocada no fígado e músculo. Entre as refeições, jejuns ou depois de exercícios físicos vigorosos, o glicogênio

Leia mais

5/4/2011. Metabolismo. Vias Metabólicas. Séries de reações consecutivas catalisadas enzimaticamente, que produzem produtos específicos (metabólitos).

5/4/2011. Metabolismo. Vias Metabólicas. Séries de reações consecutivas catalisadas enzimaticamente, que produzem produtos específicos (metabólitos). Metabolismo Vias Metabólicas Séries de reações consecutivas catalisadas enzimaticamente, que produzem produtos específicos (metabólitos). 1 Endergônico Exergônico Catabolismo Durante o catabolismo de carboidratos,

Leia mais

Profª Eleonora Slide de aula. Metabolismo de Carboidratos

Profª Eleonora Slide de aula. Metabolismo de Carboidratos Metabolismo de Carboidratos Metabolismo de Carboidratos Profª Eleonora Slide de aula Condições de anaerobiose Fermentação alcoólica Glicose 2 Piruvato Ciclo do ácido cítrico Condições de anaerobiose Condições

Leia mais

Ciclo do Ácido Cítrico ou Ciclo de Krebs ou Ciclo dos Ácidos Tricarboxílicos

Ciclo do Ácido Cítrico ou Ciclo de Krebs ou Ciclo dos Ácidos Tricarboxílicos Ciclo do Ácido Cítrico ou Ciclo de Krebs ou Ciclo dos Ácidos Tricarboxílicos Vias da Respiração Celular NADH Glicólise NADH 2 Ciclo de Krebs Mitocôndria Cadeia transp. elétrons Glicose Piruvato Citosol

Leia mais

Gliconeogênese. Gliconeogênese. Órgãos e gliconeogênese. Fontes de Glicose. Gliconeogênese. Gliconeogênese Metabolismo dos aminoácidos Ciclo da Uréia

Gliconeogênese. Gliconeogênese. Órgãos e gliconeogênese. Fontes de Glicose. Gliconeogênese. Gliconeogênese Metabolismo dos aminoácidos Ciclo da Uréia Gliconeogênese Metabolismo dos aminoácidos Ciclo da Uréia Gliconeogênese Alexandre Havt Gliconeogênese Fontes de Energia para as Células Definição Via anabólica que ocorre no fígado e, excepcionalmente

Leia mais

Glória Braz GLICÓLISE

Glória Braz GLICÓLISE Glória Braz GLICÓLISE Utilização de glicose pelas células A glicólise é a via metabólica mais conservada nos sistemas biológicos A glicose é o combustível preferencial e mais versátil disponível nas células

Leia mais

Cérebro e hemácias utilizam a glicose como fonte exclusiva de energia. Cerca de 75% da oxidadação da glicose / dia é feita pelo cérebro (adulto).

Cérebro e hemácias utilizam a glicose como fonte exclusiva de energia. Cerca de 75% da oxidadação da glicose / dia é feita pelo cérebro (adulto). Gliconeogênese Cérebro e hemácias utilizam a glicose como fonte exclusiva de energia Cerca de 75% da oxidadação da glicose / dia é feita pelo cérebro (adulto). Desta forma o organismo deve ter mecanismos

Leia mais

Aula de Bioquímica II SQM Ciclo do Ácido Cítrico

Aula de Bioquímica II SQM Ciclo do Ácido Cítrico Aula de Bioquímica II SQM04242015201 Bacharelado em Ciências Físicas e Biomoleculares Tema: Ciclo do Ácido Cítrico Prof. Dr. Júlio César Borges Depto. de Química e Física Molecular DQFM Instituto de Química

Leia mais

METABOLISMO DE CARBOIDRATOS METABOLISMO DOS LIPÍDIOS METABOLISMO DE PROTEÍNAS

METABOLISMO DE CARBOIDRATOS METABOLISMO DOS LIPÍDIOS METABOLISMO DE PROTEÍNAS METABOLISMO DE CARBOIDRATOS METABOLISMO DOS LIPÍDIOS METABOLISMO DE PROTEÍNAS METABOLISMO DE CARBOIDRATOS GLICÓLISE Transporte da Glicose para dentro das Células: Glicose não difunde diretamente para

Leia mais

Oxidação parcial o que acontece com o piruvato?

Oxidação parcial o que acontece com o piruvato? A glicólise ocorre no citosol das células transforma a glicose em duas moléculas de piruvato e é constituída por uma sequência de 10 reações (10 enzimas) divididas em duas fases. Fase preparatória (cinco

Leia mais

Ciclo de Krebs ou Ciclo do ácido cítrico. Prof. Liza Felicori

Ciclo de Krebs ou Ciclo do ácido cítrico. Prof. Liza Felicori Ciclo de Krebs ou Ciclo do ácido cítrico Prof. Liza Felicori VISÃO GERAL Em circunstâncias aeróbicas piruvato é descarboxilado CO 2 C4 + C2 C6 C6 C6 C6 C5 CO 2 CO 2 C5 C4 C4 C4 C4 NAD+ & FAD 3 Íons H-

Leia mais

Corpos cetônicos. Quais são? A partir de qual composto se formam? Como se formam? Quando se formam? Efeitos de corpos cetônicos elevados?

Corpos cetônicos. Quais são? A partir de qual composto se formam? Como se formam? Quando se formam? Efeitos de corpos cetônicos elevados? Corpos cetônicos Quais são? A partir de qual composto se formam? Como se formam? Quando se formam? Efeitos de corpos cetônicos elevados? Importante saber!!!!!!!!!!!! A partir de qual composto se formam?

Leia mais

Aula de Bioquímica II SQM Gliconeogênese Glicogênio: Glicogenólise, Síntese e Regulação

Aula de Bioquímica II SQM Gliconeogênese Glicogênio: Glicogenólise, Síntese e Regulação Aula de Bioquímica II SQM04242015201 Bacharelado em Ciências Físicas e Biomoleculares Temas: Gliconeogênese Glicogênio: Glicogenólise, Síntese e Regulação Prof. Dr. Júlio César Borges Depto. de Química

Leia mais

Aula de Bioquímica II. Ciclo do Ácido Cítrico

Aula de Bioquímica II. Ciclo do Ácido Cítrico Aula de Bioquímica II Tema: Ciclo do Ácido Cítrico Prof. Dr. Júlio César Borges Depto. de Química e Física Molecular DQFM Instituto de Química de São Carlos IQSC Universidade de São Paulo USP E-mail: borgesjc@iqsc.usp.br

Leia mais

Visão geral do metabolismo glicídico

Visão geral do metabolismo glicídico Visão geral do metabolismo glicídico 1. Todas as células do organismo podem usar glicose oxidando-a (processo exergónico) de forma acoplada com a formação de (processo endergónico). a) O catabolismo da

Leia mais

MAPA II Vias metabólicas degradativas

MAPA II Vias metabólicas degradativas GLIÓLISE MAPA II Vias metabólicas degradativas PLISSAARÍDIS PRTEÍNAS LIPÍDIS GLISE AMINÁIDS ÁIDS GRAXS Glicólise Fosfoenolpiruvato (3) Asp Gly Ala Ser ys Leu Ile Lys Phe Glu Piruvato (3) 2 Acetil-oA (2)

Leia mais

Metabolismo energético das células

Metabolismo energético das células Metabolismo energético das células Medicina Veterinária Bioquímica I 2º período Professora: Ms. Fernanda Cristina Ferrari Como a célula produz energia? Fotossíntese Quimiossíntese Respiração Adenosina

Leia mais

Metabolismo de Carboidratos

Metabolismo de Carboidratos Metabolismo de Carboidratos Curso de Bioqímica para Saúde Coletiva- UFRJ Profa. Dra. Mônica Santos de Freitas 1 Carboidratos Três maiores classes de carboidratos Monossacarídeos- são carboidratos não polimerizados;

Leia mais

BIOSSÍNTESE DE ÁCIDOS GRAXOS E TRIACILGLICERÓIS. Bianca Zingales IQ-USP

BIOSSÍNTESE DE ÁCIDOS GRAXOS E TRIACILGLICERÓIS. Bianca Zingales IQ-USP BIOSSÍNTESE DE ÁCIDOS GRAXOS E TRIACILGLICERÓIS Bianca Zingales IQ-USP Importância dos Lipídios 1. A maior fonte de armazenamento de Energia dos mamíferos 2. Componente de todas as membranas biológicas

Leia mais

Universidade Federal do Pampa Campus Itaqui Bioquímica GLICÓLISE AERÓBICA. Ciclo de Krebs e Fosforilação Oxidativa. Profa.

Universidade Federal do Pampa Campus Itaqui Bioquímica GLICÓLISE AERÓBICA. Ciclo de Krebs e Fosforilação Oxidativa. Profa. Universidade Federal do Pampa Campus Itaqui Bioquímica GLICÓLISE AERÓBICA Ciclo de Krebs e Fosforilação Oxidativa Profa. Marina Prigol 1 Glicólise Anaeróbica RESPIRAÇÃO CELULAR ou GLICÓLISE AERÓBICA:

Leia mais

Acetil CoA e Ciclo de Krebs. Prof. Henning Ulrich

Acetil CoA e Ciclo de Krebs. Prof. Henning Ulrich Acetil CoA e Ciclo de Krebs Prof. Henning Ulrich No citossol Na mitocôndria Descarboxilação do piruvato: H 3 C- Piruvato Coenzima A Acetil CoA Redução de 1 NAD + Formação de acetil CoA (rica em energia)

Leia mais

Metabolismo de Carboidratos

Metabolismo de Carboidratos Metabolismo de Carboidratos Curso de Bioqímica para Saúde Coletiva- UFRJ Profa. Dra. Mônica Santos de Freitas 1 Gliconeogênese - Ocorre principalmente no fígado; - Algumas das enzimas utilizadas na síntese

Leia mais

Metabolismo e oxidação de carboidratos: Glicólise

Metabolismo e oxidação de carboidratos: Glicólise Metabolismo e oxidação de carboidratos: Glicólise Nutrientes: Carboidratos Lipídeos Proteínas Catabolismo CO 2 H 2 O ADP NAD + NADP + FAD ATP NADH NADPH FADH 2 Componentes celulares Proteínas Polissacarídeos

Leia mais

MAPA II Vias metabólicas degradativas

MAPA II Vias metabólicas degradativas GLIÓLISE MAPA II Vias metabólicas degradativas PLISSAARÍDIS PRTEÍNAS LIPÍDIS GLISE AMINÁIDS ÁIDS GRAXS Glicólise Fosfoenolpiruvato (3) Asp Gly Ala Ser ys Leu Ile Lys Phe Glu Piruvato (3) 2 Acetil-oA (2)

Leia mais

Oxidação parcial o que acontece com o piruvato?

Oxidação parcial o que acontece com o piruvato? A glicólise ocorre no citosol das células transforma a glicose em duas moléculas de piruvato e é constituída por uma sequência de 10 reações (10 enzimas) divididas em duas fases. Fase preparatória (cinco

Leia mais

Metabolismo de glicogênio. Via das pentose-fosfatos. Prof. Dr. Henning Ulrich

Metabolismo de glicogênio. Via das pentose-fosfatos. Prof. Dr. Henning Ulrich Metabolismo de glicogênio e Via das pentose-fosfatos Prof. Dr. Henning Ulrich Metabolismo de glicogênio Amido Glicogênio Polissacarídeos Plantas Animais Polissacarídeos - Glicogênio São polímeros de α-d-glicose,

Leia mais

MAPA II POLISSACARÍDIOS PROTEÍNAS LIPÍDIOS GLICOSE AMINOÁCIDOS ÁCIDOS GRAXOS. Leu Ile Lys Phe. Gly Ala Ser Cys. Fosfoenolpiruvato (3) Piruvato (3)

MAPA II POLISSACARÍDIOS PROTEÍNAS LIPÍDIOS GLICOSE AMINOÁCIDOS ÁCIDOS GRAXOS. Leu Ile Lys Phe. Gly Ala Ser Cys. Fosfoenolpiruvato (3) Piruvato (3) Ciclo de Krebs MAPA II POLISSACARÍDIOS PROTEÍNAS LIPÍDIOS GLICOSE AMINOÁCIDOS ÁCIDOS GRAXOS Fosfoenolpiruvato (3) Asp Gly Ala Ser Cys Leu Ile Lys Phe Glu Piruvato (3) CO 2 Acetil-CoA (2) CO 2 Oxaloacetato

Leia mais

Aula de Bioquímica II SQM Glicólise

Aula de Bioquímica II SQM Glicólise Aula de Bioquímica II SQM04242015201 Bacharelado em Ciências Físicas e Biomoleculares Tema: Glicólise Prof. Dr. Júlio César Borges Depto. de Química e Física Molecular DQFM Instituto de Química de São

Leia mais

Metabolismo de Carboidratos. Profa.Dra. Leticia Labriola Abril 2011

Metabolismo de Carboidratos. Profa.Dra. Leticia Labriola Abril 2011 Metabolismo de Carboidratos. Profa.Dra. Leticia Labriola Abril 2011 Funções da Via Glicolítica Gerar ATP (rápido); Gerar intermediários para síntese; Regenerar NADH; 2 ATP em anaerobiose Rendimento

Leia mais

Introdução e apresentação geral do metabolismo da glicose

Introdução e apresentação geral do metabolismo da glicose Introdução e apresentação geral do metabolismo da glicose Índice 1- O transporte transmembranar e a fosforilação da glicose...1 2- A glicólise e a oxidação da glicose a CO 2...1 3- A oxidação da glicose-6-fosfato

Leia mais

Glicólise. Monica Montero Lomeli Sylvia Alquéres

Glicólise. Monica Montero Lomeli Sylvia Alquéres Glicólise Monica Montero Lomeli Sylvia Alquéres Fontes de energia Como esses alimentos viram energia? Fontes de energia HOJE O Que é um carboidrato? Carbono Hidrato Poli hidroxi cetonas ou Poli hidroxi

Leia mais

- Hidrólise das ligações glicosídicas mediada por glicosidades

- Hidrólise das ligações glicosídicas mediada por glicosidades 1 V Processos Metabólicos 1 Metabolismo dos carboidratos a) Digestão dos carboidratos - idrólise das ligações glicosídicas mediada por glicosidades Inicia-se na boca - Ação da alfa-amilase salivar (ptialina)

Leia mais

Unidade 2 - Metabolismo dos Carboidratos

Unidade 2 - Metabolismo dos Carboidratos MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PAMPA CAMPUS DOM PEDRITO BIOQUÍMICA II Unidade 2 - Metabolismo dos Carboidratos Prof ª Drª Angélica Pinho O metabolismo dos nutrientes pode ser dividido por

Leia mais

CICLO DE KREBS. Bianca Zingales IQ-USP

CICLO DE KREBS.   Bianca Zingales IQ-USP CICLO DE KREBS https://www.youtube.com/watch?v=ubzwpqpqm Bianca Zingales IQ-USP G L IC O S E A M IN O Á C ID O S Á C ID O S G R A X O S A sp G ly L eu G lu A la Ile F o sfo e n o lp iru v a to ( ) S er

Leia mais

Universidade Salgado de Oliveira Disciplina de Bioquímica Básica Carboidratos e metabolismo

Universidade Salgado de Oliveira Disciplina de Bioquímica Básica Carboidratos e metabolismo Universidade Salgado de Oliveira Disciplina de Bioquímica Básica Carboidratos e metabolismo Profª Larissa dos Santos Carboidratos Os carboidratos (também conhecidos como oses, osídeos, glicídios ou simplesmente

Leia mais

FISIOLOGIA VEGETAL 24/10/2012. Respiração. Respiração. Respiração. Substratos para a respiração. Mas o que é respiração?

FISIOLOGIA VEGETAL 24/10/2012. Respiração. Respiração. Respiração. Substratos para a respiração. Mas o que é respiração? Respiração Mas o que é respiração? FISIOLOGIA VEGETAL Respiração É o processo pelo qual compostos orgânicos reduzidos são mobilizados e subsequentemente oxidados de maneira controlada É um processo de

Leia mais

Semana 12 Respiração Celular

Semana 12 Respiração Celular Semana 12 Respiração Celular Prof. Saul Carvalho Respiração Celular Extração de energia química de substâncias orgânicas (carboidratos e lipídios) Principalmente quebra da Glicose Gera energia celular

Leia mais

Via das pentoses-fosfato

Via das pentoses-fosfato Via das pentoses-fosfato A U L A 24 objetivos Nesta aula, você vai conhecer a via das pentoses-fosfato, um desvio da via glicolítica necessário às células que realizam reações de biossíntese redutoras.

Leia mais

Glicogênio. Glicogênese. Glicogenólise. Glicose-6-fosfato. Glicólise. Gliconeogênese. Lactato

Glicogênio. Glicogênese. Glicogenólise. Glicose-6-fosfato. Glicólise. Gliconeogênese. Lactato Glicogênio Glicogenólise Glicogênese Glicose-6-fosfato Glicólise Gliconeogênese Lactato Glicogênio: : polissacarídeo de reserva nas células animais hepatócito Glicogênio Principal polissacarídeo de reserva

Leia mais

Biossíntese e degradação de glicogênio. Integração entre o controle da glicólise e da glicogenólise em diferentes tipos celulares

Biossíntese e degradação de glicogênio. Integração entre o controle da glicólise e da glicogenólise em diferentes tipos celulares Biossíntese e degradação de glicogênio Regulação da via glicolítica Integração entre o controle da glicólise e da glicogenólise em diferentes tipos celulares O glicogênio é o polissacarídio de reserva

Leia mais

BIOQUIMICA DA NUTRIÇÃO INTRODUÇAO AO METABOLISMO ESTUDO DOS CARBOIDRATOS Parte 2. Andréa Fernanda Lopes

BIOQUIMICA DA NUTRIÇÃO INTRODUÇAO AO METABOLISMO ESTUDO DOS CARBOIDRATOS Parte 2. Andréa Fernanda Lopes . BIOQUIMICA DA NUTRIÇÃO INTRODUÇAO AO METABOLISMO ESTUDO DOS CARBOIDRATOS Parte 2 Andréa Fernanda Lopes 1 DIGESTÃO E ABSORÇÃO DE CARBOIDRATOS Andréa Fernanda Lopes 2 Digestão e absorção de carboidratos

Leia mais

MAPA II Vias metabólicas degradativas

MAPA II Vias metabólicas degradativas GLIÓLISE MAPA II Vias metabólicas degradativas PLISSAARÍDIS PRTEÍNAS LIPÍDIS GLISE AMINÁIDS ÁIDS GRAXS Glicólise Fosfoenolpiruvato (3) Asp Gly Ala Ser ys Leu Ile Lys Phe Glu Piruvato (3) 2 Acetil-oA (2)

Leia mais

Hoje iremos conhecer o ciclo de Krebs e qual a sua importância no metabolismo aeróbio. Acompanhe!

Hoje iremos conhecer o ciclo de Krebs e qual a sua importância no metabolismo aeróbio. Acompanhe! Aula: 13 Temática: Metabolismo aeróbio parte I Hoje iremos conhecer o ciclo de Krebs e qual a sua importância no metabolismo aeróbio. Acompanhe! O Ciclo de Krebs ou Ciclo do Ácido Cítrico A molécula de

Leia mais

MÓDULO 2 - METABOLISMO. Bianca Zingales IQ-USP

MÓDULO 2 - METABOLISMO. Bianca Zingales IQ-USP MÓDULO 2 - METABOLISMO Bianca Zingales IQ-USP INTRODUÇÃO AO METABOLISMO CARACTERÍSTICAS DO SER VIVO 1- AUTO-REPLICAÇÃO Capacidade de perpetuação da espécie 2- TRANSFORMAÇÃO DE ENERGIA O ser vivo extrai

Leia mais

Metabolismo e vias metabólicas

Metabolismo e vias metabólicas Fases: Metabolismo e vias metabólicas I. Catabolismo (degradação) II. Anabolismo (biossíntese) Combustíveis Metabólicos durante o estado alimentado Catabolismo de proteínas, gorduras e carboidratos nos

Leia mais

Metabolismo e Regulação

Metabolismo e Regulação Metabolismo e Regulação PRBLEMAS - Série 1 Soluções 2009/2010 idratos de Carbono (Revisão) e Metabolismo Central 1 R: (α 1 4) (lineares) Ο (α1 6) (pontos de ramificação) 2. R: Locais de glicosilação são

Leia mais

Introdução ao Metabolismo Microbiano

Introdução ao Metabolismo Microbiano Introdução ao Metabolismo Microbiano METABOLISMO DEFINIÇÃO: Grego: metabole = mudança, transformação; Toda atividade química realizada pelos organismos; São de dois tipos: Envolvem a liberação de energia:

Leia mais

Respiração Celular. Ciclo de Krebs Ciclo do ácido Tricarboxílico Ciclo do ácido Cítrico. Prof. Ana Paula Jacobus

Respiração Celular. Ciclo de Krebs Ciclo do ácido Tricarboxílico Ciclo do ácido Cítrico. Prof. Ana Paula Jacobus Respiração Celular Ciclo de Krebs Ciclo do ácido Tricarboxílico Ciclo do ácido Cítrico Prof. Ana Paula Jacobus GLICOSE VIAS LINEARES (glicólise e gliconeogênese) PIRUVATO Ciclo do ácido cítrico ou

Leia mais

Aula de Bioquímica II. Glicólise e Fermentação

Aula de Bioquímica II. Glicólise e Fermentação Aula de Bioquímica II Tema: Glicólise e Fermentação Prof. Dr. Júlio César Borges Depto. de Química e Física Molecular DQFM Instituto de Química de São Carlos IQSC Universidade de São Paulo USP E-mail:

Leia mais

Introdução ao Metabolismo. Profª Eleonora Slide de aula

Introdução ao Metabolismo. Profª Eleonora Slide de aula Introdução ao Metabolismo Profª Eleonora Slide de aula Metabolismo Profª Eleonora Slide de aula Relacionamento energético entre as vias catabólicas e as vias anabólicas Nutrientes que liberam energia Carboidratos

Leia mais

METABOLISMO DO GLICOGÊNIO

METABOLISMO DO GLICOGÊNIO METABLISM D GLICGÊNI Glicogênio Nota: substâncias de reserva: triacilgliceróis e glicogênio no citossol músculo tem menos quantidade de glicogênio por unidade de massa de tecido do que o fígado. Mas, considerando-se

Leia mais

Corpos cetônicos e Biossíntese de Triacilglicerois

Corpos cetônicos e Biossíntese de Triacilglicerois Corpos cetônicos e Biossíntese de Triacilglicerois Formação de Corpos Cetônicos Precursor: Acetil-CoA Importante saber!!!!!!!!!!!! http://bloglowcarb.blogspot.com.br/2011/06/o-que-acontece-com-os-lipidios.html

Leia mais

Gliconeogénese e Metabolismo do Glicogénio

Gliconeogénese e Metabolismo do Glicogénio Página 1 de 5 Aulas de grupo 2001-02; Rui Fontes Gliconeogénese e Metabolismo do Glicogénio 1- Gliconeogénese 1- A gliconeogénese é um termo usado para incluir o conjunto de processos pelos quais o organismo

Leia mais

MANUAL DA DISCIPLINA DE BIOQUÍMICA CURSO DE FISIOTERAPIA

MANUAL DA DISCIPLINA DE BIOQUÍMICA CURSO DE FISIOTERAPIA MANUAL DA DISCIPLINA DE BIOQUÍMICA CURSO DE FISIOTERAPIA 2017 MÓDULO 2 METABOLISMO 1 Introdução ao Metabolismo METABOLISMO Tópicos para estudo (em casa): 1- Dê as principais características do ser vivo.

Leia mais

Glicogênio, amido e sacarose

Glicogênio, amido e sacarose Glicogênio, amido e sacarose armazenamento Glicose oxidação pela via das pentoses-fosfato oxidação pela glicólise Ribose-5-fosfato Piruvato ADP atua no sistema antioxidante celular e também como um agente

Leia mais

QBQ 0230 Bioquímica. Carlos Hotta. Metabolismo integrado do corpo 17/11/17

QBQ 0230 Bioquímica. Carlos Hotta. Metabolismo integrado do corpo 17/11/17 QBQ 0230 Bioquímica Carlos Hotta Metabolismo integrado do corpo 17/11/17 Órgãos especializados: fígado - Garante a síntese de substrato energético para os demais tecidos - Sintetiza e armazena glicogênio

Leia mais

Obtenção de Energia. Obtenção de Energia. Obtenção de Energia. Oxidação de Carboidratos. Obtenção de energia por oxidação 19/08/2014

Obtenção de Energia. Obtenção de Energia. Obtenção de Energia. Oxidação de Carboidratos. Obtenção de energia por oxidação 19/08/2014 , Cadeia de Transporte de Elétrons e Fosforilação Oxidativa Prof. Dr. Bruno Lazzari de Lima Para que um organismo possa realizar suas funções básicas: Obtenção de nutrientes. Crescimento. Multiplicação.

Leia mais

Fontes de Ácidos Graxos. Dieta Estoque de gorduras Síntese de outras fontes

Fontes de Ácidos Graxos. Dieta Estoque de gorduras Síntese de outras fontes Acetil CoA ATP Fontes de Ácidos Graxos Dieta Estoque de gorduras Síntese de outras fontes Lipídios ingeridos da dieta L i Emulsificação Sais biliares Lipases intestinais degradam TCG Mucosa intestinal

Leia mais

BIOQUÍMICA GERAL. Fotossíntese. Respiração. Prof. Dr. Franciscleudo B Costa UATA/CCTA/UFCG. Aula 11. Glicólise FUNÇÕES ESPECÍFICAS.

BIOQUÍMICA GERAL. Fotossíntese. Respiração. Prof. Dr. Franciscleudo B Costa UATA/CCTA/UFCG. Aula 11. Glicólise FUNÇÕES ESPECÍFICAS. Aula 11 Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Agroalimentar Unidade Acadêmica de Tecnologia de Alimentos Definição Funções específicas BIOQUÍMICA GERAL Fases dos metabolismo

Leia mais

O Observatório de Educação em Direitos Humanos / Unesp (SP) está iniciando uma campanha educativa em defesa da "democracia".

O Observatório de Educação em Direitos Humanos / Unesp (SP) está iniciando uma campanha educativa em defesa da democracia. O Observatório de Educação em Direitos Humanos / Unesp (SP) está iniciando uma campanha educativa em defesa da "democracia". De que democracia estamos falando? Certamente não de uma democracia apenas formal.

Leia mais

Dividido em: Anabolismo Catabolismo

Dividido em: Anabolismo Catabolismo METABOLISMO Metabolismo Somatória de todas as transformações químicas de uma célula ou organismo responsáveis pela organização molecular, obtenção de energia e síntese/degradação de moléculas específicas

Leia mais

30/05/2017. Metabolismo: soma de todas as transformações químicas que ocorrem em uma célula ou organismo por meio de reações catalisadas por enzimas

30/05/2017. Metabolismo: soma de todas as transformações químicas que ocorrem em uma célula ou organismo por meio de reações catalisadas por enzimas Metabolismo: soma de todas as transformações químicas que ocorrem em uma célula ou organismo por meio de reações catalisadas por enzimas Metabolismo energético: vias metabólicas de fornecimento de energia

Leia mais

26/4/2011. Beta-Oxidação de Ácidos Graxos. Principal fonte de Ácidos Graxos são os TRIGLICÉRIDES

26/4/2011. Beta-Oxidação de Ácidos Graxos. Principal fonte de Ácidos Graxos são os TRIGLICÉRIDES Beta-Oxidação de Ácidos Graxos Principal fonte de Ácidos Graxos são os TRIGLICÉRIDES 1 TG constituem mais de 90 % dos lipídios da dieta... TG são sintetizados no FÍGADO e estocados no TECIDO ADIPOSO 2

Leia mais

Abaixo estão notas de aula Sugiro visualizar o vídeo disposto neste link:

Abaixo estão notas de aula Sugiro visualizar o vídeo disposto neste link: 3. Metabolismo Abaixo estão notas de aula Sugiro visualizar o vídeo disposto neste link: http://www.youtube.com/watch?v=5emw4b29rg&feature=related Fermentação alcoólica Em aulas anteriores vimos como a

Leia mais

BIOSSÍNTESE DE ÁCIDOS GRAXOS E REGULAÇÃO DO METABOLISMO DE GORDURAS

BIOSSÍNTESE DE ÁCIDOS GRAXOS E REGULAÇÃO DO METABOLISMO DE GORDURAS BIOSSÍNTESE DE ÁCIDOS GRAXOS E REGULAÇÃO DO METABOLISMO DE GORDURAS Se carboidratos, gorduras e proteínas são consumidas em quantidades que excedam as necessidades energéticas, o excesso será armazenado

Leia mais

BIOLOGIA. Moléculas, células e tecidos. Respiração celular e fermentação Parte 1. Professor: Alex Santos

BIOLOGIA. Moléculas, células e tecidos. Respiração celular e fermentação Parte 1. Professor: Alex Santos BIOLOGIA Moléculas, células e tecidos Parte 1 Professor: Alex Santos Tópicos em abordagem: Parte 1 Respiração celular I Conceitos fundamentais; II Etapas da respiração celular; Parte 2 Respiração celular

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA

UNIVERSIDADE ESTADUAL PAULISTA GLICÓLISE Dra. Flávia Cristina Goulart CIÊNCIAS FISIOLÓGICAS UNIVERSIDADE ESTADUAL PAULISTA Campus de Marília flaviagoulart@marilia.unesp.br Glicose e glicólise Via Ebden-Meyerhof ou Glicólise A glicólise,

Leia mais

METABOLISMO ENERGÉTICO integração e regulação alimentado jejum catabólitos urinários. Bioquímica. Profa. Dra. Celene Fernandes Bernardes

METABOLISMO ENERGÉTICO integração e regulação alimentado jejum catabólitos urinários. Bioquímica. Profa. Dra. Celene Fernandes Bernardes METABOLISMO ENERGÉTICO integração e regulação alimentado jejum catabólitos urinários Bioquímica Profa. Dra. Celene Fernandes Bernardes REFERÊNCIA: Bioquímica Ilustrada - Champe ESTÁGIOS DO CATABOLISMO

Leia mais

17/3/2014. Metabolismo Microbiano. Definição FUNÇÕES ESPECÍFICAS

17/3/2014. Metabolismo Microbiano. Definição FUNÇÕES ESPECÍFICAS Definição UNIDADE ACADÊMICA DE CIÊNCIAS AGRÁRIAS CURSO DE GRADUAÇÃO EM AGRONOMIA DISCIPLINA: BIOQUÍMICA GERAL PROFESSORAS: Adriana Silva Lima e Márcia Aparecida Cezar Metabolismo Microbiano Chama-se metabolismo

Leia mais

Profª Eleonora Slide de aula. Introdução ao Metabolismo

Profª Eleonora Slide de aula. Introdução ao Metabolismo Introdução ao Metabolismo Nutrientes que liberam energia Carboidratos Gorduras Proteínas Catabolismo Produtos finais pobres em energia CO 2 2 O N 3 Energia química ATP NADP Metabolismo Macromoléculas celulares

Leia mais

objetivo Ciclo da uréia Pré-requisito Ao final desta aula, você deverá ser capaz de: Entender as etapas de formação da uréia.

objetivo Ciclo da uréia Pré-requisito Ao final desta aula, você deverá ser capaz de: Entender as etapas de formação da uréia. Ciclo da uréia A U L A 18 objetivo Ao final desta aula, você deverá ser capaz de: Entender as etapas de formação da uréia. Pré-requisito Conhecimentos adquiridos na Aula 17. BIOQUÍMICA II Ciclo da uréia

Leia mais

Metabolismo de Lipídeos

Metabolismo de Lipídeos Universidade de São Paulo Escola de Engenharia de Lorena Departamento de Biotecnologia Curso Engenharia Química Disciplina Bioquimica Metabolismo Energético de Lipídeos Oxidação Completa: Combustível +

Leia mais

O que são as duas reações abaixo?

O que são as duas reações abaixo? O que são as duas reações abaixo? 6 CO 2 + 6 H 2 O Glicose + 6 O 2 Glicose + 6 O 2 6 CO 2 + 6 H 2 O Pode ser polimerizada, estocada, transportada e liberada rapidamente quando o organismo precisa de energia

Leia mais

Ciclo de Calvin. Síntese de glicose a partir de CO 2. ATP e NADPH + H+ sintetizados na fase clara são utilizados para reduzir CO 2 a glicose

Ciclo de Calvin. Síntese de glicose a partir de CO 2. ATP e NADPH + H+ sintetizados na fase clara são utilizados para reduzir CO 2 a glicose Ciclo de Calvin Síntese de glicose a partir de CO 2 ATP e NADPH + H+ sintetizados na fase clara são utilizados para reduzir CO 2 a glicose Síntese de carboidratos ATP e NADPH + H + produzidos na reação

Leia mais

Processo de obtenção de energia das células respiração celular

Processo de obtenção de energia das células respiração celular Processo de obtenção de energia das células respiração celular Lipídeos de armazenamento (Gorduras e óleos) Substâncias que originam ácidos graxos e usadas como moléculas que armazenam energia nos seres

Leia mais

METABOLISMO. Estudo das reações químicas que ocorrem nos organismos

METABOLISMO. Estudo das reações químicas que ocorrem nos organismos METABLISM Estudo das reações químicas que ocorrem nos organismos PRINCIPAIS TIPS DE METABLISM ANABLISM SÍNTESE DE SUBSTÂNCIAS CATABLISM DEGRADAÇÃ DE SUBSTÂNCIAS E BTENÇÃ DE ENERGIA respiração reação de

Leia mais

Pontifícia Universidade Católica de Goiás Departamento de Biologia Bioquímica Metabólica. Rotas Metabólicas. Prof. Raimundo Júnior M.Sc.

Pontifícia Universidade Católica de Goiás Departamento de Biologia Bioquímica Metabólica. Rotas Metabólicas. Prof. Raimundo Júnior M.Sc. Pontifícia Universidade Católica de Goiás Departamento de Biologia Bioquímica Metabólica Rotas Metabólicas Prof. Raimundo Júnior M.Sc. Metabolismo Transformação da matéria e da energia. A sequência das

Leia mais

1. Produção de Acetil-CoA. 2. Oxidação de Acetil-CoA. 3. Transferência de elétrons e fosforilação oxidativa

1. Produção de Acetil-CoA. 2. Oxidação de Acetil-CoA. 3. Transferência de elétrons e fosforilação oxidativa CICLO DE KREBS OU DO ÁCIDO CÍTRICO 1. Produção de Acetil-CoA 2. Oxidação de Acetil-CoA 3. Transferência de elétrons e fosforilação oxidativa CICLO DE KREBS OU DO ÁCIDO CÍTRICO 1. Produção de Acetil-CoA

Leia mais

Metabolismo CO 2 + H 2 O O 2 + CH 2 O

Metabolismo CO 2 + H 2 O O 2 + CH 2 O Metabolismo CO 2 + H 2 O O 2 + CH 2 O Glicólise Glicólise A via de Embden-Meyerhof (Warburg) Essencialmente todas as células executam a glicólise Consiste em dez reacções iguais em todas as células

Leia mais

BE066 - Fisiologia do Exercício BE066 Fisiologia do Exercício. Bioenergética. Sergio Gregorio da Silva, PhD

BE066 - Fisiologia do Exercício BE066 Fisiologia do Exercício. Bioenergética. Sergio Gregorio da Silva, PhD BE066 Fisiologia do Exercício Bioenergética Sergio Gregorio da Silva, PhD Objetivos Definir Energia Descrever os 3 Sistemas Energéticos Descrever as diferenças em Produção de Energia Bioenergética Estuda

Leia mais

QBQ 0230 Bioquímica. Carlos Hotta. Princípios de Regulação do metabolismo 16/11/17

QBQ 0230 Bioquímica. Carlos Hotta. Princípios de Regulação do metabolismo 16/11/17 QBQ 0230 Bioquímica Carlos Hotta Princípios de Regulação do metabolismo 16/11/17 Como controlamos o fluxo metabólico de uma célula? bases nitrogenadas lipídeos Glicose glicogênio CO 2 + H 2 O aminoácidos

Leia mais