1 Introdução. Magali LEONEL 1 * Resumo. Abstract

Documentos relacionados
Empresa Brasileira de Pesquisa Agropecuária Embrapa Amazônia Oriental Ministério da Agricultura, Pecuária e Abastecimento

EFEITO DA CONCENTRAÇÃO DE ÁCIDO LÁTICO SOBRE A PROPRIEDADE DE EXPANSÃO EM AMIDOS MODIFICADOS FOTOQUIMICAMENTE

ESPÉCIES TUBEROSAS TROPICAIS COMO MATÉRIAS-PRIMAS AMILÁCEAS Tropical tubers as starchy raw materials

Avaliação Preliminar de Híbridos Triplos de Milho Visando Consumo Verde.

CORRELAÇÃO FENOTÍPICA ENTRE CARACTERES EM VARIEDADES E HÍBRIDOS DE MANDIOCA (Manihot esculenta Crantz)

Caracterização química e rendimento de extração de amido de arroz com diferentes teores de amilose

PROCESSAMENTO INDUSTRIAL DE FÉCULA DE MANDIOCA E BATATA DOCE - UM ESTUDO DE CASO 1

TEORES DE AMIDO EM GENÓTIPOS DE BATATA-DOCE EM FUNÇÃO DA ADUBAÇÃO POTÁSSICA

Rendimento das cultivares de cenoura Alvorada e Nantes Forto cultivadas sob diferentes espaçamentos

ANÁLISE DAS CONDIÇÕES CLIMÁTICAS PARA O CULTIVO DO MILHO, NA CIDADE DE PASSO FUNDO-RS.

Produção e qualidade de raiz tuberosa de cultivares de batata-doce

CARACTERIZAÇÃO DOS RESÍDUOS DO PROCESSAMENTO DE MANDIOCA PARA PRODUÇÃO DE BIO-ETANOL.

PROPRIEDADES DE PASTA DE PRODUTOS DERIVADOS DA MANDIOCA. RESUMO: O presente trabalho teve como objetivo analisar as propriedades viscoamilográficas de

SELEÇÃO DE GENÓTIPOS EXPERIMENTAIS DE BATATA-DOCE COM BASE NA PRODUTIVIDADE E TEOR DE AMIDO COM POTENCIAL PARA A PRODUÇÃO DE ETANOL

ARRANJOS ESPACIAIS NO CONSÓRCIO DA MANDIOCA COM MILHO E CAUPI EM PRESIDENTE TANCREDO NEVES, BAHIA INTRODUÇÃO

EFEITO DA HIDRÓLISE ENZIMÁTICA NA MORFOLOGIA DO AMIDO DE ARROZ

APLICAÇÃO DO AQUECIMENTO ÔHMICO NA GELATINIZAÇÃO DE AMIDO DE MILHO G. Z. CAMPOS, J. A. G. VIEIRA*

CARACTERIZAÇÃO FÍSICO-QUÍMICA DE ALGUMAS TUBEROSAS AMILÁCEAS 1

UNIVERSIDADE ESTADUAL PAULISTA CAMPUS DE BOTUCATU PROGRAMA DE PÓS-GRADUAÇÃO EM AGRONOMIA AGRICULTURA PLANO DE ENSINO

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ Departamento de Farmácia Laboratório de Farmacognosia

CRESCIMENTO, FENOLOGIA E PRODUTIVIDADE DE MANDIOCA PARA INDÚSTRIA.

COMPORTAMENTO DE DIFERENTES GENÓTIPOS DE MAMONEIRA IRRIGADOS POR GOTEJAMENTO EM PETROLINA-PE

Evaluation of propagules of comum' arrowroot (Maranta arundinacea L.) for production of sprouts

TEMPO DE COZIMENTO DE RAÍZES DE GENÓTIPOS DE MANDIOCA DE MESA (Manihot esculenta Crantz) SOB SISTEMA IRRIGADO E DE SEQUEIRO)

PRODUTIVIDADE DA BATATA, VARIEDADE ASTERIX, EM RESPOSTA A DIFERENTES DOSES DE NITROGÊNIO NA REGIÃO DO ALTO VALE DO ITAJAÍ-SC

Rendimento e Qualidade de Grits para Extrusão de Algumas Variedades de Milho Produzidos pela Embrapa

Acúmulo e exportação de nutrientes em cenoura

MORFOLOGIA DE COPOLIMEROS HETEROFÁSICOS DE POLIPROPILENO

Anais do Congresso de Pesquisa, Ensino e Extensão- CONPEEX (2010)

Comunicado133 Técnico

EFEITOS DA ESPESSURA DAS FATIAS E PRÉ- COZIMENTO NA QUALIDADE DE SALGADINHOS FRITOS (CHIPS) DE TUBEROSAS TROPICAIS

VIABILIDADE DO TRIGO CULTIVADO NO VERÃO DO BRASIL CENTRAL

TEMPO DE COZIMENTO DE RAÍZES DE MANDIOCA CULTIVADAS NA REGIÃO SUDOESTE DA BAHIA

Extração da fécula retida no resíduo fibroso do processo de produção de fécula de mandioca 1

VIABILIDADE DO METODO TERMOGRAVIMETRICO PROPOSTO POR STAWSKI PARA A DETERMINACAO DA RAZÃO AMILOSE:AMILOPECTINA EM AMIDO DE MANDIOCA

EXTRAÇÃO E CARACTERIZAÇÃO QUÍMICA E FUNCIONAL DE FÉCULA PROVENIENTE DE ARARUTA VARIEDADE COMUM 1

PROJETO DE PESQUISA REALIZADO NO CURSO DE BACHARELADO EM AGRONOMIA DA UERGS 2

Influência da granulometria de grânulos de amido sobre a densidade aparente de extratos atomizados

Acúmulo de Nutrientes Pela Cultura da Batata cv. Atlantic Sob 4 Níveis de Adubação.

Custo da produção de abacaxi na região do Recôncavo Baiano

Material e Métodos O experimento foi conduzido em um Argissolo, alocado no campo experimental do curso de Engenharia Agronômica do Instituto Federal

AMIDO A PARTIR DE BAMBU ( 1 )

GIRASSOL EM SAFRINHA NO CERRADO DO DISTRITO FEDERAL: DESEMPENHO DE GENÓTIPOS EM

AVALIAÇÃO DOS TEORES DE ÓLEOS ESSENCIAIS PRESENTES EM PLANTAS AROMÁTICAS FRESCAS E DESIDRATADAS

IV Congresso Brasileiro de Mamona e I Simpósio Internacional de Oleaginosas Energéticas, João Pessoa, PB 2010 Página 1573

CARACTERIZAÇÃO ESPECTROSCÓPICA E FISICO- QUÍMICA DE FILMES DE BLENDAS DE AMIDO E CARBOXIMETILCELULOSE.

medium, hard), difficulty in cut in long thin pieces with a manual machine, being those in a

ESTUDO DE PROPRIEDADES DE PASTA DE AMIDOS DE MANDIOCA MODIFICADOS COM TRIPOLIFOSFATO (STPP) E TRIMETAFOSFATO (STMP).

PROPRIEDADES FÍSICAS DOS FRUTOS DE MAMONA DURANTE A SECAGEM

EXTRAÇÃO E CARACTERIZAÇÃO DO AMIDO PROVENIENTE DO RESÍDUO DO PROCESSAMENTO AGROINDUSTRIAL DA MANGA (MANGIFERA INDICA L.) VAR.UBÁ

Tratamento térmico do amido de batata-doce (Ipomoea batatas L.) sob baixa umidade em micro-ondas

DETERMINAÇÃO DA UMIDADE DO SOLO NO FORNO MICROONDAS EM DIFERENTES POTÊNCIAS

PRÁTICAS DE PÓS COLHEITA PARA PRODUÇÃO DE SEMENTES DE ALTA QUALIDADE. Prof. Francisco Villela

DETERMINAÇÃO DO CONTEÚDO DE ÁGUA DE SOLO PELO MÉTODO DA FRIGIDEIRA EM UM LATOSSOLO VERMELHO ESCURO

Characterization of Rainfall Patterns in the Projeto Rio Formoso Region in the Araguaia Basin, Tocantins State, Brazil

Avaliação de variedades sintéticas de milho em três ambientes do Rio Grande do Sul. Introdução

ABSTRACT Selection of cultivars of sweet potato adapted for biomass production through improvement program, to produce alcohol in Tocantins State.

ESTUDO DA EXTRAÇÃO DO ÓLEO DE SEMENTE DE UVA DA VARIEDADE BORDÔ POR PRENSAGEM

Características qualitativas de clones de batata, cultivados no inverno, nas regiões Sul e Campos das Vertentes de Minas Gerais.

Nexo água-alimentoenergia: produzir com sustentabilidade. Brasília, 27 de julho de 2016

Análise da evolução dos preços de milho no Brasil

COMPORTAMENTO DE LINHAGENS DE MAMONA (Ricinus communis L.), EM BAIXA ALTITUDE NO ESTADO DO RIO GRANDE DO NORTE 1

Fundação de Apoio e Pesquisa e Desenvolvimento Integrado Rio Verde

CARACTERIZAÇÃO FÍSICA E FÍSICO-QUÍMICA DE RIZOMAS E AMIDO DO LÍRIO-DO-BREJO (Hedychium coronarium) 1

EFEITO DA EXTRUSÃO SOBRE O ÍNDICE DE EXPANSÃO E VOLUME ESPECÍFICO EM PRODUTOS À BASE DE POLVILHO AZEDO, MILHO E MANDIOCA

PRODUTIVIDADE DE CULTIVARES DE AIPIM EM FUNÇÃO DA CONDIÇÃO HÍDRICA DO SOLO

EFEITO DE ADUBAÇÃO NITROGENADA EM MILHO SAFRINHA CULTIVADO EM ESPAÇAMENTO REDUZIDO, EM DOURADOS, MS

CARACTERIZAÇÃO CLIMÁTICA DO MUNICÍPIO DE JATAÍ-GO: Subsídios às atividades agrícolas

Análise de crescimento em cenoura, cv. Brasília, cultivada na primavera, em Jaboticabal-SP.

431 - AVALIAÇÃO DE VARIEDADES DE MILHO EM DIFERENTES DENSIDADES DE PLANTIO EM SISTEMA ORGÂNICO DE PRODUÇÃO

DETERIORAÇÃO FISIOLÓGICA PÓS-COLHEITA EM GERMOPLASMA DE MANDIOCA

EFEITO DA EMBALAGEM NA QUALIDADE DE FARINHAS DE MANDIOCA TEMPERADAS DURANTE O ARMAZENAMENTO

Cadeia Produtiva da Silvicultura

RENDIMENTO DE FARINHA DE CINCO VARIEDADES DE MANDIOCA EM SETE ÉPOCAS DE COLHEITA NO MUNICÍPIO DE VITÓRIA DA CONQUISTA-BA

Desenvolvimento de raízes de rabanete sob diferentes coberturas do solo

PRODUTIVIDADE E TEOR DE AMIDO DE VARIEDADES DE MANDIOCA EM DIFERENTES ÉPOCAS DE COLHEITA. Suzinei Silva OLIVEIRA 1 ; Josefino de Freitas FIALHO²;

Produção de Batata-Semente em Sistema de Canteiros.

Elaboração de produtos a partir do aproveitamento total da batata-doce

Nome do Sítio Experimental: Cruz Alta. Localização e Mapas do Sítio Experimental: Latitude: Longitude: Altitude: 432 m

BALANÇO HÍDRICO E CLASSIFICAÇÃO CLIMÁTICA PARA O MUNICÍPIO DE ITUPORANGA SC

Leonardo Henrique Duarte de Paula 1 ; Rodrigo de Paula Crisóstomo 1 ; Fábio Pereira Dias 2

A economia agrícola internacional e a questão da expansão agrícola brasileira ABAG. Alexandre Mendonça de Barros

AVALIAÇÃO DE CULTIVARES DE MANDIOCA NA MICRORREGIÃO DE LAGARTO DO ESTADO DE SERGIPE, NO ANO AGRÍCOLA DE 2007/2008.

AVALIAÇÃO DAS PROPRIEDADES MICROBIOLÓGICA, ESTRUTURAL E FÍSICO-QUÍMICA DO FARELO OBTIDO DA AGROINDUSTRIALIZAÇÃO DA MANDIOCA

Hortaliças: Importância e Cultivo. Werito Fernandes de Melo

OBTENÇÃO E CARACTERIZAÇÃO DE NANOWHISKERS DE CELULOSE A PARTIR DAS FIBRAS DE ARARUTA (Maranta Arundinacea)

GRANULOMETRIA E ATIVIDADE DE ÁGUA DE FARINHA DE TRIGO, POLVILHO E TRIGO MOÍDO.

CARACTERIZAÇÃO DA COLHEITA E PÓS-COLHEITA DA MANDIOCA DE MESA NAS REGIONAIS AGRÍCOLAS DE ANDRADINA E ARAÇATUBA SP

Caracterização Técnico-Econômica da Cultura do Milho Verde no Brasil em 2006 Alfredo Tsunechiro 1 e Maximiliano Miura 1

5. O PAPEL DAS REGIÕES BRASILEIRAS NA ECONOMIA DO PAÍS

ANÁLISE DA PRECIPITAÇÃO E DO NÚMERO DE DIAS DE CHUVA NO MUNICÍPIO DE PETROLINA - PE

ANÁLISE DE ANOS COM ESTIAGEM NA REGIÃO DE BAGÉ/RS

Quantificação da serapilheira acumulada em um povoamento de Eucalyptus saligna Smith em São Gabriel - RS

Avaliação da velocidade de reação do corretivo líquido na camada superficial de um Latossolo Vermelho distroférrico

18 PRODUTIVIDADE DA SOJA EM FUNÇÃO DA

ISSN Palavras-chave: Amido, amilases, rendimento.

ANÁLISE ECONÔMICA DE DOIS HÍBRIDOS DE MELÃO RENDILHADO, CULTIVADOS EM AMBIENTE PROTEGIDO

INFLUÊNCIA DA COBERTURA MORTA NA PRODUÇÃO DA ALFACE VERÔNICA RESUMO

ÍNDICE DE COLHEITA DE CINCO VARIEDADES DE MANDIOCA EM SETE ÉPOCAS DE COLHEITA 1

AGRICULTURA E NUTRIÇÃO: TENDÊNCIAS NA PRODUÇÃO E RETENÇÃO

Transcrição:

Análise da forma e tamanho de grânulos de amidos de diferentes fontes botânicas Analysis of the shape and size of starch grains from different botanical species Magali LEONEL 1 * Resumo Neste trabalho, objetivou-se avaliar a forma e tamanho de grânulos de amido de diferentes fontes botânicas, visando fornecer informações que contribuam para aplicabilidade destas como matérias-primas amiláceas. As féculas foram obtidas a partir do processamento das tuberosas em planta piloto de extração. Para a análise da forma dos grânulos utilizou-se o microscópio eletrônico de varredura, com as amostras diluídas em álcool etílico e metalizadas com ouro. A análise do tamanho dos grânulos foi realizada em microscópio ótico, sendo as amostras diluídas em solução de água e glicerina. Foram realizadas 500 determinações das medidas de tamanho (diâmetro menor, diâmetro maior e diferenças entre diâmetros) por fonte botânica. Os resultados obtidos mostraram diferentes formas para os grânulos de amidos e das tuberosas estudadas. Os grânulos de amido de menor tamanho foram os de taioba (Xanthosoma sp.) 12,87 m, e os de maior tamanho os de biri (Canna edulis) 59,61 m. Observou-se distribuição bastante regular para os grânulos de amido de ahipa (Pachyrhizus ahipa). Palavras-chave: amido; raízes; microscopia. Abstract An analysis was made of the shape and size of starch grains from different botanical species, aiming to improve the potential applicability of these species as starch raw materials. The starches were obtained from the processing of tubers in a pilot extraction plant. The shape of the starch grains was analyzed by scanning electron microscopy (SEM), to which end the samples were mounted on SEM stubs and coated with gold. The size of the starch grains was determined by optical microscopy, for which the samples were diluted in a water and glycerin solution. The sizes of 500 grains of each botanical species were measured to determine the largest and smallest diameters and the difference between diameters. The results revealed different starch grain shapes and sizes, with Xanthosoma sp showing the smallest (12.87 m) and Canna edulis the largest grain size (56.61 m). The yam bean tuber Pachyrhizus ahipa showed the most uniform starch grain distribution. Keywords: starch; roots; microscopy. 1 Introdução As indústrias de alimentos e os produtores agrícolas estão interessados na identificação e no desenvolvimento de espécies que produzam amidos nativos com características especiais. Estes amidos poderiam substituir amidos modificados quimicamente ou abrir novos mercados para amidos 1. O tamanho e a forma de grânulos de amido estão entre os fatores de importância na determinação de usos potenciais de amidos. Por exemplo, grânulos pequenos (2,0 m) podem ser usados como substitutos de gordura devido ao tamanho ser semelhante ao dos lipídeos. Outras aplicações, nas quais o tamanho dos grânulos é importante, é a produção de filmes plásticos biodegradáveis e de papéis para fax. O grânulo de amido tem sido submetido a estudos sobre sua estrutura deste a invenção da microscopia. A microscopia aparece como uma ferramenta importante na elucidação de diversas questões sobre caracterização de grânulos de amido. A escolha da técnica e do microscópio para uma visualização de alta resolução da estrutura dos grânulos de amido, é dependente do tipo de informação requerida, ou seja, superfície, ou estrutura interna. Informações sobre a superfície dos grânulos podem ser conseguidas tanto com a microscopia eletrônica de varredura (SEM) ou microscopia de força atômica (AFM). Recebido para publicação em 29/8/2006 Aceito para publicação em 23/4/2007 (001830) 1 Centro de Raízes e Amidos Tropicais, Universidade Estadual Paulista UNESP, Fazenda Experimental Lageado, s/n, CP 237, CEP 18603-970, Botucatu - SP, Brasil, E-mail: mleonel@fca.unesp.br *A quem a correspondência deve ser enviada Informações sobre estrutura interna requerem o uso da microscopia eletrônica de transmissão (TEM) 11. Na determinação do tamanho dos grânulos, têm sido aplicados métodos microscópicos, principalmente utilizando a microscopia eletrônica de varredura e também outras metodologias como técnicas de sedimentação, contador Coulter e o uso de contadores de partículas utilizando feixes de raios laser (difração de raio laser). O uso da microscopia apresenta algumas desvantagens como a irregularidade e a diversidade das formas dos grânulos e também a dificuldade da amostragem na distribuição de tamanho de grânulos. Já a contagem em laser, técnica bastante usada, tem como base que os grânulos são esféricos, o que faz com que esta técnica não seja apropriada para grânulos de amido de formas diferentes, como relata SINGH e SINGH 28, para batata, os quais são oblongos, ovalados e cuboidais. Atualmente vêm sendo utilizados sistemas de análise de imagem, que unem o microscópio óptico ao computador e apresentam como princípio a separação de imagens dentro de áreas pretas e brancas contra um segundo plano. Esta metodologia apresenta a possibilidade da união de imagens geradas no microscópio serem avaliadas com precisão, contando com a versatilidade dos sistemas de análise. O uso destes sistemas tem sido descrito em pesquisas na área de amido, principalmente em estudos de forma e tamanho de grânulos, alterações químicas ou físicas e controle de qualidade de produtos 2,29,31. O tamanho e a forma dos grânulos de amido variam com a espécie, e a distribuição de tamanho varia com o estádio de desenvolvimento da planta e forma de tuberização. Outro Ciênc. Tecnol. Aliment., Campinas, 27(3): 579-588, jul.-set. 2007 579

Forma e tamanho de grânulos de amido parâmetro interessante é a regularidade na forma, ou seja, diferença entre diâmetros, parâmetro que indica regularidade do tamanho, baixa variabilidade das medidas, característica desejável para papéis químicos como os usados para cópias e fax 26. LEONEL et al. 16,17, utilizando a microscopia eletrônica de varredura para análise da forma e tamanho de grânulos de amido de araruta (Maranta arundinacea) e biri (Canna edulis), observaram grânulos das formas ovalada e circular com espessura visível e diâmetro maior médio variável de 9 a 65 m para amido de biri. Para amido de araruta observaram grânulos circulares e ovalados com diâmetro maior médio de 9 a 42 m. SINGH e SINGH 28 analisaram a forma e tamanho de grânulos de amido de cultivares de batata (Solanum tuberosum), utilizando a microscopia eletrônica de varredura (SEM), e observaram diferenças significativas para estes parâmetros entre as cultivares. Quanto à forma, esta variou de oval para regular ou cuboidal, com diâmetros médios variáveis de 15-20 m e 20-45 m, respectivamente, para grânulos pequenos e grandes. NODA et al. 21 estudaram o tamanho de grânulos de amido de duas cultivares de batata-doce extraídos de diferentes zonas de tecido da raiz. Para o estudo foi utilizado sistema de análise de imagem (Excel-II, Nippon Avionics Co.) conectado a microscópio ótico (Microphot-FXA, Nikon Co.), realizando 1200 determinações de tamanho. O tamanho dos grânulos de amido variou de 20-40 m, sendo observadas curvas de distribuição semelhantes para as duas cultivares, não ocorrendo diferenças significativas entre as camadas. Esta observação evidencia que a forma de tuberização da raiz é um fator influente na distribuição de tamanho, ou seja, nas raízes em que o processo de tuberização envolve câmbio central e periférico a tendência é de uma distribuição de tamanho mais homogênea. Este fato foi observado por MILANEZ 20 que, estudando o desenvolvimento de plantas de Pachyrhizus ahipa, observou que o processo de tuberização da raiz principal do ahipa envolve não somente a atividade de um câmbio vascular típico, mas também, a atividade de câmbios assessórios distribuídos por todo o órgão. Por essa razão, não se observa um gradiente de desenvolvimento dos tecidos, o que propicia a ocorrência de distribuição de tamanho de grânulos de amido mais homogênea. SRIROTH et al. 29, estudando a influência do tempo de colheita em quatro cultivares comerciais de mandioca na Tailândia sobre a estrutura dos grânulos de amido, observaram através da análise de tamanho de grânulos de amido, utilizando sistema de análise de imagem (Carl Zeiss, KS 400 v2) acoplado a microscópio óptico (Axiophol 2 Zeiss), que a distribuição de tamanho dos grânulos foi afetada pela idade da raiz, ocorrendo uma mudança gradativa de uma distribuição normal para bimodal, ou seja, com dois picos representando faixas distintas de tamanho de grânulos de amido. Estudos determinam que as propriedades térmicas de amidos estão estreitamente relacionadas com o tamanho e a distribuição de tamanho dos grânulos de amido 17. CAMPBELL et al. 5 observaram correlação positiva de alta significância entre o tamanho dos grânulos e as propriedades térmicas (DSC) de amido de 35 cultivares de milho (tropical e subtropical). Diante da importância do conhecimento da forma e tamanho dos grânulos de amido para a determinação de aplicações potenciais, neste trabalho objetivou-se avaliar a forma e tamanho de grânulos de amido de diferentes fontes botânicas, utilizando a microscopia eletrônica de varredura (SEM) e a microscopia ótica com sistema de análise de imagem, visando fornecer informações úteis para a aplicabilidade desses amidos. 2 Material e métodos 2.1 Obtenção das féculas As fontes botânicas foram cultivadas no Campo Experimental do CERAT/UNESP, em Botucatu - SP. O clima da região, de acordo com a classificação Koeppen, é definido como Csa ou temperado chuvoso, úmido e com verões quentes, precipitação média anual de 1517 mm e a temperatura média anual de 20,6 C. O solo é Latossolo roxo destrófico A moderado, latitude 22 52 47 S, longitude 48 25 12 W, altitude 810 m. A Tabela 1 mostra a época de plantio e colheita das tuberosas amiláceas. Tabela 1. Épocas de plantio e colheita das espécies botânicas analisadas. Tuberosas amiláceas Plantio Colheita Açafrão (Curcuma longa) Novembro Julho Ahipa (Pachyrhizus ahipa) Outubro Julho Araruta (Maranta arundinacea) Setembro Agosto Batata doce (Ipomoea batatas) Outubro Maio Biri (Canna edulis) Outubro Julho Gengibre (Zingiber officinale) Dezembro Julho Mandioca (Manihot esculenta) Setembro Setembro Mandioquinha-salsa (Arracacia Abril Abril xanthorrhiza) Taioba (Xanthosoma sp) Novembro Outubro Taro (Colocasia esculenta) Outubro Junho Zedoária (Curcuma zedoaria) Dezembro Setembro Para a mandioca, foi cultivada a cultivar Branca de Santa Catarina; para a batata-doce, a cultivar Princesa do CNPH- Brasília - DF; para a mandioquinha-salsa, a Senador Amaral da EMBRAPA; e para o gengibre, a cultivar Caipira. Para as demais tuberosas não foram identificadas as cultivares. A batata, de cultivar Monalisa, foi adquirida direto com o produtor. As féculas foram obtidas a partir do processamento das matérias-primas no Laboratório Piloto do CERAT. A Figura 1 mostra as etapas do processo de extração das féculas. 2.2 Análise da forma e tamanho dos grânulos de amido Para a análise da forma e tamanho dos grânulos de amido das diferentes fontes botânicas, utilizou-se a microscopia eletrônica de varredura e a microscopia ótica. 580 Ciênc. Tecnol. Aliment., Campinas, 27(3): 579-588, jul.-set. 2007

Leonel Na análise dos amidos em microscópio eletrônico de varredura, as amostras foram diluídas em álcool etílico 100% (1/10 p.v 1 ) e colocadas duas gotas nos stubs. Depois deste procedimento, as amostras foram cobertas com 10 mm de ouro metalizador (MED-010 da Balzers) e analisadas em Microscópio Eletrônico de Varredura (SEM 515 Philips), sob tensão de 15 kv ou 20 kv. Para a determinação da distribuição dos grânulos de amido quanto ao diâmetro maior e menor, foi utilizado o Sistema de Análise de Imagem KS 300 da ZEISS. As amostras de fécula foram coletadas com um fio de platina e misturadas sobre lâminas de vidro em duas gotas de solução de água e glicerina (50%), sendo cobertas por lamínula. Preparadas as lâminas, estas foram observadas em microscópio óptico (AXIOSKOP II - ZEISS) e as imagens selecionadas foram analisadas pelo sistema. Os parâmetros avaliados foram: forma, diâmetro maior e diâmetro menor ( m). Foram feitas cinco lâminas por fonte botânica e cem medidas de tamanho de grânulos de amido por lâmina, totalizando quinhentas determinações por fonte 30. Bagaço Extração Liquidificador industrial (1 kg de massa/1 L de água) 2 vezes por 1,5 minutos Bagaço úmido Secagem Farelo seco Raízes ou rizomas Desintegração liquidificador industrial (1 kg matéria-prima/1 L de água) por 5 minutos Separação (peneira 60 tyler) Água residual Leite de amido Purificação (peneira 200 tyler) Pré-secagem filtro á vácuo Secagem flash-dryer 70 C Amido Figura 1. Fluxograma do processo de obtenção dos amidos. 3 Resultados e discussão Os resultados obtidos nas análises de forma e tamanho de grânulos de amido das diferentes tuberosas amiláceas estão apresentados na Tabela 2 e nas Figuras de 2 a 12. Os resultados obtidos mostraram diferenças significativas quanto ao tamanho para as fontes botânicas, sendo o maior tamanho (diâmetro maior médio) observado nos amidos de biri (59,61 m) e o menor nos grânulos de amido de taioba (12,87 m). Os grânulos de amido de ahipa, batata-doce e mandioquinha-salsa apresentam as mesmas formas e não ocorreu diferença significativa entre estes para as análises de tamanho. Já quanto à diferença entre diâmetros, parâmetro que indica regularidade do tamanho, ou seja, baixa variabilidade das medidas, característica desejável para papéis químicos como os usados para cópias e fax 26, a análise mostrou a menor diferença relativa (% do diâmetro maior) para o amido de mandioca. Com relação à forma dos grânulos, diferenciam-se os grânulos de amido de açafrão e zedoária (C. longa e C. zedoaria) que apresentaram forma triangular achatada, sendo possível a visualização da espessura. Os amidos de biri e gengibre também apresentaram espessura visível. A observação microscópica dos grânulos de amido de açafrão mostrou grânulos de forma triangular achatada com diferentes tamanhos (10 a 48 m), com uma maior porcentagem de grânulos na faixa de 22-27 m de diâmetro maior. Devido à forma triangular a diferença entre diâmetros foi elevada (Figura 2). O açafrão não tem sido utilizado pela indústria de amido no Brasil, porque a extração da fécula é considerada uma utilização secundária, sendo os rizomas usados apenas para obtenção de corante e, em pequenas proporções, uso direto na culinária. Os produtos principais do açafrão são a curcumina e o óleo essencial os quais são usados como condimento, corante natural, e aplicações farmacológicas 14. Contudo, faz-se interessante a possibilidade de aproveitamento do resíduo da extração de óleos essenciais e corantes como matéria-prima para obtenção do amido. A análise microscópica dos grânulos de amido de ahipa mostrou formas circular e poliédrica para os grânulos e tamanhos variáveis, sendo observada uma distribuição bastante homogênea de tamanho, com predomínio de grânulos na faixa de 15 a 20 m (Figura 3). FORSTHY et al. 10, analisando tamanho de grânulos de amido de ahipa cultivados por 7 meses, observaram faixa de distribuição de 5 a 35 m. MILANEZ 19 constatou que o processo de tuberização da raiz principal de ahipa envolve não somente a atividade de um câmbio vascular típico, mas também, a atividade de câmbios acessórios distribuídos por todo o órgão. Por esta razão, não se observa um gradiente de desenvolvimento dos tecidos, o que propicia a ocorrência de distribuição de tamanho de grânulos de amido mais homogênea. A extração do amido de araruta é feita em caráter doméstico e artesanal, sendo utilizado no preparo de confeitos e panificação 21. A análise de tamanho de grânulos de amido Ciênc. Tecnol. Aliment., Campinas, 27(3): 579-588, jul.-set. 2007 581

Forma e tamanho de grânulos de amido Tabela 2. Forma e tamanho de grânulos de amido das tuberosas amiláceas. Tuberosas Formas Diâmetro menor ( m) Diâmetro maior ( m) Diferença diâmetros ( m) Média* Desvio Média Desvio Média Desvio Açafrão (Curcuma longa) Triangular achatada 18,99 de 1,04 26,10 c 1,72 7,11 bc 1,04 Ahipa (Pachyrhizus ahipa) Circular, poliédrica 15,65 f 1,59 18,58 d 1,92 2,93 d 0,65 Araruta (Maranta arundinacea) Circular, oval 22,05 c 1,15 29,54 c 1,59 7,49 bc 0,53 Batata-doce (Ipomoea batatas) Circular, poliédrica 16,10 ef 0,86 19,40 d 1,76 3,30 d 0,35 Batata (Solanum tuberosum) Circular, oval 30,51 b 1,56 39,50 b 2,42 8,59 b 0,68 Biri (Canna edulis) Oval achatada 43,06 a 1,73 59,61 a 2,76 16,55 a 0,99 Gengibre (Zingiber officinale) Circular, oval achatada 14,47 f 0,87 17,78 d 0,94 3,31 d 0,18 Mandioca (Manihot esculenta) Circular 14,39 f 0,47 17,1 de 0,73 2,70 d 0,15 Mandioquinha-salsa (Arracacia Circular, poliédrica 16,63 ef 1,22 20,68 d 2,94 3,85 d 0,48 xanthorrhiza) Taioba (Xanthosoma sp.) Circular, poliédrica 10,37 g 0,21 12,87 e 0,15 2,50 d 0,13 Zedoária (Curcuma zedoaria) Triangular achatada 21,05 cd 0,37 28,26 c 1,37 7,21 c 0,89 *Os valores representam a média de quinhentas repetições. Médias seguidas de letras distintas na coluna não diferem entre si ao nível de 5% de significância. 14,0 12,0 8,00 6,00 4,00 0,1 mm kv 7,75E2 0033/00 IB-0605 2,00 20,0 25,0 30,0 35,0 40,0 45,0 Figura 2. Fotomicrografia de grânulos de amido de açafrão e a distribuição de tamanho de grânulos (diâmetro maior em micrômetro). 20,0 10 mm kv 1,20E3 0007/00 IB-0603 20,0 25,0 30,0 35,0 40,0 Feretmax (micrometro) Figura 3. Fotomicrografia de grânulos de amido de ahipa e distribuição de tamanho (diâmetro maior em micrômetro). de araruta mostrou distribuição homogênea, com grânulos de diferentes tamanhos e predomínio de grânulos na faixa de 20 a 40 m (Figura 4). PÉREZ et al. 23 relataram a forma de amidos de araruta, destacando pequena quantidade de grânulos circulares e um predomínio do formato de feijão. ERDMAN 9 avaliou o tamanho 582 Ciênc. Tecnol. Aliment., Campinas, 27(3): 579-588, jul.-set. 2007

Leonel dos grânulos através da microscopia eletrônica de varredura, encontrando diâmetro médio de 13 m. A análise de imagem mostrou grânulos de amido na batatadoce com formas circulares e poliédricas e, quanto ao tamanho, a distribuição mostrou grânulos de diferentes tamanhos com uma distribuição concentrada na faixa de 12 a 20 m, evidenciando a forma de organização da planta que apresenta um câmbio central e vários câmbios periféricos, levando a menor heterogeneidade de tamanhos. O diâmetro maior máximo variou de 45 a 55 m e o diâmetro maior mínimo observado foi próximo a 10 m (Figura 5). A faixa de tamanho (diâmetro maior) de maior freqüência foi próxima aos valores de 10-25 m citados por GALLANT et al. 11 para amido de batata-doce. GARCIA e WALTER 12 citam as formas redonda, oval e poligonal para grânulos de amido de batata-doce e tamanho variável de 2 a 42 m. A batata-doce ocupa o 6º lugar entre as hortaliças mais plantadas no Brasil, correspondendo a uma produção anual de 500.000 toneladas, obtidas em uma área estimada de 48.000 hectares. No Brasil, o investimento na cultura de batata-doce é muito baixo, e o principal argumento contrário ao investimento em tecnologia é que a lucratividade da cultura é baixa 6. Contudo a possibilidade de processamento dessa tuberosa como fonte de amido pelas indústrias de amido de mandioca brasileiras contribuiria em muito para o avanço da cultura e para o mercado de amido. A análise da forma e tamanho dos grânulos de amido de batata mostrou grânulos circulares e ovalados com predomínio de grânulos com diâmetro maior na faixa de 20 a 40 m, apresentando uma faixa de distribuição de tamanho de 10 a 140 m (Figura 6). Segundo ALEXANDER 1, os grânulos de amido de batata apresentam formas oval e esférica com diâmetro variando de 5 a 100 m e diâmetro médio predominante de 27 m. A batata, tubérculo de origem andina, apresenta uma produção anual em torno de 307,9 milhões de toneladas, tendo como grandes produtores mundiais a China, Rússia, Índia e Estados Unidos, ocupando o Brasil a 19ª posição. A cultura 16,0 14,0 12,0 8,00 6,00 4,00 2,00 10 mm kv 1,20E3 0023/00 IB-0547 20,0 30,0 40,0 50,0 Figura 4. Fotomicrografia de grânulos de amido de araruta e distribuição de tamanho (diâmetro maior em micrômetro). 25,0 20,0 0,1 mm kv 7,75E2 0027/00 IB-0603 20,0 25,0 30,0 35,0 40,0 45,0 50,0 55,0 Figura 5. Fotomicrografia de grânulos de amido de batata-doce e distribuição de tamanho (diâmetro maior em micrômetro). Ciênc. Tecnol. Aliment., Campinas, 27(3): 579-588, jul.-set. 2007 583

Forma e tamanho de grânulos de amido da batata representa um importante gerador de divisas para o agronegócio brasileiro com uma produção de 3 milhões de toneladas, com os estados de Minas Gerais (37%), São Paulo (30%) e Paraná (22%) responsáveis por 89% da produção nacional 4. No Brasil, o consumo de batata é essencialmente in natura, com o setor de processamento na forma de chips, palito e batata palha em crescimento nos últimos anos. A fécula de batata comercializada no País é importada e empacotada aqui. A análise de imagem dos grânulos de amido de biri mostrou grânulos ovais, grandes, de fácil observação em pequenos aumentos. A distribuição de tamanhos mostrou grande variação nos tamanhos de grânulos com predomínio na faixa de 40 a 80 m. O diâmetro maior máximo observado foi de 110 m. Devido à forma ovalada, a diferença média de diâmetros foi bastante grande (16,55 m) (Figura 7). Grânulos grandes facilitam o processo de extração de amido, pois decantam rapidamente. SANTACRUZ et al. 25, analisando a forma e tamanho de amidos de biri em microscopia eletrônica de varredura, observaram uma predominância do formato oval e tamanho variável de 35 a 101 m, resultados concordantes com os observados neste trabalho. A análise microscópica dos grânulos de amido de gengibre mostrou a forma circular e ovalada e uma distribuição de tamanhos bastante homogênea, com predomínio de diâmetro maior médio na faixa de 15 a 20 m (Figura 8). O gengibre é uma especiaria mundialmente conhecida, sendo comercializada na forma fresca, em conserva ou em pó, sendo esta última responsável pelo maior volume de comércio internacional. Os principais produtos do gengibre são os óleos essenciais e a oleoresina, utilizados pela indústria de alimentos como ingredientes. O gengibre brasileiro é comercializado no estado fresco e se destina principalmente à exportação (70 a 80%), portanto, 20 a 30% são perdidos no beneficiamento 22. Uma possibilidade de se agregar valor aos rizomas remanescentes e também de um possível aproveitamento do resíduo gerado no processo de extração dos óleos essenciais do gengibre seria a extração da fécula de gengibre. A observação dos grânulos de amido de mandioca mostrou grânulos circulares e alguns côncavo-convexos característicos. 20,0 0,1 mm 20,0 kv 3,72E2 0013/00 IB-0632 20,0 40,0 60,0 80,0 100, 120, 140, Figura 6. Fotomicrografia de grânulos de amido de batata e distribuição de tamanho (diâmetro maior em micrômetro). 8,00 6,00 4,00 2,00 0,1 mm kv 3,72E2 0029/00 IB-0602 20,0 40,0 60,0 80,0 100, Figura 7. Fotomicrografia de grânulos de amido de biri e distribuição de tamanho (diâmetro maior em micrômetro). 584 Ciênc. Tecnol. Aliment., Campinas, 27(3): 579-588, jul.-set. 2007

Leonel A distribuição de tamanho mostrou grânulos de diferentes tamanhos, o que já era esperado devido ao processo de tuberização da raiz a partir de um câmbio central. A distribuição foi normal com predomínio de grânulos com diâmetro maior entre 15 e 20 m (Figura 9). Segundo RICKARD et al. 24, as formas encontradas para o amido de mandioca são redonda, oval, truncada, poligonal e cilíndrica. Quanto ao tamanho, DEFLOOR et al. 8 citam diâmetros variáveis de 3 a 32 m. A indústria alimentícia é a principal consumidora de amido no Brasil (68% da produção), seguida pela indústria de papel (16%), mineração (6%) e têxtil (5%). Considerando-se uma produção anual de amido no Brasil da ordem de 1,5 milhões de toneladas e a produção de fécula de mandioca de 546,5 milhões de toneladas, conclui-se que ela participa com 36,4% do mercado brasileiro de amido 27. A análise do amido de mandioquinha-salsa mostrou grânulos com forma circular predominantemente e alguns poliédricos. Quanto à distribuição de tamanho dos grânulos, observaram-se grânulos de diferentes tamanhos (7 a 45 m) com predomínio de grânulos na faixa de 15 a 25 m de diâmetro maior (Figura 10). KIBUUKA e MAZZARI 15 observaram a forma arredondada e diâmetro de 5 a 27 m para grânulos de amido de mandioquinha. SANTACRUZ et al. 25, analisando a forma e tamanho de grânulos de amido de mandioquinha-salsa em microscopia eletrônica de varredura, observaram forma irregular e diâmetro variável de 7 a 23 m. A mandioquinha-salsa no Brasil é uma hortaliça que apresenta considerável importância, com volume de comercialização em torno de 90.000 toneladas por ano e valor ao redor de 50 milhões de dólares 3. É consumida diretamente ou utilizada pelas indústrias alimentícias no preparo de pratos prontos. Os grânulos de amido de taioba apresentaram formas circular e poliédrica com diâmetro variável de 5 a 25 m, com uma maior concentração de grânulos com 10 a 15 m de diâmetro maior (Figura 11). Estes dados estão em acordo com os observados por DEANG e DEL ROSÁRIO 7 que citam a forma circular e diâmetro de 6-24 m para grânulos de amido de taioba. 25,0 20,0 10 mm 20,0 kv 1,20E3 0027/00 IB-0669 20,0 25,0 30,0 35,0 Figura 8. Fotomicrografia de grânulos de amido de gengibre e distribuição de tamanho (diâmetro maior em micrômetro). 14,0 12,0 8,00 6,00 4,00 2,00 0,1 mm kv 7,75E2 0015/00 IB-0556 20,0 25,0 30,0 Figura 9. Fotomicrografia de grânulos de amido de mandioca e distribuição de tamanho (diâmetro maior em micrômetro). Ciênc. Tecnol. Aliment., Campinas, 27(3): 579-588, jul.-set. 2007 585

Forma e tamanho de grânulos de amido 0,1 mm 20,0 kv 7,75E2 0029/00 IB-0632 20,0 25,0 30,0 35,0 40,0 45,0 Figura 10. Fotomicrografia de grânulos de amido de mandioquinha-salsa e distribuição de tamanho (diâmetro maior em micrômetro). 14,0 12,0 8,00 0,1 mm kv 7,75E2 0001/00 IB-0548 Figura 11. Fotomicrografia de grânulos de amido de taioba e distribuição de tamanho (diâmetro maior em micrômetro). 6,00 4,00 2,00 20,0 25,0 A taioba tem sido cultivada por pequenos produtores, visando principalmente à produção de folhas para consumo em pratos típicos ou ração animal. Os rizomas são consumidos cozidos. Apresenta elevada produtividade agrícola (30 toneladas por hectare), o que, aliado ao teor de amido (80% da matéria seca), possibilitaria o processamento dessa tuberosa como matéria-prima amilácea. A zedoária é um rizoma bastante utilizado como planta medicinal, mas com considerável teor de amido, o qual poderia ser utilizado como co-produto da obtenção dos óleos essenciais. A análise microscópica do amido de zedoária mostrou grânulos semelhantes aos de açafrão, com forma triangular predominantemente e alguns grânulos ovais. A distribuição de tamanho de grânulos mostra uma porcentagem significativa de grânulos de 25-30 m, com a presença de grânulos grandes (>90 m), mas em mínima porcentagem (Figura 12). 4 Conclusões A partir dos resultados obtidos foi possível concluir que: com menor tamanho (diâmetro maior médio) são os de taioba (Xanthosoma sp) e os de maior tamanho os de biri (Canna edulis); é a do amido de ahipa; e buição mais homogênea como os de ahipa, batata-doce e gengibre podem ser estudados para aplicação em papel. Referências bibliográficas 1. ALEXANDER, R. J. Potato starch: new prospects for an old product. Cereal Foods World, v. 40, n. 1010, p. 763-764, 1995. 2. BECHTEL, D. B. et al. Size-distribution of weath starch granules during endosperm development. Cereal Chemistry, v. 67, n. 1, p. 59-63, 1990. 3. CÃMARA, F. L. A.; SANTOS, F. S. Cultura da mandioquinha-salsa. In: CEREDA, M. P. (coord). Agricultura: tuberoses amiláceas 586 Ciênc. Tecnol. Aliment., Campinas, 27(3): 579-588, jul.-set. 2007

Leonel 30,0 25,0 20,0 10 m kv 1,20E3 0006/00 IB-0606 20,0 30,0 40,0 50,0 60,0 70,0 80,0 90,0 Figura 12. Fotomicrografia de grânulos de amido de zedoária e distribuição de tamanho (diâmetro maior em micrômetro). latino americanas. São Paulo: Fundação Cargill, p. 519-532, 2002. 4. CAMARGO FILHO, W. P.; ALVES, H. S. Mercado de batata no Brasil: análise de produção, importação e preços. Informações Econômicas, v. 35, n. 5, p. 71-76, 2005. 5. CAMPBELL, M. R. et al. Variation of starch granule size in tropical maize germ plasm. Cereal Chemistry, v. 73, n. 5, p. 536-538, 1996. 6. Da SILVA, J. B. C.; LOPES, C. A.; MAGALHÃES, J. S. Cultura da batata doce. In: CEREDA, M. P. (coord). Agricultura: tuberoses amiláceas latino americanas. São Paulo: Fundação Cargill, p. 448-504, 2002. 7. DEANG, L. M.; DEL ROSARIO, R. R. Physicochemical characteristics of starches from some rootcrops. The Philippine Agriculturist, v. 76, n. 4, p. 443-455, 1993. 8. DEFLOOR, I.; DEHING, I.; DELCOUR, J. A. Physico-chemical properties of cassava starch. Starch/Stärke, v. 50, n. 2-3, p. 58-64, 1998. 9. ERDMAN, M. D. Starch form arrowroot (Maranta arundinacea) grown at Titon, Georgia. Cereal Chemistry, v. 63, n. 3, p. 277-279, 1986. 10. FORSTHY, J. L. et al. Characterization of starch from tubers of yam bean (Pachyrhizus ahipa). Journal of Agricultural and Food Chemistry, v. 50, n. 2, p. 361-367, 2002. 11. GALLANT, D. J. et al. On ultrastructural and nutritional aspects of some tropical tuber starches. Starch/Stärke, v. 34, n. 8, p. 255-262, 1982. 12. GARCIA, A. M.; WALTER, W. M. Physicochemical characterization of starch from Peruvian sweet potato selections. Starch/Stärke, v. 50, n. 88, p. 331-337, 1998. 13. GOERING, K. J.; DE HAAS, B. New starches. VIII. Properties of the small granule starch from Colocasia esculenta. Cereal Chemistry, v. 49, n. 6, p. 712-719, 1972. 14. HE, X. G. et al. Liquid chromatography-electrospray mass spectrometric analysis of curcuminoids and sesquiterpenoids in turmeric (Curcuma longa). Journal of Chromatography, v. 818, n. 1, p. 127-132, 1998. 15. KIBUUKA, G. K.; MAZZARI, M. R. Isolamento, caracterização físico-química e perspectivas industriais de amido de batata baroa (Arracacia xanthorhyza Bancroft Syn). In: XXI Congresso Brasileiro de Olericultura, Campinas, SP, p. 34, 1981. 16. LEONEL, M. et al. Extração e caracterização do amido de Biri (Canna edulis). Brazilian Journal of Food Technology, Campinas, v. 5, n. 77, p. 27-32, 2001. 17. LEONEL, M.; CEREDA, M. P.; SARMENTO, S. B. S. Processamento de araruta (Maranta arundinacea) para extração e caracterização da fração amilácea. Brazilian Journal of Food Technology, Campinas, v. 5, n. 93, p. 151-155, 2002. 18. MADSEN, M. H.; CHRISTENSEN, D. H. Changes in viscosity properties of potato starch during growth. Starch/Stärke, v. 48, n. 7-8, p. 245-249, 1996. 19. MILANEZ, C. R. D. Morpho-anatomical characterization of vegetative organs of Pachyrhizus ahipa (Wedd.) Parodi (Fabaceae). 2002. 116 p. (Master in Biological Science)- Instituto de Biociências, Botucatu, 2002. 20. MONTEIRO, D. A.; PERESSIN, W. A. Cultura da araruta. In: CEREDA, M. P. (coord). Agricultura: tuberoses amiláceas latino americanas. São Paulo: Fundação Cargill, p.440-447, 2002. 21. NODA, T., TAKAHATA, Y., NAGATA, T. Properties of sweet potato starches from different tissue zones. Starch/Stärke, v. 44, n. 10, p. 365-368, 1992. 22. NOGUEIRA, E. A.; MELLO, N. T. C. Um caso bem sucedido: a produção familiar de gengibre em Tapiraí, Estado de São Paulo. Informações econômicas, v. 31, n.10, p. 53-59, 2001. 23. PÉREZ, E.; LARES, M.; GONZÁLEZ, Z. Some characteristics of sagu (Canna edulis) and zulu (Maranta sp) rhizomes. Journal of Agricultural and Food Chemistry, v. 45, n. 7, p. 2546-2549, 1997. 24. RICKARD, J. E.; ASAOKA, M.; BLANSHARD, J. M. V. The physicochemical properties of cassava starch. Tropical Science, v. 31, n. 22, p. 189-207, 1991. 25. SANTACRUZ, S. et al. Physicochemical characterizations of three unconventional sources of starch from the Andean region in Ecuador. Tropical Agriculture, v. 75, n. 2, p. 302-304, 1998. 26. SATIN, M. Functional properties of starches. In: International Symposium on Tropical Root and Tuber Crops, Thiruvananthapuran (Trivandrum), 2000. Ciênc. Tecnol. Aliment., Campinas, 27(3): 579-588, jul.-set. 2007 587

Forma e tamanho de grânulos de amido 27. SILVA, J. R.; ASSUMPÇÃO, R.; VEGRO, C. L. R. A inserção da fécula de mandioca no mercado de amido. Informações econômicas, v. 30, n. 7, p. 31-41, 2000. 28. SINGH, J.; SINGH, N. Studies on the morphological, thermal and rheological properties of starch separated from some Indian potato cultivars. Food Chemistry, v. 75, n. 1, p. 67-77, 2001. 29. SRIROTH, K. et al., Cassava starch granule structure-function properties: influence of time and conditions at harvest on four cultivars of cassava starch. Carbohydrate Polymers, v. 38, n. 2, p. 161-170, 1999. 30. VIGNEAU, E. et al. Number of particles for the determination of size distribution from microscopic images. Powder Technology, v. 107, n. 3, p. 243-250, 2000. 31. VASANTHAN, T.; SOSULSKI, F. W.; HOOVER, R. The reactivity of native and autoclaved starches from different origins towards acetylation and cationization. Starch/Stärke, v. 47, n. 4, p. 135-143, 1995. 588 Ciênc. Tecnol. Aliment., Campinas, 27(3): 579-588, jul.-set. 2007