TECNOLOGIA E ECONOMIA DOS TRANSPORTES. Aula 03 Elementos de Programação Semafórica

Documentos relacionados
O cálculo do entreverdes conforme o Manual Brasileiro de Sinalização de Trânsito

Universidade Presbiteriana Mackenzie Escola de Engenharia Depto. de Engenharia Civil 1 0 semestre de Aula 7. Sinalização semafórica: definições

Departamento de Eng. Produção. Engenharia de Tráfego

Aula 11. Sinalização semafórica: programação semafórica

Aula 8. Sinalização semafórica: programação semafórica

Aula 11. Sinalização semafórica: programação semafórica

SINALIZAÇÃO SEMAFÓRICA

Curso de Engenharia Civil

Com lente seta* Figura 1 - Indicações luminosas em semáforos

PLANO DE PROGRAMAÇÃO DE SEMÁFOROS ELETRÔNICOS PARA A CIDADE DE BOTUCATU

Curso de Engenharia Civil

Cálculo do ciclo de verdes ótimos quando o fluxo de saturação não é constante

Aula 17. Sinalização semafórica: exercícios sobre programação semafórica (cont.)

tempo de amarelo tempo de vermelho de segurança tempo de verde mínimo de estágio tempo de pedestres

TADEU DINIZ CORREIA DE AQUINO ANÁLISE DA INTERSEÇÃO SEMAFORIZADA FORMADA PELAS AV. PRUDENTE DE MORAIS E AV. AMINTAS BARROS

SP 05/94 NT 174/94. Reprogramação de semáforos: Método baseado em observação de campo. Engº Sergio Ejzenberg

MOBILIDADE E SISTEMAS DE TRANSPORTES PLANEJAMENTO DA OFERTA DE. Prof. Dr. Daniel Caetano

ENGENHARIA CIVIL E AMBIENTE. OS TRANSPORTES Aula 2

GRUPO COM 04 PESSOAS

Objectivos do Plano de Semaforização

USO DA DISTRIBUIÇÃO PROBABILÍSTICA DOS FLUXOS VEICULARES NO CÁLCULO DA PROGRAMAÇÃO DE UM SEMÁFORO A TEMPO FIXO MODO ISOLADO.

Prof. Vinícius C. Patrizzi ESTRADAS E AEROPORTOS

04/09/2014. Curso de Engenharia Civil

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES Prof. Responsável: José Manuel Viegas

UNICAP Universidade Católica de Pernambuco Prof. Eduardo Oliveira Estradas 1

TRABALHO 2 E 3. Profa.Márcia de Andrade Pereira Bernardinis

Noções de Topografia Para Projetos Rodoviarios

Aula 22. A travessia de pedestres em semáforos

Movimento retilíneo uniformemente

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES Prof. Responsável: José Manuel Viegas

Proposta de Medidas e Critérios Para Adequação da Sinalização Semafórica nos Períodos Noturno e de Tráfego Reduzido

UM PARADOXO NAS TRAVESSIAS SEMAFORIZADAS DE PEDESTRES

Departamento de Transportes Engenharia de Tráfego TT056 DIVIDIR EM 8 GRUPOS 5 GRUPOS COM 5 INTEGRANTES 3GRUPOS COM 3 INTEGRANTES

A SINCRONIZAÇÃO DO AMARELO EM CRUZAMENTOS PRÓXIMOS

1.4. Velocidade em movimentos retilíneos uniformemente variados e uniformes

SUMÁRIO. - Objetivos; - Classificação; - Sinalização vertical; - Sinalização horizontal; - Sinalização semafórica; - Outros sistemas

SP 01/12/91 NT 140/91. Dimensionamento de Semáforos de Pedestres. Núcleo de Estudos de Tráfego (NET)

Prof. J. R. Setti Depto. de Engenharia de Transportes Escola de Engenharia de São Carlos UNIVERSIDADE DE SÃO PAULO. Sinalização de trânsito

EXERCÍCIO: ALOCAÇÃO DOS TEMPOS DE VERDE

LUCAS EZEQUIEL BATISTA DE MEDEIROS

Universidade Presbiteriana Mackenzie Escola de Engenharia Depto. de Engenharia Civil 1 0 semestre de Aula 15. Controle semafórico

Colégio Santa Dorotéia

7. PROGRAMAÇÃO DE SINALIZAÇÃO SEMAFÓRICA ISOLADA DE TEMPO FIXO

SP 01/06/92 NT 146/92. Justificativa da Necessidade de Reavaliação dos Critérios de Instalação de Semáforos. Núcleo de Estudos de Tráfego

MOVIMENTO UNIFORMEMENTE VARIADO

EQUAÇÃO DE TORRICELLI E LANÇAMENTO VERTICAL EXERCÍCIOS

COLÉGIO SÃO JOÃO GUALBERTO

SP 05/93 NT 163/93. Uma proposta para critérios de implantação de semáforos de pedestres

Universidade Presbiteriana Mackenzie Escola de Engenharia Depto. de Engenharia Civil 2 0 semestre de Aula 15. Controle semafórico

Cálculo da Capacidade

PTR2377 Princípios Básicos de Engenharia de Tráfego 2ª.Lista de Exercícios 1º.semestre de 2014 Entrega: 09/06/ hs

A velocidade nos movimentos retilíneos uniformemente variados. Movimento retilíneo uniformemente acelerado (MRUA)

1 série. Ensino Médio. Aluno(a): Professores:PAULO SÉRGIO DIA: 27MÊS:03. Segmento temático: 01. Qual o conceito físico de aceleração?

Estrada de Rodagem Distância de Visibilidade

04/11/2014. Curso de Engenharia Civil

É a área em que duas ou mais vias se cruzam ou se unificam. Neste local existem dispositivos destinados a ordenar os diversos movimentos do tráfego.

Fís. Semana. Leonardo Gomes (Arthur Vieira)

Notação Científica. n é um expoente inteiro; N é tal que:

USO DE MICROSSIMULAÇÃO PARA AVALIAR BENEFÍCIOS NA REDUÇÃO DE ESTÁGIOS EM INTERSEÇÕES SEMAFORIZADAS

ELEMENTOS BÁSICOS PARA O PROJETO DE UMA ESTRADA DISTÂNCIA DE VISIBILIDADE

Introdução à Cinemática Escalar, Movimento Uniforme (MU) e Movimento Uniformemente Variado (MUV)

Resoluções dos exercícios propostos

1) Melhorar a segurança, resolvendo eventuais conflitos entre fluxos de veículos e peões;

SUPERELEVAÇÃO E SUPERLARGURA

MRUV Movimento Retilíneo Uniformemente Variado

ANÁLISE DE CAPACIDADE E NÍVEL DE SERVIÇO DE RODOVIAS DE PISTA SIMPLES

1. 2. t = 0 segundos V (m/s) 7,0 6,0 t (s) S = 2 + 4t 2t2

Oferta de Transportes: Ciclo Veicular, Dimensionamento de Frotas

Legislação de Trânsito

PROJETO DE ESTRADAS Pr P of o. D r D. An A d n e d r e so s n o n Man a zo n l zo i

CAPÍTULO 11 TWO LANES

Notação Científica. n é um expoente inteiro; N é tal que:

INTERSEÇÕES PROJETO GEOMÉTRICO

Desafio da Travessia na Semana da Mobilidade

LEGISLAÇÃO DE TRÂNSITO

Procedimento do U.S.HCM2000

Notas de aulas de Estradas (parte 4)

Fabricio Corrieri Bizonin

29/10/2015. Curso de Engenharia Civil

INSTITUTO SUPERIOR DE TRANSPORTES E COMUNICAÇÕES

CAPÍTULO 11 TWO LANES

Notas de aulas de Estradas (parte 10)

PROJETO GEOMÉTRICO DE RODOVIAS CÁLCULO DE VOLUMES. Curso: 7º Período - Engenharia de Agrimensura e Cartográfica. Prof. Paulo Augusto F.

Física I 2009/2010. Aula02 Movimento Unidimensional

FÍSICA - 3 o ANO MÓDULO 12 GRÁFICO DO MU E DO MUV

ROTEIRO DE TESTE PARA CONTROLADORES SEMAFÓRICOS TEMPO FIXO

PROJETO E CONSTRUÇÃO DE ESTRADAS

Aula 25. Segurança de trânsito (parte 4 de 4)

Apostila do Curso de Graduação em Engenharia Civil Estudos de Tráfego Prof. Pedro Akishino Universidade Federal do Paraná (UFPR) Cap 08 CAPÍTULO 08

Intervenções para melhorar mobilidade em cidade de pequeno porte: Estudo em Solânea PB.

Movimento Retilíneo Uniforme e Uniformemente Variado MRU e MRUV

Aula 7. Relações básicas: volume, densidade e velocidade

FÍSICA - 1 o ANO MÓDULO 13 MOVIMENTO UNIFORMEMENTE VARIADO (MUV)


APLICAÇÃO DAS TÉCNICAS DE ENGENHARIA DE TRÁFEGO PARA ANÁLISE E MELHORIA DE UMA INTERSEÇÃO SEMAFORIZADA

Física Geral e Experimental: Mecânica. Professora Erica Monteiro Diogo

Dispositivos Auxiliares

A INFLUÊNCIA DA TEMPORIZAÇÃO SEMAFÓRICA NO COMPORTAMENTO DOS MOTORISTAS. Thiago Soares Figueira

Processo Avaliativo LISTA EXTRA 1-1º Bimestre/2017 Disciplina: Física A 3ª série EM A/B Data: 01/03/2017

Lista 2: Cinemática em uma Dimensão

Transcrição:

TECNOLOGIA E ECONOMIA DOS TRANSPORTES Aula 03 Elementos de Programação Semafórica 1

Volume de Tráfego Equivalente Volume de tráfego veicular expresso em termos de unidades de carros de passeio (ucp). Os automóveis, referidos na literatura técnica como veículos leves, têm mais agilidade no trânsito se comparados aos veículos comerciais O veículo equivalente tem como valor de referência o automóvel, para o qual se adota fator de equivalência = 1,0 ucp (unidade de carro de passeio). 2

Tabela 1: Fator de equivalência para diferentes tipos de veículos Curso de Engenharia Civil Tecnologia e Economia dos Transportes -Professor: Celso José Leão e Silva 3

Taxa de Ocupação (Y) Relação entre a taxa de fluxo e o respectivo fluxo de saturação de um grupo de movimentos, expressos na mesma unidade e representada pelo símbolo Y Em que: S = fluxo de saturação em ucp/h V = volume do fluxo do grupo de movimentos, em ucp/h. Curso de Engenharia Civil Tecnologia e Economia dos Transportes -Professor: Celso José Leão e Silva 4

Grupo de Movimentos Crítico O grupo de movimentos que apresenta maior taxa de ocupação dentre aqueles que recebem verde nesse estágio. O tempo de ciclo e os tempos de verde são calculados em função dos graus de saturação somente dos grupos de movimentos críticos. Curso de Engenharia Civil Tecnologia e Economia dos Transportes -Professor: Celso José Leão e Silva 5

Tempo Perdido (Tp) É a parte do estágio programada após o fim do intervalo de verde, com o propósito de evitar acidentes entre os usuários que estão perdendo seu direito de passagem e aqueles que vão passar a adquiri-lo no estágio subsequente, e que corresponde à soma de tempo de entreverdes de todos os estágios. Sua função é assegurar a travessia da interseção por veículos que, ao receberem a indicação amarela, se encontrem a uma distância da linha de retenção insuficiente para parar com segurança Curso de Engenharia Civil Tecnologia e Economia dos Transportes -Professor: Celso José Leão e Silva 6

Tempo Perdido (Tp) O tempo de entreverdes deve ser suficiente para que o veículo possa tanto percorrer a distância até a linha de retenção (d1 na Figura 7.1) como concluir a travessia abandonando a área de conflito (d2 na mesma figura) antes que os veículos ou pedestres dos movimentos conflitantes recebam direito de passagem Curso de Engenharia Civil Tecnologia e Economia dos Transportes -Professor: Celso José Leão e Silva 7

Tempo de Entreverdes (t ent ) A equação calcula o tempo de entreverdes necessário para atender o veículo que estiver na posição mais desfavorável no instante em que seu intervalo verde é encerrado 2 t ent tempo de entreverdes para o grupo focal de veículos em segundos; t pr - tempo de percepção e reação do condutor, em segundos; v velocidade do veículo, em m/s; a ad máxima taxa de frenagem admissível em via plana, em m/s 2 ; i inclinação da via na aproximação, sendo + em rampas ascendentes e - em rampas descendentes (m/m); g aceleração da gravidade (9,8 m/s 2 ); d 2 extensão da trajetória do veículo entre a linha de retenção e o término da área de conflito, em metros; c comprimento do veículo, em metros. Curso de Engenharia Civil Tecnologia e Economia dos Transportes -Professor: Celso José Leão e Silva 8

Tempo de Entreverdes (t ent ) Ao compor o tempo de entreverdes, o tempo de amarelo (t am ) deve ser igual à soma das duas primeiras parcelas da equação e o tempo de vermelho geral (t vg ) deve ser igual à última Usualmente, adotam-se os seguintes valores para as grandezas envolvidas: t pr = 1,0 s; v= velocidade regulamentada da via, expressa em m/s; a ad = 3,0 m/s 2 ; c = 5 m (onde o fluxo é predominantemente constituído por automóveis). Curso de Engenharia Civil Tecnologia e Economia dos Transportes -Professor: Celso José Leão e Silva 9

Tempo de Entreverdes (t ent ) Ao compor o tempo de entreverdes, o tempo de amarelo deve ser igual à soma das duas primeiras parcelas da Equação e o tempo de vermelho geral deve ser igual à última. Em situações em que o local apresente condições particulares de topografia ou composição do tráfego, estes valores devem ser substituídos por outros levantados diretamente em campo. Para todas as velocidades máximas regulamentadas, o tempo de amarelo não deve ser superior a 5s Curso de Engenharia Civil Tecnologia e Economia dos Transportes -Professor: Celso José Leão e Silva 10

Tempo de Ciclo (C) Sequência completa das indicações de uma sinalização semafórica, determinado pela soma dos tempos de todos os estágios programados para o controle do tráfego no local Como valores altos para o tempo de ciclo implicam em tempos de espera muito elevados, nas situações comuns de controle esse valor não deve superar 120s Há dois métodos para calcular o tempo de ciclo: Método do grau de saturação máximo Método de Webster Curso de Engenharia Civil Tecnologia e Economia dos Transportes -Professor: Celso José Leão e Silva 11

Método do grau de saturação máximo Inicia pelo cálculo da fração de verde necessária para cada estágio p i fração de verde requerida para o estágio i; Y i taxa de ocupação do grupo de movimentos crítico do estágio i; xm i grau de saturação máximo definido para o grupo de movimentos crítico do estágio, que varia de 0,75 a 0,90. Curso de Engenharia Civil Tecnologia e Economia dos Transportes -Professor: Celso José Leão e Silva 12

Método do grau de saturação máximo Valores de xm superiores a 0,90 podem conduzir a uma reserva de capacidade insuficiente para absorver tanto a flutuação aleatória do trânsito como a redução ocasional do fluxo de saturação devido à ocorrência de incidentes. Por outro lado, valores inferiores a 0,75 podem conduzir a tempos de ciclo injustificadamente elevados. Curso de Engenharia Civil Tecnologia e Economia dos Transportes -Professor: Celso José Leão e Silva 13

Método do grau de saturação máximo A partir do cálculo da fração de verde para cada estágio, o tempo de ciclo é calculado por meio da equação C tempo de ciclo, em segundos; T p tempo perdido total, em segundos; p i fração de verde requerida para o estágio i; n número de estágios. Curso de Engenharia Civil Tecnologia e Economia dos Transportes -Professor: Celso José Leão e Silva 14

Método do grau de saturação máximo Quando o ciclo for determinado pelo Método do grau de saturação máximo, o tempo de verde efetivo é calculado pela equação quando o ciclo for determinado pelo Método do grau de saturação máximo t v,ef,i tempo de verde efetivo do estágio i, em segundos; C tempo de ciclo, em segundos; p i fração de verde requerida para o estágio i. Curso de Engenharia Civil Tecnologia e Economia dos Transportes -Professor: Celso José Leão e Silva 15

Método de Webster Calcula o tempo de ciclo, denominado pelo autor de tempo de ciclo ótimo, de forma que o tempo de espera veicular seja mínimo Também no caso de interseções com alto grau de saturação, a utilização desse método não é recomendável Curso de Engenharia Civil Tecnologia e Economia dos Transportes -Professor: Celso José Leão e Silva 16

Método de Webster O tempo de ciclo ótimo é calculado por meio da equação C tempo de ciclo ótimo, em segundos; T p tempo perdido total, em segundos; Y i taxa de ocupação do grupo de movimentos crítico do estágio i; n número de estágios. Curso de Engenharia Civil Tecnologia e Economia dos Transportes -Professor: Celso José Leão e Silva 17

Método de Webster Quando o ciclo for determinado pelo Método de Webster, o tempo de verde efetivo é calculado pela equação t v,ef,i tempo de verde efetivo do estágio i, em segundos; C tempo de ciclo, em segundos; T p tempo perdido total, em segundos; Y i taxa de ocupação do grupo de movimentos crítico do estágio i; n número de estágios. Curso de Engenharia Civil Tecnologia e Economia dos Transportes -Professor: Celso José Leão e Silva 18

Tempo de verde de segurança Tempos de verde excessivamente curtos não são admissíveis, mesmo que sejam suficientes para atender a respectiva demanda, pois conduzem a situações com alto potencial de acidentes. Para evitá-los, define-se para cada grupo de movimentos, um parâmetro denominado tempo de verde de segurança, que corresponde ao valor mínimo admissível para a duração do tempo de verde que atende a esse grupo Os valores utilizados para o tempo de verde de segurança para os veículos variam usualmente entre 10 e 20 segundos, não sendo admitidos valores inferiores a 10 segundos. Curso de Engenharia Civil Tecnologia e Economia dos Transportes -Professor: Celso José Leão e Silva 19

Exemplo do cálculo dos tempos de uma interseção semaforizada ETAPA I: [a] Levantamento das características do local DEFINIÇÃO DOS GRUPOS DE MOVIMENTO Curso de Engenharia Civil Tecnologia e Economia dos Transportes -Professor: Celso José Leão e Silva 20

[b] Período de abrangência: o plano a ser programado entrará em operação no período das 7h às 9h, dos dias úteis. [c] Tempo de ciclo máximo: 120s [d] Estudo dos movimentos: a representação dos movimentos (MV) e das aproximações é apresentada na figura - Aproximação 1 = Rua A, sentido centro/bairro; - Aproximação 2 = Rua A, bairro/centro; - Aproximação 3 = Rua B. Curso de Engenharia Civil Tecnologia e Economia dos Transportes -Professor: Celso José Leão e Silva 21

[e] Determinação dos grupos de movimentos Grupo de movimentos 1 (GM1), inclui os movimentos MV1 e MV2; Grupo de movimentos 2 (GM2), inclui os movimentos MV3 e MV4; Grupo de movimentos 3 (GM3), inclui os movimentos MV5, MV6 e MV7. [f] Definição do diagrama de estágios Considerou-se que, embora conflitantes, os movimentos MV1, MV3 e MV4 podem receber verde simultaneamente, por conta de características peculiares deste exemplo. Neste caso, admitiu-se que os fluxos dos movimentos MV3 e MV4 apresentam brechas em número e duração suficientes para permitir a realização do MV1 e, também, que há boas condições de intervisibilidade. Para situações reais, o técnico deve avaliar se as condições operacionais do local permitem esse tipo de arranjo. Curso de Engenharia Civil Tecnologia e Economia dos Transportes -Professor: Celso José Leão e Silva 22

ETAPA II: dados obtidos a partir de levantamentos de campo. Volume de fluxo de cada grupo de movimentos Saturação (S) S1 S S3 S2 Curso de Engenharia Civil Tecnologia e Economia dos Transportes -Professor: Celso José Leão e Silva 23

ETAPA III: cálculos [a] Cálculo dos graus de saturação (X) [b] Definição dos grupos de movimentos críticos [c] Cálculo do tempo perdido total (Tp) [c] Cálculo do tempo perdido total (Tp) [d] Cálculo do tempo de ciclo [d1] Método do Grau de Saturação Máximo [d2] Método de Webster [e] A comparação entre o tempo de ciclo calculado e tempo de ciclo máximo Curso de Engenharia Civil Tecnologia e Economia dos Transportes -Professor: Celso José Leão e Silva 24

[f] Cálculo dos tempos de verde efetivos (Saturação e Webster) [g] A comparação entre os tempos de verde real e os correspondentes verdes de segurança [h] Cálculo do novo tempo de ciclo [i] Soma dos intervalos = tempo de ciclo [j] Análise complementar Curso de Engenharia Civil Tecnologia e Economia dos Transportes -Professor: Celso José Leão e Silva 25

Análise complementar Para comparar os resultados obtidos pelos dois métodos, foram calculados os graus de saturação associados aos tempos resultantes da aplicação do método de Webster: - cálculo das porcentagens de verde (pi) - cálculo das taxas de ocupação (Yi) Cabe ao técnico, com base nas avaliações dos graus de saturação obtidos, definir qual o tempo de ciclo a ser adotado para a situação sob estudo Curso de Engenharia Civil Tecnologia e Economia dos Transportes -Professor: Celso José Leão e Silva 26

BIBLIOGRAFIA MANUAL BRASILEIRO DE SINALIZAÇÃO DE TRÂNSITO VOLUME V SINALIZAÇÃO SEMAFÓRICA Curso de Engenharia Civil Tecnologia e Economia dos Transportes -Professor: Celso José Leão e Silva 27