DESENVOLVIMENTO DE MICROESTRUTURAS Prof. Vera Lúcia Arantes SMM/EESC/USP

Documentos relacionados
Necessária onde a sinterização no estado sólido não é possível (Si 3

Engenharia e Ciência dos Materiais II. Prof. Vera Lúcia Arantes

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais MATERIAIS CERÂMICOS

FORMULAÇÃO DE MATERIAIS CERÂMICOS

A interação entre dois componentes pode ser de mais de um tipo e consequentemente vários diagramas de equilíbrio podem ser obtidos, os quais podem

Materiais Cerâmicos Formulação. Conceitos Gerais

2. Considerando a figura dada na questão 2, explique a principal dificuldade de conformação da sílica fundida em relação ao vidro de borosilicato.

Matérias-primas usadas no processamento de materiais cerâmicos

Física dos Materiais FMT0502 ( )

UNIDADE 14 Estrutura e Propriedades dos Materiais Cerâmicos

Vitrocerâmicas (glass ceramics)

exp E η = η 0 1. Num vidro, a deformação pode ocorrer por meio de um escoamento isotrópico viscoso se a temperatura

Processamento de materiais cerâmicos Preparo de massas cerâmicas

CERÂMICAS ODONTOLÓGICAS

Estrutura de silicatos

Sinterização. Conceitos Gerais

Matérias-primas. Classificação geral: Cerâmicas Vidros Vitro-cerâmicos

Análise do processo de transferência térmica na sinterização. Fornos utilizados para queima de produtos cerâmicos

Formando Cerâmicas Tradicionais Queima. Prof. Ubirajara Pereira Rodrigues Filho

ARGAMASSAS E CONCRETOS ADIÇÕES

T v. T f. Temperatura. Figura Variação da viscosidade com a temperatura para materiais vítreos e cristalinos (CARAM, 2000).

Cerâmicas Odontológicas

PROCESSAMENTO DE CERÂMICAS I. Aditivos: plastificantes, defloculantes, lubrificantes e agentes suspensores; Preparo de massas cerâmicas

2.2 PROCESSOS DE FABRICAÇÃO: CONFORMAÇÃO

MATERIAIS CERÂMICOS Características Gerais

CAP.13 MATERIAIS CERÂMICOS

Reações químicas aplicas ao processamento de materiais cerâmicos

FCM 208 Física (Arquitetura)

Fornos utilizados para queima de produtos cerâmicos 22/11/17

Disciplina: MAF 2130 Química aplicada às engenharias

Física dos Materiais

DESENVOLVIMENTO DE VIDRADOS* RESUMO

Têmpera. Lauralice Canale

Processamento de Cerâmicas I COLAGEM 20/6/17

Universidade Estadual de Ponta Grossa PRÓ-REITORIA DE GRADUAÇÃO DIVISÃO DE ENSINO

MATERIAIS DE CONSTRUÇÂO MECÂNICA II EM 307 TRABALHO PRÁTICO N.º 1. Observação e análise microscópica de diferentes tipos de materiais cerâmicos

INTRODUÇÃO AOS PROCESSOS METALÚRGICOS. Prof. Carlos Falcão Jr.

2. Diagramas de fases de materiais cerâmicos

Matérias-primas naturais

Diagramas de Fases. Universidade de São Paulo. Escola de Engenharia de São Carlos. Departamento de Engenharia de Materiais

Sinterização 23/8/17

REDUÇÃO NOS CICLOS DE QUEIMA DE LOUÇAS SANITÁRIAS ATRAVÉS DA UTILIZAÇÃO DE MASSAS CERÂMICAS RICAS EM ÁLCALIS NA COMPOSIÇÃO

TM703 Ciência dos Materiais PIPE Pós - Graduação em Engenharia e Ciências de Materiais

Aula 11: Estruturas de Solidificação

Processos que ocorrem nos compactados cerâmicos durante o tratamento térmico a altas temperaturas são controlados por:

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA MECÂNICA DIAGRAMAS DE FASES

MATERIAIS DE CONSTRUÇÃO MECÂNICA II (EM307) 2º Semestre 2005/06 9. NOVOS MATERIAIS CERÂMICOS

TECNOLOGIA DE PRODUTOS REFRATÁRIOS

XX Encontro Anual de Iniciação Científica EAIC X Encontro de Pesquisa - EPUEPG

Sinterização 31/8/16

Endurecimento por dispersão de fases e diagramas de fases eutéticos

MATERIAIS DE CONSTRUÇÃO MECÂNICA II (EM307) 2º Semestre 2005/ Materiais para Ferramentas

TRANSFORMAÇÕES DE FASES EM METAIS E MICROESTRUTURAS

DEPARTAMENTO DE ENGENHARIA CIVIL CENTRO TECNOLÓGICO

Moagem Fina à Seco e Granulação vs. Moagem à Umido e Atomização na Preparação de Massas de Base Vermelha para Monoqueima Rápida de Pisos Vidrados

DIAGRAMAS TTT DIAGRAMAS TTT

Avaliação da Absorção de Água de Porcelanas Triaxiais com Substituição Parcial de Feldspato por Quartzo

Ciências dos materiais- 232

Escórias e refratários

Centro Universitário da Fundação Educacional de Barretos. Princípio de Ciências dos Materiais Prof.: Luciano H. de Almeida

LÍQUIDOS SÓLIDOS. Átomos podem vibrar apenas em torno de uma posição fixa. Átomos apresentam alta energia cinética

Proceedings of the 48 th Annual Meeting of the Brazilian Ceramic Society 28 de junho a 1º de julho de 2004 Curitiba-PR

MATERIAIS DE CONSTRUÇÃO MECÂNICA II (EM307) 2º Semestre 2005/ Materiais Cerâmicos

MATERIAIS DE CONSTRUÇÂO MECÂNICA II M 307 TRABALHO PRÁTICO N.º 2. Estudo do processamento e evolução microestrutural de um vidro cerâmico

AÇO-CARBONO AÇO-LIGA ALOTROPIA DO FERRO

Instituto de Ciência e Tecnologia de Sorocaba. Materiais e Reciclagem. 5 Diagramas de Fases. Professor Sandro Donnini Mancini

Definição e Classificação dos Materiais

TRATAMENTOS TÉRMICOS

FONTE DE PLASTICIDADE E FUNDÊNCIA CONTROLADA PARA PORCELANATO OBTIDO POR MOAGEM VIA ÚMIDA

Introdução aos Materiais Imperfeições em Sólidos Metais DEMEC TM229 Prof Adriano Scheid

Microestrutura (fases) Parte 5

Com base no teste desenvolvido por Lidefelt et al (51), foi desenvolvido um

COLAGEM DE BARBOTINA E ESMALTAÇÃO CERÂMICA

Materiais cerâmicos. Introdução. Princípios gerais. Estruturas cristalinas. J. D. Santos, FEUP

INTRODUÇÃO AOS PROCESSOS METALÚRGICOS. Prof. Carlos Falcão Jr.

Unidade 8 DIAGRAMAS DE FASES. ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais

Caracterização de matérias-primas cerâmicas

Visão Geral dos Tipos de Pó de Ferro

CERÂMICAS: definições e classificação

1. Introdução. 2. Materiais e Método. Daniela L. Villanova a *, Carlos P. Bergmann a

Cerâmicos encontrados na natureza como a argila. Utilizado basicamente para peças de cerâmica tradicional.

DEFEITOS CRISTALINOS

Fundentes: Como Escolher e Como Usar

Disciplina : Metalurgia Física- MFI Professores: Guilherme Ourique Verran - Dr. Eng. Metalúrgica. Aula 05 - Solidificação e Equilíbrio

MATERIAIS CERÂMICOS. PMT Introdução à Ciência dos Materiais para Engenharia

MÉTODO GEOMÉTRICO E MATEMÁTICO PARA FORMULAÇÃO DE MATERIAIS CERÂMICOS

ESTADOS EXCITADOS: fonões, electrões livres

Processamento de Cerâmicas II Sinterização Processos especiais

Estudo da Reutilização de Resíduos de Telha Cerâmica (Chamote) em Formulação de Massa para Blocos Cerâmicos

Processos de Fabricação Parte 2: Fundição. Professor: Guilherme O. Verran Dr. Eng. Metalúrgica. Aula 13: Processos Especiais de Fundição

QUÍMICA DE MATERIAIS CRISTALINOS AMORFOS AULA 01: INTRODUÇÃO A QUÍMICA DOS MATERIAIS

UNIVERSIDADE SALGADO DE OLIVEIRA Campus RECIFE. Curso: Engenharia de Produção Disciplina: Materiais para Produção Industrial

ROCHAS ÍGNEAS ENG1202-LABORATÓRIO DE GEOLOGIA. Prof. Patrício Pires 20/03/2012

Ciência dos Materiais II. Materiais Cerâmicos. Prof. Vera Lúcia Arantes

PROPRIEDADES DOS METAIS LÍQUIDOS

OBTENÇÃO DE PLACAS CERÂMICAS ATRAVÉS DO PROCESSO DE LAMINAÇÃO

Semicondutores são materiais cuja condutividade elétrica se situa entre os metais e os isolantes

UNIVERSIDADE FEDERAL DO ABC. Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS) BC-1105: MATERIAIS E SUAS PROPRIEDADES

Soldagem por Alta Frequência. Maire Portella Garcia -

Transcrição:

DESENVOLVIMENTO DE MICROESTRUTURAS Prof. Vera Lúcia Arantes SMM/EESC/USP I Triaxial cerâmico (porcelanas) A composição cerâmica tradicional, base para muitas indústrias de porcelanas, é a mistura de argila, feldspato e quartzo. Nestas composições são incluídas as porcelanas duras, porcelanas de mesa, sanitários, porcelanas elétricas, porcelanas de mesa semivítreas, porcelanas dentárias, etc. Uma composição típica considera partes iguais de argilas, feldspato e quartzo. As argilas servem para dois propósitos nessa formulação: 1) prover a massa de partículas finas e a plasticidade necessária para a conformação e 2) formar poros finos e um líquido mais ou menos viscoso essencial no processo de queima. O feldspato age como fluxo, formando um líquido viscoso na temperatura de queima e ajuda na vitrificação. O quartzo age principalmente como um enchimento, material que permanece não reativo durante a queima em baixas temperaturas e em altas temperaturas forma um líquido de alta viscosidade. Composições típicas: As faixas de composições típicas para diferentes corpos cerâmicos são ilustradas no diagrama de fases sílica-leucita-mulita, mostrado na figura 1. Essas composições podem ser facilmente visualizadas como misturas de quartzo-argila-feldspato considerando a união entre feldspato-metacaulim como mostrado no diagrama pela linha pontilhada. A principal diferença entre as composições estão nas quantidades relativas e tipos de feldspatos e argilas usadas. Com o aumento da quantidade de feldspato adicionado, a quantidade de líquido formado na temperatura eutética aumenta, a vitrificação ocorre em baixas temperaturas, e com a maior quantidade de vidro ocorre uma maior vitrificação e mais alta translucência é obtida. Se o feldspato é substituído pela argila, uma temperatura mais alta é necessária para a vitrificação, e o processo de queima torna-se mais difícil e caro. Entretanto, o processo de conformação torna-se mais fácil, e as propriedades mecânicas e elétricas da peça resultante são melhoradas. A quantidade e tipo de argila utilizada são determinados em grande parte pelos requisitos do processo de 1

conformação; quanto mais complexa a geometria da peça a ser desenvolvimento, maior a quantidade de argila necessária. Figura 1 Áreas de composição triaxial de porcelana mostradas no diagrama de equilíbrio sílica-leucita-mulita. Considerando as diferentes composições ilustradas na figura 1, a porcelana dentária exige alta transluscência e é empregada para fabricação de peças pequenas e de formatos simples, de tal forma que a composição rica em feldspato e pobre em argila é a indicada. Em contraste, as peças de porcelanas dura e de mesa possuem formatos complexos e paredes finas obtidas por técnicas de torneamento manual e colagem de barbotinas. Só podem ser obtidas com sucesso se uma substancial quantidade de argila estiver presente. 2

VARIAÇÕES ESTRUTURAIS DURANTE A QUEIMA: As mudanças que ocorrem na estrutura de uma porcelana de composição triaxial durante a queima dependem da composição particular e das condições de queima. Como é mostrado nas figuras 1 e 2, a temperatura do eutético ternário do sistema feldspatoargila-quartzo é 990 o C, enquanto que a temperatura na qual os grãos de feldspato formam uma fase líquida é 1140 o C. Em temperaturas superiores, uma quantidade maior de líquido é formada e que no equilíbrio poderia estar associada com a mulita como a fase sólida. O equilíbrio dificilmente é alcançado na prática por causa da baixa taxa de difusão durante a queima normal, e também por causa das pequenas diferenças de energia livre entre várias fases presentes. Figura 2 Diagrama ternário K 2 O-Al 2 O 3 -SiO 2 A mistura inicial é composta de grãos de quartzo relativamente grandes e grãos de feldspato em uma fina matriz de argila. Durante a queima, os grãos de feldspato fundem a 1140 o C, mas por causa da sua alta viscosidade, não há mudanças na forma da peça até acima de 1200 o C. Em torno de 1250 o C, os grãos de feldspato menores do que 10 m 3

desaparecem pela reação com a argila ao seu redor; e os grãos maiores interagem com a argila ( os álcalis difundem para fora do feldspato, e cristais de mulita são formados no vidro). A fase argila inicialmente contrai e freqüentemente aparecem fissuras. Como ilustrado na figura 3, agulhas finas de mulita aparecem a aproximadamente 1000 o C, mas não podem ser detectadas com um microscópio ótico até que pelo menos a temperatura de 1250 o C seja alcançada. Com o posterior aumento da temperatura, cristais de mulita continuam a crescer. Acima de 1400 o C, a mulita se apresenta como cristais prismáticos com cerca de 0,01 mm de comprimento. Nenhuma mudança é observada na fase quartzo até que temperaturas de cerca de 1250 o C sejam alcançadas; então o arredondamento das arestas nas partículas pequenas pode ser observado. Um vidro de alta concentração de sílica em trono de cada grão de quartzo aumenta em quantidade em mais altas temperaturas. A 1350 o C, grãos menores do que 20 m são completamente dissolvidos; acima de 1400 o C, pouco quartzo ainda está presente, e a porcelana consiste quase que inteiramente de mulita e vidro. Figura 3 Cristais de mulita na matriz de sílica formados pelo aquecimento da caulinita. A natureza heterogênea do produto é ilustrada na figura 4, na qual os grãos de quartzo envoltos em um vidro rico em sílica; áreas compostas por vidro e mulita correspondendo aos grãos originais de feldspato e a matriz original de argila podem ser claramente distinguidas. 4

Figura 4 Fotomicrografia de porcelana de isoladores elétricos mostrando grãos de quartzo com líquido na sua volta, grãos de feldspato com agulhas de mulita não resolvidas, matriz de argila não resolvida e poros escuros. Poros também estão presentes. Embora a mulita seja a fase cristalina em ambos os grãos de feldspato e na matriz de argila, o tamanho do cristal e o desenvolvimento são diferentes (fig. 5). 5

Figura 5 Agulhas de mulita no grão de feldspato. Grãos na forma de agulhas grandes crescem no feldspato a partir da superfície quando a composição varia pela difusão de álcalis. Um grão de quartzo envolto no vidro rico em sílica é mostrado na figura 6. Pequenas trincas aparecem devido a uma alta concentração do grão de quartzo comparado com a matriz a sua volta, provocando tensões localizadas. Usualmente o quartzo forma somente vidro, mas para algumas composições queimadas a altas temperaturas, há a transformação em cristobalita que inicia na superfície do grão de quartzo (fig. 7). A estrutura completa de grãos de quartzo, microfissuras, vidro de sílica, vidro e mulita a partir dos grãos de feldspato e uma fina matriz de mulita e vidro é mostrada com grande clareza na figura 8. 6

Figura 6 Grão de quartzo parcialmente dissolvido na porcelana de isoladores elétricos. Figura 7 Grãos de quartzo com cristobalita formada na superfície. Figura 8 Micrografia eletrônica de porcelana de isoladores elétricos. 7

As mudanças que ocorrem durante a queima, acontecem a uma taxa que depende do tempo, temperatura e tamanho de partícula. Sob condições normais de queima, as condições de equilíbrio somente é alcançada em temperaturas de 1400 o C, e a estrutura consiste de uma mistura de líquido rico em sílica e mulita. Em todos os casos, o líquido na temperatura de queima resfria para formar o vidro de tal forma que as fases presentes na temperatura ambiente são normalmente vidro, mulita e quartzo em quantidades que dependem da composição inicial e condições de queima. Composições com quantidades maiores de feldspato formam grandes quantidade de líquido em baixas temperaturas e vitrificam em mais baixas temperaturas do que composições com grandes quantidades de argila.. VANTAGENS DA COMPOSIÇÃO TRIAXIAL Uma das grandes vantagens dos corpos fabricados com quartzo-argila-feldspato reside no fato que eles não são sensíveis a pequenas mudanças na composição, técnicas de fabricação e temperatura de queima. Essa adaptabilidade resulta da interação das fases presentes para aumentar continuamente a viscosidade da fase líquida quanto mais dela é formada em altas temperaturas. Como resultado dessas reações, o corpo cerâmico tem, usualmente, uma longa faixa de queima e baixa sensibilidade a variações composicionais. II O SISTEMA MgO Al 2 O 3 SiO 2 O sistema forma vários compostos binários juntamente com dois compostos ternários, a cordierita (2MgO.2Al 2 O 3.5SiO 2 ) e safirina (4MgO.5Al 2 O 3.2SiO 2 ), ambos compostos fundem incongruentemente. A mais baixa temperatura liquidus é o ponto eutético tridimeita-protoensteatita-cordierita a 1345 o C Composições cerâmicas que aparecem nesse diagrama incluem refratários magnesianos, forsterita, ensteatita, ensteatita de baixa perda dielétrica e cerâmicas de cordierita. As áreas das composições gerais desse produtos são ilustradas no diagrama da figura 9. Em todas, a composição básica é a mistura de argila + talco como matériasprimas. Esses materiais são utilizados por causa da facilidade de conformação; eles possuem grãos finos, são plásticos e não abrasivos. Além disso, a natureza de grãos finos desses materiais é essencial para o processo de queima. 8

No aquecimento, a argila se decompõe a 980 o C para formar grãos finos de mulita na matriz de sílica. O talco se decompõe para formar uma mistura similar de cristais finos de protoensteatita, MgSiO 3, na matriz de sílica, a 1000 o C. O subsequente aquecimento da argila provoca um aumento no crescimento dos cristais de mulita, cristalização da matriz de sílica como cristobalita, e a formação do líquido eutético a 1595 o C. Figura 9 Diagrama MgO-Al 2 O 3 -SiO 3 O posterior aquecimento do talco leva ao crescimento dos cristais de ensteatita e líquido é formado na temperatura de 1547 o C. Nessa temperatura, quase todas as composições fundem, uma vez que a composição do talco (66,6% SiO 2, 33,4% MgO) não está longe da composição eutética do sistema MgO-SiO 2. Em geral, para queimar e formar uma cerâmica vítrea densa, é necessário de 20 a 30% de silicato líquido viscoso. Para o talco puro, entretanto, nenhum líquido é formado até 1547 o C, quando a composição toda se liquefaz. Isso pode ser substancialmente melhorado usando uma mistura de argila e talco. Por exemplo, a composição A da figura 9, contém aproximadamente 90% de talco e 10% de argila. Nessa composição, cerca de 30% de líquido é formado abruptamente na temperatura liquidus, 1345 o C; a quantidade de líquido aumenta rapidamente com a temperatura. Essa composição pode ser queimada entre 1350 e 1370 o C. As matérias- 9

primas utilizadas contém, de fato, Na 2 O, K 2 O, CaO, BaO, Fe 2 O 3 e TiO 2 como impurezas minoritárias que abaixam a faixa de temperatura para queima. Se uma mistura de talco e argila, com adições de alumina para aproximar da composição da cordierita, é aquecida, um líquido inicial é formado a 1345 o C, exemplificado pela composição C da figura 9. A quantidade de líquido aumenta rapidamente; por causa disso é difícil formar um corpo vítreo. Freqüentemente quando essas composições não são dirigidas para aplicações elétricas, 3 a 10% de feldspato é adicionado como fluxo para aumentar a faixa de temperatura de queima. Para a forsterita, composição D na fig. 9, o líquido inicial é formado no eutético a 1360 o C, e a quantidade de líquido depende principalmente da composição e não varia muito com a temperatura. Conseqüentemente, cerâmicas a base de forsterita apresentam poucos problemas na queima. Em todas essas composições, normalmente estão presentes na temperatura de queima uma mistura de fases líquida e cristalina. Isso é ilustrado para a composição da forsterita na figura 10. Cristais de forsterita estão presentes na matriz de silicato líquido correspondendo à composição liquidus na temperatura de queima. Para outros sistemas, a fase cristalina na temperatura de queima é a protoensteatita, periclásio ou cordierita, e o tamanho do cristal e morfologia das fases são diferentes. A fase líquida freqüentemente não cristaliza no resfriamento, mas forma um vidro (ou mistura de vidros) de tal forma que o triângulo de compatibilidade não pode ser usado fixando as fases presentes na temperatura ambiente, mas este pode ser deduzido a partir das condições de queima e tratamentos térmicos subseqüentes. Figura 10 Estrutura cristal-líquido da composição forsterita. 10

III CERÂMICAS MAGNÉTICAS E ELÉTRICAS A composição ensteatita é uma classe geral de dielétricos que contém ensteatita, ou talco como seus constituintes majoritários. Eles são extensivamente usados como isoladores para alta freqüência por causa da sua boa resistência mecânica, alta constante dielétrica e baixa perda dielétrica. Duas principais fases estão presentes no corpo sinterizado, fig. 11. A fase cristalina é a ensteatita, que aparece como pequenos cristalitos prismáticos discretos em uma matriz vítrea. Cerâmicas de alumina têm Al 2 O 3 como fase cristalina ligada com uma matriz vítrea. Uma microestrutura típica é ilustrada na fig. 12. As propriedades obtidas dependem em grande parte da quantidade e propriedade da fase vítrea, que usualmente é livre de álcalis, sendo composta de uma mistura de argila, talco e fluxo de alcalinos terrosos. A temperatura de queima da alumina é relativamente alta. A principal imperfeição é a porosidade excessiva; o tamanho do poro é usualmente maior do que os grãos individuais das matérias-primas utilizadas e resultam da compactação e queima inadequadas. A alumina é largamente utilizada como substrato para dispositivos eletrônicos nos quais a resistividade da superfície e perda dielétrica ditam o uso do material contendo 99% ou mais de Al 2 O 3. A perfeição da superfície depende em grande parte do tamanho de grão e um material de pequeno tamanho de grão ilustrado na figura 1e é preferível. Figura 11 Microestrutura da cerâmica ensteatita. 11

Figura 12 Cerâmica de alta alumina polida e fortemente atacada para remover a fase ligante de silicato entre os grãos. Figura 13 Superfície da Al 2 O 3 99%, sinterizada apresentando grãos finos. 12

Para aplicações de ultra baixa perda dielétrica, particularmente quando uma alta transferência de energia através da cerâmica é necessária, é desejável eliminar inteiramente a fase vítrea entre os grãos. Isso pode ser feito com a alumina por sinterização no estado sólido do material puro com grãos finos em altas temperaturas, fig. 14. Figura 14 Microestrutura de uma alumina apenas alguns poros localizados dentro do grão. que praticamente livre de poros, com Para aplicações nas quais uma alta constante dielétrica é requerida, titânia ou o titanato de bário são usados. Na titânia, a fase TiO 2 é a fase cristalina majoritária com pequenas adições de fluxo como o óxido de zinco adicionado para formar a fase líquida, na temperatura de queima. O titanato de bário normalmente consiste inteiramente de BaTiO 3 cristalino. Os cristais individuais em uma amostra policristalina contém múltiplos domínios de diferentes orientações ferroelétricas, fig. 15. 13

Figura 15 Microestrutura do titanato de bário. Domínios com orientações ferroelétricas diferentes são mostrados. Cerâmicas magnéticas, por sua vez, são compostas idealmente de fases cristalinas simples possuindo composição determinada pelas propriedades procuradas (FeNiFeO 4 ; BaFe 12 O 19 ; FeMnFeO 4 ) e usualmente com alta massa específica e grãos finos. Uma estrutura típica é ilustrada na fig.16. A fase magnetita, Fe 3 O 4, ocorre somente sob uma faixa limitada de pressão de oxigênio. Isso também é verdadeiro para outras fases ferritas magnéticas. Para a obtenção das fases magnéticas deve-se controlar a pressão de oxigênio durante a queima. Quando isso não é feito, duas fases ocorrem, e o resultado é freqüentemente similar ao da NiFe 2 O 4 na qual uma fase (MgFe)O é formada, figura 16. Figura 16 Microestrutura da ferrita níquel. Pequenos vazios são observados nos grãos devido ao ataque com ácidos. 14

Figura 17 Microestrutura de ferrita com duas fases. Fase clara é MgFe 2 O 4, a fase escura (MgFe)O. REFERÊNCIAS: Kingery, W.D., Introduction to ceramics, Wiley Interscience publication, 1976. 15