UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE LORENA EEL/USP

Documentos relacionados
VASOS SEPARADORES E ACUMULADORES

AVALIAÇÃO DE UM TANQUE DE DECANTAÇÃO DE SÓLIDOS UTILIZANDO FLUIDODINÂMICA COMPUTACIONAL

PERMUTADOR DE PLACAS TP3

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes

Relatório Preliminar Experimento 6.2 Reologia

3 - Bacias Hidrográficas

CAPÍTULO 4 4. ELEMENTOS ESTRUTURAIS. 4.1 Classificação Geométrica dos Elementos Estruturais

5 VASOS SEPARADORES, ACUMULADORES E DECANTADORES

Tratamento de efluentes

Separação de misturas


ALTERAÇÕES TORÁCICAS CORREÇÕES CIRÚRGICAS

Aula 4-Movimentos,Grandezas e Processos

tecfix ONE quartzolit

Fundamentos de Teste de Software

CALANDRA MULTIROLO CALANDRA MULTIRROLO CAPACIDADES DE 4 A 18 LENÇÓIS P/ MINUTO SISTEMA DE ROLO E FITAS AQUECIMENTO A VAPOR

EDITAL PARA INSCRIÇÃO DE TRABALHOS NO III CURSO DE EXTENSÃO SOBRE O TRABALHO DO ASSISTENTE SOCIAL NA EDUCAÇÃO DO IFMG

Capítulo1 Tensão Normal

Resolução Comentada Unesp

10 CICLONES. b) Não tem peças móveis (baixo custo de manutenção).

1331 Velocidade do som em líquidos Velocidade de fase e de grupo

NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para serem resolvidos e entregues.

ESTRUTURA DO CURSO 08:00-10:00 RTQ-R

QUÍMICA (2ºBimestre 1ºano)

Questão 1. Questão 2. Resposta

Prof. Vinícius C. Patrizzi ESTRADAS E AEROPORTOS

Manual de preenchimento da planilha de cálculo do índice de nacionalização

Figura 1 Representação esquemática de uma torre de resfriamento de água.

Arquitecturas de Software Enunciado de Projecto

22 al 27 de agosto de 2004 Hotel Caribe Hilton - San Juan, Puerto Rico

Condução. t x. Grupo de Ensino de Física da Universidade Federal de Santa Maria

Laje de concreto com esferas plásticas

Nailsondas Perfurações de Solo Ltda

Msc. Eng. Fernando Pozza

3 Metodologia de pesquisa

1 Circuitos Pneumáticos

Lista de Exercícios Aula 04 Propagação do Calor

UTILIZAÇÃO DE SENSORES CAPACITIVOS PARA MEDIR UMIDADE DO SOLO.

ASPECTOS CONSTRUTIVOS DE ROBÔS

LT 500kV MARIMBONDO - ASSIS MEMORIAL DO PROJETO BÁSICO DE FUNDAÇÕES

QUÍMICA TAISSA LUKJANENKO

Normas Didáticas - EMA091 - Mecânica dos Fluidos.

2 Workshop processamento de artigos em serviços de saúde Recolhimento de artigos esterilizados: é possível evitar?

Obtenção Experimental de Modelos Matemáticos Através da Reposta ao Degrau

Título do Case: O impacto do layout na agilidade dos processos

1 ESTRUTURAS DE CONCRETO ARMANDO 1.1 INTRODUÇÃO

Matrizes de Transferência de Forças e Deslocamentos para Seções Intermediárias de Elementos de Barra

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS

REUTILIZAÇÃO DE BORRACHA DE PNEUS INSERVÍVEIS EM OBRAS DE PAVIMENTAÇÃO ASFÁLTICA

UM JOGO BINOMIAL 1. INTRODUÇÃO

Métricas de Software

Critério de Desenvolvimento da Embalagem de Transporte. Magda Cercan Junho/2013 São Paulo

QUÍMICA - 1 Ano Processos de separação de misturas PROCESSOS DE SEPARAÇÃO DE MISTURAS

Distribuição Normal de Probabilidade

Materiais / Materiais I. Guia para Trabalho Laboratorial

-ESTRUTURA VIÁRIA TT048 SUPERELEVAÇÃO

ÓRGÃOS ACESSÓRIOS DA REDE DE ESGOTO

Proposta e desenvolvimento de um sistema de controle de baixo custo para irrigação automatizada

ENGENHARIA DE SOFTWARE

Disciplina: Eletrificação Rural

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc.

AutoFilt Type RF3 Exemplos de aplicação.

No contexto das ações de Pesquisa e Desenvolvimento

INBI INOVADOR ROLO FLEXIVEL PARA A SUA TELA TRANSPORTADORA

5.4 Evolução pós-sp: estrelas pequena massa

Tecnologia Pneumática. 1) Incremento da produção com investimento relativamente pequeno.

Dureza Rockwell. No início do século XX houve muitos progressos. Nossa aula. Em que consiste o ensaio Rockwell. no campo da determinação da dureza.

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial

PROGRAMA DE INICIAÇÃO CIENTÍFICA VOLUNTÁRIO PIC DIREITO/UniCEUB EDITAL DE 2016

Conexões para Solda em SAF 2507 T M Super Duplex

PLANILHA ELETRÔNICA PARA PREDIÇÃO DE DESEMPENHO OPERACIONAL DE UM CONJUNTO TRATOR-ENLEIRADOR NO RECOLHIMENTO DO PALHIÇO DA CANA-DE-AÇÚCAR

A dissertação é dividida em 6 capítulos, incluindo este capítulo 1 introdutório.

Transplante capilar Introdução

Teoria dos erros em medições

0.1 Introdução Conceitos básicos

FILTRO DISCO CERÂMICO À VÁCUO (FDVC)

Estudo sobre a dependência espacial da dengue em Salvador no ano de 2002: Uma aplicação do Índice de Moran

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA

Fundamentos dos Processos de Usinagem. Prof. Dr. Eng. Rodrigo Lima Stoeterau

Comandos de Eletropneumática Exercícios Comentados para Elaboração, Montagem e Ensaios

Redes Sem Fio (Wireless) Prof. Fred Sauer. Redes Sem Fio (Wireless) 1

1.3.1 Princípios Gerais.

Ondas EM no Espaço Livre (Vácuo)

ELABORAÇÃO DE TRABALHOS ACADÊMICOS: NORMAS PARA APRESENTAÇÃO

O IMPACTO AMBIENTAL DEVIDO A POLÍTICA DE CRESCIMENTO DA FROTA DE VEÍCULOS. Curso de Graduação Faculdade de Engenharia Elétrica e de Computação/UNICAMP

COMISSÃO DE DESENVOLVIMENTO ECONÔMICO, INDÚSTRIA E COMÉRCIO

Instrumentação Industrial: As Válvulas de Controlo, um Importante "Instrumento"

Análise Qualitativa no Gerenciamento de Riscos de Projetos

VALIDAÇÃO DE UM MODELO DE DIMENSIONAMENTO DE WETLANDS DE MACRÓFITAS AÉREAS PARA SEPARAÇÃO ÁGUA-ÓLEO

TUTORIAL LIMPEZA DE ESPELHO DE TELESCÓPIO NEWTONIANO: PROCEDIMENTOS, MATERIAIS E ETAPAS. Por: James Solon

Acionamento de Motores: PWM e Ponte H

arente Linha Aparente p a A h Lin

Sistema de Isolamento Térmico pelo Exterior. Reboco Delgado Armado sobre Poliestireno Expandido - ETICS

Probabilidade e Estatística 2008/2. Regras de adicão, probabilidade condicional, multiplicação e probabilidade total.

Corrente elétrica, potência, resistores e leis de Ohm

O irmão do aço. Obtendo o ferro fundido

Transcrição:

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE LORENA EEL/USP KAREN CRISTINE BOTTA ESTUDO HIDRODINÂMICO DE COLUNAS DE DESTILAÇÃO COM RECHEIO RANDÔMICO (IMTP) E COLUNA EMPACOTADA (MELLAPAK) Lorena/SP 2015

KAREN CRISTINE BOTTA ESTUDO HIDRODINÂMICO DE COLUNAS DE DESTILAÇÃO COM RECHEIO RANDÔMICO (IMTP) E COLUNA EMPACOTADA (MELLAPAK) Trabalho de conclusão de curso apresentado no curso de Engenharia química à Escola de Engenharia de Lorena da Universidade de São Paulo para obtenção do título de Bacharel. Orientador: Prof. MSc ANTONIO CARLOS DA SILVA Lorena/SP 2015

AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE Ficha catalográfica elaborada pelo Sistema Automatizado da Escola de Engenharia de Lorena, com os dados fornecidos pelo(a) autor(a) Botta, Karen Cristine Estudo hidrodinâmico de colunas de destilação com recheio randômico (IMTP) e coluna empacotada (Mellapak) / Karen Cristine Botta; orientador Antonio Carlos da Silva. - Lorena, 2015. 83 p. Monografia apresentada como requisito parcial para a conclusão de Graduação do Curso de Engenharia Química - Escola de Engenharia de Lorena da Universidade de São Paulo. 2015 Orientador: Antonio Carlos da Silva 1. Destilação. 2. Perda de carga. 3. Imtp. 4. Mellapak. 5. Hidrodinâmica. I. Título. II. Silva, Antonio Carlos da, orient.

Aos meus professores e colegas de trabalho que me apoiaram e me ajudaram muito ao longo de todo o período deste trabalho.

Em tempos de grande velocidade evolutiva, não se deve medir a idade de uma pessoa cronologicamente. Sua idade deve ser determinada pelo nível de dor que experimenta ao entrar em contato com uma nova idéia. Quincy Jones

AGRADECIMENTOS À Escola de Engenharia de Lorena pela excelente formação e preparo para o mercado de trabalho, que sempre abriu as portas quando necessário e que possibilitou que esse estudo fosse feito com excelência. Ao Prof. MSc. Antonio Carlos, pelo apoio e orientação durante todo o trabalho, pela excelência profissional, pela constante presença, orientação, apoio, ajuda, sugestões e paciência para que o trabalho pudesse ser realizado com sucesso, o meu muito obrigado. À Engenheira de Processos Mariana Fernandes, pelo direcionamento e auxílio no desenvolvimento do trabalho. À Rhodia-Solvay, por disponibilizar ferramentas para a realização deste trabalho e por ter me proporcionado um grande desenvolvimento técnico, durante todo o tempo de estágio. À minha família pelo apoio e confiança que depositaram durante todo o curso de graduação. À Deus por todos os momentos difíceis que consegui superar, pelas forças e bênçãos concedidas durante minha vida pessoal e acadêmica. À todos que me apoiaram durante todo o período de realização do trabalho, acreditando em meu potencial, inclusive nos momentos de dificuldade, todos fazem parte deste trabalho, muito obrigada.

RESUMO BOTTA, K. C. Estudo hidrodinâmico de colunas de destilação com recheio randômico (IMTP) e coluna empacotada (MELLAPAK). Monografia (Trabalho de conclusão de curso em Engenharia química), Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, 2015. Estudos voltados para a destilação são bastante importantes, tendo em vista que essa é a operação de purificação mais utilizada na indústria química. Com isso, estudos hidrodinâmicos em colunas de destilação fracionada são essenciais para um conhecimento da perda de carga, retenção total de líquido e a razão de molhamento, parâmetros de grande importância para se ter um processo eficiente, no que diz respeito a transferência de massa entre as fases líquida e vapor. A pesquisa foi conduzida a partir de simulações, no software Aspen Plus (versão 8.4). Foram realizadas simulações para destilação de uma mistura de água e metanol, em coluna de retificação (Radfrac) contendo recheio randômico (IMTP) e estruturado (Mellapak). O objetivo foi a obtenção do perfil hidrodinâmico da coluna, assim como a obtenção da perda de carga e retenção total de líquido já calculada pelo software. A partir do perfil hidrodinâmico, foi possível, através de métodos gráficos (Correlação generalizada de queda de pressão CGQP obtidos da literatura e gráficos de perda de carga em função de fator de escoamento do gás Fs, fornecidos pelos fabricantes) e analíticos, calcular o grau de molhamento mínimo (MWR), a perda de carga e a retenção total de líquido. Com uma análise comparativa entre os resultados obtidos no Aspen Plus e resultados calculados, observou-se uma maior perda de carga nos recheios IMTP #40 e IMTP#50, se comparado com os recheios do tipo Mellapak (Mellapak 250Y, Mellapak 2Y, Mellapak 170Y e Mellapak 125Y). Os resultados dos diferentes métodos analisados foram próximos, porém os mais confiáveis foram os obtidos por simulação e os obtidos a partir de análise dos gráficos dos fabricantes, uma vez que ambos utilizam dados dos fabricantes. Os métodos gráficos CGQP e analíticos não foram muito confiáveis, já que são métodos generalizados. Palavras-chave: Destilação, perda de carga, IMTP, Mellapak, hidrodinâmica.

ABSTRACT BOTTA, K. C. Hydrodynamics study of distillation column with random packings (IMTP) and structured packings (MELLAPAK). Monograph (course competition assignment in Chemical Engineering), Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, 2015. Studies about distillation are very important, considering that this is the purification operation most used in the chemical industry. Therefore, hydrodynamic analysis of fractional distillation columns are essential to an understanding of pressure drop, liquid holdup and wetting rate, very important parameters to have an efficient process regarding to mass transfer between the liquid phase and vapor phase. This record was conducted with simulations in Aspen Plus (version 8.4). Simulations were performed for distillation of a mixture of water and methanol in rectifying column (Radfrac) containing random (IMTP) and structured (Mellapak) packings. The objective was to obtain the hydrodynamic profile of the column, as well as to obtain the total pressure drop and holdup, already calculated by the software. From the hydrodynamic profile, it was possible, through graphical methods (CGQP obtained from literature and pressure drop charts from the manufacturers) and analytical, to calculate the minimum wetting rate (MWR), the pressure drop and the holdup. With a comparative analysis of the results obtained in Aspen Plus and results calculated from the hydrodynamic profile, it was possible to conclude that the pressures drop of the random packings IMTP # 40 and # 50 were higher than the structured packings (Mellapak 250Y, Mellapak 2Y, Mellapak 170Y and 125Y Mellapak). The results of the different methods analyzed were next, but the most reliable were obtained by simulation and those obtained from analysis of the graphs of manufacturers, since both use data from the manufacturers. The CGQP graphic and analytical methods were a little bit unreliable, considering that are widespread methods. Keywords: distillation, pressure drop, IMTP, Mellapak, hydrodynamics.

LISTA DE FIGURAS Figura 1 Esquema de destilação fracionada... 21 Figura 2 Tipos de anel de Raschig... 23 Figura 3 Sela de Berl... 24 Figura 4 Sela Intalox... 24 Figura 5 Anell Pall... 25 Figura 6 - Recheios randômicos modernos... 26 Figura 7 Recheio estruturado tipo Mellapak, da Sulzer... 29 Figura 8 - Variação do coeficiente de transferência de massa em uma torre recheada.... 30 Figura 9 - Diferentes forças atuantes na queda de pressão.... 33 Figura 10 Queda de pressão em torre recheada... 33 Figura 11 CGQP para leitos com recheios randômicos, proposta por Sherwood, Leva e Eckert (SLE) (CALDAS et al., 2007, p. 235).... 35 Figura 12 CGQP em leitos com recheios randômicos, proposta por Norton.... 37 Figura 13 CGQP em leitos com recheios randômicos, proposta por Strigle 2 (1987 apud CALDAS et al., 2003)... 38 Figura 14 Gráficos de perda de carga (ΔP) em função de fator de escoamento do gás (Fs) para recheios IMTP #15.... 44 Figura 15 Gráficos de perda de carga (ΔP) em função de fator de escoamento do gás (Fs) para recheios IMTP #25... 45 Figura 16 Gráficos de perda de carga (ΔP) em função de fator de escoamento do gás (Fs) para recheios IMTP #40... 45 Figura 17 Gráficos de perda de carga (ΔP) em função de fator de escoamento do gás (Fs) para recheios IMTP #50.... 46 Figura 18 Gráficos de perda de carga (ΔP) em função de fator de escoamento do gás (Fs) para recheios IMTP #60.... 46 Figura 19 Gráficos de perda de carga (ΔP) em função de fator de escoamento do gás (Fs) para recheios IMTP #70.... 47 Figura 20 CGQP em leitos com recheios estruturados, proposta por Kister e Gill 7 (1991 apud CALDAS et al., 2003)... 48 Figura 21 Geometria dos recheios estruturados... 49

Figura 22 Gráficos de perda de carga (ΔP) em função de fator de escoamento do gás (Fs) para recheios Mellapak 125Y.... 50 Figura 23 Gráficos de perda de carga (ΔP) em função de fator de escoamento do gás (Fs) para recheios Mellapak 170Y.... 51 Figura 24 Gráficos de perda de carga (ΔP) em função de fator de escoamento do gás (Fs) para recheios Mellapak 2Y.... 51 Figura 25 Gráficos de perda de carga (ΔP) em função de fator de escoamento do gás (Fs) para recheios Mellapak 250Y.... 52 Figura 26 Dados da operação de destilação utilizada na simulação em Aspen Plus.... 55 Figura 27 Guia do Aspen Plus v. 8.4 utilizado para seleção do modelo de equilíbrio líquido-vapor para posterior execução da simulação... 56 Figura 28 Segundo Guia do Aspen Plus v. 8.4 utilizado para seleção do modelo de equilíbrio líquido-vapor para posterior execução da simulação.... 57 Figura 29 Terceiro Guia do Aspen Plus v. 8.4 utilizado para seleção do modelo de equilíbrio líquido-vapor para posterior execução da simulação.... 58 Figura 30 Dados inseridos no Aspen Plus da corrente de alimentação (Fração mássica, vazão mássica, temperatura e pressão).... 59 Figura 31 - Dados da coluna inseridos no Aspen Plus (número de estágios, estágio de alimentação, tipo de condensação, pressão de topo, vazão mássica de destilado e razão de refluxo).... 59 Figura 32 Características do recheio inserido no Aspen Plus, para análise hidrodinâmica.... 61 Figura 33 Gráfico de perda de carga (Pa/m) de cada recheio em função da retenção total de líquido (m³/m³.s) obtidas do Aspen Plus.... 72 Figura 34 Relação entre a perda de carga dos recheios estudados e o fator de caracterização de cada recheio (FP).... 73 Figura 35 Análise comparativa das perdas de carga obtidas no Aspen Plus, por CGQP e por gráficos dos fabricantes para todos os recheios analisados.... 73 Figura 36 Gráfico do grau de molhamento (WR) para os recheios IMTP.... 74 Figura 37 - Gráfico do grau de molhamento (WR) para os recheios Mellapak.... 74

LISTA DE TABELAS Tabela 1 Queda de pressão de equipamento de contato líquido gás... 28 Tabela 2 Faixa de propriedades dos sistemas para a nova correlação divulgada por Norton... 37 Tabela 3 Constantes da equação 2.4... 40 Tabela 4 Coeficiente de atrito (f) para utilização na equação 2.6... 42 Tabela 5 Constantes da equação 2.13.... 44 Tabela 6 Parâmetros dos recheios estruturados... 49 Tabela 7 Características dos recheios utilizados para análise hidrodinâmica... 61 Tabela 8 Perfil hidráulico da coluna de destilação obtido com a primeira simulação.... 63 Tabela 9 Perfil hidráulico da coluna de destilação obtido com a primeira simulação.... 64 Tabela 10 Cálculo da área da seção transversal da coluna.... 65 Tabela 11 Cálculo para obtenção do Fator de escoamento do gás (Fs).... 65 Tabela 12 Resultados dos HETP s dos recheios obtidos por análise dos gráficos dos fabricantes.... 66 Tabela 13 - Resultados da análise hidrodinâmica realizada no Aspen Plus (perda de carga e retenção total de líquido) para os recheios IMTP #40 e IMTP #50, Mellapak 125Y, Mellapak 170Y, Mellapak 2Y e Mellapak 250Y.... 66 Tabela 14 Parâmetros hidrodinâmicos utilizados para cálculo de perda de carga, retenção total de líquido e razão de molhamento para o método analítico e o método gráfico de CCQP.... 68 Tabela 15 - Resultados da análise hidrodinâmica realizada por método analítico correlação de Bravo - (perda de carga, retenção total de líquido e razão de molhamento) para os recheios Mellapak 125Y, Mellapak 170Y, Mellapak 2Y e Mellapak 250Y.... 68 Tabela 16 - Resultados da análise hidrodinâmica realizada por método analítico, para obtenção de retenção total de líquido (método de Takahashi) e razão de molhamento para os recheios IMTP #40 e IMTP #50.... 69 Tabela 17 Resultados de perda de carga obtidos com análise da CGQP de Kister e Gill, para os recheios Mellapak 125Y, Mellapak 170Y, Mellapak 2Y e Mellapak 250Y.... 69

Tabela 18 Resultados de perda de carga obtidos com análise da CGQP de Strigle, para os recheios IMTP #40 e IMTP #50... 70 Tabela 19 Resultados de perda de carga obtidos por análises de gráficos fornecidos pelos fabricantes (Sulzer para os recheios Mellapak 125Y, Mellapak 170Y, Mellapak 2Y e Mellapak 250Y e Koch Glitsch para os recheios IMTP #40 e IMTP #50).... 70 Tabela 20 Resultado de todos os métodos utilizados para análise hidrodinâmica da coluna em estudo.... 71

LISTA DE ABREVIATURA E SIGLAS CGQP Correlação Generalizada de queda de pressão HETP Altura equivalente a um prato teórico ou estágio de equilíbrio NRTL Non-random two-liquid model NRTL RK Non-random two-liquid of Redlich-Kwong

LISTA DE SÍMBOLOS A área da seção transversal do recheio (m²/m³) ap superfície específica do recheio por volume de recheio (m²/m³) C3 constante de recheio (admensional) CSB fator de Souders-Brown (m/s) (CSB)inundação fator de Souders-Brown para inundação (m/s) D diâmetro da coluna (m) Fp fator de caracterização do recheio (m -1 ) FS fator de escoamento do gás (Pa 0,5 ) Fr número de Froude para a fase líquida (s -2 ) g aceleração da gravidade (m/s²) G fluxo mássico da fase gasosa (kg/m².s) G fluxo volumétrico da fase gasosa (m³/m².h) MWR grau de molhamento mínimo (m³/m.s) QG vazão volumétrica da fase gasosa (m³/s) QL vazão volumétrica da fase líquida (m³/s) ReG número de Reynolds para a fase gasosa (admensional) S comprimento do lado do canal de escoamento (m)

TL Temperatura da fase líquida ( C) v viscosidade cinemática da fase líquida (cst) VG velocidade da fase gasosa (m/s) VL velocidade da fase líquida (m/s) L fluxo mássico da fase líquida (kg/m².s) L fluxo volumétrico da fase líquida (m³/m².h) WG vazão mássica da fase gasosa (kg/h) WL vazão mássica da fase líquida (kg/h) WR razão de molhamento (m³/m.s) X parâmetro de fluxo (admensional) µg viscosidade da fase gasosa (cp) µl viscosidade da fase líquida (cp) ρg densidade da fase gasosa (kg/m³) ρl densidade da fase líquida (kg/m³) ρw densidade da água (kg/m³) ΔP/Z Queda de pressão por unidade de altura de leito recheado (Pa/m) ε porosidade do recheio estruturado (%) θ ângulo de inclinação do canal de escoamento com a horizontal ( )

Φt retenção total de líquido (m³ líquido/m³ recheio) σl tensão superficial da fase líquida (N/m)

SUMÁRIO 1 INTRODUÇÃO... 17 2 FUNDAMENTAÇÃO TEÓRICA... 19 2.1 O processo de destilação... 19 2.2 A Destilação fracionada... 19 2.3 Tipos de torres de destilação... 21 2.3.1 Torres de pratos... 21 2.3.2 Torres Recheadas... 22 2.4 Tipos de recheios... 22 2.4.1 Recheios randômicos... 22 2.4.1.1 Anel de Raschig... 22 2.4.1.2 Sela de Berl... 23 2.4.1.3 Sela Intalox e Super Intalox... 24 2.4.1.4 Anel Pall... 24 2.4.1.5 Outros recheios patenteados... 25 2.4.2 Recheios estruturados... 26 2.4.2.1 Recheios estruturados tradicionais... 27 2.4.2.2 Recheios estruturados de alta eficiência... 27 2.5 Análise hidrodinâmica de colunas... 29 2.5.1 Grau de molhamento em torres recheadas... 29 2.5.2 Perda de carga... 31 2.5.3 Restrições hidráulicas... 52 2.5.4 Retenção de líquido... 53 3 METODOLOGIA... 55 4 RESULTADO E DISCUSSÃO... 62 5 CONCLUSÃO... 75 REFERÊNCIAS... 76

ANEXOS... 79

17 1 INTRODUÇÃO A destilação fracionada é a operação unitária mais amplamente utilizada na indústria química. Na destilação há diferença de volatilidade dos constituintes de uma determinada mistura, e a separação ocorre com o contato entre a fase vapor e a fase líquida, através da transferência de massa entre as fases. O efeito final dessa operação é o aumento da concentração do componente mais volátil na fase vapor e do componente menos volátil no líquido. A escolha do tipo de recheio em torres recheadas é um fator importante, uma vez que estes influenciam na distribuição de líquido no interior da coluna, na perda de carga, capacidade máxima da coluna e o HETP (altura equivalente a um prato teórico). Os recheios devem apresentar algumas qualidades como: alta porosidade e alta área específica, baixa perda de carga, resistência química e mecânica, formato irregular de forma a evitar escoamento preferencial, baixo custo e baixo peso específico (CALDAS, et al., 2003). Nos últimos anos, recheios de alta eficiência, como o IMTP e os estruturados, vêm tendo seus preços reduzidos, alcançando, com isso, uma grande parcela do mercado. A perda de carga é tida como uma das mais importantes características para comparação dos diferentes recheios estruturados e randômicos, uma vez que o aumento no gasto de energia está diretamente relacionado com o aumento da perda de carga. A perda de carga é usualmente mostrada em função da velocidade superficial do gás, ou melhor, em função do fator de capacidade do gás (KOLEV, 2006). Sendo assim, análises hidrodinâmicas em colunas de destilação são extremamente importantes para o controle dos seus limites de operação. A análise hidrodinâmica envolveu o cálculo da perda de carga, cálculo de molhabilidade mínima e retenção total de líquido para cada um dos recheios estudados (IMTP #40, IMTP #50, Mellapak 250Y, Mellapak 2Y, Mellapak 170Y e Mellapak 125Y).

18 A destilação escolhida foi para separação de água e metanol e foi simulada no software Aspen Plus, versão 8.4, que permitiu a obtenção do perfil hidrodinâmico da coluna para posteriores cálculos de perda de carga, grau de molhamento e retenção total de líquido, por diferentes métodos, assim como a obtenção direta da perda de carga e da retenção total de líquido. Portanto, a pesquisa referente a este projeto mostrou como deve ser feita uma análise hidrodinâmica, um ponto importante de estudo quando se trabalha com processos que envolvem colunas de destilação, pois, a partir disso, consegue-se operar a coluna de forma mais eficiente, conhecendo-se os limites de operação. Além disso, isso facilita a estabilização de novos processos de destilação, ou seja, processos que serão iniciados e que, muitas vezes, acabam levando bastante tempo para a estabilização. A pesquisa fez ainda uma análise comparativa entre recheios randômicos do tipo IMTP e recheios estruturados to tipo Mellapak (recheios bastante utilizados nos dias de hoje) para uma mesma coluna. Portanto, a análise comparativa foi feita para obtenção de um mesmo grau de pureza do produto de topo e fundo, de forma que as alturas e HETP utilizados foram diferentes para cada recheio. 1.1 Objetivo geral O objetivo foi a realização de uma análise hidrodinâmica em colunas de destilação fracionada com recheios de alta eficiência e bastante utilizados atualmente (IMTP e o MELLAPAK). 1.2 Objetivos específicos Comparação entre os tipos de recheios, mais especificamente o estruturado Mellapak e o randômico IMTP; Avaliação da perda de carga, retenção total de líquido e molhabilidade mínima de recheios IMTP e Mellapak.

19 2 FUNDAMENTAÇÃO TEÓRICA 2.1 O processo de destilação A destilação é definida como um processo físico de separação de uma mistura em dois ou mais produtos com pontos de ebulição diferentes e composições diferentes da inicial. Quando uma mistura de dois líquidos voláteis é aquecida, a fase vapor possui maior concentração do composto mais volátil (menor ponto de ebulição), que é condensado em maior proporção (KISTER, 1992). As torres de destilação são sistemas de contato líquido-gás, usados para transferir massa, calor e momento entre fases, tendo como limite o equilíbrio químico ou físico. Elas devem operar com o mínimo de energia e custo possível (CALDAS et al., 2003). Há três principais tipos de destilação: Destilação diferencial, destilação simples (ou flash) e destilação fracionada (ou retificação). Dentre elas, a retificação é a mais importante e difere dos outros dois métodos, no que diz respeito ao destino do vapor na torre, ou seja, na retificação parte do vapor é condensando, enquanto que nas outras destilações remove-se todo o vapor ou então este é condensado como produto (RICHARDSON et al, 2002). Com relação ao interior das torres, elas podem ser caracterizadas em torres de pratos ou de recheios (randômicos ou estruturados). As diferenças de desempenho em torres de pratos e recheios estão relacionadas com o comportamento hidrodinâmico das fases nessas torres, sendo importante, portanto, a realização de análises hidrodinâmicas nas colunas (CALDAS et al., 2003). 2.2 A Destilação fracionada A destilação fracionada ocorre em torres conhecidas como torres de retificação, que consistem em estruturas cilíndricas divididas em seções (RICHARDSON, 2002), que permitem a remoção de várias frações, em uma mesma coluna, uma

20 vez que é possível ter temperaturas, composições e vazões constantes em um dado ponto da coluna (ROITMAN, 2002). A destilação fracionada é uma operação que objetiva a separação de misturas, contendo substâncias de diferentes volatilidades, através de destilações e condensações sucessivas, que permitem enriquecer a fase vapor com as substâncias mais voláteis. A volatilidade relativa do produto a ser destilado permite a separação dos componentes mais voláteis, e o contato entre a fase líquida e a fase vapor permite a separação perfeita dos compostos desejados (ROITMAN, 2002). Basicamente, o processo ocorre da seguinte forma: Alimenta-se a coluna em um ponto intermediário (F), onde a fase líquida possui aproximadamente a mesma composição da alimentação. A parte da coluna que fica acima do ponto de alimentação é conhecida como seção de retificação e a área abaixo desse ponto como seção de esgotamento (RICHARDSON, 2002). Parte da alimentação então é vaporizada e ascende, e parte descende como líquido. A fase vapor passa por um condensador no topo da coluna, sendo que parte sai como destilado (D) e parte retorna como vapor condensado (Lo) para a torre. A fase líquida passa por um refervedor no fundo da coluna, onde parte é retirada como líquido residual (W) e parte retorna como vapor (V) para a coluna. Além disso, ao longo da torre, ou mais especificamente falando, do recheio ou dos pratos, a fase vapor que retorna para a coluna passa por uma condensação parcial, enquanto que o refluxo por uma vaporização parcial (RICHARDSON, 2002). Com isso, uma melhor separação das frações desejadas pode ser obtida pelo refluxo (equação 2.1) de parte do destilado (Lo), obtendo-se um produto de topo (D) com maior teor de voláteis, ou seja, mais puro (ROITMAN, 2002). A destilação procede-se até a obtenção do grau de separação desejado (ROBINSON; GRILLILAND, 1950). A equação 1 mostra a expressão para a razão de refluxo: = (2.1)

21 O esquema de destilação pode ser mais bem compreendido na Figura 1. Figura 1 Esquema de destilação fracionada V Lo D F V L W L Fonte: adaptado da obra de ROITMAN, 2002. A eficiência de uma coluna de retificação é comumente expressa como o número de pratos teóricos na operação. Alternativamente, pode ser dada na forma de altura equivalente a um prato teórico (HETP) (ARMAREGO; PERRIN, 1996). 2.3 Tipos de torres de destilação 2.3.1 Torres de pratos A transferência de massa em um prato ocorre pela formação de gotas e bolhas quando o vapor atravessa a fase líquida. Esse contato ocorre quando o líquido, em um prato, entra em contato com a fase vapor que está passando através de válvulas, borbulhadores ou furos, formando-se uma espuma. Essa espuma percorre o prato e é vertida para o prato inferior através de um downcomer (espécie de chapa ou tubo onde o líquido é levado de um prato superior para um

22 inferior). No downcomer, a espuma é desfeita e somente a fase líquida desaerada passa para o prato inferior. Acima da bandeja, a espuma coalesce em gotas e o vapor, praticamente sem líquido, segue para o prato superior (CALDAS et al., 2003). Os pratos sem downcomer possuem furos que permitem a passagem de líquido e vapor, intermitentemente e em contracorrente. Nesses pratos não há o mesmo grau de contato, mas, por outro lado, eles possuem menor custo e são extremamente simples (CALDAS et al., 2003). Os pratos com downcomer (circulares, envelopados ou segmentados) reservam parte da área transversal da coluna para a passagem de líquido para o prato imediatamente inferior, por gravidade. O contato líquido-gás é promovido pela área transversal restante, através do borbulhamento de vapor no líquido. O nível de líquido é mantido por vertedores (chanfrados ou retos) (CALDAS et al., 2003). 2.3.2 Torres Recheadas Nas torres recheadas, a fase líquida é dispersa no topo da torre através de um distribuidor de líquido, escoando na forma de um filme sobre os elementos de recheio. O líquido e o gás escoam em contracorrente através do leito poroso (recheio), que ocupa toda a seção transversal da torre. O recheio, além de promover um contato adequado entre as fases (contato feito de maneira contínua) também sustenta o filme da fase líquida (CALDAS et al., 2003). 2.4 Tipos de recheios 2.4.1 Recheios randômicos 2.4.1.1 Anel de Raschig É o tipo de recheio de alta eficiência mais antigo. Foi patenteado pelo Dr. Raschig, na Alemanha, em 1907. É ainda bastante utilizado, mas caiu em desuso, devido ao aparecimento de recheios mais eficientes (CALDAS et al., 2003).

23 Segundo CALDAS et al. (2003) sua estrutura é basicamente de um cilindro oco, com altura igual ao diâmetro e é disponibilizado em cerâmica, metal e, ocasionalmente, em plástico. Devido à sua característica robusta, esse recheio é recomendado para casos com vibração severa ou possibilidade de pancadas. Pode ter uma eficiência inferior ao anel Pall e à sela de Berl, quando operado logo abaixo da condição de inundação, sendo a eficiência pior a vazões inferiores (CALDAS et al., 2003). O anel de Lessing, assim como o anel particionado são derivados do anel de Raschig, e podem ser descritos como um anel de Raschig diametralmente dividido por uma parede interior e um anel de Raschig com mais de uma parede interna, respectivamente. O anel de Lessing é disponível em metal e cerâmica, enquanto que o particionado apenas em cerâmica. Para aumentar a eficiência desses recheios (ilustrados na Figura 2), a parede interna pode ser espiralada, mas isso vem se tornando raridade nos últimos anos (CALDAS et al., 2003). Figura 2 Tipos de anel de Raschig a)anel de Raschig; b) Anel de Lessing; c)anel particionado Fonte: CALDAS et al., 2003. 2.4.1.2 Sela de Berl A Sela de Berl (Figura 3) é o segundo recheio mais antigo (proposto na década de 30) e, assim como os anéis de Raschig, vem gradualmente caindo em desuso nos últimos anos. É fabricado, ocasionalmente, em metal e plástico. É um recheio que possui propriedades similares à sela Intalox, e por isso, na ausência de dados de um ou de outro, pode-se considerar equivalente os dados de ambos (CALDAS et al., 2003).

24 Figura 3 Sela de Berl Fonte: CALDAS et al., 2003. 2.4.1.3 Sela Intalox e Super Intalox A Sela Intalox (Figura 4) é um recheio que foi proposto nos anos 50 e é considerado a nova versão da sela de Berl. Se comparado com a sela de Berl, são economicamente mais viáveis, tendo em vista que podem ser produzidos com materiais cerâmicos (90% do mercado de recheios cerâmicos) ou plásticos. Possui flexibilidade maior que a do Anel de Raschig, mas inferior a do Anel Pall. São normalmente utilizadas para destilação de sistemas corrosivos ou temperaturas elevadas (CALDAS et al., 2003). Figura 4 Sela Intalox Fonte: CALDAS et al., 2003. 2.4.1.4 Anel Pall Inventado em 1950, o Anel Pall (Figura 5 Anell Pall ) é o recheio mais utilizado em destilação e representa o melhoramento do Anel de Raschig. Diferentemente do Anel de Raschig, o Anel Pall possui janelas nos lados do anel, ou seja, o interior ativo e uma menor superfície de contato, melhorando a transferência de

25 massa a pressões baixas e aumentando a área interfacial. Ele possui propriedades operacionais superiores ao Anel de Raschig, assim como vantagens econômicas, uma vez que pode ser produzido com uma espessura de parede menor. São disponíveis em metal e plástico, sendo mais utilizado em metal, uma vez que a sela Intalox em plástico substitui o Anel Pall em plástico, em questão de eficiência (CALDAS et al., 2003). Figura 5 Anell Pall Fonte: CALDAS et al., 2003. 2.4.1.5 Outros recheios patenteados Esses recheios patenteados possuem forma parecida com o Anel Pall. HY-PAK (NORPRO) ou K-PAC (Koch-Glitsch) Possui parede lateral conjugada para aumentar a resistência mecânica e número dobrado de portas ou dedos internos; Anel Ballast e Flexiring (Koch-Glitsch) Equivalentes ao Anel Pall em dimensões, área livre, superfície específica e desempenho; IMTP - Intalox Metal Tower Packing (Koch-Glitsch) Em 1976, a Norton deu início a um projeto de pesquisa para aumento de eficiência de torres recheadas, e em 1978 o IMTP foi comercializado. É mais eficiente que o Anel Pall. No entanto, existem poucas correlações

26 independentes para a previsão de sua eficiência, admite-se, portanto, as correlações do Anel Pall para dimensionamento do leito de IMTP, obtendo-se resultados mais conservativos. A Norton foi incorporada em 2002 pela Koch- Glitsch; Cascade Mini-Ring (Koch-Glisch) Semelhante ao Anel Pall. Possui altura igual à 1/3 do diâmetro, o que permite a auto-orientação das peças distribuídas ao acaso durante o enchimento do leito recheado. Os recheios randômicos modernos são o HY-PAK, a Sela Super Intalox e o IMTP. Estes estão ilustrados na Figura 6. Figura 6 - Recheios randômicos modernos. a) HY-PACK b) Sela Super Intalox c) IMTP Fonte: CALDAS et al., 2003. 2.4.2 Recheios estruturados Também chamados de ordenados ou arrumados, são todos aqueles que podem ser colocados de forma arrumada ou ordenada na torre.

27 2.4.2.1 Recheios estruturados tradicionais Foram os primeiros recheios colocados de forma organizada dentro das torres. A organização dos recheios dentro da torre tem como objetivo uma maior eficiência no processo de destilação, assim como uma menor perda de carga na coluna. Dentre eles, os que obtiveram maior sucesso foram os anéis de Raschig maiores que 75 mm e as grades (podendo ser de metal, plástico, cerâmica ou madeira) (CALDAS et al., 2003). A Grade Glitsch é um recheio estruturado com alta porosidade, que possui queda de pressão por prato teórico bastante baixo (0,35 mm Hg/HETP em média), capacidade (vazão operável de vapor) de 50-100% superior à de pratos com o mesmo diâmetro e podem ser usadas em colunas com diâmetro elevado (até 12 m), sem problemas de perda de eficiência por má distribuição de líquido (CALDAS et al., 2003). As lâminas que compõe a grade são horizontais, verticais e inclinadas, disponibilizando uma área bastante grande para passagem do vapor (CALDAS et al., 2003). Ainda segundo CALDAS et al. (2003), possui custo elevado, cerca de duas vezes maior que de um prato com borbulhadores. No entanto, sua capacidade é maior e, para uma mesma vazão de vapor, pode-se utilizar um diâmetro menor nas torres que utilizam recheio com grade Glitsch. 2.4.2.2 Recheios estruturados de alta eficiência Desenvolvidos no início da década de 60, possuem baixa perda de carga e elevada taxa de transferência de massa. Devido à alta eficiência, o volume de recheio utilizado, se comparado com recheios randômicos equivalentes, é menor, permitindo um custo muitas vezes inferior. Contudo, ainda assim a economia gerada pela sua aplicação deve ser estudada em cada caso.

28 Segundo CALDAS et al. (2003, p. 44), no início da década de 70 os recheios estruturados de alta eficiência custavam cerca de cinquenta a cem vezes mais que outro recheio randômico. Contudo, nos últimos anos, seu custo tem sido reduzido em função de uma maior concorrência. A alta eficiência de transferência de massa desses recheios se deve ao elevado grau de molhamento na sua superfície que geram elevadas áreas interfaciais de transferência. Por outro lado, a baixa perda de carga ocorre pela ausência quase que completa do arraste de líquido e pelo fator de forma (CALDAS et al., 2003). A Tabela 1 contém os valores de queda de pressão em equipamentos de contato líquido gás. Tabela 1 Queda de pressão de equipamento de contato líquido gás Tipos de colunas ΔP (mmhg/hetp) Pratos 3-5 Recheios randômicos 1-3 Recheios estruturados 0,1-0,25 Fonte: CALDAS et al., 2003. Os primeiros recheios estruturados de alta eficiência eram uma espécie de tecido metálico em tiras, feito com arame muito fino. Essas tiras eram corrugadas (com pregas, ondulações) e montadas paralelas entre si, em sucessivas camadas circulares com mesmo diâmetro que o casco da coluna. A ação capilar distribui o líquido pelo tecido de arame bem fino, e o vapor passa através das superfícies molhadas de modo tortuoso. São produzidos também em tela plástica (CALDAS et al., 2003). Os primeiros recheios fabricados no mundo foram da Sulzer e chamavam BX e BY. A Montz fabricou um recheio similar ao Sulzer BX, o recheio Montz tipo A3. Este possui canais de escoamento levemente curvados. Nos anos 70, surgiu o recheio Mellapak, com características equivalentes ao BX, no entanto, composto por chapas metálicas com sulcos na superfície, ao invés de tecido metálico. A Koch-Glitsch fabrica o recheio similar ao da Sulzer, com o nome de Flexipac e Gempak.

29 É importante ressaltar o que significa a notação utilizada na nomenclatura dos recheios estruturados. O Mellapak 250 Y, por exemplo, diz que a área superficial é 10 de 250 m2 /m3 e que o ângulo em relação ao eixo da coluna é de 45 ; se fosse X, o ângulo seria de 60 (SULZER). O recheio Mellapak, ilustrado na Figura 7, possui uma ampla gama de aplicações, sendo possível utilizá-lo a baixas e elevadas vazões de alimentação, a vácuo e a pressões moderadas em destilações, em altas pressões em sistemas de absorção e desabsorção. Estão disponíveis na forma de aço inoxidável, ligas metálicas e termoplásticos (SULZER). Figura 7 Recheio estruturado tipo Mellapak, da Sulzer Fonte: Sulzer. 2.5 Análise hidrodinâmica de colunas 2.5.1 Grau de molhamento em torres recheadas A transferência de massa está diretamente relacionada com a molhabilidade do recheio no interior da torre. Esta, por sua vez, está condicionada à distribuição de líquido pelo recheio (CALDAS et al., 2003). A relação do coeficiente de transferência de massa com a molhabilidade está ilustrada graficamente na Figura 8 que evidencia a variação típica do coeficiente numa torre recheada.

30 Figura 8 - Variação do coeficiente de transferência de massa em uma torre recheada. Fonte: CALDAS et al., 2003. Pode-se verificar que no topo, onde a distribuição do líquido é realizada em certas posições, o coeficiente de transferência de massa é baixo, ou seja, a transferência de massa é baixa. Conforme o líquido vai escoando de forma descendente na coluna, este vai se distribuindo mais uniformemente pelo recheio, de tal forma que o coeficiente aumenta até chegar a um ponto máximo, onde há perfeita molhabilidade do recheio. A partir desse ponto, passa-se a ter efeito de canalização, ou seja, o líquido começa a ser distribuído de forma irregular no recheio, reduzindo-se o valor do coeficiente de transferência de massa. A razão de molhamento (WR) é um fator importante a ser analisado durante um estudo hidrodinâmico de torres de destilação. Há um valor crítico da razão de molhamento, denominado de grau de molhamento mínimo (MWR), abaixo do qual diminui-se sensivelmente a transferência de massa. A razão de líquido não deve ser, portanto, inferior a certo limite. Estando abaixo desse limite, significa que a torre está com poucas áreas molhadas e com áreas secas decorrentes, não contribuindo para a transferência de massa do sistema. A expressão para cálculo da razão de molhamento está expressa na equação 2.2: = (2.2) Onde:

31 VL Velocidade superficial da fase liquida (m/s); ap Área específica do recheio (m 2 /m 3 ); WR Razão de molhamento (m 3 /m.s). Segundo CALDAS et al. (2003, p. 208), autores como Morris e Jackson, obtiveram valores para o grau de molhamento mínimo (MWR) para vários tipos de recheios e sistemas: Recheio 75 mm (3 in.), MWR = 2,22 x 10-5 m 3 /(s.m); Outros, MWR = 3,33 x 10-5 m 3 /(s.m). Alguns projetistas usam, para qualquer tipo de recheio, um fluxo mássico mínimo de 2 kg/(m².s), onde o líquido é a água. Outra observação a ser acrescentada é que em destilação atmosférica a velocidade superficial da fase líquida não deve ser menor que 0,001 m/s. Com 0,003 m/s, até um distribuidor grosseiro trabalha bem, enquanto que com 0,0004 m/s, até um ótimo distribuidor falha. (CALDAS et al., 2007, p. 233) 2.5.2 Perda de carga É definida, em geral, como uma medida da perda de energia mecânica durante o transporte de um fluido (ZAKERI et al.,2012). A perda de carga é um importante parâmetro hidrodinâmico em colunas de destilação, absorção, desabsorção, destilação reativa e retificação e pode ser definida como a diferença entre a pressão de entrada e pressão de saída no recheio. Usualmente, a perda de carga é mostrada em função da velocidade superficial do gás, ou melhor, em função do fator de capacidade do gás (KOLEV, 2006). Quedas de pressão em colunas de recheio randômico são muitas vezes maiores que em colunas de recheio estruturado, para as mesmas vazões de fluido.

32 A queda de pressão se dá inteiramente pelas perdas de atrito através de uma série de espaços vazios nos recheios (porosidade). Em recheios randômicos, os espaços ficam localizados de forma aleatória e a queda de pressão se dá pela expansão, contração e mudanças de direção do líquido. Em recheios estruturados, os espaços são regulares e de tamanhos uniformes e a queda de pressão se dá pelas mudanças de direção do líquido (KISTER, 1992). Como importância secundária há o atrito do fluido com a superfície das paredes (LEVA, 1953). Os fatores que influenciam a perda de carga são: Porcentagem de espaço vazio na coluna (porosidade); Velocidade mássica de gás; Diâmetro e forma dos recheios; Densidade do gás; Vazão de líquido. É importante ressaltar que a vazão de líquido não afeta a perda de carga de forma primária, ela reduz o espaço vazio e, por sua vez, tem influência sobre a queda de pressão (LEVA, 1953). As diferentes forças que desempenham um papel importante na queda de pressão total, devido às interações gás/líquido, estão expostas na Figura 9. A tensão de superfície não é mostrada na Figura 9.

33 Figura 9 - Diferentes forças atuantes na queda de pressão. Fonte: ZAKERI et al., 2012. Na Figura 10 é mostrada a variação da queda de pressão em função da vazão de gás em uma torre recheada. Quando o recheio é seco obtém-se uma reta com inclinação entre 1,8 e 2,0. Figura 10 Queda de pressão em torre recheada Fonte: CALDAS et al., 2003. Pode-se verificar que quando o recheio é irrigado com uma quantidade de líquido (L1) determinada, a retenção de líquido diminui a porosidade do recheio e tem-se como resultado da variação da perda de carga, a curva abc. À medida que a velocidade do gás aumenta ocorre uma inclinação da linha no ponto b (ponto de

34 carga), ou seja, nesse ponto tem-se uma variação brusca de queda de pressão, que pode ser evidenciada na curva bc. À medida que a queda de pressão evolui segundo a linha ab, a retenção de líquido é aproximadamente constante, independente da velocidade do gás. No ponto b, o gás começa a impedir o líquido de escoar pela torre, acumulando-se em determinados pontos. A partir deste ponto, a retenção de líquido aumenta rapidamente com a vazão de gás. No ponto c (ponto de inundação) o topo do recheio apresenta uma camada de líquido que vai aumentando, até sair pelo topo junto com o gás. A queda de pressão, para escoamento bifásico gás-líquido em torres recheadas, pode ser obtida através de gráficos de Correlação Generalizada para Queda de Pressão (CGQP), apresentando resultados satisfatórios para a região de retenção dinâmica ou acima desta, e se o líquido tiver propriedades físicas parecidas com a água (CALDAS et al., 2003). Há inconvenientes no uso desses gráficos: Imprecisões inerentes ao método gráfico; Programação desconfortável; Interpolações difíceis entre as linhas com queda de pressão constante; Inicialmente, esses gráficos foram propostos para determinação do diâmetro de colunas. Sendo assim, a perda de carga o parâmetro das curvas e não a ordenada do gráfico, dificultando a determinação; Podem conter erros elevados, por demasiadamente generalizadas. A queda de pressão em torres recheadas, para escoamento bifásico gás-líquido, pode ainda ser obtida através do uso de métodos analíticos, sugeridos para diferentes regiões de operação (CALDAS, 2007, p. 246).

35 Outra opção para o cálculo da perda de carga em colunas de destilação é a interpolação de dados experimentais, através de gráficos fornecidos por fabricantes ou de sistemáticas propostas pela versão Strigle das curvas CGQP de Eckert (para recheios randômicos) e pelas curvas CGQP de Kister e Gill. O uso de gráficos de interpolação CGQP resulta em valores de queda de pressão mais precisos (KISTER, 1992, p. 585). 2.5.2.1 Cálculo de perda de carga para torres de recheio randômico 2.5.2.1.1 Métodos gráficos (CGQP) CGQP de Sherwood, Leva e Eckert SLE Por muitas décadas a Correlação Generalizada de Queda de Pressão (CGQP) de Sherwood, Leva e Eckert foi utilizada como padrão para a predição de quedas de pressão em leitos recheados, sendo, ainda hoje, bastante utilizada. O gráfico de CGQP proposto por Sherwood, Leva e Eckert (SLE) 1 (1966 apud CALDAS et al., 2003) está exposto na Figura 11. Figura 11 CGQP para leitos com recheios randômicos, proposta por Sherwood, Leva e Eckert (SLE) (CALDAS et al., 2007, p. 235). Fonte: CALDAS et al., 2003.

36 Onde: L Fluxo mássico de líquido (kg/m 2.s); G Fluxo mássico de gás (kg/m 2.s); ρl Massa específica do líquido (kg/m 3 ); ρg Massa específica do gás (kg/m 3 ); Fp Fator de caracterização do recheio (m -1 ) (Anexo A); µ - Viscosidade do líquido (mpa.s); ψ ρh2o/ρl (adimensional); C 2,994 O fator de caracterização do recheio está baseado na relação entre a superfície específica e a porosidade do recheio (ap/ε³). CGQP proposta por Norton A Norton divulgou uma nova versão da CGQP de Sherwood, Leva e Eckert, com as modificações introduzidas pela experiência acumulada no projeto de torres comerciais até 1977, e que incluía a eliminação da curva de inundação. Esta nova versão é mostrada na Figura 12. A correlação foi testada para uma ampla faixa de propriedades do sistema (Tabela 2), aumentando sua aplicabilidade (CALDAS et al., 2003).

37 Tabela 2 Faixa de propriedades dos sistemas para a nova correlação divulgada por Norton Valor mínimo Valor Máximo Pressão (kpa) 1,3 3200 Massa específica do gás (kg/m³) 0,057 83 Massa molecular 2 338 Massa específica do líquido (kg/m³) 353 1830 Viscosidade (mpa.s) 0,07 18 Tensão superficial (mn/m) 7 72 Fonte: CALDAS et al., 2003. Figura 12 CGQP em leitos com recheios randômicos, proposta por Norton. Fonte: CALDAS et al., 2003. CGQP proposta por Strigle. Strigle 1 (1987 apud CALDAS et al., 2003) apresentou então uma nova versão para a CGQP, exposta na Figura 13, que passou a ser a mais utilizada. Esta 1 STRIGLE, R. F. Random Packing and Packed Towers. Gulf Publishing Company, Houston, 1987.

38 apresenta modificação das escalas da versão proposta por Sherwood, Leva e Eckert (de log-log para semi-log), que teve como intuito uma maior facilidade de interpolação de curvas de perda de carga adjacentes (KISTER, et al. 2007). Figura 13 CGQP em leitos com recheios randômicos, proposta por Strigle 2 (1987 apud CALDAS et al., 2003) Fonte: CALDAS et al., 2003. Onde: X Parâmetro de fluxo v Viscosidade cinemática do líquido (cst); Fp Fator de caracterização do recheio (Anexo 1); Y Cs Fp v 0,05 ; CSB Fator de Solders e Brown (ft/s).

39 A viscosidade cinemática pode ser obtida pela divisão da viscosidade dinâmica (em cp) pela densidade do líquido (g/cm 3 ). O Fator de Solders e Brown (CSB) corresponde à velocidade superficial do gás (VG) corrigida por densidades de vapor e líquido. Este fator (calculado pela equação 2.3) pode ser descrito como o balanço entre a força do vapor que entra nas gotículas de líquido e força da gravidade que resiste ao arraste do vapor (KISTER et al., 2007). = [ ]. (2.3) O parâmetro de fluxo (X) representa a relação entre a energia cinética do líquido e a energia cinética do vapor. Valores elevados de X são típicos de elevadas taxas de líquido e altas pressões, enquanto que valores baixos de parâmetro de fluxo são típicos de operações realizadas em vácuo e baixas quantidades de líquido (KISTER et al., 2007). 2.5.2.1.2 Métodos analíticos (leitos molhados) Método de Leva (1953) Utilizado quando a operação da torre está abaixo da região de retenção dinâmica do líquido. Pode ser utilizado para os recheios expostos na Tabela 3 (LEVA, 1953). P Z = α. β. (2.4) ρ G Onde: ΔP/Z Queda de pressão (Pa/m); α,β Constantes (Tabela 3) válidas para sistemas gás-água, que foram atualizadas e ampliadas por Eckert (1958). O fator ρw/ρl deve multiplicar L, quando o líquido não for água.

40 Tabela 3 Constantes da equação 2.4 Tamanho Nominal mm (in.) Tipo de recheio Material α e β 13 (1/2) 16 (5/8) 19 (3/4) 25 (1,0) 38 (1,5) 50 (2,0) 75 (3,0) Sela Intalox Anel Raschig Sela Berl Anel Pall Anel Pall Anel Raschig 1/32 in de parede Anel Raschig 1/16 in de parede Cerâmico Cerâmico Cerâmico Plástico Metálico Metálico Metálico α 571,38 285,69 285,69 71,42 76,92 β 0,074 0,05 0,032 0,03 0,02 α 1076,8 719,71 450,51 291,18 170,31 126,36 98,89 β 0,112 0,078 0,076 0,044 0,042 0,034 0,03 α 604,34 307,66 291,18 115,37 87,9 β 0,094 0,05 0,036 0,032 0,024 α 120,87 59,94 β 0,028 0,024 α 236,24 82,41 43,95 32,96 β 0,034 0,03 0,032 0,024 α 659,28 β 0,056 α 873,55 554,89 439,52 291,18 159,32 126,36 β 0,058 0,078 0,06 0,038 0,04 0,028 Fonte: CALDAS et al., 2003. Método de Prahl 2 (1969/1970 apud CALDAS et al., 2003) Baseado na CGQP de Sherwood, Leva e Eckert - SLE (Figura 11). É utilizado para todos os tipos de recheios, sendo válido para a faixa de queda de pressão entre 80 e 170 mmh2o/m e para valores de X (parâmetro de fluxo) entre 0 e 1,0. =.. (2. 5) Onde: ΔP/Z Queda de pressão (mmh2o/m); 2 PRAHL, W. H. Liquid Density Distorts Packed Column Correlation. Chemical Engineering, 77 (24), 109-112, 1970.

41 Y Ordenada da Figura 11; X Abcissa da Figura 11; m = 35 X + 3; n = 1116 X + 500. Método de Niranjan 3 (1983 apud CALDAS et al., 2003): Não utilizam o fator de caracterização dos recheios (Fp). Possui um erro de 30% e pode ser utilizado para recheios expostos na Tabela 4. P Z = f..ρ G. a ε (2.6) Φ = [,5. +,9.. ε. Re,. μ L μ w, ]. d p, (2.7) Onde: ap Superfície específica do recheio seco (Anexo A); εo - =ε Φt porosidade de operação (admensional); ε Porosidade do recheio seco (Anexo A); Φt Retenção total de líquido no leito recheado, obtido pela equação 2.7; ΔP/Z Queda de pressão específica (Pa/m); f Coeficiente de atrito específico para a equação 2.6, obtido na Tabela 4; 3 NIRANJAN, K. et al. Chem. Eng., 90, 67, 1983.

42 Re d.v L. ρ L μ. ε ; dp Dimensão nominal do recheio (m). Tabela 4 Coeficiente de atrito (f) para utilização na equação 2.6 Tipo de recheio f (admensional) Anel Raschig cerâmico 3,76 Anel Raschig metálico 5,08 Anel Pall plástico e metálico 2,03 Sela Berl cerâmica 1,66 Fonte: CALDAS et al., 2003. Método de Billet e Mackowiak 4 (1984 apud CALDAS et al., 2003) É válido somente para vazões menores que 65% da vazão de inundação e Anéis Pall de plástico e metal. P Z = f. ε ε G d. (2.8) Onde: f Fator de atrito, obtido através da equação 2.10, sendo que para, f = 2,45; ε Porosidade do recheio seco (Anexo A); FG Vazão de gás na forma, V G. ρ G (kg 0,5.m -0.5.s -1 ); dpe = 6.(1- ε)/ap (m); K Fator de parede de Ergun/Bramer obtido na equação 2.9. 4 BILLET, R. E MACKOWIAK, J. J. Fette Seifen Anstrichminel. 86, 342-358, 1984.

43 K = [ +. ε. ] D T (2.9) =., (2.10) =... (2.11) Para vazões maiores que 65% da condição de inundação, deve-se obter a perda de carga pela equação 2.12. =. Φ.. (2. 12) Onde: Φt Retenção total de líquido no leito recheado, obtido pela equação 2.7. Método de Graff 5 (1985 apud CALDAS et al., 2003) Proposto para torres de vácuo e, especialmente, para torres de destilação a vácuo de petróleo. O método pode ser utilizado para os recheios expostos na Tabela 5. =.. (2.13) Onde: = / ; Y, X Constantes da Tabela 5; 5 GRAF, K., Oil & Gas Journal, 20 de maio de 1985.

44 ΔP/z Perda de carga (Pa/m). Tabela 5 Constantes da equação 2.13. Tipo de recheio Y X 40 44,68 12,43 IMTP 50 31,16 22,43 70 16,46 36,76 38 mm (1,5 in) 51,11 7,54 HY-PAK 50 mm (2 in) 39,97 10,14 75 mm (3 in) 25,28 15,15 38 mm (1,5 in) 66,43 6,41 ANÉIS PALL 50 mm (2 in) 48,79 8,56 88 mm (3,5 in) 25,58 15,15 Fonte: CALDAS et al., 2003. 2.5.2.1.3 Gráficos do Fabricante (KOCH GLITSCH, 2010). Figura 14 Gráficos de perda de carga (ΔP) em função de fator de escoamento do gás (Fs) para recheios IMTP #15. Fonte: KOCH GLITSCH, 2010.

45 Figura 15 Gráficos de perda de carga (ΔP) em função de fator de escoamento do gás (Fs) para recheios IMTP #25 Fonte: KOCH GLITSCH, 2010. Figura 16 Gráficos de perda de carga (ΔP) em função de fator de escoamento do gás (Fs) para recheios IMTP #40. Fonte: KOCH GLITSCH, 2010.

46 Figura 17 Gráficos de perda de carga (ΔP) em função de fator de escoamento do gás (Fs) para recheios IMTP #50. Fonte: KOCH GLITSCH, 2010. Figura 18 Gráficos de perda de carga (ΔP) em função de fator de escoamento do gás (Fs) para recheios IMTP #60. Fonte: KOCH GLITSCH, 2010.

47 Figura 19 Gráficos de perda de carga (ΔP) em função de fator de escoamento do gás (Fs) para recheios IMTP #70. Fonte: KOCH GLITSCH, 2010. 2.5.2.2 Cálculo de perda de carga para torres de recheio estruturado 2.5.2.2.1. Método gráfico (CGQP) Em 1991, Kister e Gill 6 (1991 apud CALDAS et al., 2003) publicaram um artigo para resgatar a credibilidade da CGQP, uma vez que estas já estavam sem prestígio. Neste novo trabalho, forem feitos teste com 2400 dados de queda de pressão para recheios estruturados, resultando em uma correlação que conseguia prever bem os dados de perda de carga, onde 40% dos casos o resultado era excelente, 40% era bom, 15% razoável e em apenas 15% o resultado era pobre. Contudo, nesses 15%, a maior parte dos resultados se dava por um erro na determinação de Fp e que os erros eram sistemáticos e não aleatórios. A CGQP em leitos com recheios estruturados está ilustrada na Figura 20. 6 KISTER, H. Z. e GILL, D. R. Predict Flood Point and Pressure Drop for Modern Random Packing. Chemical Engineering Progress, 87 (2) 32-42, 1991.

48 Figura 20 CGQP em leitos com recheios estruturados, proposta por Kister e Gill 7 (1991 apud CALDAS et al., 2003) Fonte: CALDAS et al., 2003. 2.5.2.2.2. Método analítico A queda de pressão em leitos com recheio estruturados pode ser estimada através da correlação de Bravo et al. 7 (1986 apud CALDAS et al., 2003), exposta na equação 2.14. Esta correlação só deve ser usada para sistemas que trabalham abaixo da região de retenção dinâmica de líquido, ou seja, em sistemas onde a retenção de líquido não é afetada pela vazão de gás. Os testes realizados para obtenção dessa correlação tiveram a faixa de fluxo volumétrico de líquido testada em aproximadamente 0.06 m 3 /(m 2.s) e com CSB do gás (o coeficiente de Souders- Brown, baseado na seção transversal total da torre) entre 0.015 e 0.15. Foi identificado um erro de 15% (CALDAS et al., 2003). = [. +... ]... (2.14) 7 BRAVO, J. L. Pressure Drop in Structured Packings Hydrocarbon Processing. 64 (3), 45-48, 1986.

49 =.. ; (2.15) =. in (m/s) (2.16) Onde: ΔP/Z Queda de pressão por unidade de altura de leito recheado (Pa/m); ε Porosidade do recheio estruturado (Anexo B); θ Ângulo de inclinação do canal de escoamento com a horizontal (Figura 21 e ANEXO A); S Comprimento do lado do canal de escoamento (Figura 21 e Tabela 6); C3 Constante do recheio (Tabela 6); Fr Número de Froud para o líquido = VL 2 /S.g Tabela 6 Parâmetros dos recheios estruturados Tipo de recheio Mellapak Gempak Ângulo ( ) S, mm (in) C 3 500Y 4A 45 9 (0,353) 3,38 350Y 3A 45 13 (0,530) 3,87 250Y 2A 45 18 (0,707) 3,08 125Y 1A 45 36 (1,414) 4,5 65Y 0,5A 45 72 (2,828) 7,26 Sulzer BX 60 9 (0,353) 3,38 Fonte: CALDAS et al., 2003. Figura 21 Geometria dos recheios estruturados Fonte: CALDAS et al., 2003.

50 2.5.2.1.4 Gráficos do Fabricante (SULZER, 2010). O método mais preciso para obtenção de perda de carga é através de dados do fabricante. Figura 22 Gráficos de perda de carga (ΔP) em função de fator de escoamento do gás (Fs) para recheios Mellapak 125Y. Fonte: SULZER.

51 Figura 23 Gráficos de perda de carga (ΔP) em função de fator de escoamento do gás (Fs) para recheios Mellapak 170Y. Fonte: SULZER. Figura 24 Gráficos de perda de carga (ΔP) em função de fator de escoamento do gás (Fs) para recheios Mellapak 2Y. Fonte: SULZER.

52 Figura 25 Gráficos de perda de carga (ΔP) em função de fator de escoamento do gás (Fs) para recheios Mellapak 250Y. Fonte: SULZER. 2.5.3 Restrições hidráulicas 2.5.3.1. Inundação ( Flooding ) A destilação é um complexo sistema de escoamento, no qual vapor, com uma pressão suficientemente alta, tem que ser gerado na base da coluna, para vencer o peso da coluna de líquido no recheio, da base até o topo da coluna. O ponto de inundação pode ser definido como a máxima vazão em que uma fase pode fluir em contracorrente com a outra. Qualquer aumento além desse valor resulta em acúmulo de líquido no topo do recheio, o que significa que a coluna atingiu seu estado de inundação (ILIUTA et al., 2014). Ou seja, uma torre com determinado recheio possui um limite superior para a vazão de vapor, chamado de velocidade de inundação. Na condição de inundação há uma forte queda na eficiência do processo e um aumento na perda de carga. A operação de uma coluna em contracorrente próxima ao ponto de inundação é arriscada, uma vez que a hidrodinâmica é

53 instável e transiente (ILIUTA et al., 2014). A interação entre o vapor e o líquido é tão forte que uma operação contracorrente estável já não é possível (GÓRAK; OLUJI, 2014). Segundo ASSAOUI, et al. (2007), para colunas com recheios estruturados é muito difícil ocorrer inundação completa. 2.5.4 Retenção de líquido Durante a operação de destilação o líquido que fica retido em uma torre recheada é chamado de retenção total de líquido (holdup). É constituído pela película que envolve o recheio e também pelo líquido que percorre o espaço vazio entre os recheios. A espessura e a velocidade dessa película serão diferentes em cada ponto. Deve-se esperar também que ocorra estagnação de líquido em determinados pontos (CALDAS, 2007, p. 254). A retenção total de líquido é a somatória da retenção de operação (líquido que percorre a torre através da película líquida) e da retenção estática (após cessado os fluxos de gás e líquido para a torre, é o líquido que não drena). Ou seja, a retenção total de líquido é composta pelo líquido que molha o recheio, o que está retido nas junções por efeito capilar e o que está empoçado no leito (CALDAS, 2007, p. 254). 2.5.4.1 Recheios Randômicos Método de Takahashi = [,5. +,9...,., ]., (2.17) =... (2.18) Onde: Φt Retenção total de líquido (m³ líquido/m³ recheio);

54 dp Dimensão nominal do recheio (m). 2.5.4.2 Recheios Estruturados No desenvolvimento da equação da perda de carga de leitos estruturados, Bravo et al (1985 apud CALDAS et al., 2007) propuseram a equação 2.19 para a previsão da retenção total de líquido. =. (2. 19)

55 3 METODOLOGIA 3.1 Método de pesquisa Essa pesquisa é de natureza aplicada, com abordagem quantitativa e com fim experimental, ou seja, é uma pesquisa que objetiva gerar conhecimentos dirigidos à solução de um problema específico, para aplicação prática, além de ser uma investigação empírica na qual se manipula e controla variáveis independentes e observa as variações que tal manipulação e controle produzem em variáveis dependentes, permitindo a observação e análise de um fenômeno, sob condições determinadas (MORESI, E., 2003). 3.2 Universo (população e amostra) Levando-se em conta que o objetivo da pesquisa é de desenvolver um estudo hidrodinâmico em colunas de destilação com recheio estruturado e randômico, o enfoque não foi no produto a ser analisado. Inicialmente, foi feita a escolha do processo de destilação para simulação em Aspen Plus v. 8.4. Tendo em vista que o objetivo do trabalho foi a realização do estudo hidrodinâmico de um processo de destilação, o enfoque não foi dado na escolha do produto a ser destilado. Com isso, foi escolhida para simulação uma destilação, exposta em manual de treinamento da aspentech (Training manual Aspen Plus : Process Modeling course), entre metanol e água. A destilação utilizada tem seus dados mostrados na Figura 26. Figura 26 Dados da operação de destilação utilizada na simulação em Aspen Plus. Fonte: Training manual Aspen Plus.

56 3.3 Instrumento de coleta de dados Escolha do modelo de equilíbrio líquido-vapor A modelagem termodinâmica é de fundamental importância, uma vez que ela ajusta os desvios de idealidade e torna a simulação mais confiável. Por conta disso, antes de se iniciar a simulação utilizou-se o guia do Aspen Plus v. 8.4 para definição do modelo mais adequado a ser utilizados na modelagem do sistema de destilação escolhido (metanol e água). O método mais adequado, sugerido pelo guia, foi o NRTL-RK, tendo em vista que os componentes estudados são polares, não eletrólitos, a pressão utilizada era menor que 10 bar, os parâmetros de interação estavam disponíveis, não há interação líquido líquido e não há associação entre as fases vapor. O esquema utilizado está descrito na Figura 27, Figura 28 e Figura 29, onde os dados circundados em vermelho foram os escolhidos até chegar ao resultado final. Figura 27 Guia do Aspen Plus v. 8.4 utilizado para seleção do modelo de equilíbrio líquidovapor para posterior execução da simulação. Não eletrólito * Polar E?? Eletrólito Real ELECNRTL PENG-ROB, RK-SOAVE, LK- PLOCK, PR-BM, RKS-BM Apolar R? > 1atm CHAO-SEA, GRAYSON, BK-10 Pseudo e Real P? Vácuo BK-10, IDEAL? Polaridade E? Eletrólito R? Real ou Pseudo-componente P? Pressão *Olhar Figura 28. Fonte: Aspen Plus v. 8.4.

57 Figura 28 Segundo Guia do Aspen Plus v. 8.4 utilizado para seleção do modelo de equilíbrio líquido-vapor para posterior execução da simulação. SIM NTRL, UNIQUAC e suas variâncias SIM LL? Polar, não eletrólito P? P<10 * ij? NÃO SIM LL? NÃO SIM NÃO WILSON, NRTL, UNIQUAC e suas variâncias UNIF-LL UNIFAC, UNIF-LBY, UNIF-DBD SR-POLAR, PRWS, RKSWS, PRMHV2, RKSMHV2 P > 10 bar ij? NÃO PRSK, RKSMHV2 P? Pressão LL? Líquido-Líquido ij? Disponibilidade da interação dos parâmetros *Olhar Figura 29. Fonte: Aspen Plus v. 8.4.

58 Figura 29 Terceiro Guia do Aspen Plus v. 8.4 utilizado para seleção do modelo de equilíbrio líquido-vapor para posterior execução da simulação. HEXÂMEROS WILS-HF DP? SIM WILSON, NRTL, UNIQUAC, UNIFAC VAP? DÍMEROS WILS-NTH, WILS-HOC, NRTL- NTH, NRTL-HOC, UNIQ-NTH, UNIQ-HOC, UNIF-HOC NÃO WILSON, WILS-RK, WILS-LR, WILS-GLR, NRTL, NRTL-RK, NRTL-2, UNIQUAC, UNIQ-RK, UNIQ-2, UNIFAC, UNIF-LL, UNIF-LBY, UNIF-DMD VAP? Associação da fase vapor DP? Graus de polimerização Fonte: Aspen Plus v. 8.4. Inserção dos dados no Aspen Plus. A inserção do modelo de propriedades e os dados dos componentes foram então feitas no Aspen Plus. Foram inseridos os componentes água e metanol, foi adicionado o modelo termodinâmico NRTL-RK e os parâmetros de interação binária do modelo utilizado já estavam disponíveis no banco de dados. Adicionou-se, uma coluna de destilação fracionada (RADFRAC), as características da corrente de alimentação (Fração mássica, vazão mássica, temperatura e pressão) e os dados da coluna (número de estágios, estágio de alimentação, tipo de condensação, pressão de topo, vazão mássica de destilado e razão de refluxo), como expostos na Figura 30 e Figura 31, respectivamente.

59 Figura 30 Dados inseridos no Aspen Plus da corrente de alimentação (Fração mássica, vazão mássica, temperatura e pressão). Fonte: Aspen Plus v. 8.4. Figura 31 - Dados da coluna inseridos no Aspen Plus (número de estágios, estágio de alimentação, tipo de condensação, pressão de topo, vazão mássica de destilado e razão de refluxo). Fonte: Aspen Plus v. 8.4. Primeira simulação obtenção de perfil hidrodinâmico da coluna e diâmetro da coluna. Para a realização da análise hidrodinâmica de todos os recheios era necessário ter todas as características dos recheios e da coluna, contudo, os valores das alturas equivalentes a um prato teórico (HETP) de cada recheio e o diâmetro da coluna não eram conhecidos. Com isso, para cálculo dos HETP s e do diâmetro da coluna foi feita uma primeira simulação, com avaliação (Rating Packing) e dimensionamento de recheio (Sizing Packing).

60 A avaliação do recheio (Rating Packing) permitiu obter o perfil hidrodinâmico da coluna, que disponibilizou dados para o cálculo do fator de escoamento do gás (Fs) e que, posteriormente, possibilitou a obtenção dos HETP s dos recheios, através de análises de gráficos de HETP em função de Fs (ANEXO C e ANEXO D), disponibilizados pelos fornecedores (método mais confiável). O recheio utilizado nessa primeira simulação no Rating Packing foi o IMTP #50, considerando-se uma altura de 15 m. Isso pode ser feito especificamente com apenas um recheio, pois todos resultavam em perfis hidráulicos idênticos. O dimensionamento de recheio (Sizing Packing). foi feito, na primeira simulação, com o intuito de se obter o diâmetro da coluna. Simulações finais análise hidrodinâmica de cada recheio. Conhecendo-se todas as características dos recheios e da coluna, foram feitas novas simulações, com avaliação hidrodinâmica de cada um dos recheios. Com isso, foram obtidas as perdas de carga e as retenções de líquido, calculadas pelo Aspen Plus, e o perfil hidráulico da coluna, que permitiu posteriormente a realização de cálculos, utilizando-se os métodos gráficos e analíticos, para obtenção de perda de carga e retenção de líquido. Recheios analisados Os recheios analisados foram aqueles com disponibilidade de análise em Aspen Plus e os que tinham gráficos para cálculo de HETP disponibilizados pelo fornecedor. Além disso, com os cálculos sendo realizados, notou-se a ausência de dados de caracterização dos recheios, ou mesmo dados de constantes necessárias para utilização de métodos analíticos de análise de perda de carga, sendo necessário restringir ainda mais o número de recheios analisados. Os recheios estudados foram: IMTP #40 e IMTP #50, Mellapak 125Y, Mellapak 170Y, Mellapak 2Y e Mellapak 250Y. As características dos recheios (Tabela 7) foram inseridas conforme mostrado na Figura 32.

61 Tabela 7 Características dos recheios utilizados para análise hidrodinâmica. Parâmetros IMTP MELLAPAK #40 #50 250Y 2Y 170Y 125Y a p (m²/m³) 151 98 250 223 170 125 ε % 97,00% 98,00% 99,00% 99,00% 99,00% 98,00% Ângulo ( ) - - 45 45 45 45 F p (m²/m³) 79 59 66 46 39 33 Fonte: KISTER, 1992. Figura 32 Características do recheio inserido no Aspen Plus, para análise hidrodinâmica. Fonte: Aspen Plus v. 8.4. 3.4 Análise dos dados Com as simulações da coluna de retificação (RADFRAC), considerando os recheios, foram obtidos resultados de perda de carga e retenção total de líquido, assim como parâmetros hidráulicos como temperatura da fase líquida e gasosa, vazão mássica da fase líquida e gasosa, vazão volumétrica da fase líquida e gasosa, densidade da fase líquida e gasosa e viscosidade da fase líquida e gasosa. Os parâmetros hidráulicos obtidos foram utilizados para cálculo de perda de carga, retenção total de líquido e razão de molhamento utilizando-se métodos gráficos e analíticos (quando possível). Os resultados obtidos por simulação e os obtidos por cálculos foram comparados.

62 4 RESULTADO E DISCUSSÃO 4.1 Primeira simulação A primeira simulação foi feita para obtenção do perfil hidráulico e do diâmetro da coluna. O diâmetro da coluna, obtido pela seção de dimensionamento de recheio (Sizing Packing), foi de 2,2 m. O perfil hidráulico obtido, após avaliação (Rating Packing) do recheio IMTP #50, com 15 m de altura, está exposto na Tabela 8 e na Tabela 9. Os valores em negritos são as médias de todos os estágios, calculadas para cada parâmetro hidráulico. Essas médias foram os valores utilizados para posterior cálculo de perda de carga, retenção total de líquido e razão de molhamento.

63 Tabela 8 Perfil hidráulico da coluna de destilação obtido com a primeira simulação. Estágio T L T G W L W G Q L Q G ( C) ( C) (kg/h) (kg/h) (m³/h) (m³/h) 1 66,88 66,88 41612,49 41612,49 56,16 32591,91 2 66,88 66,89 23513,39 41605,77 31,73 32591,42 3 66,89 66,91 23504,10 41596,49 31,72 32590,75 4 66,91 66,93 23491,28 41583,67 31,70 32589,82 5 66,93 66,95 23473,56 41565,95 31,67 32588,54 6 66,95 66,99 23449,09 41541,48 31,63 32586,76 7 66,99 67,04 23415,29 41507,68 31,58 32584,30 8 67,04 67,11 23368,62 41461,00 31,51 32580,88 9 67,11 67,21 23304,20 41396,59 31,41 32576,15 10 67,21 67,34 23215,33 41307,72 31,28 32569,55 11 67,34 67,52 23092,81 41185,20 31,09 32560,36 12 67,52 67,78 22924,10 41016,48 30,83 32547,49 13 67,78 68,13 22692,22 40784,61 30,48 32529,40 14 68,13 68,61 22374,54 40466,93 30,00 32503,86 15 68,61 69,28 21933,44 40025,82 29,32 32460,79 16 69,28 70,20 21347,18 39439,57 28,42 32407,22 17 70,20 71,44 20577,43 38669,81 27,23 32338,61 18 71,44 73,07 19587,37 37679,75 25,70 32244,63 19 73,07 75,10 18385,77 36478,15 23,82 32128,04 20 75,10 77,42 17042,82 35135,20 21,71 31987,32 21 77,42 79,69 15753,42 33845,81 19,65 31856,36 22 79,69 81,52 14732,94 32825,33 18,01 31765,76 23 81,52 82,73 14064,83 32157,23 16,93 31716,82 24 82,73 82,73 67810,92 31472,22 80,82 31038,11 25 82,73 82,73 67811,13 31472,43 80,82 31038,61 26 82,73 82,73 67811,28 31472,59 80,82 31038,63 27 82,73 82,73 67811,22 31472,55 80,82 31038,57 28 82,73 82,73 67810,97 31472,32 80,82 31038,53 29 82,73 82,73 67810,50 31471,86 80,82 31038,48 30 82,73 82,73 67809,06 31470,42 80,82 31038,36 31 82,73 82,74 67805,03 31466,37 80,81 31038,11 32 82,74 82,76 67793,93 31455,24 80,79 31037,52 33 82,76 82,82 67763,71 31425,01 80,74 31036,07 34 82,82 82,97 67681,63 31342,93 80,61 31032,22 35 82,97 83,39 67461,09 31122,40 80,25 31022,11 36 83,39 84,48 66887,73 30549,06 79,31 30997,74 37 84,48 87,06 65522,91 29184,23 77,07 30952,71 38 87,06 91,89 62902,56 26563,87 72,74 30938,49 39 91,89 97,76 59620,60 23281,91 67,23 31173,54 40 97,76 97,76 36338,70 0,00 40,14 0,00 Média 76,11 76,89 40282,73 34789,60 49,48 31034,86

64 Tabela 9 Perfil hidráulico da coluna de destilação obtido com a primeira simulação. Estágio ρ L ρ G µ L µ G σ L (kg/m³) (kg/m³) (cp) (cp) (N/m) 1 741,01 1,28 3,37E-01 1,10E-02 0,02 2 741,03 1,28 3,37E-01 1,10E-02 0,02 3 741,07 1,28 3,37E-01 1,10E-02 0,02 4 741,12 1,28 3,37E-01 1,10E-02 0,02 5 741,19 1,28 3,37E-01 1,10E-02 0,02 6 741,29 1,28 3,37E-01 1,10E-02 0,02 7 741,42 1,27 3,37E-01 1,10E-02 0,02 8 741,61 1,27 3,38E-01 1,10E-02 0,02 9 741,87 1,27 3,38E-01 1,10E-02 0,02 10 742,24 1,27 3,38E-01 1,10E-02 0,02 11 742,75 1,27 3,38E-01 1,10E-02 0,02 12 743,47 1,26 3,38E-01 1,10E-02 0,02 13 744,49 1,25 3,39E-01 1,10E-02 0,02 14 745,94 1,25 3,39E-01 1,10E-02 0,02 15 748,03 1,23 3,40E-01 1,10E-02 0,02 16 751,08 1,22 3,41E-01 1,10E-02 0,03 17 755,57 1,20 3,42E-01 1,10E-02 0,03 18 762,19 1,17 3,43E-01 1,20E-02 0,03 19 771,84 1,14 3,43E-01 1,20E-02 0,04 20 785,21 1,10 3,42E-01 1,20E-02 0,04 21 801,62 1,06 3,40E-01 1,20E-02 0,04 22 818,02 1,03 3,36E-01 1,20E-02 0,05 23 830,90 1,01 3,32E-01 1,20E-02 0,05 24 839,04 1,01 3,30E-01 1,20E-02 0,05 25 839,04 1,01 3,30E-01 1,20E-02 0,05 26 839,04 1,01 3,30E-01 1,20E-02 0,05 27 839,04 1,01 3,30E-01 1,20E-02 0,05 28 839,04 1,01 3,30E-01 1,20E-02 0,05 29 839,04 1,01 3,30E-01 1,20E-02 0,05 30 839,05 1,01 3,30E-01 1,20E-02 0,05 31 839,07 1,01 3,30E-01 1,20E-02 0,05 32 839,12 1,01 3,29E-01 1,20E-02 0,05 33 839,25 1,01 3,29E-01 1,20E-02 0,05 34 839,63 1,01 3,29E-01 1,20E-02 0,05 35 840,66 1,00 3,29E-01 1,20E-02 0,05 36 843,37 0,99 3,28E-01 1,20E-02 0,05 37 850,18 0,94 3,25E-01 1,20E-02 0,05 38 864,82 0,86 3,18E-01 1,20E-02 0,05 39 886,80 0,75 3,03E-01 1,30E-02 0,06 40 905,31-2,86E-01-0,06 Média 795,91 1,12 0,33 0,01 0,04

65 Considerando-se um diâmetro da coluna de 2,2 m, calculou-se (equação 2.20) a área da seção transversal da coluna (Tabela 10): = (2.20) Onde: A Área da seção transversal da coluna (m²); D Diâmetro da coluna (m). Tabela 10 Cálculo da área da seção transversal da coluna. Parâmetro Valor D (m) 2,22 A (m²) 3,87 4.2 Cálculo do HETP Após obtenção do perfil hidráulico, utilizou-se a vazão volumétrica de vapor e densidade do vapor para cálculo do Fs, conforme ilustrado na Tabela 10. O Fs obtido foi de 2,379 Pa 0,5. Tabela 11 Cálculo para obtenção do Fator de escoamento do gás (Fs). Parâmetro Valor ρ G (kg/m³) 1,08 Q G (m³/h) 31921,8 V G (m/s) 2,289 F s (Pa 0.5 ) 2,379 A vazão de vapor da Tabela 11 foi calculada segundo a equação 2.21. = (2.21)

66 Com o valor de Fs (abscissa dos gráficos) obteve-se o HETP (ordenada dos gráficos) de cada recheio, através de análise dos gráficos dos fabricantes Koch- Glitsch (ANEXO C) e Sulzer (ANEXO D). Os resultados das análises gráficas estão expostos na Tabela 12. Tabela 12 Resultados dos HETP s dos recheios obtidos por análise dos gráficos dos fabricantes. Recheio HETP (m) IMTP #40 0,4 IMTP #50 0,53 Mellapak 125 Y 0,78 Mellapak 170 Y 0,5 Mellapak 2 Y 0,43 Mellapak 250 Y 0,38 4.3 Análise hidrodinâmica dos recheios A Tabela 13 mostra os resultados das análises hidrodinâmicas realizada no simulador Aspen Plus v. 8.4, para cada um dos recheios citados na Tabela 12. Os dados destacados em negrito são os resultados de perda de carga e retenção total de líquido para os recheios: IMTP #40, IMTP #50, Mellapak 125Y, Mellapak 170Y, Mellapak 2Y e Mellapak 250Y. Tabela 13 - Resultados da análise hidrodinâmica realizada no Aspen Plus (perda de carga e retenção total de líquido) para os recheios IMTP #40 e IMTP #50, Mellapak 125Y, Mellapak 170Y, Mellapak 2Y e Mellapak 250Y. Recheios Z HETP ΔP ΔP/Z Retenção de líquido φt (m) (m) (Pa) (Pa/m) (m³) (m³ líq/m³ recheio) IMTP #50 19,61 0,53 5319 264,1 2,218 0,029 IMTP #40 14,8 0,4 5473 360,07 1,96 0,034 Mellapak 125Y 28,86 0,78 2332,3 78,686 2,074 0,019 Mellapak 170Y 18,5 0,5 2168,9 114,15 1,807 0,025 Mellapak 2Y 15,91 0,43 2332,7 142,76 1,795 0,029 Mellapak 250Y 14,06 0,38 2904,6 201,15 1,887 0,035

67 A Tabela 14 mostra os parâmetros hidrodinâmicos utilizados para cálculo de perda de carga, retenção total de líquido e razão de molhamento para o método analítico e o método gráfico de correlação generalizada de queda de pressão. A Tabela 15 contém valores em negrito que representam os resultados dos cálculos de perda de carga, retenção total de líquido e razão de molhamento. O método analítico utilizado para cálculo da perda de carga e retenção total de líquido foi a correlação de Bravo e a razão de molhamento foi calculada utilizando-se a equação equação 2.2. Para a retenção total de líquido foram obtidos resultados para os recheios Mellapak 125Y, Mellapak 170Y, Mellapak 2Y e Mellapak 250Y. Contudo, para a perda de carga foram obtidos resultados apenas para os recheios Mellapak 125Y e Mellapak 250Y, tendo em vista que o método de Bravo é limitado no que se refere às constantes utilizadas para cada recheio (Tabela 6), ou seja, as constantes C3 e o valor S (comprimento do lado do canal do escoamento). Com relação aos recheios randômicos utilizados (tipo IMTP), não foi possível utilizar os métodos analíticos para obtenção de perda de carga dos recheios IMTP #40 e IMTP #50, o que ocorreu devido a ausência de dados de constantes utilizadas nos cálculos de obtenção da perda de carga dos recheios IMTP. Contudo, foi possível calcular a razão de molhamento (equação 2.2) e a retenção total de líquido (Método de Takahashi). Os resultados estão expostos na Tabela 16. Os dados destacados em negrito são os resultados de retenção total de líquido e razão de molhamento para os recheios: IMTP #40 e IMTP #50.

68 Tabela 14 Parâmetros hidrodinâmicos utilizados para cálculo de perda de carga, retenção total de líquido e razão de molhamento para o método analítico e o método gráfico de CCQP. Fase W (kg/h) Q (m³/h) µ (cp) ρ (kg/m³) V (m/s) L' e G' (kg/(m²s) L'' e G'' (m³/h/m²) A (m²) Líquida 40282.73 49.48 0.33 795.91 4.00E-03 2.89 12.77 Gasosa 34789.60 31034.86 1.20E-02 1.12 2.23 2.50 2.23 3.87 Tabela 15 - Resultados da análise hidrodinâmica realizada por método analítico correlação de Bravo - (perda de carga, retenção total de líquido e razão de molhamento) para os recheios Mellapak 125Y, Mellapak 170Y, Mellapak 2Y e Mellapak 250Y. Recheio G e (m/s) Re G Cálculo de perda de carga Fr ΔP/z (Pa/m) ΔP/z (mmh 2O/m) ΔP/z (inh 2O/ft) φ t (m³ líq/m³ recheio) MW (m³/m.s) Mellapak 125Y 3,21 11082,23 3,57E-05 65,84 6,71 0,08 2,70E-02 2,84E-05 Mellapak 170Y - - - - - - - 2,09E-05 Mellapak 2Y - - - - - - - 1,69E-05 Mellapak 250Y 3,18 5541,11 7,14E-05 126,09 12,86 0,15 2,60E-02 1,42E-05

69 Tabela 16 - Resultados da análise hidrodinâmica realizada por método analítico, para obtenção de retenção total de líquido (método de Takahashi) e razão de molhamento para os recheios IMTP #40 e IMTP #50. Re L Parâmetros Valores ρ L (kg/m³) 795,911 µ L (Pa.s) 3,33E-04 µ w (Pa.s) 3,74E-04 V L (m/s) φt (m³ líq/m³ recheio) MW (m³/m.s) 4,00E-03 IMTP #50 433,20 IMTP #40 350,20 IMTP #50 5,77E-02 IMTP #40 7,47E-02 IMTP #50 IMTP #40 3,62E-05 2,35E-05 O valor da viscosidade da água (µw) foi necessário para cálculo da retenção total de líquido dos recheios IMTP #40 e IMTP #50, como pode ser visto na Tabela 16. O cálculo foi realizado através da equação 2.22 (SENGERS e WATSON, 1992) para a temperatura (T) de cada estágio da coluna (T em K), obtendo-se ao final um valor médio de viscosidade dinâmica da água. = [, +, +, +(,. 9 ) ] (2.22) A Tabela 17 refere-se aos resultados de perda de carga (destacados em negrito) obtidos com as análises dos gráficos de correlação (CGQP) de Kister e Gill, para os recheios Mellapak 125Y, Mellapak 170Y, Mellapak 2Y e Mellapak 250Y. Tabela 17 Resultados de perda de carga obtidos com análise da CGQP de Kister e Gill, para os recheios Mellapak 125Y, Mellapak 170Y, Mellapak 2Y e Mellapak 250Y. Recheio X (C SB) inundação (m/s) C SB (m/s) C SB (ft/s) ν (cst) C SB.F P 0,5.ν 0,05 ΔP/z (Pa/m) Mellapak 125Y 1,51 163,44 Mellapak 170Y 1,64 196,13 0,04 0,10 0,08 0,27 0,42 Mellapak 2Y 1,78 269,68 Mellapak 250Y 2,13 343,23

70 Para os recheios IMTP #40 e IMTP #50 foram realizadas análises gráficas utilizando-se a CGQP de Strigle, correlação mais atual e adequada se comparada com as outras. Os resultados de perda de carga (destacados em negrito) obtidos por análises gráficas estão expostos na Tabela 18. Tabela 18 Resultados de perda de carga obtidos com análise da CGQP de Strigle, para os recheios IMTP #40 e IMTP #50. Recheio X (C SB) inundação (m/s) C SB (m/s) C SB (ft/s) ν (cst) C SB.F P 0,5.ν 0,05 ΔP/z (Pa/m) IMTP #50 0,04 0,10 0,08 0,27 0,42 2,01 204,31 IMTP #40 2,33 367,75 A Tabela 19 mostra os resultados das perdas de carga (destacados em negrito) obtidos por análise dos gráficos de perda em carga em função do fator de escoamento do gás (Fs) disponibilizados pelos fabricantes (Sulzer para os recheios Mellapak 125Y, Mellapak 170Y, Mellapak 2Y e Mellapak 250Y e Koch Glitsch para os recheios IMTP #40 e IMTP #50). Tabela 19 Resultados de perda de carga obtidos por análises de gráficos fornecidos pelos fabricantes (Sulzer para os recheios Mellapak 125Y, Mellapak 170Y, Mellapak 2Y e Mellapak 250Y e Koch Glitsch para os recheios IMTP #40 e IMTP #50). Recheio Mellapak 125Y ρ G (kg/m³) Q G (m³/h) V G (m/s) F s (Pa 0.5 ) ΔP/z (Pa/m) Mellapak 170Y 127 Mellapak 2Y 147 1,12 31034,86 2,23 2,35 Mellapak 250Y 250 IMTP #50 185 IMTP #40 300 77 Por fim, resumindo todos os resultados obtidos com o estudo hidrodinâmico temse a Tabela 20.

71 Tabela 20 Resultado de todos os métodos utilizados para análise hidrodinâmica da coluna em estudo. Método utilizado Recheio HETP (m) ΔP/z (Pa/m) ΔP (Pa) φ t (m³ líq/m³ recheio) MW (m³/m.s) Simulação Aspen Método analítico Método CGQP Método gráfico do Fabricante IMTP #40-360,07 5473,01 0,03 - IMTP #50-264,10 5319,05 0,03 - Mellapak 125Y - 78,69 2332,27 0,02 - Mellapak 170Y - 114,15 2168,94 0,03 - Mellapak 2Y - 142,76 2332,71 0,03 - Mellapak 250Y - 201,15 2904,60 0,04 - IMTP#40 - - - 0,08 2,35E-05 IMTP #50 - - - 0,06 3,62E-05 Mellapak 125Y - 65,84 1900,10 0,03 2,84E-05 Mellapak 170Y - - - - 2,09E-05 Mellapak 2Y - - - - 1,69E-05 Mellapak 250Y - 126,09 1772,77 0,03 1,42E-05 IMTP #40-367,75 5442,69 - - IMTP #50-204,31 4006,43 - - Mellapak 125Y - 163,44 4717,00 - - Mellapak 170Y - 196,13 3628,46 - - Mellapak 2Y - 269,68 4290,66 - - Mellapak 250Y - 343,23 4825,85 - - IMTP #40 0,40 300,00 4440,00 - - IMTP #50 0,53 185,00 3627,85 - - Mellapak 125Y 0,78 77,00 2222,22 - - Mellapak 170Y 0,50 127,00 2349,50 - - Mellapak 2Y 0,43 147,00 2338,77 - - Mellapak 250Y 0,38 250,00 3515,00 - - Pode-se perceber que o método analítico foi aplicado de forma bastante limitada, ou seja, apenas para os recheio Mellapak 125 Y e 250 Y, o que ocorreu devido ao fato de não existirem métodos para recheios do tipo IMTP, com exceção de casos onde a destilação é à vácuo. Para os outros recheios do tipo Mellapak (170Y e 2Y) não foi utilizado método analítico para cálculo, pois o único método disponibilizado pela literatura para cálculo de perda de carga de recheios estruturados (Correlação de Bravo) não disponibiliza valores da constante C3 e do comprimento do lado do canal de escoamento (S) para estes recheios.

Perda de carga/z (Pa/m) 72 Com relação à perda de carga (Pa/m), pode-se verificar, com a análise dos resultados expostos na Tabela 20, que os recheios IMTP apresentaram valores maiores de perda de carga se comparados com os recheios Mellapak. Contudo, essa tendência pode ser visualizada apenas com a análise realizada em Aspen Plus e com o método gráfico utilizando-se gráficos (ΔP x FS) fornecidos pelos Fabricantes. No método CGQP isso não pode ser visto para o recheio IMTP #40, o que pode ter ocorrido devido aos erros intrínsecos do método, como imprecisões inerentes a um método gráfico, interpolações difíceis entre as linhas de queda de pressão constante e, principalmente, por serem correlações demasiadamente generalizadas. A queda de pressão dos recheios pode estar relacionada com a retenção total de líquido, ou seja, quanto maior a retenção de líquido, maior a perda de carga, como pode ser visto na Figura 33. Além disso, está relacionada com o fator de caracterização do recheio, conforme Figura 34. Figura 33 Gráfico de perda de carga (Pa/m) de cada recheio em função da retenção total de líquido (m³/m³.s) obtidas do Aspen Plus. 400,000 350,000 300,000 250,000 200,000 150,000 Perda de carga (Pa/m) em função de Retenção total de líquido (m³/m³.s) 264,104 360,066 201,149 100,000 50,000 142,761 114,154 78,686 0,000 0,015 0,020 0,025 0,030 0,035 0,040 φt (m³ líq/m³ recheio) IMTP Mellapak

Perda de carga/z (Pa/m) Perda de carga/z (Pa/m) 73 Figura 34 Relação entre a perda de carga dos recheios estudados e o fator de caracterização de cada recheio (FP). 350,000 300,000 250,000 200,000 150,000 100,000 50,000 0,000 Relação entre ΔP/Z e o F P 250,000 147,000 185,000 127,000 77,000 300,000 0 20 40 60 80 100 Fp (1/m) Recheios Mellapak 125Y, 2Y, 170Y, 250Y Recheios IMTP#40 e IMTP#50 Polinômio (Recheios Mellapak 125Y, 2Y, 170Y, 250Y) Polinômio (Recheios IMTP#40 e IMTP#50) Na Figura 35, pode-se notar uma proximidade entre os valores obtidos no Aspen Plus e os valores obtidos por análise dos gráficos dos Fabricantes. Contudo, esses valores divergem um pouco para os recheios IMTP, o que pode estar relacionado com a ausência de uma linha de pressão entre 900 mbar e 1242 mbar, uma vez que a pressão do sistema era de 1241 mbar, resultando em valores de queda de pressão um pouco imprecisos. Figura 35 Análise comparativa das perdas de carga obtidas no Aspen Plus, por CGQP e por gráficos dos fabricantes para todos os recheios analisados. 400 350 300 250 200 150 100 50 0 Análise comparativa de perda de carga dos métodos utilizados IMTP#40 IMTP#50 Mellapak 250Y Mellapak 2Y Mellapak Mellapak 170Y 125Y Simulação Aspen Método CGQP Método gráfico do Fabricante

WR (m³/m.s) WR (m³/m.s) 74 Com relação ao grau de molhamento, os recheios IMTP obtiveram um grau de molhamento (WR) acima do grau de molhamento mínimo (MWR), como pode ser visto na Figura 36, o que indica a utilização mais eficiente do recheio. Contudo, para os recheios Mellapak, o grau de molhamento ficou abaixo do grau de molhamento mínimo, como pode ser visto na Figura 37, indicando uma não eficiência dos recheios, uma vez que há áreas secas decorrentes que não contribuem para a transferência de massa do sistema. Figura 36 Gráfico do grau de molhamento (WR) para os recheios IMTP. 4,000E-05 3,500E-05 Grau de molhamento dos recheios IMTP 3,000E-05 2,500E-05 2,000E-05 Grau de molhamento dos recheios IMTP Grau de molhamento mínimo (MW) 1,500E-05 IMTP#40 Recheio IMTP#50 Figura 37 - Gráfico do grau de molhamento (WR) para os recheios Mellapak. 3,500E-05 3,000E-05 Grau de molhamento dos recheios Mellapak 2,500E-05 2,000E-05 1,500E-05 1,000E-05 Mellapak 250Y Mellapak 2Y Recheio Mellapak 170Y Mellapak 125Y Grau de molhamento dos recheios Mellapak Grau de molhamento mínimo (MW)

75 5 CONCLUSÃO O método analítico não apresentou possibilidades de uso para destilação à pressão positiva, utilizando-se o recheio randômico IMTP. Por outro lado, os métodos analíticos puderam ser utilizados para os recheios Mellapak, mais ainda assim com restrições, uma vez que no cálculo de perda de carga e retenção total de líquido estavam envolvidos valores da constante C3 e do comprimento do lado do canal de escoamento, sendo que estes estão disponíveis apenas para recheios estruturados Mellapak 125Y e Mellapak 250Y (dentre os recheios analisados). Comparando-se os outros métodos de obtenção de perda de carga e retenção total de líquido, pode-se notar uma proximidade entre os resultados. Sendo assim, os métodos de obtenção de perda de carga e retenção total de líquido por gráficos dos fabricantes e pelo Aspen Plus podem ser considerados os mais precisos, tendo em vista que não utilizam dados generalizados para todos os recheios. As perdas de cargas para o recheio do tipo IMTP #40 foram as maiores, dentre todos os recheios analisados, o que pode estar relacionado com elevado valor do fator de caracterização do recheio (Fp=79) e, consequentemente, com a área superficial e porosidade. Os recheios possuem uma relação polinomial crescente entre a perda de carga e o fator de caracterização do recheio, ou seja, quanto maior a perda de carga, maior o Fp.

76 REFERÊNCIAS Aspen Plus. Aspen Plus User Guide, Cambridge, MA: Aspen Technology, Inc, 2000. Disponível em: <http://web.ist.utl.pt/ist11038/acad/aspen/aspuserguide10.pdf>. Acesso em: 18 Apr. 2015. ASSAOUI, M.; BENADDA, B.; OTTERBEIN, M. Distillation under High Pressure: A Behavioral Study of Packings. Chemical Engineering & Technology, Lyon, v. 30, n.6, Feb. 2007. CALDAS, J. N.; LACERDA, A. I; VELOSO, E; PASCHOAL, L. C. M. Internos de Torres: Pratos e Recheios. Rio de Janeiro: EdUERJ, 2003. ARMAREGO, W. L. F.; PERRIN, D. D. Purification of Laboratory Chemicals. 4th ed. Oxford: Butterworth-Heinemann, 1996. Disponível em: <http://app.knovel.com/hotlink/toc/id:kpplce0001/purification-laboratory- 3/purification-laboratory-3>. Acesso em: 26 Mar. 2015. GÓRAK, A.; OLUJI, Z. Distillation: Equipament and Processes. Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo: Academic Press, 2014. Disponível em: <http://app.knovel.com/hotlink/pdf/id:kt00u6ryc3/distillation-equipment/distillatistructured>. Acesso em: 10 Apr. 2015. GREEN, D. W.; PERRY, R. H. Perry s Chemical Engineers Handbook. United States: McGraw-Hill, 2007. ILIUTA, I.; LARACHI, F.; FOURATI, M.; RAYNAL, L.; ROIG, V. Flooding limit in countercurrent gas-liquid structured packed beds Prediction from a linear stability analysis of na Eulerian two fluid model. Québec, Canada: Elsevier, 2014. KISTER, H. Z. Distillation Design. Alhambra, CA: McGraw-Hill, 1992.

77 KISTER, H. Z.; SCHERFFIUS, J.; AFSHAR, K.; ABKAR, E. Realistically Predict Capacity and Pressure Drop for Packed Columns. CEP Magazine. [S.I.]: July 2007. Disponível em: <http://people.clarkson.edu/~wwilcox/design/packdcol.pdf>. Acesso em: 27 Mai 2015. KOCH-GLITSCH. IMTP High Performance Packing. Disponível em:< http://www.koch-glitsch.com/document%20library/kgimtp.pdf >. Acesso em: 14 ago. 2015. KOLEV, N. et al. Packed Bed Columns: For absorption, desorption, rectification and direct heat transfer. Amsterdam; Boston: Elsevier, 2006. Disponível em: <http://app.knovel.com/hotlink/toc/id:kppbcfadr1/packed-bed-columnsabsorption/packed-bed-columns-absorption>. Acesso em: 10 Apr. 2015. LEVA, M. Tower Packings and Packed tower Design. 2a ed. Akron, Ohio: The United States Stoneware Copany, 1953. MORESI, E. Metodologia da Pesquisa. Brasília: Universidade Católica de Brasília UCB, 2003. RICHARDSON, J. F.; HARKER, J. H.; BACKHURST, J. R. Chemical Engineering: Particle Technology and Separation Processes. 2a ed. [S.I.]: Elsevier, 2002. v.2. Disponível em: <http://app.knovel.com/hotlink/toc/id:kpcrcevpt2/coulson-richardsons-chemical- 3/coulson-richardsons-chemical-3>. Acesso em: 26 May 2015. ROBINSON, C. S.; GILLILAND, E. R. Elements of Fractional Distillation. 4th ed. New York; Toronto; London: McGraw-Hill Book Company, 1950. (Chemical Engineering Series). ROITMAN, V. Curso de Formação de Operadores de Refinaria: operações unitárias. Curitiba: Petrobras, 2002.

78 SENGERS, J.V.; WATSON, J.R.; Improved International Formullations for the Viscosity and Thermal Conductivity of Water Substance. J. Phys. Chem. Ref. SULZER. Mellapak and MellapakPlus. Disponível em: <https://www.sulzer.com/pt/products-and-services/separation- Technology/Structured-Packings/Mellapak-MellapakPlus-Mellapak-Plastic>. Acesso em: 03 Apr. 2015. TOWLER, G.; SINNOTT, R. K. Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design. 2nd ed. Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo: Butterworth-Heinemann, 2013. Disponível em: <http://app.knovel.com/hotlink/pdf/id:kt00anudb3/chemicalengineering/separation-columns-distillation>. Acesso em: 05 Apr. 2015. ZAKERI, A.; EINBU, A.; SVENDSEN, H. F. Experimental investigation of pressure drop in structure packings. Chemical Engineering Science.Trondheim, Norway: Elsevier, 2012.

79 ANEXOS ANEXO A Características dos recheios randômicos Fonte: GREEN e PERRY, 2007.

80 ANEXO B Características dos recheios estruturados e grades Fonte: GREEN e PERRY, 2007.

81 ANEXO C Gráfico de altura equivalente a um prato teórico (HETP) em função do fator de escoamento do gás (Fs) para os recheios do tipo IMTP. Fonte: KOCH GLITSCH, 2010.

82 ANEXO D Gráficos de altura equivalente a um prato teórico (HETP) em função do fator de escoamento do gás (Fs) para os recheios do tipo Mellapak. Fonte: SULZER. Fonte: SULZER.

83 Fonte: SULZER. Fonte: SULZER.