Olimpíadas de Física 2015. Prova Teórica



Documentos relacionados
CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

FÍSICA. Questões de 01 a 04

Questão 1. Questão 2. Resposta. Resposta

Mecânica 2007/ ª Série

Problemas de Mecânica e Ondas 11

(a) a aceleração do sistema. (b) as tensões T 1 e T 2 nos fios ligados a m 1 e m 2. Dado: momento de inércia da polia I = MR / 2

Tânia observa um lápis com o auxílio de uma lente, como representado nesta figura:

E irr = P irr T. F = m p a, F = ee, = C N. C kg = m/s 2.

18 a QUESTÃO Valor: 0,25

Fichas de sistemas de partículas

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

3. Duas esferas A e B de massas m A = 5 g e m B =

Lista de Eletrostática da UFPE e UPE

Problemas de Mecânica e Ondas 5

c) A corrente induzida na bobina imediatamente após a chave S ser fechada terá o mesmo sentido da corrente no circuito? Justifique sua resposta.

Prof. Rogério Porto. Assunto: Eletrostática

Olimpíadas de Física Prova Teórica

Física FUVEST ETAPA. ε = 26 cm, e são de um mesmo material, Resposta QUESTÃO 1 QUESTÃO 2. c) Da definição de potência, vem:

( ) ( ) ( ( ) ( )) ( )

QUESTÃO 01. a) Qual a temperatura do forno? b) Qual a variação de energia interna do bloco do latão. QUESTÃO 02

Licenciatura em Engenharia de Telecomunicações e Informática. 1ª Parte Frequência

Física II Eng. Química + Eng. Materiais

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?

Capítulo 4 Trabalho e Energia

Problemas de Termodinâmica e Estrutura da Matéria

PROVA DE FÍSICA 1998 Segunda Etapa

Universidade Federal do Ceará 2ª ETAPA PROVA ESPECÍFICA DE FÍSICA PROVA ESPECÍFICA DE FÍSICA. Data: Duração: 04 horas CORRETOR 1

UFMG º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo.

Exercícios Temas atuais de Física Relatividade e Física de partículas

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

Teste de Avaliação 3 A - 06/02/2013

ENEM 2014/2015 Física (Prova Amarela) Prof. Douglas Almeida

Física. Resolução. Q uestão 01 - A

RECUPERAÇÃO TURMAS: 2º ANO FÍSICA

Primeira lista de física para o segundo ano 1)

P R O V A DE FÍSICA II

1 Analise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra.

FIS-14 Lista-05 Setembro/2012

Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO. Comentário: Energia de Capacitor. Comentário: Questão sobre atrito

Questão 57. Questão 58. Questão 59. alternativa C. alternativa C

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

FÍSICA CADERNO DE QUESTÕES

são aplicadas num objeto cuja massa é 8,0 kg, sendo F» 1 mais intensa que F» 2

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta

b) Calcule as temperaturas em Kelvin equivalentes às temperaturas de 5,0 ºC e 17,0 ºC.

FÍSICA 3ª Série LISTA DE EXERCÍCIOS/ELETROSTÁTICA Data: 20/03/07

Sobriedade e objetividade nessa caminhada final e que a chegada seja recheado de SUCESSO! Vasco Vasconcelos

FISICA. Justificativa: Taxa = 1,34 kw/m 2 Energia em uma hora = (1,34 kw/m 2 ).(600x10 4 m 2 ).(1 h) ~ 10 7 kw. v B. v A.

CONSERVAÇÃO DA ENERGIA MECÂNICA

FÍSICA. Prova de 2 a Etapa SÓ ABRA QUANDO AUTORIZADO. Duração desta prova: TRÊS HORAS. UNIVERSIDADE FEDERAL DE MINAS GERAIS FAÇA LETRA LEGÍVEL

Mestrado e Doutorado em Física

Prof. André Motta - mottabip@hotmail.com_ 4.O gráfico apresentado mostra a elongação em função do tempo para um movimento harmônico simples.

Lista 1_Gravitação - F 228 2S2012

= R. Sendo m = 3, kg, V = 3, m/s e R = 0,45m, calcula-se a intensidade da força magnética. 3, (3, ) 2 = (N) 0,45

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx

CONHECIMENTOS ESPECÍFICOS

IME º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

Comunicação da informação a curta distância. FQA Unidade 2 - FÍSICA

ESCOLA SECUNDÁRIA DE CASQUILHOS

1 a QUESTÃO Valor 1,0

TIPO-A FÍSICA. x v média. t t. x x

7] As polias indicadas na figura se movimentam em rotação uniforme, ligados por um eixo fixo.

I - colocam-se 100 g de água fria no interior do recipiente. Mede-se a temperatura de equilíbrio térmico de 10ºC.

s t 2) V m s = V m . t = (km) s 7, km

Organizada por: Pedro Alves. A tabela a seguir contém algumas integrais que podem ser úteis durante a prova.

GABARITO DO SIMULADO DISCURSIVO

CINEMÁTICA DE MÁQUINAS

Microfone e altifalante. Conversão de um sinal sonoro num sinal elétrico. sinal elétrico num sinal sonoro.

!"#$%&'#()(%*+%(%&),*(-*./0* Lista de Exercícios Figura 1: Ex. 1

GREGOR MENDEL & GRANDES MESTRES REVISÃO 2ª FASE BAHIANA

Revisão de Física Vestibular ITA 2011

RESOLUÇÕES DA PROVA DE FÍSICA UFC PROFESSOR Célio Normando

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! Cinemática escalar

FÍSICA. Sempre que for necessário, utilize g= 10m/s 2

Resolução O período de oscilação do sistema proposto é dado por: m T = 2π k Sendo m = 250 g = 0,25 kg e k = 100 N/m, vem:

NOTAS DE AULAS DE FÍSICA MODERNA

Física: Eletromagnetismo

Questão 46. Questão 47. Questão 48. alternativa E. alternativa C

Aula de Véspera - Inv-2008

n 1 L 1 n 2 L 2 Supondo que as ondas emergentes podem interferir, é correto afirmar que

Questão 2 Uma esfera de cobre de raio R0 é abandonada em repouso sobre um plano inclinado de forma a rolar ladeira abaixo. No entanto, a esfera

=30m/s, de modo que a = =3m/s2. = g sen(30 o ), e substituindo os valores, tem-se. = v B

Física Geral. Série de problemas. Unidade II Mecânica Aplicada. Departamento Engenharia Marítima

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica.

Antena Escrito por André

)tvlfd,, 0,(QJ4XtPLFD. ²ž6HPHVWUH ÐSWLFD

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida.

Lista de exercícios nº 2

Fortaleza Ceará TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014

UFJF CONCURSO VESTIBULAR 2012 GABARITO DA PROVA DE FÍSICA

Questão 1. Questão 2. Resposta

FÍSICA - Grupos H e I - GABARITO

Rotação de Espelhos Planos

Problemas de Mecânica e Ondas

a) os módulos das velocidades angulares ωr NOTE E ADOTE

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA

ESTUDO DIRIGIDO DE REVISÃO PARA RECUPERAÇÃO FINAL

Física IV. Interferência

Vestibular UFRGS Resolução da Prova de Física

Transcrição:

Sociedade Portuguesa de Física Olimpíadas de Física 2015 Seleção para as provas internacionais Prova Teórica Nome: Escola: 16/maio/2015

Olimpíadas Internacionais de Física 2015 Seleção para as provas internacionais Prova Teórica Duração da prova: 4h I Vários tópicos 1. Uma placa em L (isto é, dobrada num ângulo reto e exatamente ao meio, como se mostra na figura) é colocada sobre um cilindro que está fixo a uma parede. O eixo do cilindro (de raio R) encontra-se na horizontal. Qual é o valor mínimo do coeficiente de atrito estático entre a placa e o cilindro para que a placa não escorregue? 2. Um módulo lunar de 12 toneladas move-se em torno da Lua numa órbita circular a 100 km de altitude. Para alunar, os tripulantes do módulo ativam os motores do módulo para travar, isto é, ejetando os gases de combustão na direção e sentido de movimento do módulo. A velocidade de ejeção dos gases de combustão é 10 km/s e os motores são ligados quando o módulo se encontra no ponto A da figura, alunando no ponto B. Suponha que o motor de travagem está ligado num intervalo de tempo muito curto. (a) Determine a velocidade (v 0 ) do módulo lunar no ponto A, antes de os motores serem ligados. (b) Obtenha expressões para a energia mecânica e momento angular (relativamente ao centro da Lua) do módulo no ponto A, depois dos motores de travagem serem desligados (designe por v A a velocidade do módulo lunar após a aplicação dos travões ). (c) Ao alunar, a velocidade do módulo deve ser tangente à superfície da Lua para evitar uma alunagem catastrófica. Relacione a energia mecânica e momento angular (relativamente ao centro da Lua) do módulo no ponto B com os obtidos na alínea anterior (designe por v B a velocidade do módulo lunar ao alunar). (d) Partindo das relações obtidas na alínea anterior e do resultado da alínea (a), determine a variação da velocidade do módulo lunar devido aos motores de travagem ( v = v 0 v A ). (e) Qual foi a massa de combustível consumida durante a travagem? 3. Qual é a espessura da camada de gelo que se forma à superfície de um lago numa noite fria de Inverno, quando a temperatura do ar é 10 C? Para patinar é necessário que esta camada tenha 30 cm de espessura. Neste caso, quantos dias deste tempo frio de Inverno são necessários para que seja seguro patinar no lago? 4. Se um perú de 5 kg demora dois dias a descongelar, quanto tempo demorará a descongelar um mamute siberiano de 8 toneladas? B A 1

5. Um jovem radio-amador de Bencanta (Coimbra) mantém uma ligação rádio com duas amigas que vivem em duas cidades diferentes: Aveiro e Figueira da Foz. Para contactar as suas amigas, o jovem instalou um emissor de ondas curtas (27 MHz) de tal forma que, quando uma delas recebe o sinal com o máximo da intensidade, a outra não recebe qualquer sinal e vice-versa. A antena do emissor é composta por duas antenas verticais em forma de barra que emitem sinais com a mesma intensidade. Cada barra emite uniformemente em todas as direções do plano horizontal. Determine a orientação das barras (o ângulo que a linha que passa pelas duas barras faz com a direção norte-sul) e a diferença de fase entre os sinais comunicados a cada barra de modo a que a distância entre as barras seja mínima. II Eletromagnetismo 1. A figura representa um canhão de eletrões (de massa m e carga e) que entram na região central de um solenóide muito longo após terem sido acelerados por uma tensão V. A velocidade dos electrões à saída do ânodo tem uma pequena componente perpendicular ao eixo do solenóide (v v ). A trajetória dos eletrões é helicoidal e, após um ciclo completo, as partículas vão convergir no ponto F alinhado com o orifício do ânodo. Os eletrões podem ser considerados não-relativistas. (a) Obtenha a expressão que permite calcular o módulo da velocidade dos eletrões ao passarem no orifício do ânodo. (b) Determine a expressão do campo B que permite focar os electrões no ponto F decorrido um ciclo do movimento. 2. A figura representa uma esfera de raio R uniformemente preenchida com carga positiva. No interior há ainda duas cargas pontuais negativas ( Q cada uma) colocadas sobre um mesmo diâmetro da esfera e equidistantes do centro. O sistema é eletricamente neutro. Este foi o modelo proposto por Thomson para o átomo de hélio (sendo as cargas negativas os dois electrões). (a) Determine a distância r a que devem estar as cargas negativas do centro da esfera para que o sistema esteja em equilíbrio eletrostático. (b) Obtenha a frequência de pequenas oscilações radiais de cada uma das cargas negativas (admitindo que a outra permanece em repouso), sendo m a massa destas cargas. 2

3. Um disco perfeitamente condutor de raio r 0 é colocado numa região onde existe um campo magnético constante B perpendicular ao plano do disco. Existem dois contactos, C 1 na periferia do disco e C 2 no seu eixo, como se mostra na figura. A massa M, suspensa de um fio longo enrolado na periferia do disco, é responsável pelo momento (torque) que provoca a rotação do disco. (a) Determine a expressão da diferença de potencial que se estabelece entre os pontos C 1 e C 2 quando o disco está a rodar com velocidade angular ω. (b) Verifique que a corrente induzida no circuito que contém a resistência R varia linearmente com ω. (c) Sendo o fio muito longo, o sistema adquire uma velocidade angular constante ω f. Determine a expressão de ω f e da corrente correspondente I f. III Pigs in Space Sendo um excelente cientista aeronáutico, L. M. construiu uma nave espacial capaz de apanhar porquinhos que se desloquem a velocidades relativistas. Os testes com a nave correram todos muito bem, tendo conseguido atingir uma velocidade de 0, 9 c. No entanto, à medida que a nave ia acelerando e movendo-se a velocidades maiores, L. M. começou a notar algo estranho com a luz que saía da lâmpada de 100 W que a nave tinha na sua frente: a luz tornava-se mais intensa e mais arroxeada. Sempre curioso, L. M. decidiu realizar um conjunto de experiências para entender o que se estava a passar. Começou por colocar, num local às escuras, um LED amarelo que emite luz com 585 nm. O LED estava em repouso à distância de 100 m de um detetor circular com 5 cm de raio. O LED foi construído por L. M. (grande cientista fotónico) e é uma fonte praticamente pontual, isto é, emite fotões em igual quantidade para todas as direções do espaço. Este LED tem uma potência luminosa de 1 mw e uma largura de banda estreitíssima, pelo que se pode considerar que todos os fotões que emite correspondem à radiação com 585 nm de comprimento de onda. O detetor mede a energia por unidade de tempo que o atinge e simultaneamente faz a análise espectral dessa radiação, identificando o comprimento de onda da radiação. 3

1. O que mede o detetor do L. M. nestas circunstâncias? De seguida L. M. colocou o LED na ponta da nave espacial e tomou nota da leitura do detetor quando a nave se estava a deslocar na direção do detetor, medindo a luz que foi emitida pela nave quando esta estava a L = 100 m do detetor, movendo-se com uma velocidade v. Para interpretar os resultados, L. M. fez uns cálculos preliminares usando as transformações de Lorentz. 2. Qual seria a energia de um único fotão medida pelo detetor se esse fotão fosse emitido numa direção que faz um ângulo θ com a velocidade da nave? 3. Qual o ângulo entre a velocidade do fotão e a velocidade da nave que L. M. mediria no caso da alínea anterior? 4. Apresente o resultado anterior considerando que θ 1, como no caso desta experiência. 5. De seguida L. M. considerou dois fotões que deixam o LED em instantes que diferem por um curto intervalo t. Notando que a nave está numa posição diferente quando o segundo fotão é emitido e sabendo que existe dilatação temporal devido à velocidade relativista da nave, qual é o intervalo de tempo que separa a receção dos dois fotões no detetor? Expresse este intervalo de tempo em função do ângulo de incidência no detetor. 6. Qual é o número de fotões por unidade de tempo que atingem o detetor num anel de espessura infinitesimal e de raio L sin θ, onde L é a distância entre a nave e o detetor? Considere que θ 1. 7. Explique porque razão L. M. observa uma luz mais esverdeada e um aumento da intensidade luminosa à medida que a nave aumenta de velocidade. 8. Qual a energia por unidade de tempo que o detetor mede se a nave se deslocar à sua velocidade máxima de 0, 9c? Qual o comprimento de onda medido? Compare com os resultados da primeira alínea. Muito contente com a sua experiência, L. M., completamente esquecido dos porquinhos, decide testar algo novo. Agora, coloca um pequeno espelho à frente da nave, no lugar do LED, e aponta um LASER de He-Ne para o espelho. 9. Se o comprimento de onda do LASER for 632, 8 nm, qual o comprimento de onda da luz refletida pelo espelho quando a nave se desloca em direção ao LASER à sua velocidade máxima? 10. Considere que o espelho tem uma massa de 0, 1 mg. L. M. pensa o que aconteceria se no espaço (sem gravidade e no vácuo) a nave soltasse o espelho quando a sua velocidade fosse v = 0, 9c. Nesse caso, qual deveria ser a potência do LASER para fazer o espelho parar em 100 ns? 4

Imediatamente após ter resolvido este problema, um porquinho relativista passa à frente da casa do L. M.. O cientista deixa então a Física por uns momentos para colocar a sua nave à prova... Transformações de Lorentz As variáveis x, y, z, t, E, p x, p y e p z correspondem às grandezas medidas num referencial que se desloca com velocidade v = vî em relação ao referencial inicial. De acordo com as transformações de coordenadas, em t = 0 as origens dos dois referenciais são coincidentes. E = E vp x p x = t = t vx x = p x ve p y = p y p z = p z x vt y = y z = z Expressões potencialmente úteis Se b a, (a + b) 2 a 2 + 2ab. Se x 1, (1 + x) 1 1 x. ( ) ( ) a ± b a b sin(a) ± sin(b) = 2 sin cos 2 2 ( ) ( ) a + b a b cos(a) + cos(b) = 2 cos cos 2 2 ( ) ( ) a + b a b cos(a) cos(b) = 2 sin sin 2 2 dx a(2 + x/a) = 1 x 2 /a 2 (1 + x/a) 2 3(1 + x/a) 2 1 x 2 /a 2 + C 5

Constantes Físicas e 1,602176487 10 19 C N A 6,02214179 10 23 mol 1 k B 1,3806504 10 23 J K 1 ε 0 8,854187817 10 12 F m 1 c 299792458 m/s G 6,67428 10 11 m 3 kg 1 s 2 h 6,62606896 10 34 J s h 1,054571628 10 34 J s σ 5,670400 10 8 W m 2 K 4 Constante de Wien 2,8977685 10 3 m K κ gelo 2,4 W K 1 m 1 L gelo-água 3,3 10 5 J/kg a 0 0,52917720859 10 10 m u 1,660538782 10 27 kg u 931,494028 MeV/ m e 9,10938215 10 31 kg m e 510,998910 kev/ m e 5,4857990943 10 4 u m p 938,272013 MeV/ m n 939,565346 MeV/ m α 3727,379109 MeV/ M Lua R Lua M Terra M G M 7,3477 10 22 kg 1,737 10 6 m 5,97219 10 24 kg 1,98855 10 30 kg 1,48 km 1 pc 3,2616 anos-luz 1 pc 3,086 10 16 m 6