Metabolismo de Carboidratos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Metabolismo de Carboidratos"

Transcrição

1 Metabolismo de Carboidratos 1. Introdução Os carboidratos são compostos que, em geral, apresentam a fórmulas empírica (CH2O)n e cujos representantes mais simples são chamados açúcares, como, por exemplo, a glicose. O tipo mais simples de carboidrato é constituído pelos monossacarídeos, chamados aldoses ou cetoses, segundo o grupo funcional que apresentam: aldeído ou cetona. A glicose é o principal carboidrato na Terra, entrando na constituição monomérica de celulose e amido. É também o único combustível utilizado por todas as células do nosso corpo. A glicose é, quantitativamente, o principal substrato oxidável para a maioria dos organismos, quase todas as células são potencialmente capazes de atender suas demandas energéticas apenas a partir deste açúcar. Apesar de a dieta humana conter pouca glicose livre, esta aparece em proporções consideráveis como amido, sacarose e lactose. A glicólise se caracteriza como uma via metabólica utilizada por todas as células do corpo, para extrair parte da energia contida na molécula da glicose, e gerar duas moléculas de lactato. A glicólise se constitui na etapa inicial no processo da oxidação completa de carboidratos envolvendo oxigênio molecular. Trata-se de uma rota central quase universal do catabolismo da glicose, a rota com o maior fluxo de carbono na maioria das células. A quebra glicolítica de glicose é a única fonte de energia metabólica em alguns tecidos de mamíferos e tipos celulares (hemácias, medula renal, cérebro e esperma, por exemplo). Nos próximos tópicos, descreveremos a oxidação total da glicose, bem como seu armazenamento e mobilização na forma de glicogênio (glicogênese e glicogenólise) e sua síntese de novo para suprir o cérebro (neoglicogênese). 2. Via glicolítica Para obterem ATP a partir de glicose, todas as células lançam mão de sua oxidação parcial a piruvato. Nas células anaeróbicas, a oxidação pára neste ponto. A conversão de glicose a piruvato permite aproveitar apenas uma parcela da energia total da glicose. Nas células aeróbicas, entretanto, o piruvato é subsequentemente oxidado, trazendo, naturalmente, um enorme ganho na produção de ATP. A etapa inicial da oxidação da glicose (até piruvato) ocorre através de uma sequência 1

2 de reações denominada glicólise, uma via metabólica que se processa no citossol. Seus produtos são ATP, (H + e ), recebido por coenzimas, e piruvato. A quebra dos seis carbonos da glicose em duas moléculas de piruvato com três carbonos ocorre em dez passos; os primeiros cinco dos quais constituem a fase preparatória (fase de investimento) e os cinco seguintes, a fase de geração de ATP (fase de rendimento). A sequencia de reações pode ser acompanhada na figura 1. Na primeira etapa a glicose é fosforilada sob a ação da enzima hexocinase e a glicose-6-fosfato (G6P), gerada no citosol, não pode sair da célula. Essa reação é irreversível. Quando o fígado necessita exportar glicose para outros tecidos, a G6P sofre a ação da enzima glicose-6-fosfatase, que catalisa a reação reversa daquela catalisada pela hexocinase. A G6P é transformada, em seguida, no seu isômero frutose-6-fostato (F6P), por ação da enzima fosfoglicose isomerase. Finalmente a F6P recebe mais um grupamento fosfato e é transformada no composto frutose-1,6-bisfosfato. Esta reação também é irreversível e é catalisada pela fosfofruto-cinase, uma enzima alostérica. Na segunda etapa a frutose-1,6-bisfosfato sofre a ação da aldolase gerando uma molécula de diidroxiacetona fosfato e uma molécula de gliceraldeído-3-fosfato (GAP). Sob a ação da triose fosfato isomerase, diidroxiacetona fosfato é convertida em gliceraldeído-3-fosfato. Após, ocorre a produção de 1,3-bisfosfoglicerato, composto gerado pela ação da enzima gliceraldeído-3-fosfato desidrogenase sobre o GAP. Essa enzima tem como coenzima o NAD (Nicotinamida adenina di-nucleotídeo). O composto 1,3-bisfosfoglicerato é um anidrido misto de um ácido carboxílico e ácido fosfórico, com um alto potencial energético permitindo que, na reação seguinte, catlisada pela fosfoglicerato cinase haja produção de ATP. Na reação 8, a enzima fosfogliceromutase reaposiciona a posição do grupo fosfato 3- Fosfoglicerato, dando origem a 2-fosfoglicerato (grupo fosfato ligado ao carbono 2), preparando o substrato para a próxima reação. A reação 9 é uma reação de desidratação catalisada pela enzima enolase. O 2-fosfoglicerato é desidratado formando uma molécula de água e fosfoenolpiruvato (PEP), um composto altamente energético. Foi devido a esta configuração energética que o grupo fosfato foi transferido da posição 3 para 2 na reação anterior. A outra reação onde ocorre síntese de ATP é catalisada pela piruvato cinase, enzima que transforma fosfoenolpiruvato em piruvato. Esta é a terceira reação irreversível da via glicolítica. 2

3 Figura 1. Via glicolítica 3. Destinos do Piruvato Em condições aeróbicas, o primeiro passo para a oxidação total do piruvato é a sua conversão a acetil CoA. Nas células eucarióticas, o piruvato do citossol entra na mitocôndria, onde é transformado em acetil CoA, conectando, portanto, a glicólise e o ciclo de Krebs. O piruvato é convertido a acetil CoA, através de uma descarboxilação oxidativa, de acordo com a equação (figura 2): 3

4 Figura 2. Formacao de Acetil-CoA A reação de formação de acetil CoA a partir de piruvato é irreversível e ocorre em quatro etapas sequ enciais, catalisadas por um sistema multienzimático, chamado complexo piruvato desidrogenase. Uma única partícula do complexo piruvato desidrogenase é maior do que um ribossomo e consiste em um núcleo central formado por dezenas de moléculas de diidrolipoil transacetilase cada uma com dois resíduos de ácido lipóico), as quais se associam dezenas de moléculas de piruvato desidrogenase e diidrolipoil desidrogenase. Fazem parte ainda da partícula várias moléculas de quinase e fosfatase, responsáveis pela regulação da atividade do próprio complexo, através de fosforilação e desfosforilação. A primeira etapa é a descarboxilação do piruvato pela piruvato desidrogenase, que transfere o grupo hidroxietil para o TPP, em uma reação análoga à do piruvato descarboxilase, que participa da fermentação alcóolica. Em seguida, a diidrolipoil transacetilase oxida o grupo hidroxietil a acetil, ligando-o ao ácido lipóico. Nesta oxidação, os elétrons são transferidos para o ácido lipóico (forma dissulfeto), reduzindoo a ácido acetil lipóico. A mesma enzima transfere o grupo acetil para coenzima. A, formando acetil CoA. O ácido lipóico (forma ditiol) é reoxidado pela diidrolipoli desidrogenase, uma flaoproteína contendo FAD como grupo prostético, que recebe os (H+ + e-) e os transfere finalmente para o NAD+. O NADH formado será oxidado na cadeia de transporte de elétrons. Em condições de anaerobiose, por outro lado, o piruvato serve como aceptor de elétrons do NADH, reciclando o NAD+. Esse processo é denominado de fermentação que pode ser lática ou alcoólica. Na fermentação lática o piruvato é reduzido a lactato através da enzima lactato desidrogenase. Essa redução é o que permite a reoxidação das moléculas de NADH, 4

5 sendo o próprio piruvato o aceptor de elétrons (figura 3). Este processo é observado em algumas espécies de bactérias, nas hemácias sanguíneas, nas fibras musculares de contração rápida e nas fibras musculares em geral, neste último caso quando a quantidade de oxigênio torna-se insuficiente (anaerobiose relativa), devido a um trabalho muscular muito intenso. O acúmulo de ácido láctico oriundo desse processo no músculo é o que causa a dor característica posterior aos exercícios físicos de grande intensidade. Tal mecanismo é muito importante, uma vez que permite a continuidade do exercício, mesmo em ausência relativa de oxigênio. Figura 3. Fermentação lática. Em certos organismos, como as leveduras e alguns tipos de bactérias, a regeneração do NAD+ é feita por meio da fermentação alcoólica. Nesse processo, inicialmente, cada molécula de piruvato é convertida a um composto com dois carbonos (acetaldeído) em uma reação de descarboxilação através da ação da enzima Piruvato Descarboxilase (PPP), que gera uma molécula de CO2 e uma molécula de NADH. Esse acetaldeído serve de aceptor dos elétrons do NADH e reduz-se a álcool etílico (etanol) a partir da ação da enzima álcool desidrogenase (figura 4). 5

6 Figura 4. Fermentação alcoólica. 4. Ciclo de Krebs O piruvato proveniente de glicose origina acetil-coa mitocondrial. Além da glicose, vários aminoácidos produzem piruvato e, portanto, acetil-coa, ao serem degradados. A acetil-coa pode, portanto, ser originária de carboidratos, aminoácidos e ácidos graxos e, qualquer que seja sua proveniência, será totalmente oxidada a CO2 pelo ciclo de Krebs, com a concomitante produção de coenzimas reduzidas. O ciclo de Krebs inicia-se com a condensação de acetil CoA e oxaloacetato, formando citrato, uma reação catalisada pelo citrato sintase (figura 5). O citrato é isomerizado a isocitrato por ação da aconitase, com a formação intermediária de cis-aconitato. A isocitrato desidrogenase catalisa a oxidação de isocitrato a α-cetoglutrato, com redução de NDA+ e liberação de CO2. O α-cetoglutrato é então transformado a succinil-coa, numa reação catalisada pela α-cetoglutrato desidrogenase, um complexo enzimático semelhante ao complexo piruvato desidrogenase. A succinil CoA sintetase catalisa a transformação de succinil CoA a succinato, numa reação que forma GTP (guanosina trifosfato), a partir de GDP (guanosina difosfato) e P. O GTP tem o mesmo nível energético do ATP e, portanto, a formação de GTP equivale à formação de ATP: o GTP pode reagir com ADP, dando ATP e regenerando GDP, por ação da nucleosídio difosfato quinase. A succinato desidrogenase é a única enzima do ciclo de Krebs que é parte integrante da membrana interna da mitocôndria: as demais estão em forma solúvel na matriz mitocondrial. O fumarato é hidratado a malato pela furmarase. Por fim o malato é oxidado a oxaloacetato pela acao 6

7 da malato desidrogenase e formação de NADH (figura 5). Como o oxaloacetato é sempre regenerado ao final de cada volta, o ciclo de Krebs pode oxidar acetil-coa continuamente, sem gasto efetivo de oxaloacetato. Figura 5. Ciclo de Krebs Embora o ciclo de Krebs produza diretamente apenas 1 ATP, contribui para a formação de grande parte do ATP produzido pela célula, pois a energia da oxidação da acetil-coa é conservada sob a forma de coenzimas reduzidas e, posteriormente, usada para síntese de ATP. A oxidação das coenzimas é obrigatoriamente feita pela cadeia de transporte de elétrons e, portanto, o ciclo de Krebs, ao contrário da glicose, só pode funcionar em condições aeróbicas. Os compostos intermediários do ciclo de Krebs podem ser utilizados como precursores em vias biossintéticas: oxaloacetato e α-cetoglutarato vão formar 7

8 respectivamente aspartato e glutamato. A eventual retirada desses intermediários pode ser compensada por reações que permitem restabelecer o seu nível. Entre essas reações, que são chamadas de anapleróticas por serem reações de preenchimento, a mais importante é a que leva à formação de oxaloacetato a partir do piruvato e que é catalisada pela piruvato carboxilase. O oxaloacetato além de ser um intermediário do ciclo de Krebs, participa também da gliconeogênese. A degradação de vários aminoácidos também produz intermediários do ciclo de Krebs, funcionando como reações anapleróticas adicionais (figura 5). 5. Gliconeogênese Gliconeogênese ou neoglicogénese ou ainda neoglucogénese ("formação de novo açúcar") é a rota pela qual é produzida glicose a partir de compostos aglicanos (nãoaçúcares ou não-carboidratos), sendo a maior parte deste processo realizado no fígado (principalmente sob condições de jejum) e uma menor parte no córtex dos rins. Em humanos, os principais precursores são: lactato, glicerol e aminoácidos, principalmente alanina. Exceto por três sequências específicas (Piruvato para PEP, Frutose1.6-bifosfato para frutose-6-p, Glicose-6-p para glicose), as reações da gliconeogênese são inversas às da glicólise. Em mamíferos, a maioria dos tecidos é capaz de suprir suas necessidades energéticas a partir da oxidação de vários compostos, tais como aminoácidos, açúcares e ácidos graxos, porém alguns tecidos dependem quase completamente de glicose como fonte de energia metabólica. Para o cérebro humano e o sistema nervoso, assim como os eritrócitos, testículos, medula renal e tecidos embriônicos, a glicose sanguínea é a única ou principal fonte de energia. Apenas o cérebro requer cerca de 120g de glicose a cada dia - mais do que metade de toda a glicose armazenada como glicogênio em músculos e fígado. A longo prazo, todos os tecidos também requerem glicose para outras funções, tais como a síntese da ribose dos nucleotídeos ou da porção carboidrato de glicoproteínas e glicolipídeos. Portanto, para sobreviver, os organismos precisam ter mecanismos para manutenção dos níveis sanguíneos de glicose. Quando a concentração de glicose circulante vinda da alimentação diminui, o glicogênio hepático e muscular é degradado (glicogenólise) fazendo com que a glicemia volte a valores normais. Entretanto, o suprimento de glicose desses reservatórios não é sempre suficiente; entre as refeições e durante longos jejuns, ou após exercícios vigorosos, o glicogênio é depletado (consumido), situação que também ocorre quando há 8

9 deficiência do suprimento de glicose pela dieta ou por dificuldade na absorção pelas células. Nessas situações, os organismos necessitam de um método para sintetizar glicose a partir de precursores não-carboidratos. Isso é realizado pela via chamada gliconeogênese, a qual converte piruvato e compostos relacionados de três e quatro carbonos em glicose. A maioria das etapas da gliconeogênese usa as mesmas enzimas que catalizam o processo da glicólise, porém, o fluxo de carbonos, é claro, é na direção reversa. Entretanto, em três pontos as reações da glicólise são irreversíveis in vivo (por liberarem energia livre em forma de calor): conversão de glicose em glicose 6-fosfato pela hexoquinase, a fosforilação da frutose 6-fosfato em frutose 1,6-bisfosfato pela fosfofrutoquinase-1 e a conversão de fosfoenolpiruvato em piruvato pela piruvato quinase. Para contornar essas barreiras energéticas, reações e enzimas especiais são necessárias em três desvios (figura 6): 1 desvio: Dentro da mitocôndria, a piruvato-carboxilase catalisa a formação de oxalacetato a partir de ATP e CO2, liberando ADP + Pi. A partir daí, pode-se tomar 2 caminhos: a) Ação da PEP-carboxilase (PEPCK) mitocondrial, formando fosfoenolpiruvato a partir de GTP, e liberando GDP + CO2. b) Redução do oxalacetato para produção de malato, ganhando dois H. O malato, por sua vez, irá sair da mitocôndria e será oxidado, perdendo 2 H e voltando a ser oxalacetato. Este oxalacetato sofrerá ação da PEP-carboxilase citosólica, que o transformará em fosfoenolpiruvato. O caminho a ser tomado depende da concentração de NADH citosólico. Se for alta, a via b é inibida, pois causa acúmulo de produtos (malato e oxalacetato). O piruvato então toma a via a, transformando-se em fosfoenolpiruvato ainda dentro da mitocôndria. Caso a concentração de NADH no citosol seja baixa, acontece o contrário, e a via b é estimulada por falta de produtos. 2º desvio: No citosol, a frutose-1,6-bifosfato é hidrolisada pela frutose-1,6- bifosfatase, liberando um Pi e formando frutose-6-fosfato, que logo em seguida será isomerizada a glicose-6-fosfato pela fosfoglicose-isomerase. 9

10 3º desvio: Nesta etapa faz-se a conversão de glicose-6-fosfato em glicose. O grupo fosfato ligado ao carbono 6 da glicose-6-fosfato sofre hidrólise catalisada pela glicose-6- fosfatase. O produto dessa reação é a glicose não fosforilada que, assim, pode atravessar a membrana plasmática. A enzima glicose-6-fosfatase só ocorre no fígado e rins. Figura 6. Gliconeogênese A neoglicogênese é uma reação de síntese porque utiliza um precursor de 3 carbonos e tem como produto final a glicose, com seis carbonos. Assim como as demais 10

11 reações de síntese, a neoglicogênese consome energia na forma de ATP. Para cada molécula de glicose formada a partir de piruvato, seis moles de pontes de fosfato de alta energia são clivadas : quatro ATP, dois GDP, e dois NADH, que são utilizados nas reações catalisadas por piruvato carboxilase, fosfoenolpiruvato carboxiquinase e fosfoglicerato quinase. Dois moles de ácido pirúvico são requeridos para a síntese de um mol de glicose. Reação Global 2 Ácido pirúvico + 4 ATP + 2 GTP + 2 NADH + 6 H2O > Glicose + 4 ADP + 2 GDP + 6 Pi + 2 NAD + 2 H+ 6. Glicogênese e glicogenólise O glicogênio é um polímero de glicose e constitui uma forma de armazenamento deste açúcar; é utilizado principalmente pelo fígado e músculos quando a oferta de glicose supera as necessidades energéticas imediatas destes órgãos. O glicogênio hepático degradado produzindo glicose, que é exportada para manter a glicemia (concentração de glicose sanguínea) nos períodos entre as refeições e no jejum noturno. O glicogênio muscular provê energia exclusivamente para a própria fibra muscular em contração intensa, quando a demanda energética ultrapassa o aporte de oxigênio, sendo, então, convertido a lactato. O glicogênio é um polissacarídeo altamente ramificado. Os resíduos de glicose são unidos por ligações glicosídicas entre os carbonos 1 e 4 (ligações α - 1, 4) nos segmentos lineares, e as ramificações são formadas por ligações entre os carbonos 1 e 6 (ligações α - 1, 6). O glicogênio apresenta dois tipos de extremidades, chamadas redutora e não redutora. A degradação do glicogênio consiste na remoção sucessiva de resíduos de glicose, apartir das extremidades não redutoras, por ação da glicogênio fosforilase. Esta enzima quebra a ligação α - 1,4 por reação com fosfato, liberando um resíduo de glicose como glicose 1-fosfato (figura 7). A ação da glicogênio fosforilase prossegue ao longo da cadeia, terminando 4 resíduos antes de uma ramificação. Uma transferase transfere 3 destes resíduos para uma outra extremidade do glicogênio, neste ponto, um resíduo de glicose unido por uma ligação α-1,6. Esta ligação é hidrolisada por uma α-1,6 glicosidase, também chamada enzima desramificadora. 11

12 A degradação, entretanto, não é completa, restando um núcleo não degradado que serve de ponto de partida para a ressíntese. O glicogênio é sintetizado por uma via diferente da via de degradação. A síntese consiste na repetida adiação de resíduos de glicose às extremidades não redutoras de um núcleo de glicogênio. A glicose a ser incorporada deve estar sob uma forma ativada, ligada a um nucleotídio de uracila, constituindo a uridina difosfato (UDP-G). O UDP-G é produzido, a partir de glicose, por uma série de reações (figura 7). O primeiro passo envolve a síntese de glicose-1-fosfato e UTP: Glicose 1-fosfato + UTP + H2O UDP-glicose + 2 Pi Essa reação é catalisada pela UDP-glicose pirofosfatase. Essa reação seria reversível se não fosse pela rápida hidrólise exergônica (o que implica a necessidade de água) do pirofosfato a ortofosfato (catalisada pela pirofosfatase). Na segunda reação, UDP-glicose é transferida ao grupo hidroxila da cadeia de glicogênio existente, formado uma ligação glicosídica α-1,4. Essa reação é catalisada pela glicogênio sintetase. Essa enzima só consegue promover essa adição se a cadeia contiver no mínimo quatro unidades. Assim, a proteína glicogenina é utilizada como uma "molécula primária". Ligações α-1,6 são criadas pela enzima glycogen branching Figura 7. Esquema geral da síntese e degradação de glicogênio. 12

13 Várias doenças hereditárias relacionadas ao armazenamento de glicogênio são conhecidas. Isso se deve a ausência ou diminuição de uma das enzimas envolvidas no metabolismo do glicogênio. A tabela abaixo mostra as doenças hereditárias bem como suas consequências. 7. Via das Pentoses Fosfato A via das pentoses fosfato é uma via alternativa de oxidação de glicose e a única via de produção de ribose 5-fosfato, a pentose constituinte dos nucleotídios que compõe os ácidos nucleicos e várias coenzimas. A glicólise e em outras vias degradativas, o substrato é oxidado, gerando coenzimas reduzidas cuja oxidação produz ATP. Na síntese de muitos compostos ocorre o reverso: há consumo de ATP e redução do substrato. O doador de elétrons para esta redução não é o NADH, mas uma coenzima semelhante: a nicotinamida adenina dinucleotídio fosfato (NADPH). É na via das pentoses fosfato que o NADP+ é reduzido a NADPH. De fato, nesta via, a energia derivada da oxidação da glicose é armazenada sob a forma de poder redutor (NADPH) e não de ATP como na glicólise. A via das pentoses consta de uma parte oxidativa, que produz NADPH, e uma parte não oxidativa, que interconverte açúcares fosforilados. A via das pentoses fosfato compreende uma etapa inicial, oxidativa, em que a glicose 6-fosfato é convertida a ribulose 5-fosfato por suas oxidações sucessivas, catalisadas por desidrogenase específicas para NADP+. A equação geral desta etapa é: Glicose 6-fosfato + 2 NADP+ + H2O Ribulose 5-fosfato + 2(NADPH + H+) + CO2 8. Metabolismo de outros carboidratos importantes 13

14 A sacarose dietária constitui uma fonte quantativamente importante de monossacarídios para o homem; a lactose, o açúcar presente no leite, tem importância principalmente nos primeiros meses de vida. Estes dissacarídios são hidrolisados no intestino delgado, por sacarose e lactose, respectivamente. A sacarose produz glicose e frutose; lactose libera glicose e galactose. Não sendo hidrolisada, a lactose permanece no intestino delgado, onde sofre fermentação bacteriana de sua conversão a intermediários da glicólise. A frutose é convertida a diidroxiacetona fosfato e gliceraldeído 3-fosfato e entra na via glicolítica. Em outros tecidos (adiposo e músculo), a frutose é convertida a frutose 6- fosfato pela hexoquinase. Algumas doenças metabólicas relacionadas aos carboidratos são comuns, tais como, galactosemia, deficiência hereditária de galactose 1-fosfato uridil transferase, que causa uma serie de problemas devido ao acumulo de galactitol e frutosonuria, pelo defeito no metabolismo de frutose. Um resumo do metabolismo dos carboidratos é mostrado na figura 8. 14

15 Figura 8. Resumo do metabolismo dos carboidratos. 9. Regulação do metabolismo de açúcares A regulação do metabolismo de açucares depende na sua maior parte da ação hormonal da insulina e do glucagon. O músculo possui algumas diferenças com o fígado, principalmente no que se refere a exportação de glicose, onde esse é o papel do fígado para manter a glicemia normal. A regulação da glico lise é complexa pela sua importa ncia na geração de energia na forma de ATP e pela produção de vários intermediários glicolíticos destinados a biossíntese. Na maioria das células, a velocidade da glico lise é determinada, principalmente, pela regulação alostérica das enzimas hexocinase, fosfofrutocinase 1 (PFK 1) e piruvato cinase. As reações catalisadas por essas enzimas são irreversíveis e podem ser ligadas ou desligadas por efetores alostéricos. Por exemplo, a hexocinase é inibida pelo excesso de glicose-6-fosfato. Vários compostos de alta energia atuam como efetores alostéricos. Por exemplo, elevadas concentrações de AMP (um indicador de baixa produção de energia) ativa a PFK 1 e apiruvato cinase. Por outro lado, teores elevados de ATP (um indicador que as necessidades energéticas das células foram atingidas) inibem as duas enzimas. O citrato e a acetil CoA, que acumulam quando existe ATP em quantidade suficiente, inibem a PFK 1 e a piruvato cinase, respectivamente. A frutose 2,6 bifosfato, produzida por indução de hormo nio da PFK 2, é um indicador de altos níveis de glicose disponível e alostericamente ativa a PFK 1. O acu mulo de 15

16 frutose 1,6 bifosfato ativa a piruvato cinase, promove um mecanismo de controle (a frutose 1,6 bifosfato é um ativador alostérico). Além disso, apo s uma refeição rica em carboidratos, a insulina promove o aumento na síntese das enzimas glicocinase, fosfofrutocinase 1 e piravato cinase. Por outro lado, a síntese dessas mesmas enzimas é reduzida quando o glucagon plasmático está aumentado e a insulina reduzida, como no jejum ou diabetes. A síntese e a degradação do glicogênio são cuidadosamente reguladas para evitar a perda de energia. As enzimas das diferentes vias, a glicogênio fosforilase e a glicogênio sintase nas formas a (ativa) e b (inativa ou pouco ativa), são reguladas pelo controle alostérico e pela modificação covalente das enzimas modulada por hormo nios. A atividade dessas enzimas é, também, amplamente dependente da disponibilidade de vários intermediários e co-fatores. Portanto, a glicogênese e a glicogeno lise são reguladas de tal modo que as quantidades de glicose liberadas são ajustadas segundo as necessidades do organismo. A glicogênio-sintase e a glicogênio- fosforilase estão sob controle alostérico por diferentes efetores. A forma inativa (ou pouco ativa) da glicogênio-fosforilase encontrada no mu sculo em repouso, é denominada glicogênio fosforilase b, e é ativada por AMP e inibida por ATP e glicose 6 fosfato. A glicogênio sintase, ao contrário, é ativada pela glicose 6 fosfato. A interconversão das formas a e b da glicogênio-sintase e da glicogênio fosforilase é regulada reciprocamente por meio de fosforilação defosforilação (quando uma enzima é estimulada a outra é inibida) e são catalisadas por enzimas que estão sob controle hormonal (insulina, glucagon e adrenalina) ou estímulo nervoso (íons Ca2+). Devido a seu efeito sobre a proteína-cinase dependente de AMPc, através da geração de AMP cíclico, a adrenalina inibe a síntese do glicogênio. A glicogênio-sintase e a glicogênio-fosforilase são afetadas pela fosforilação de modo diferente: a glicogêniofosforilase a (ativa) está ligada ao fosfato, enquanto a glicogênio-sintase (ativa) está na forma desforilada (figura 9). 16

17 Figura 9. Regulação do metabolismo do glicogênio por modificação covalente das enzimas moduladas por hormo nios. A velocidade da gliconeogênese é afetada principalmente pela disponibilidade de substratos, efetores alostéricos e hormo nios. Dietas ricas em gorduras, a inanição e o jejum prolongado elevam as concentrações de lactato, glicerol e aminoácidos e estimulam a gliconeogênese. As quatro enzimas-chave da gliconeogênese (piruvato carboxilase, fosfoenolpiruvato carboxicinase, frutose 1,6 bifosfatase e glicose 6 fosfatase) são afetadas em diferentes graus por moduladores alostéricos. Por exemplo, a frutose 1,6 bifosfatase é ativada pelo ATP e inibida pelo AMP e pela frutose 2,6 bifosfato. A acetil CoA é um modulador alostérico positivo da piruvato carboxilase. A concentração da acetil CoA, um produto da degradação dos ácidos graxos, está elevada durante a inanição. Como em outras vias bioquímicas, os hormo nios afetam a gliconeogênese por alterações na concentração dos efetores alostéricos e por modificações na velocidade de síntese das enzimas chave. O glucagon (elevado quando o nível de glicose diminui) 17

18 reduz a síntese da frutose 2,6 bifosfato, ativando a função fosfatase da PFK 2. A redução do teor da frutose 2,6 bifosfato reduz a ativação da PFK 1 e desinibe a frutose 1,6 bifosfatase. Outro efeito do glucagon nas células hepáticas é a inativação da enzima glicolítica piruvato cinase. (A proteína cinase C, uma enzima ativada pelo AMPc, converte a piruvato cinase em sua conformação fosforilada inativa). Os hormo nios também influenciam a gliconeogênese por alterações na síntese de enzimas. Por exemplo, a síntese de enzimas gliconeogênicas é estimulada pelo cortisol (um hormo nio estero ide produzido no co rtex da supra-adrenal). A ação da insulina promove a síntese de novas moléculas de glicocinase, PFK 1 e PFK-2. O glucagon promove a síntese de novas moléculas de PEP carboxicinase, frutose 1,6 bifosfatatase e glicose 6 fosfatase. O controle hormonal da gliconeogênese é importante no suprimento de ácidos graxos para o fígado além de regular as enzimas, tanto glicolíticas como gliconeogênicas. O glucagon aumenta a concentração dos ácidos graxos no plasma pela lipo lise no tecido adiposo, em ação oposta da insulina. A grande disponibilidade de ácidos graxos, estimulada pelo glucagon, resulta em maior oxidação dos ácidos graxos para formar acetil CoA pelo fígado, permitindo a síntese da glicose. Por outro lado, a insulina tem efeito oposto. O glucagon e a insulina também regulam a gliconeogênese no fígado por influenciar o estado de fosforilação de enzimas hepáticas, tais como, a piruvato cinase e fosfofrutocinase. A figura 10 mostra de forma esquemática a regulação do metabolismo dos carboidratos no fígado pela ação dos hormônios insulina e glucagon 18

19 Figura 10. Metabolismo dos carboidratos no fígado pela ação da insulina e glucagon. Resumo O metabolismo dos carboidratos está centrado na glicose porque esse açu car é uma molécula combustível importante para a maioria dos organismos. Se as reservas de energia são baixas, a glicose é degradada pela via glicolítica. As moléculas de glicose não utilizadas para a produção imediata de energia são armazenadas como glicogênio (em animais) ou amido (em vegetais). Durante a glico lise (sequ ência de 10 reações), a glicose é fosforilada e clivada para formar duas moléculas de gliceraldeído 3 fosfato. Cada gliceraldeído 3 fosfato é então convertido em uma molécula de piruvato. Uma 19

20 pequena quantidade de energia é armazenada em moléculas de ATP e NADH. Em organismos anaero bicos, o piruvato é reduzido a lactato. Durante esse processo, o NAD+ é regenerado para a continuação da glico lise. Na presença de O2, os organismos aero bicos convertem o piruvato a acetil CoA e, então, a CO2 e H2O. A glico lise é controlada principalmente por regulação alostérica de três enzimas hexocinase, fosfofrutocinase 1 (PFK 1) e piruvato cinase e pelos hormo nios insulina e glucagon. Durante a gliconeogênese, moléculas de glicose são sintetizadas a partir de precursores não carboidratos (lactato, piruvato, glicerol e certos aminoácidos). A sequ ência de reações na gliconeogênese corresponde a reações da via glicolítica, mas no sentido inverso. As três reações irreversíveis da glico lise (síntese do piruvato, conversão da frutose 1,6 bifosfato a frutose 6 fosfato e a formação de glicose a partir da glicose 6 fosfato) são substituídas na gliconeogênese por reações energeticamente favoráveis. A via das pentoses-fosfato, na qual a glicose-6-fosfato é oxidada, ocorre em duas etapas. Na etapa oxidativa, duas moléculas de NADPH são produzidas enquanto a glicose 6 fosfato é convertida em ribulose 5 fosfato. Na etapa não oxidativa, a ribose 5 fosfato e outros açu cares são sintetizados. Se a célula necessita mais NADPH que ribose 5 fosfato (componente dos nucleotídeos e ácidos nucléicos) então os metabo litos da etapa não oxidativa são convertidos em intermediários glicolíticos. Vários açu cares diferentes da glicose são importantes no metabolismo dos vertebrados. Entre eles estão: frutose, galactose e a manose. 20

Profª Eleonora Slide de aula. Metabolismo de Carboidratos

Profª Eleonora Slide de aula. Metabolismo de Carboidratos Metabolismo de Carboidratos Metabolismo de Carboidratos Profª Eleonora Slide de aula Condições de anaerobiose Glicose 2 Piruvato Ciclo do ácido cítrico Condições de anaerobiose 2 Etanol + 2 CO 2 Condições

Leia mais

Revisão do Metabolismo da Glicose

Revisão do Metabolismo da Glicose Gliconeogênese Revisão do Metabolismo da Glicose Esquema Geral da Glicólise lise 1 açúcar de 6 C 2 açúcares de 3 C A partir deste ponto as reações são duplicadas 2 moléculas de Piruvato (3C) Saldo 2 moléculas

Leia mais

Glicólise. Professora Liza Felicori

Glicólise. Professora Liza Felicori Glicólise Professora Liza Felicori Glicose Glicose (combustível metabólico) Fígado: Serve como tampão para manter o nível de glicose no sangue (liberação controlada de glicose) Glicose GLICOGÊNIO Estoque

Leia mais

PRINCIPAIS VIAS METABÓLICAS

PRINCIPAIS VIAS METABÓLICAS PRINCIPAIS VIAS METABÓLICAS DEGRADAÇÃO DO GLIGOGÊNIO GLICÓLISE VIA DAS PENTOSES FOSFATO GLICONEOGÊNESE SÍNTESE DE CORPOS CETÔNICOS DEGRADAÇÃO DE AMINOÁCIDOS E CICLO DA URÉIA CICLO DE KREBS Β-OXIDAÇÃO DE

Leia mais

METABOLISMO DOS CARBOIDRATOS - GLICÓLISE

METABOLISMO DOS CARBOIDRATOS - GLICÓLISE Após a absorção dos carboidratos no intestino, a veia porta hepática fornece glicose ao fígado, que vai para o sangue para suprir as necessidades energéticas das células do organismo. GLICÓLISE principal

Leia mais

Utilização de glicose pelas células. A glicólise é a via metabólica mais conservada nos sistemas biológicos

Utilização de glicose pelas células. A glicólise é a via metabólica mais conservada nos sistemas biológicos Utilização de glicose pelas células A glicólise é a via metabólica mais conservada nos sistemas biológicos A glicose é o combustível preferencial e mais versátil disponível nas células vivas. Principais

Leia mais

Metabolismo de Glicídios

Metabolismo de Glicídios Universidade Federal de Pelotas Núcleo de Pesquisa, Ensino e Extensão em Pecuária Doenças Metabólicas Metabolismo de Glicídios Lucas Balinhas Mozer Ávila Patrícia Mattei Uriel Londero Pelotas, abril 2015

Leia mais

Universidade Federal do Pampa Campus Itaqui Bioquímica GLICONEOGÊNESE. Profa. Dra. Marina Prigol

Universidade Federal do Pampa Campus Itaqui Bioquímica GLICONEOGÊNESE. Profa. Dra. Marina Prigol Universidade Federal do Pampa Campus Itaqui Bioquímica GLICONEOGÊNESE Profa. Dra. Marina Prigol GLICONEOGÊNESE PROCESSO DE SÍNTESE DE GLICOSE A PARTIR DE COMPOSTOS NÃO GLICÍDICOS OCORRÊNCIA: Citosol do

Leia mais

Funções do Metabolismo

Funções do Metabolismo Universidade Federal de Mato Grosso Disciplina de Bioquímica Conceito de Metabolismo METABOLISMO DOS CARBOIDRATOS Prof. Msc. Reginaldo Vicente Ribeiro Atividade celular altamente dirigida e coordenada,

Leia mais

5/4/2011. Metabolismo. Vias Metabólicas. Séries de reações consecutivas catalisadas enzimaticamente, que produzem produtos específicos (metabólitos).

5/4/2011. Metabolismo. Vias Metabólicas. Séries de reações consecutivas catalisadas enzimaticamente, que produzem produtos específicos (metabólitos). Metabolismo Vias Metabólicas Séries de reações consecutivas catalisadas enzimaticamente, que produzem produtos específicos (metabólitos). 1 Endergônico Exergônico Catabolismo Durante o catabolismo de carboidratos,

Leia mais

Faculdade de Tecnologia de Araçatuba. Curso Superior de Tecnologia em Bioenergia Sucroalcooleira

Faculdade de Tecnologia de Araçatuba. Curso Superior de Tecnologia em Bioenergia Sucroalcooleira Faculdade de Tecnologia de Araçatuba Curso Superior de Tecnologia em Bioenergia Sucroalcooleira SÍNTESE DE CARBOIDRATOS Gliconeogênese Biossíntese de glicogênio, amido e sacarose Glicose sanguínea glicogênio

Leia mais

Glicogênese, Glicogenólise e Gliconeogênese. Profa. Alessandra Barone

Glicogênese, Glicogenólise e Gliconeogênese. Profa. Alessandra Barone Glicogênese, Glicogenólise e Gliconeogênese Profa. Alessandra Barone www.profbio.com.br Polissacarídeo de reserva animal Constituído por moléculas de α-d-glicose ligadas entre si por ligações glicosídicas

Leia mais

Aula de Bioquímica II SQM Ciclo do Ácido Cítrico

Aula de Bioquímica II SQM Ciclo do Ácido Cítrico Aula de Bioquímica II SQM04242015201 Bacharelado em Ciências Físicas e Biomoleculares Tema: Ciclo do Ácido Cítrico Prof. Dr. Júlio César Borges Depto. de Química e Física Molecular DQFM Instituto de Química

Leia mais

Gliconeogênese. Gliconeogênese. Órgãos e gliconeogênese. Fontes de Glicose. Gliconeogênese. Gliconeogênese Metabolismo dos aminoácidos Ciclo da Uréia

Gliconeogênese. Gliconeogênese. Órgãos e gliconeogênese. Fontes de Glicose. Gliconeogênese. Gliconeogênese Metabolismo dos aminoácidos Ciclo da Uréia Gliconeogênese Metabolismo dos aminoácidos Ciclo da Uréia Gliconeogênese Alexandre Havt Gliconeogênese Fontes de Energia para as Células Definição Via anabólica que ocorre no fígado e, excepcionalmente

Leia mais

Ciclo de Krebs ou Ciclo do ácido cítrico. Prof. Liza Felicori

Ciclo de Krebs ou Ciclo do ácido cítrico. Prof. Liza Felicori Ciclo de Krebs ou Ciclo do ácido cítrico Prof. Liza Felicori VISÃO GERAL Em circunstâncias aeróbicas piruvato é descarboxilado CO 2 C4 + C2 C6 C6 C6 C6 C5 CO 2 CO 2 C5 C4 C4 C4 C4 NAD+ & FAD 3 Íons H-

Leia mais

MAPA II Vias metabólicas degradativas

MAPA II Vias metabólicas degradativas GLIÓLISE MAPA II Vias metabólicas degradativas PLISSAARÍDIS PRTEÍNAS LIPÍDIS GLISE AMINÁIDS ÁIDS GRAXS Glicólise Fosfoenolpiruvato (3) Asp Gly Ala Ser ys Leu Ile Lys Phe Glu Piruvato (3) 2 Acetil-oA (2)

Leia mais

Oxidação parcial o que acontece com o piruvato?

Oxidação parcial o que acontece com o piruvato? A glicólise ocorre no citosol das células transforma a glicose em duas moléculas de piruvato e é constituída por uma sequência de 10 reações (10 enzimas) divididas em duas fases. Fase preparatória (cinco

Leia mais

Metabolismo de Carboidratos

Metabolismo de Carboidratos Metabolismo de Carboidratos Curso de Bioqímica para Saúde Coletiva- UFRJ Profa. Dra. Mônica Santos de Freitas 1 Carboidratos Três maiores classes de carboidratos Monossacarídeos- são carboidratos não polimerizados;

Leia mais

Universidade Federal do Pampa Campus Itaqui Bioquímica GLICÓLISE AERÓBICA. Ciclo de Krebs e Fosforilação Oxidativa. Profa.

Universidade Federal do Pampa Campus Itaqui Bioquímica GLICÓLISE AERÓBICA. Ciclo de Krebs e Fosforilação Oxidativa. Profa. Universidade Federal do Pampa Campus Itaqui Bioquímica GLICÓLISE AERÓBICA Ciclo de Krebs e Fosforilação Oxidativa Profa. Marina Prigol 1 Glicólise Anaeróbica RESPIRAÇÃO CELULAR ou GLICÓLISE AERÓBICA:

Leia mais

Metabolismo de Carboidratos

Metabolismo de Carboidratos Metabolismo de Carboidratos Curso de Bioqímica para Saúde Coletiva- UFRJ Profa. Dra. Mônica Santos de Freitas 1 Gliconeogênese - Ocorre principalmente no fígado; - Algumas das enzimas utilizadas na síntese

Leia mais

Metabolismo e oxidação de carboidratos: Glicólise

Metabolismo e oxidação de carboidratos: Glicólise Metabolismo e oxidação de carboidratos: Glicólise Nutrientes: Carboidratos Lipídeos Proteínas Catabolismo CO 2 H 2 O ADP NAD + NADP + FAD ATP NADH NADPH FADH 2 Componentes celulares Proteínas Polissacarídeos

Leia mais

Introdução e apresentação geral do metabolismo da glicose

Introdução e apresentação geral do metabolismo da glicose Introdução e apresentação geral do metabolismo da glicose Índice 1- O transporte transmembranar e a fosforilação da glicose...1 2- A glicólise e a oxidação da glicose a CO 2...1 3- A oxidação da glicose-6-fosfato

Leia mais

FISIOLOGIA VEGETAL 24/10/2012. Respiração. Respiração. Respiração. Substratos para a respiração. Mas o que é respiração?

FISIOLOGIA VEGETAL 24/10/2012. Respiração. Respiração. Respiração. Substratos para a respiração. Mas o que é respiração? Respiração Mas o que é respiração? FISIOLOGIA VEGETAL Respiração É o processo pelo qual compostos orgânicos reduzidos são mobilizados e subsequentemente oxidados de maneira controlada É um processo de

Leia mais

Unidade 2 - Metabolismo dos Carboidratos

Unidade 2 - Metabolismo dos Carboidratos MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PAMPA CAMPUS DOM PEDRITO BIOQUÍMICA II Unidade 2 - Metabolismo dos Carboidratos Prof ª Drª Angélica Pinho O metabolismo dos nutrientes pode ser dividido por

Leia mais

- Hidrólise das ligações glicosídicas mediada por glicosidades

- Hidrólise das ligações glicosídicas mediada por glicosidades 1 V Processos Metabólicos 1 Metabolismo dos carboidratos a) Digestão dos carboidratos - idrólise das ligações glicosídicas mediada por glicosidades Inicia-se na boca - Ação da alfa-amilase salivar (ptialina)

Leia mais

Introdução ao Metabolismo Microbiano

Introdução ao Metabolismo Microbiano Introdução ao Metabolismo Microbiano METABOLISMO DEFINIÇÃO: Grego: metabole = mudança, transformação; Toda atividade química realizada pelos organismos; São de dois tipos: Envolvem a liberação de energia:

Leia mais

Semana 12 Respiração Celular

Semana 12 Respiração Celular Semana 12 Respiração Celular Prof. Saul Carvalho Respiração Celular Extração de energia química de substâncias orgânicas (carboidratos e lipídios) Principalmente quebra da Glicose Gera energia celular

Leia mais

BIOQUIMICA DA NUTRIÇÃO INTRODUÇAO AO METABOLISMO ESTUDO DOS CARBOIDRATOS Parte 2. Andréa Fernanda Lopes

BIOQUIMICA DA NUTRIÇÃO INTRODUÇAO AO METABOLISMO ESTUDO DOS CARBOIDRATOS Parte 2. Andréa Fernanda Lopes . BIOQUIMICA DA NUTRIÇÃO INTRODUÇAO AO METABOLISMO ESTUDO DOS CARBOIDRATOS Parte 2 Andréa Fernanda Lopes 1 DIGESTÃO E ABSORÇÃO DE CARBOIDRATOS Andréa Fernanda Lopes 2 Digestão e absorção de carboidratos

Leia mais

Corpos cetônicos e Biossíntese de Triacilglicerois

Corpos cetônicos e Biossíntese de Triacilglicerois Corpos cetônicos e Biossíntese de Triacilglicerois Formação de Corpos Cetônicos Precursor: Acetil-CoA Importante saber!!!!!!!!!!!! http://bloglowcarb.blogspot.com.br/2011/06/o-que-acontece-com-os-lipidios.html

Leia mais

Aula de Bioquímica II. Glicólise e Fermentação

Aula de Bioquímica II. Glicólise e Fermentação Aula de Bioquímica II Tema: Glicólise e Fermentação Prof. Dr. Júlio César Borges Depto. de Química e Física Molecular DQFM Instituto de Química de São Carlos IQSC Universidade de São Paulo USP E-mail:

Leia mais

Metabolismo e Regulação

Metabolismo e Regulação Metabolismo e Regulação PRBLEMAS - Série 1 Soluções 2009/2010 idratos de Carbono (Revisão) e Metabolismo Central 1 R: (α 1 4) (lineares) Ο (α1 6) (pontos de ramificação) 2. R: Locais de glicosilação são

Leia mais

Glicogênio, amido e sacarose

Glicogênio, amido e sacarose Glicogênio, amido e sacarose armazenamento Glicose oxidação pela via das pentoses-fosfato oxidação pela glicólise Ribose-5-fosfato Piruvato ADP atua no sistema antioxidante celular e também como um agente

Leia mais

Introdução ao Metabolismo. Profª Eleonora Slide de aula

Introdução ao Metabolismo. Profª Eleonora Slide de aula Introdução ao Metabolismo Profª Eleonora Slide de aula Metabolismo Profª Eleonora Slide de aula Relacionamento energético entre as vias catabólicas e as vias anabólicas Nutrientes que liberam energia Carboidratos

Leia mais

Gliconeogénese e Metabolismo do Glicogénio

Gliconeogénese e Metabolismo do Glicogénio Página 1 de 5 Aulas de grupo 2001-02; Rui Fontes Gliconeogénese e Metabolismo do Glicogénio 1- Gliconeogénese 1- A gliconeogénese é um termo usado para incluir o conjunto de processos pelos quais o organismo

Leia mais

BIOQUÍMICA GERAL. Fotossíntese. Respiração. Prof. Dr. Franciscleudo B Costa UATA/CCTA/UFCG. Aula 11. Glicólise FUNÇÕES ESPECÍFICAS.

BIOQUÍMICA GERAL. Fotossíntese. Respiração. Prof. Dr. Franciscleudo B Costa UATA/CCTA/UFCG. Aula 11. Glicólise FUNÇÕES ESPECÍFICAS. Aula 11 Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Agroalimentar Unidade Acadêmica de Tecnologia de Alimentos Definição Funções específicas BIOQUÍMICA GERAL Fases dos metabolismo

Leia mais

30/05/2017. Metabolismo: soma de todas as transformações químicas que ocorrem em uma célula ou organismo por meio de reações catalisadas por enzimas

30/05/2017. Metabolismo: soma de todas as transformações químicas que ocorrem em uma célula ou organismo por meio de reações catalisadas por enzimas Metabolismo: soma de todas as transformações químicas que ocorrem em uma célula ou organismo por meio de reações catalisadas por enzimas Metabolismo energético: vias metabólicas de fornecimento de energia

Leia mais

MANUAL DA DISCIPLINA DE BIOQUÍMICA CURSO DE FISIOTERAPIA

MANUAL DA DISCIPLINA DE BIOQUÍMICA CURSO DE FISIOTERAPIA MANUAL DA DISCIPLINA DE BIOQUÍMICA CURSO DE FISIOTERAPIA 2017 MÓDULO 2 METABOLISMO 1 Introdução ao Metabolismo METABOLISMO Tópicos para estudo (em casa): 1- Dê as principais características do ser vivo.

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA

UNIVERSIDADE ESTADUAL PAULISTA GLICÓLISE Dra. Flávia Cristina Goulart CIÊNCIAS FISIOLÓGICAS UNIVERSIDADE ESTADUAL PAULISTA Campus de Marília flaviagoulart@marilia.unesp.br Glicose e glicólise Via Ebden-Meyerhof ou Glicólise A glicólise,

Leia mais

aaa Bento Gonçalves/RS 1

aaa Bento Gonçalves/RS 1 a FISIOLOGIA E NUTRIÇÃO DA VIDEIRA aaa Respiração Celular Prof. Leonardo Cury Bento Gonçalves/RS 1 Equação Geral (Respiração celular (Aeróbica)) ATP C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O G = + 2.880 kj -Compostos

Leia mais

Processo de obtenção de energia das células respiração celular

Processo de obtenção de energia das células respiração celular Processo de obtenção de energia das células respiração celular Lipídeos de armazenamento (Gorduras e óleos) Substâncias que originam ácidos graxos e usadas como moléculas que armazenam energia nos seres

Leia mais

Pode ser polimerizada, estocada, transportada e liberada rapidamente quando o organismo precisa de energia ou para compor estruturas especiais

Pode ser polimerizada, estocada, transportada e liberada rapidamente quando o organismo precisa de energia ou para compor estruturas especiais Pode ser polimerizada, estocada, transportada e liberada rapidamente quando o organismo precisa de energia ou para compor estruturas especiais Precursor de intermediários metabólicos em várias reações

Leia mais

BIOSSÍNTESE DE ÁCIDOS GRAXOS E REGULAÇÃO DO METABOLISMO DE GORDURAS

BIOSSÍNTESE DE ÁCIDOS GRAXOS E REGULAÇÃO DO METABOLISMO DE GORDURAS BIOSSÍNTESE DE ÁCIDOS GRAXOS E REGULAÇÃO DO METABOLISMO DE GORDURAS Se carboidratos, gorduras e proteínas são consumidas em quantidades que excedam as necessidades energéticas, o excesso será armazenado

Leia mais

METABOLISMO ENERGÉTICO integração e regulação alimentado jejum catabólitos urinários. Bioquímica. Profa. Dra. Celene Fernandes Bernardes

METABOLISMO ENERGÉTICO integração e regulação alimentado jejum catabólitos urinários. Bioquímica. Profa. Dra. Celene Fernandes Bernardes METABOLISMO ENERGÉTICO integração e regulação alimentado jejum catabólitos urinários Bioquímica Profa. Dra. Celene Fernandes Bernardes REFERÊNCIA: Bioquímica Ilustrada - Champe ESTÁGIOS DO CATABOLISMO

Leia mais

UNIVERSIDADE COMUNITÁRIA DA REGIÃO DE CHAPECÓ ÁREA DE CIÊNCIAS DA SAÚDE CURSO DE FISIOTERAPIA CIÊNCIAS MORFOLÓGICAS II

UNIVERSIDADE COMUNITÁRIA DA REGIÃO DE CHAPECÓ ÁREA DE CIÊNCIAS DA SAÚDE CURSO DE FISIOTERAPIA CIÊNCIAS MORFOLÓGICAS II UNIVERSIDADE COMUNITÁRIA DA REGIÃO DE CHAPECÓ ÁREA DE CIÊNCIAS DA SAÚDE CURSO DE FISIOTERAPIA CIÊNCIAS MORFOLÓGICAS II Respiração Celular 1º estágio: GLICÓLISE 2º estágio: CK Ciclo de Krebs 3º estágio:

Leia mais

BE066 - Fisiologia do Exercício BE066 Fisiologia do Exercício. Bioenergética. Sergio Gregorio da Silva, PhD

BE066 - Fisiologia do Exercício BE066 Fisiologia do Exercício. Bioenergética. Sergio Gregorio da Silva, PhD BE066 Fisiologia do Exercício Bioenergética Sergio Gregorio da Silva, PhD Objetivos Definir Energia Descrever os 3 Sistemas Energéticos Descrever as diferenças em Produção de Energia Bioenergética Estuda

Leia mais

Aula de Bioquímica Avançada. Gliconeogênese Glicogênio: Glicogenólise, Síntese e Regulação

Aula de Bioquímica Avançada. Gliconeogênese Glicogênio: Glicogenólise, Síntese e Regulação Aula de Bioquímica Avançada Temas: Gliconeogênese Glicogênio: Glicogenólise, Síntese e Regulação Prof. Dr. Júlio César Borges Depto. de Química e Física Molecular DQFM Instituto de Química de São Carlos

Leia mais

O que são as duas reações abaixo?

O que são as duas reações abaixo? O que são as duas reações abaixo? 6 CO 2 + 6 H 2 O Glicose + 6 O 2 Glicose + 6 O 2 6 CO 2 + 6 H 2 O Pode ser polimerizada, estocada, transportada e liberada rapidamente quando o organismo precisa de energia

Leia mais

Metabolismo de Carboidratos. Profa.Dra. Leticia Labriola Abril 2012

Metabolismo de Carboidratos. Profa.Dra. Leticia Labriola Abril 2012 Metabolismo de Carboidratos. Profa.Dra. Leticia Labriola Abril 2012 Oxidação Completa da Glicose C 6 H 12 O 6 + 6O 2 + 36-38ADP + 36-38 P i 6CO 2 + 6H 2 O + 36-38ATP Via glicolítica gastou: 1 glicose,

Leia mais

Profª Eleonora Slide de aula. Introdução ao Metabolismo

Profª Eleonora Slide de aula. Introdução ao Metabolismo Introdução ao Metabolismo Nutrientes que liberam energia Carboidratos Gorduras Proteínas Catabolismo Produtos finais pobres em energia CO 2 2 O N 3 Energia química ATP NADP Metabolismo Macromoléculas celulares

Leia mais

1. Produção de Acetil-CoA. 2. Oxidação de Acetil-CoA. 3. Transferência de elétrons e fosforilação oxidativa

1. Produção de Acetil-CoA. 2. Oxidação de Acetil-CoA. 3. Transferência de elétrons e fosforilação oxidativa CICLO DE KREBS OU DO ÁCIDO CÍTRICO 1. Produção de Acetil-CoA 2. Oxidação de Acetil-CoA 3. Transferência de elétrons e fosforilação oxidativa CICLO DE KREBS OU DO ÁCIDO CÍTRICO 1. Produção de Acetil-CoA

Leia mais

A energética celular:

A energética celular: A energética celular: o papel das mitocôndrias e cloroplastos Capitulo 13 (p 427 a 444) e Capitulo 14 Fundamentos da Biologia Celular- Alberts- 2ª edição A energética celular Como já vimos anteriormente

Leia mais

BIOSSINTESE E OXIDAÇÃO DE ÁCIDOS GRAXOS BREVE EXPLICAÇÃO

BIOSSINTESE E OXIDAÇÃO DE ÁCIDOS GRAXOS BREVE EXPLICAÇÃO BIOSSINTESE E OXIDAÇÃO DE ÁCIDOS GRAXOS BREVE EXPLICAÇÃO Onde ocorre? Biossíntese de Ácidos graxos Ácidos graxos saturados de cadeia longa são sintetizados a partir do acetil-coa por um complexo citosólico

Leia mais

Pontifícia Universidade Católica de Goiás Departamento de Biologia Bioquímica Metabólica. Rotas Metabólicas. Prof. Raimundo Júnior M.Sc.

Pontifícia Universidade Católica de Goiás Departamento de Biologia Bioquímica Metabólica. Rotas Metabólicas. Prof. Raimundo Júnior M.Sc. Pontifícia Universidade Católica de Goiás Departamento de Biologia Bioquímica Metabólica Rotas Metabólicas Prof. Raimundo Júnior M.Sc. Metabolismo Transformação da matéria e da energia. A sequência das

Leia mais

Dra. Kátia R. P. de Araújo Sgrillo. sgrillo.ita@ftc.br

Dra. Kátia R. P. de Araújo Sgrillo. sgrillo.ita@ftc.br Dra. Kátia R. P. de Araújo Sgrillo sgrillo.ita@ftc.br O metabolismo de carboidratos em humanos pode ser dividido nas seguintes categorias: 1. Glicólise 2. Ciclo de Krebs 3. Glicogênese 4. Glicogenólise

Leia mais

Profa. Alessandra Barone.

Profa. Alessandra Barone. Profa. Alessandra Barone www.profbio.com.br Quando é acionada a lipólise no organismo? ATP? Glicose? Glicólise? Glicogênese? Gliconeogênese? Via das pentoses? Lipídeo: reserva energética em forma de triacilglicerol

Leia mais

Metabolismo CO 2 + H 2 O O 2 + CH 2 O

Metabolismo CO 2 + H 2 O O 2 + CH 2 O Metabolismo CO 2 + H 2 O O 2 + CH 2 O Glicólise Glicólise A via de Embden-Meyerhof (Warburg) Essencialmente todas as células executam a glicólise Consiste em dez reacções iguais em todas as células

Leia mais

MÓDULO 2 - METABOLISMO. Bianca Zingales IQ-USP

MÓDULO 2 - METABOLISMO. Bianca Zingales IQ-USP MÓDULO 2 - METABOLISMO Bianca Zingales IQ-USP INTRODUÇÃO AO METABOLISMO CARACTERÍSTICAS DO SER VIVO 1- AUTO-REPLICAÇÃO Capacidade de perpetuação da espécie 2- TRANSFORMAÇÃO DE ENERGIA O ser vivo extrai

Leia mais

Pontifícia Universidade Católica de Goiás Departamento de Biologia Bioquímica Metabólica ENZIMAS

Pontifícia Universidade Católica de Goiás Departamento de Biologia Bioquímica Metabólica ENZIMAS Pontifícia Universidade Católica de Goiás Departamento de Biologia Bioquímica Metabólica ENZIMAS Origem das proteínas e de suas estruturas Níveis de Estrutura Protéica Estrutura das proteínas Conformação

Leia mais

Saccharomyces cerevisiae

Saccharomyces cerevisiae Saccharomyces cerevisiae Grande família de transportadores 20 genes HXT que codificam: proteínas que têm hexoses como substratos 2 sensores para hexoses (Snf3 e Rgt2) Codificados pelos genes SNF3 e RGT2

Leia mais

Matéria: Biologia Assunto: Respiração celular Prof. Enrico blota

Matéria: Biologia Assunto: Respiração celular Prof. Enrico blota Matéria: Biologia Assunto: Respiração celular Prof. Enrico blota Biologia 1. Moléculas, células e tecidos - Fotossíntese e respiração - Respiração celular Fermentação Organismos que só vivem na presença

Leia mais

Dra. Kátia R. P. de Araújo Sgrillo. sgrillo.ita@ftc.br

Dra. Kátia R. P. de Araújo Sgrillo. sgrillo.ita@ftc.br Dra. Kátia R. P. de Araújo Sgrillo sgrillo.ita@ftc.br A glicólise é provavelmente a via bioquímica mais bem compreendida. Desempenha uma função central no metabolismo energético, fornecendo uma porção

Leia mais

FISIOLOGIA E NUTRIÇÃO DA VIDEIRA

FISIOLOGIA E NUTRIÇÃO DA VIDEIRA FISIOLOGIA E NUTRIÇÃO DA VIDEIRA aaa a Fotossíntese (Fase Bioquímica) Fase escura Prof. Leonardo Cury Bento Gonçalves, RS 1 Reações Fase bioquímica da Fotossíntese Reações do Carbono (Fase Escura) 2 !

Leia mais

Metabolismo e Bioenergética

Metabolismo e Bioenergética Metabolismo e Bioenergética METABOLISMO Mas o que é metabolismo? Metabolismo é o nome que damos ao conjunto das reações químicas que ocorrem dentro das células. O fato é que todas as reações químicas que

Leia mais

Lipídeos e ácidos graxos

Lipídeos e ácidos graxos Lipídeos e ácidos graxos Tópicos de Estudo Lipídeos Lipoproteínas Passos da -oxidação Regulação em estados absortivos, fome e exercício Lipídeos que contem ácidos graxos Ácidos graxos e triacilgliceróis

Leia mais

Integração do Metabolismo

Integração do Metabolismo BLOCO IV Integração do Metabolismo Wagner Seixas da Silva Professor Adjunto do Instituto de Bioquímica Médica Bloco E- Sala 038 Calendário do Bloco IV 25/05-8:30h Gliconeogênese - Roteiro de discussão

Leia mais

Metabolismo e Regulação

Metabolismo e Regulação Metabolismo e Regulação PROBLEMAS - Série 1 Licenciatura em Bioquímica Licenciatura em Biologia Celular e Molecular Licenciatura em Química Aplicada Hidratos de Carbono e Metabolismo Central (Revisão)

Leia mais

METABOLISMO ENERGÉTICO

METABOLISMO ENERGÉTICO SILVIA ALIX, MAJ VÂNIA E TEN LUCIANA ARAÚJO METABOLISMO ENERGÉTICO 1. Metabolismo: Anabolismo e Catabolismo. 2. ATP Adenosina trifosfato. 3. Respiração celular: Glicólise, Ciclo de Krebs e Transporte de

Leia mais

Pâncreas Endócrino. Prof. Dr. Luiz Carlos C. Navegantes. Ramal: 4635

Pâncreas Endócrino. Prof. Dr. Luiz Carlos C. Navegantes. Ramal: 4635 Pâncreas Endócrino Prof. Dr. Luiz Carlos C. Navegantes navegantes@fmrp.usp.br Ramal: 4635 O diabetes mellitus É uma síndrome decorrente da falta de insulina ou da incapacidade de a insulina de exercer

Leia mais

Membrana interna. Cristas. Matriz Membrana externa. P i P i P i. 7,3 kcal/mol 7,3 kcal/mol 3,4 kcal/mol

Membrana interna. Cristas. Matriz Membrana externa. P i P i P i. 7,3 kcal/mol 7,3 kcal/mol 3,4 kcal/mol BIEERGÉTIA a célula milhares de compostos estão a ser sintetizados e degradados em simultâneo. Metabolismo: é o conjunto de todas as reacções envolvidas na manutenção deste estado dinâmico. o geral as

Leia mais

BIOQUÍMICA GERAL. Prof. Dr. Franciscleudo B. Costa UATA/CCTA/UFCG. Aula 10 Metabolismo Geral FUNÇÕES ESPECÍFICAS. Definição

BIOQUÍMICA GERAL. Prof. Dr. Franciscleudo B. Costa UATA/CCTA/UFCG. Aula 10 Metabolismo Geral FUNÇÕES ESPECÍFICAS. Definição Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Agroalimentar Unidade Acadêmica de Tecnologia de Alimentos BIOQUÍMICA GERAL Campus de Pombal Pombal - PB Definição Funções específicas

Leia mais

CADEIA DE TRANSPORTE DE ELÉTRONS E FOSFORILAÇÃO OXIDATIVA COMO AS CÉLULAS SINTETIZAM ATP

CADEIA DE TRANSPORTE DE ELÉTRONS E FOSFORILAÇÃO OXIDATIVA COMO AS CÉLULAS SINTETIZAM ATP CADEIA DE TRANSPORTE DE ELÉTRONS E FOSFORILAÇÃO OXIDATIVA OU COMO AS CÉLULAS SINTETIZAM ATP SINTETIZAM ATP ÀS CUSTAS DA OXIDAÇÃO DAS COENZIMAS NADH E FADH 2 PELO OXIGÊNIO AS COENZIMAS REDUZIDAS SÃO PRODUZIDAS

Leia mais

Sistema glicolítico ou metabolismo anaeróbio lático

Sistema glicolítico ou metabolismo anaeróbio lático Sistema glicolítico ou metabolismo anaeróbio lático Quando a molécula de glicose entra na célula para ser utilizada como energia, sofre uma série de reações químicas que coletivamente recebe o nome de

Leia mais

Profa. Angélica Pinho Zootecnista. Dpto de Zootecnia Fones:

Profa. Angélica Pinho Zootecnista. Dpto de Zootecnia Fones: Profa. Angélica Pinho Zootecnista Dpto de Zootecnia Fones: 3243-7070 Email: angelicapinho@unipampa.edu.br UNIDADE 1 INTRODUÇÃO AO METABOLISMO 1.1 Visão geral do metabolismo. 1.2 Catabolismo e anabolismo.

Leia mais

METABOLISMO ENERGÉTICO

METABOLISMO ENERGÉTICO METABOLISMO ENERGÉTICO TRIFOSFATO DE ADENOSINA Este composto armazena, em suas ligações fosfato, parte da energia desprendida pelas reações exotérmicas e tem a capacidade de liberar, por hidrólise, essa

Leia mais

Integração de Metabolismo.

Integração de Metabolismo. Integração de Metabolismo http://www.expasy.ch/cgi-bin/show_thumbnails.pl Princípios comuns governam o metabolismo em todos os seres vivos: Toda a regulação metabólica utiliza mecanismos similares: Principais

Leia mais

METABOLISMO ENERGÉTICO

METABOLISMO ENERGÉTICO CURSO TÉCNICO INTEGRADO DE INFORMÁTICA E ELETROMECÂNICA - 2º ANO DICIPLINA: BIOLOGIA METABOLISMO ENERGÉTICO RESPIRAÇÃO E FERMENTAÇÃO Prof.ª Carla Pereira Nascimento METABOLISMO ENERGÉTICO Todo ser vivo

Leia mais

Metabolismo celular. É o conjunto de todas as reacções químicas que ocorrem numa célula.

Metabolismo celular. É o conjunto de todas as reacções químicas que ocorrem numa célula. FERMENTAÇÃO Metabolismo celular 3 É o conjunto de todas as reacções químicas que ocorrem numa célula. Metabolismo celular 4 Anabolismo reacções de síntese de moléculas complexas a partir de moléculas simples.

Leia mais

Termodinâmica. Estudo das formas de energia que afetam a matéria. Sistemas (moléculas + solutos) X ambiente (sistema - universo)

Termodinâmica. Estudo das formas de energia que afetam a matéria. Sistemas (moléculas + solutos) X ambiente (sistema - universo) Termodinâmica Estudo das formas de energia que afetam a matéria Sistemas (moléculas + solutos) X ambiente (sistema - universo) Possibilita prever se processos bioquímicos são possíveis Aplicações: conformação

Leia mais

Metabolismo e Suplementação de

Metabolismo e Suplementação de Metabolismo e Suplementação de carboidratos Prof. Ms. e Drd. Luiz Carlos Carnevali Junior E-mail: contato@carnevalijunior.com.br DIETA 55 60 % de Carboidratos 10 15 % de Proteínas 25 30 % de Gorduras -

Leia mais

Graxos. Metabolismo dos Lipídios. Oxidação. Degradação dos Triacilgliceróis is (TG) do Tecido Adiposo. Tecido Adiposo. Tecido Adiposo.

Graxos. Metabolismo dos Lipídios. Oxidação. Degradação dos Triacilgliceróis is (TG) do Tecido Adiposo. Tecido Adiposo. Tecido Adiposo. Lipóle (β-oxida( oxidação) Cetogênese Síntese de Ácidos Graxos Alexandre Havt Metabolmo dos Lipídios Fonte de obtenção Dieta Triacilgliceró Síntese endógena Transporte Excesso de Carboidratos, Proteínas

Leia mais

Química e Bio Química Aplicada METABOLISMO ENZIMOLOGIA. Metabolismo Energético Respiração Celular e Fermentação

Química e Bio Química Aplicada METABOLISMO ENZIMOLOGIA. Metabolismo Energético Respiração Celular e Fermentação Química e Bio Química Aplicada METABOLISMO ENZIMOLOGIA Adriano Silva maestroabs@hotmail.com adrianoabs.silva@gmail.com 88105041 34843610 Metabolismo Energético Respiração Celular e Fermentação Metabolismo

Leia mais

Estrutura e química dos carboidratos:

Estrutura e química dos carboidratos: Carboidratos Os carboidratos, ou seja carbonos hidratos possuem fórmula empírica C n (H2O) n, também são chamados de sacarídeos, glicídios ou açúcares), quimicamente são classificados poli-hidróxi-cetonas

Leia mais

Organelas Produtoras de energia

Organelas Produtoras de energia Professora Priscila F Binatto Citologia - Maio/2015 CAP. 9 METABOLISMO ENERGÉTICO: RESPIRAÇÃO AERÓBIA E FERMENTAÇÃO Organelas Produtoras de energia Mitocôndrias Organização Morfológica Função Respiração

Leia mais

21/10/2014. Referências Bibliográficas. Produção de ATP. Substratos Energéticos. Lipídeos Características. Lipídeos Papel no Corpo

21/10/2014. Referências Bibliográficas. Produção de ATP. Substratos Energéticos. Lipídeos Características. Lipídeos Papel no Corpo Referências Bibliográficas Livro: McArdle & Katch & Katch. Fisiologia do Exercício: Metabolismo de Lipídeos Durante o Exercício Físico Aeróbico Prof. Dr. Paulo Rizzo Ramires Escola de Educação Física e

Leia mais

Metabolismo dos Carboidratos

Metabolismo dos Carboidratos Metabolismo dos Carboidratos síntese de glicogênio a partir da glicose Glicogenólise síntese de glicose a partir do glicogênio Lipogênese excesso de glicose convertido em gordura Prof. M.Sc. Renata Fontes

Leia mais

GUIA DE ESTUDOS INSULINA E GLUCAGON

GUIA DE ESTUDOS INSULINA E GLUCAGON GUIA DE ESTUDOS INSULINA E GLUCAGON 1) O pâncreas é uma glândula mista, ou seja, possui função endócrina e exócrina. Na porção endócrina, o pâncreas produz dois hormônios: a insulina e o Esses hormônios

Leia mais

Professor Antônio Ruas

Professor Antônio Ruas Universidade Estadual do Rio Grande do Sul Curso Superior de Tecnologia em Gestão Ambiental Componente curricular: BIOLOGIA GERAL Aula 4 Professor Antônio Ruas 1. Temas: Macromoléculas celulares Produção

Leia mais

TIPOS DE ENERGIAS E FORMAS DE ARMAZENAMENTO DE ENERGIA NO CORPO As fontes energéticas são encontradas nas células musculares e em algumas partes do co

TIPOS DE ENERGIAS E FORMAS DE ARMAZENAMENTO DE ENERGIA NO CORPO As fontes energéticas são encontradas nas células musculares e em algumas partes do co BIOENERGÉTICA E TREINAMENTO DESPORTIVO Bioenergética é a ciência que estuda os sistemas energéticos nos organismos vivos. TIPOS DE ENERGIAS E FORMAS DE ARMAZENAMENTO DE ENERGIA NO CORPO Os sistemas metabólicos

Leia mais

Dra. Kátia R. P. de Araújo Sgrillo.

Dra. Kátia R. P. de Araújo Sgrillo. Dra. Kátia R. P. de Araújo Sgrillo Sgrillo.ita@ftc.br Processo pelo qual os organismos vivos adquirem e usam energia livre para realizar suas funções. É tradicionalmente dividido em: CATABOLISMO ou degradação

Leia mais

LCB 311 Fisiologia Vegetal (ESALQ/USP) RESPIRAÇÃO. Prof. Ricardo Kluge

LCB 311 Fisiologia Vegetal (ESALQ/USP) RESPIRAÇÃO. Prof. Ricardo Kluge LCB 311 Fisiologia Vegetal (ESALQ/USP) RESPIRAÇÃO Prof. Ricardo Kluge RESPIRAÇÃO FOTOSSÍNTESE Carboidratos Lipídios Ácidos orgânicos Proteínas OXIDADOS E N E R G I A Crescimento e Manutenção celular TROCAS

Leia mais

METABOLISMO 06/04/15 VIAS METABÓLICAS FUNÇÕES DO METABOLISMO. ü Obter energia pela degradação dos nutrientes ricos em energia (endógenos e exógenos)

METABOLISMO 06/04/15 VIAS METABÓLICAS FUNÇÕES DO METABOLISMO. ü Obter energia pela degradação dos nutrientes ricos em energia (endógenos e exógenos) INTRODUÇÃO METABOLISMO METABOLISMO - conjunto de reações químicas coordenadas que ocorrem com propósitos determinados METABOLISMO - é um conjunto de vias metabólicas onde cooperam inúmeros SME Metabolismo

Leia mais

Como é que as células extraem energia e poder redutor do ambiente? Como é que as células sintetizam as unidades das macromoléculas?

Como é que as células extraem energia e poder redutor do ambiente? Como é que as células sintetizam as unidades das macromoléculas? Metabolismo Como é que as células extraem energia e poder redutor do ambiente? Como é que as células sintetizam as unidades das macromoléculas? Os seres vivos precisam de energia para: Realização de trabalho

Leia mais

METABOLISMO DE NUCLEOTÍDEOS ou ÀCIDOS BILIARES UNIDADE 5

METABOLISMO DE NUCLEOTÍDEOS ou ÀCIDOS BILIARES UNIDADE 5 METABOLISMO DE NUCLEOTÍDEOS ou ÀCIDOS BILIARES UNIDADE 5 Nucleotídeos = ribonucleosídeos e desoxiribonucleotídeos fosfato. transporte de intermediários ativados na síntese de carboidratos, lipídeos e proteínas

Leia mais

Membrana e Organelas / Metabolismo Energético

Membrana e Organelas / Metabolismo Energético Membrana e Organelas / Metabolismo Energético Membrana e organelas e Metabolismo energético Biologia 1. Algumas células são capazes de enviar para o meio externo quantidades apreciáveis de produtos de

Leia mais

OXIDAÇÕES BIOLÓGICAS: Cadeia respiratória e fosforilação oxidativa

OXIDAÇÕES BIOLÓGICAS: Cadeia respiratória e fosforilação oxidativa OXIDAÇÕES BIOLÓGICAS: Cadeia respiratória e fosforilação oxidativa Metabolismo: integração entre catabolismo e anabolismo Assimilação ou processamento da mat. Orgânica Síntese de Substâncias Estágio 1

Leia mais

BIOENERGÉTICA. O que é Bioenergética? ENERGIA. Trabalho Biológico

BIOENERGÉTICA. O que é Bioenergética? ENERGIA. Trabalho Biológico O que é Bioenergética? BIOENERGÉTICA Ramo da biologia próximo da bioquímica que estuda as transformações de energia pelos seres vivos. (dicionário Houaiss) Prof. Mauro Batista Parte da fisiologia que estuda

Leia mais

BIOQUÍMICA FOTOSSÍNTESE E RESPIRAÇÃO CELULAR Resumo final FOTOSSÍNTESE

BIOQUÍMICA FOTOSSÍNTESE E RESPIRAÇÃO CELULAR Resumo final FOTOSSÍNTESE EE PROF.ª SUELY MARIA CAÇÃO AMBIEL BATISTA Rua Onório Novachi, 410 Jardim Colonial- Indaiatuba SP CEP 13345-806 FONE: 3834 1820-3801 1046 BIOLOGIA SEGUNDA SÉRIE DO ENSINO MÉDIO Wéliton Ribeiro Rodrigues

Leia mais

CADEIA DE TRANSPORTE DE ELÉTRONS E FOSFORILAÇÃO OXIDATIVA COMO AS CÉLULAS SINTETIZAM ATP

CADEIA DE TRANSPORTE DE ELÉTRONS E FOSFORILAÇÃO OXIDATIVA COMO AS CÉLULAS SINTETIZAM ATP CADEIA DE TRANSPORTE DE ELÉTRONS E FOSFORILAÇÃO OXIDATIVA OU COMO AS CÉLULAS SINTETIZAM ATP SINTETIZAM ATP ÀS CUSTAS DA OXIDAÇÃO DAS COENZIMAS NADH E FADH 2 PELO OXIGÊNIO AS COENZIMAS REDUZIDAS SÃO PRODUZIDAS

Leia mais

Gliconeogénese. glicose-6-p + H 2 O glicose + Pi (1)

Gliconeogénese. glicose-6-p + H 2 O glicose + Pi (1) Gliconeogénese 1- A palavra gliconeogénese é, num sentido mais estrito, usada para designar colectivamente o conjunto de processos pelos quais o organismo pode converter substâncias não glicídicas (como

Leia mais

CICLO DE KREBS. Em condições aeróbias: mitocôndria. citosol. Glicólise. ciclo de Krebs. 2 piruvato. 2 Acetil CoA. Fosforilação oxidativa

CICLO DE KREBS. Em condições aeróbias: mitocôndria. citosol. Glicólise. ciclo de Krebs. 2 piruvato. 2 Acetil CoA. Fosforilação oxidativa CICLO DE KREBS Em condições aeróbias: citosol mitocôndria Glicólise Acetil CoA ciclo de Krebs Fosforilação oxidativa CICLO DE KREBS OU CICLO DOS ÁCIDOS TRICARBOXÍLICOS Ligação entre a glicólise e o ciclo

Leia mais