UNICAMP - 2004. 2ª Fase FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR



Documentos relacionados
Questão 1. Questão 2. Resposta. Resposta

Física INTRODUÇÃO. Utilize g = 10 m/s 2 sempre que necessário na resolução dos problemas. Prova comentada de Física Segunda Fase

UNICAMP Você na elite das universidades! FÍSICA ELITE SEGUNDA FASE

18 a QUESTÃO Valor: 0,25

Exercício de Física para o 3º Bimestre Série/Turma: 1º ano Professor (a): Marcos Leal NOME:

GABARITO DO SIMULADO DISCURSIVO

Questão 1. Questão 2. Resposta

Física FUVEST ETAPA. ε = 26 cm, e são de um mesmo material, Resposta QUESTÃO 1 QUESTÃO 2. c) Da definição de potência, vem:

1 m 2. Substituindo os valores numéricos dados para a análise do movimento do centro de massa, vem: Resposta: D. V = ,2 V = 8 m/s

Resumo de Física 2C13 Professor Thiago Alvarenga Ramos

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

física EXAME DISCURSIVO 2ª fase 30/11/2014

b) Calcule as temperaturas em Kelvin equivalentes às temperaturas de 5,0 ºC e 17,0 ºC.

Lista 04. F.02 Espelhos Planos e Esféricos

FÍSICA. Questões de 01 a 04

FÍSICA - Grupos H e I - GABARITO

QUESTÃO 01. a) Qual a temperatura do forno? b) Qual a variação de energia interna do bloco do latão. QUESTÃO 02

1 Analise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra.

IME º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

Capítulo 4 Trabalho e Energia

Questão 1. Questão 2. Resposta

FISICA. Justificativa: Taxa = 1,34 kw/m 2 Energia em uma hora = (1,34 kw/m 2 ).(600x10 4 m 2 ).(1 h) ~ 10 7 kw. v B. v A.

FÍSICA. Questões de 01 a 04

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ.

Ec = J. Ec = m v 2 /2

P R O V A DE FÍSICA II

Pelo princípio da independência dos movimentos, na horizontal, temos: V. = 0, o corpo se comporta como em queda livre, por isso: F g.

s t 2) V m s = V m . t = (km) s 7, km

; Densidade da água ρ

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo.

UNIGRANRIO 2) (UNIGRANRIO) O sistema abaixo encontra-se em equilíbrio sobre ação de três forças

Estudaremos aqui como essa transformação pode ser entendida a partir do teorema do trabalho-energia.

PROVA DE FÍSICA 1998 Segunda Etapa

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

RESOLUÇÕES DA PROVA DE FÍSICA UFC PROFESSOR Célio Normando

Mecânica 2007/ ª Série

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida.

Questão 57. Questão 58. alternativa D. alternativa C. seu mostrador deverá indicar, para esse mesmo objeto, o valor de

FÍSICA. Sempre que for necessário, utilize g= 10m/s 2

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx

γ = 5,0m/s 2 2) Cálculo da distância percorrida para a velocidade escalar reduzir-se de 30m/s para 10m/s. V 2 2

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

Exercícios sobre Movimentos Verticais

PROGRAD / COSEAC ENGENHARIAS (CIVIL, DE PRODUÇÃO, MECÂNICA, PETRÓLEO E TELECOMUNICAÇÕES) NITERÓI - GABARITO

A figura a seguir representa um atleta durante um salto com vara, em três instantes distintos

LISTA EXTRA MRU e MRUV - 2ª SÉRIE

1~ QUESTÃO: (2,0 pontos) Avaliador c=j Revisor c=j

Este caderno, com dezesseis páginas numeradas sequencialmente, contém dez questões de Física. Não abra o caderno antes de receber autorização.

Lista de Exercícios de Física

UFMG º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

Estrategia de resolução de problemas

Questão 1. Questão 2. Resposta. Resposta

Mecânica dos Fluidos PROF. BENFICA

( ) ( ) ( ( ) ( )) ( )

FÍSICA PARA PRF PROFESSOR: GUILHERME NEVES

Questão 46. Questão 48. Questão 47. alternativa C. alternativa D. alternativa C

-----> V = 73,3V. Portanto: V2 = 73,3V e V1 = 146,6V, com isso somente L1 brilhará acima do normal e provavelmente queimará.

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ

UFMG º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

Programa de Revisão Paralela 4º Bimestre

Física Geral. Série de problemas. Unidade II Mecânica Aplicada. Departamento Engenharia Marítima

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão III

FIS-14 Lista-09 Outubro/2013

VERSÃO 2. 11º ano de escolaridade. Teste Intermédio de Agrupamento Física e Química A AGRUPAMENTO DE ESCOLAS DE VOUZELA E CAMPIA AGEVC.

de energia anteriores representa a forma correta de energia.

Exemplos de aceleração Constante 1 D

Potência Mecânica. Está(ão) correta(s) apenas a) I. b) II. c) I e II. d) I e III. e) II e III.

Questões do capítulo oito que nenhum aluno pode ficar sem fazer

Sobriedade e objetividade nessa caminhada final e que a chegada seja recheado de SUCESSO! Vasco Vasconcelos

3a. prova Simulado 5 Dissertativo FÍSICA INSTRUÇÕES PARA REALIZAÇÃO DO SIMULADO

= R. Sendo m = 3, kg, V = 3, m/s e R = 0,45m, calcula-se a intensidade da força magnética. 3, (3, ) 2 = (N) 0,45

UFJF CONCURSO VESTIBULAR 2012 GABARITO DA PROVA DE FÍSICA

Questão 48. Questão 46. Questão 47. alternativa A. alternativa D. alternativa A

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P p = = (N/m 2 ) A 0,20.

b) Qual deve ser a aceleração centrípeta, para que com esta velocidade, ele faça uma trajetória circular com raio igual a 2m?

Trabalho. a) F; b) peso c) força normal; d) força de atrito; e) resultante das forças.

c = c = c =4,20 kj kg 1 o C 1

SIMULADO - Dr. ACESSO FÍSICAS M/O 18/08/ RESOLUÇÃO Prof. Tadanori

FEP Física Geral e Experimental para Engenharia I

p A = p B = = ρgh = h = Por outro lado, dado que a massa total de fluido despejada foi m, temos M 1 m = ρ(v 1 + V 2 ) = ρ 4 H + πd2 4 h = H = 4

Bom trabalho! DATA: 17/12/2015 VALOR: 20,0 NOTA: ASSUNTO: TRABALHO DE RECUPERAÇÃO FINAL. SÉRIE: 2 a EM NOME COMPLETO:

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica.

Energia Cinética e Trabalho

Questão 46. Questão 47. Questão 48. alternativa E. alternativa C

Código: FISAP Disciplina: Física Aplicada Preceptores: Marisa Sayuri e Rodrigo Godoi Semana: 05/11/ /11/2015

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial.

TIPO-A FÍSICA. x v média. t t. x x

Questão 2 Uma esfera de cobre de raio R0 é abandonada em repouso sobre um plano inclinado de forma a rolar ladeira abaixo. No entanto, a esfera

Lista de Eletrostática - Mackenzie

UNOCHAPECÓ Lista 03 de exercícios Mecânica (lançamento de projéteis) Prof: Visoli

FÍSICA. Valores de algumas grandezas físicas:

Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO. Comentário: Energia de Capacitor. Comentário: Questão sobre atrito

I - colocam-se 100 g de água fria no interior do recipiente. Mede-se a temperatura de equilíbrio térmico de 10ºC.

O trabalho realizado por uma força gravitacional constante sobre uma partícula é representado em termos da energia potencial U = m.

= + + = = + = = + 0 AB

FÍSICA CADERNO DE QUESTÕES

1. Nesta figura, está representada, de forma esquemática, a órbita de um cometa em torno do Sol:

Título: Professor: Turma: 2ª Lista de Física II Tadeu 2ª Ano. Questão 1. Questão 4

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?

3 - Sistemas em Corrente Alternada. 1 Considerações sobre Potência e Energia. Carlos Marcelo Pedroso. 18 de março de 2010

Transcrição:

UNICAMP - 2004 2ª Fase FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

Física Questão 01 O quadro (a), acima, refere-se à imagem de televisão de um carro parado, em que podemos distinguir claramente a marca do pneu ( PNU ). Quando o carro está em movimento, a imagem da marca aparece como um borrão em volta de toda a roda, como ilustrado em (b). A marca do pneu volta a ser nítida, mesmo com o carro em movimento, quando este atinge uma determinada velocidade. Essa ilusão de movimento na imagem gravada é devido à frequência de gravação de 30 quadros por segundo (30 Hz). Considerando que o diâmetro do pneu é igual a 0,6 m e p = 3,0, responda: A) Quantas voltas o pneu completa em um segundo, quando a marca filmada pela câmara aparece parada na imagem, mesmo estando o carro em movimento? B) Qual a menor frequência angular w do pneu em movimento, quando a marca aparece parada? C) Qual a menor velocidade linear (em m/s) que o carro pode ter na figura (c)? A) Como a frequência de gravação é de 30 quadros por segundo, para que vejamos a marca do pneu parada é necessário que o pneu dê também 30 (ou múltiplos inteiros de 30) voltas por segundo. B) Determine a frequência angular, ω, através da equação: ω = 2πf = 2. 3. 30 = 180 rad/s C) Faça v = ωr v = 180. 0,3 = 54 m/s

Física Questão 02 Uma pesquisa publicada no ano passado identifica um novo recordista de salto em altura entre os seres vivos. Trata-se de um inseto, conhecido como Cigarrinha-da-espuma, cujo salto é de 45 cm de altura. A) Qual é a velocidade vertical da cigarrinha no início de um salto? B) O salto é devido a um impulso rápido de 10 3 s. Calcule a aceleração média da cigarrinha, que suporta condições extremas, durante o impulso. A) Determine a velocidade vertical da cigarrinha através da equação: v 2 2 = v o 2gh 2 0 = v o 2. 10. 0,45 v o = 3 m/s B) Calcule o módulo da aceleração média da cigarrinha, através da relação: a méd = v/ t = (3 0)/10 3 = 3 000 m/s 2

Física Questão 03 Uma bola de tênis rebatida numa das extremidades da quadra descreve a trajetória representada na figura a seguir, atingindo o chão na outra extremidade da quadra. O comprimento da quadra é de 24 m. A) Calcule o tempo de voo da bola, antes de atingir o chão. Desconsidere a resistência do ar nesse caso. B) Qual é a velocidade horizontal da bola no caso acima? C) Quando a bola é rebatida com efeito, aparece uma força, FE, vertical, de cima para baixo e igual a 3 vezes o peso da bola. Qual será a velocidade horizontal da bola, rebatida com efeito para uma trajetória idêntica à da figura? 125,0 altura (cm) 62,5 rede 0,0 0 4 8 12 16 20 24 distância (m) A) Determine a componente vertical da velocidade no instante inicial, através da equação: 2 2 v y = v oy 2gh 2 v oy = 2. 10. 0,31 v oy = 2,5 m/s Através dessa velocidade, calcule o tempo que a bola levará para alcançar a altura máxima: v y = v oy gt 0 = 2,5 10t t = 0,25 segundos. O tempo total de queda será 0,25. 3 = 0,75 segundos. B) Calcule a velocidade horizontal através da equação; vx = s/ t = 24/0,75 = 32 m/s C) Faça que F R = ma. F R = 4P (P + 3P) 4P = ma 4mg = ma a = 4g. Compare a trajetória sem efeito: y = y 0 + (v oy /v ox )x g/(2v ox2 )x 2 Com a trajetória com efeito: y = y 0 + (v oy /v ox )x 4g/(2v ox2 )x 2 y = y 0 + (v oy /v ox )x 2g/(v ox2 )x 2 Para que a trajetória seja a mesma, é necessário que: v ox = 2v ox e v oy = 2v oy.

Física Questão 04 Uma caneta esferográfica comum pode desenhar um traço contínuo de 3 km de comprimento. A largura desse traço é de 0,5 mm. Considerando p = 3,0, faça o que se pede: A) Estime o volume de tinta numa carga nova de uma caneta esferográfica e, a partir desse valor, calcule a espessura do traço deixado pela caneta sobre o papel. B) Ao escrever, a força que uma caneta exerce sobre o papel é de 3 N. Qual a pressão exercida pela esfera da caneta sobre o papel? A) Um valor aproximado para o raio do tubo da caneta é 1 mm. Calcule o volume de tinta utilizada para o traço: V tinta = πr 2. 1 = 3.(10 3)2. 3 x 10 7 = 3,0 x 10 7 m 3 Faça que V tinta = V traço V traço = comprimento x largura x espessura V traço = 3 x 10 3. 0,5 x 10 3. e = 3,0 x 10 7 e = 0,2 x 10 6 metros = 0,2 µm B) Determine a área da esfera: A = πr 2 = 3.(2,5 x 10 4 )2 = 2 x 10 7 m 2 Calcule a pressão: P = F/A = 3/(2 x 10 7 ) = 1,5 x 10 7 N/m 2

Física Questão 05 Uma das modalidades de ginástica olímpica é a das argolas. Nessa modalidade, os músculos mais solicitados são os dos braços, que suportam as cargas horizontais, e os da região dorsal, que suportam os esforços verticais. Considerando um atleta cuja massa é de 60 kg e sendo os comprimentos indicados na figura H = 3,0 m; L = 1,5 m e d = 0,5 m, responda: A) Qual a tensão em cada corda quando o atleta se encontra pendurado no início do exercício com os braços na vertical? B) Quando o atleta abre os braços na horizontal, qual a componente horizontal da tensão em cada corda? A) Como o atleta está em equilíbrio tensão em cada uma dessas cordas será P/2 = 600/2 = 300 N. B) d D θ x x L Na situação mostrada, tgθ = H/(L d)/2 = 2H/(L d) tgθ = 2. 3,0/(1,5 0,5) = 6 tgθ = H/x = 6 T T θ θ P 2T y = P T y = P/2 = 300 N T x = (L d)/2h. (P/2) T x = (1,5 0,5)/6. (300) T x = 50 N

Física Questão 06 O chamado pára-choque alicate foi projetado e desenvolvido na Unicamp com o objetivo de minimizar alguns problemas com acidentes. No caso de uma colisão de um carro contra a traseira de um caminhão, a malha de aço de um pára-choque alicate instalado no caminhão prende o carro e o ergue do chão pela plataforma, evitando, assim, o chamado efeito guilhotina. Imagine a seguinte situação: um caminhão de 6 000 kg está a 54 km/h e o automóvel que o segue, de massa igual a 2 000 kg, está a 72 km/h. O automóvel colide contra a malha, subindo na rampa. Após o impacto, os veículos permanecem engatados um ao outro. A) Qual a velocidade dos veículos imediatamente após o impacto? B) Qual a fração da energia cinética inicial do automóvel que foi transformada em energia potencial gravitacional, sabendo-se que o centro de massa do mesmo subiu 50 cm? A) Utilize a conservação da quantidade de movimento. Q inicial = Q final m carro. v carro + m caminhão v caminhão = (m carro + m caminhão )v 2 000. 72 + 6 000. 54 = (6 000 + 2 000). v v = 58,5 km/h B) E c = ½ mv 2 E c = ½ 2 000. 202 = 4,0 x 105 J E p = mgh = 2 000.10.0,5 = 1,0 x 10 4 J Determine a fração pela relação entre E p /E c = 1,0 x 10 4 /4,0 x 10 5 = 0,025 = 2,5%

Física Questão 07 A elasticidade das hemácias, muito importante para o fluxo sanguíneo, é determinada arrastando-se a hemácia com velocidade constante V através de um líquido. Ao ser arrastada, a força de atrito causada pelo líquido deforma a hemácia, esticando-a, e o seu comprimento pode ser medido através de um microscópio (vide esquema). O gráfico apresenta o comprimento L de uma hemácia para diversas velocidades de arraste V. O comprimento de repouso desta hemácia é L 0 = 10 micra. A) A força de atrito é dada por F atrito = bv, com b sendo uma constante. Qual é a dimensão de b, e quais são as suas unidades no SI? B) Sendo b = 1,0 x 10-8 em unidades do SI, encontre a força de atrito quando o comprimento da hemácia é de 11 micra. C) Supondo que a hemácia seja deformada elasticamente, encontre a constante de mola k, a partir do gráfico. F atrito V = cte F 12,0 11,5 L L (µm) 11,0 10,5 L 0 10,0 0 50 100 150 200 V (µm/s) A) Como F = bv, as unidades de b é dada por: [b] = [F]/[v] [b] = [M] [L] [T] 2 /[L] [T] 1 [b] = [M]/[T] Portanto a unidade no SI que corresponde b é kg/s. B) Através do gráfico determine a velocidade da hemácia para um comprimento igual a 11 µm, que é igual a 100 µm/s. Faça que: F atrito = 1,0 x 10 8. 100. 10 6 = 1,0 x 10 12 N C) Utilize a Lei de Hooke para determinar K: F = k x k = F/ x x = L L 0 = (11 10) x 10 6 m = x = 10 6 m k = 10 12 /10 6 = 10 6 N/m

Física Questão 08 Para resfriar um motor de automóvel, faz-se circular água pelo mesmo. A água entra no motor a uma temperatura de 80 C com vazão de 0,4 l/s, e sai a uma temperatura de 95 C. A água quente é resfriada a 80 C no radiador, voltando em seguida para o motor através de um circuito fechado. A) Qual é a potência térmica absorvida pela água ao passar pelo motor? Considere o calor específico da água igual a 4 200 J/kg C e sua densidade igual a 1 000 kg/m 3. B) Quando um aditivo para radiador é acrescentado à água, o calor específico da solução aumenta para 5 250 J/kg C, sem mudança na sua densidade. Caso essa solução a 80 C fosse injetada no motor em lugar da água, e absorvesse a mesma potência térmica, qual seria a sua temperatura na saída do motor? A) Seja Q = mc T Substitua a massa da equação por m = d. v: d = m/v; m = d. v Q = dvc T Determine a potência através da razão entre o calor e o tempo: P = Q/t P = dvc T/ t Observe que v/ t é a vazão e corresponde a 0,4 l/s = 0,4 x 10 3 m 3 /s P = 1 000. 0,4 x 10 3. 4 200.(95 80) = 25,2 kw B) Utilize a mesma equação encontrada no item A dessa questão. P = dvc T/ t 25 200 = 1 000. 0,4 x 10 3. 5 250 (Tf 80) 25 200 = 2 100 (Tf 80) 12 = T f 80 T f = 92 ºC

Física Questão 09 Quando o alumínio é produzido a partir da bauxita, o gasto de energia para produzi-lo é de 15 kwh/kg. Já para o alumínio reciclado a partir de latinhas, o gasto de energia é de apenas 5% do gasto a partir da bauxita. A) Em uma dada cidade, 50 000 latinhas são recicladas por dia. Quanto de energia elétrica é poupada nessa cidade (em kwh)? Considere que a massa de cada latinha é de 16 g. B) Um forno de redução de alumínio produz 400 kg do metal, a partir da bauxita, em um período de 10 horas. A cuba eletrolítica desse forno é alimentada com uma tensão de 40 V. Qual a corrente que alimenta a cuba durante a produção? Despreze as perdas. A) Determine a massa das 50 000 latinhas recicladas: m = 50 000. 16 = 8,0 x 10 5 g = 800 kg Quantidade de energia gasta para produzir o alumínio a partir da bauxita: E = 15 000. 800 = 1,2 x 10 7 Wh Quatidade de energia economizada com a reciclagem: 0,95. 1,2 x 10 7 = 1,14 x 10 7 Wh = 11 400 kwh B) Determine a energia necessária nesse processo; E = 15 x 400 = 6 000 kwh. Como o tempo é igual a 10 horas, determine a potência como: P = E/t = 6 000/10 = 600 kw P = VI 600 000 = 40I I = 15 000 A = 1,5 x 10 4 A

Física Questão 10 Um raio entre uma nuvem e o solo ocorre devido ao acúmulo de carga elétrica na base da nuvem, induzindo uma carga de sinal contrário na região do solo abaixo da nuvem. A base da nuvem está a uma altura de 2 km e sua área é de 200 km 2. Considere uma área idêntica no solo abaixo da nuvem. A descarga elétrica de um único raio ocorre em 10 3 s e apresenta uma corrente de 50 ka. Considerando ε 0 = 9 x 10 12 F/m, responda: A) Qual é a carga armazenada na base da nuvem no instante anterior ao raio? B) Qual é a capacitância do sistema nuvem-solo nesse instante? C) Qual é a diferença de potencial entre a nuvem e o solo imediatamente antes do raio? A) Calcule a carga por: i = Q/ t Q = i. t Q = 50 x 10 3. 10 3 = 50 C B) Calcule a capacitância através da equação: C = ε 0 A/d = 9,0 x 10 9. 2,0 x 10 8 /2,0 x 10 3 = 9,0 x 10 7 F C) Determine a ddp através da equação: V = Q/C = 50/9,0 x 10 7 = 5,5 x 10 7 V

Física Questão 11 Em alguns carros é comum que o espelho retrovisor modifique a altura aparente do carro que vem atrás. As imagens abaixo são vistas pelo motorista em um retrovisor curvo (fig. 1) e em um retrovisor plano (fig. 2). A) Qual é (qualitativamente) a curvatura do retrovisor da fig. 1? B) A que distância o carro detrás se encontra, quando a sua imagem vista pelo motorista ocupa todo o espelho plano (fig. 2), cuja altura é de 4,0 cm? Considere que a altura real do carro seja de 1,6 m e que o teto do carro, o olho do motorista (situado a 50 cm do retrovisor) e o topo da imagem no espelho estejam alinhados horizontalmente. A) Comparando as imagens das figuras 1 e 2 percebe-se, que o carro visto de um retrovisor curvo está mais achatado do que o carro visto através de um retrovisor plano. Como a altura do carro na figura 1 é menor do que a altura do carro da figura 2, conclui-se que o espelho do retrovisor é convexo. B) Observe a figura abaixo: Através da semelhança dos triângulos destacados obtém-se: 4/160 = 50/(x + 50) 4 (x + 50) = 8 000 x + 50 = 2 000 x = 1 950 cm = 19,5 m

Física Questão 12 Uma das formas de se controlar misturas de gases de maneira rápida, sem precisar retirar amostras, é medir a variação da velocidade do som no interior desses gases. Uma onda sonora com frequência de 800 khz é enviada de um emissor a um receptor (vide esquema), sendo então medida eletronicamente sua velocidade de propagação em uma mistura gasosa. O gráfico a seguir apresenta a velocidade do som para uma mistura de argônio e nitrogênio em função da fração molar de Ar em N 2. A) Qual o comprimento de onda da onda sonora no N 2 puro? B) Qual o tempo para a onda sonora atravessar um tubo de 10 cm de comprimento contendo uma mistura com uma fração molar de Ar de 60%? A) Para N 2 puro a fração molar de Ar em N 2 é igual a 0%. Determine o comprimento da onda sonora através da seguinte relação: v = λf 347 = λ. 800 λ = 0,43 m B) Através do gráfico, determine a velocidade de propagação do som quando a fração de massa molar de Ar for 60%. Essa velocidade é igual a 325 m/s. Sendo d = 0,10 m, determine o tempo por: t = 0,10/325 = 3,1 x 10 4 segundos