TOPOGRAFIA RUMOS E AZIMUTES

Documentos relacionados
UNICAP Universidade Católica de Pernambuco Laboratório de Topografia de UNICAP LABTOP Topografia 1. Orientação

Topografia Geomática Aplicada à Engenharia Civil

UNIVERSIDADE FEDERAL DA PARAÍBA UFPB CENTRO DE CIÊNCIAS AGRÁRIAS - CCA Departamento de Solos e Engenharia Rural - DSER. Aula 06 Goniometria

Topografia Aplicada à Engenharia Civil. AULA 04 Medidas Angulares: Horizontais: Azimutes, Rumos, Deflexão, Ângulo Interno Verticais: Zenitais

AULA 03 MEDIDAS ANGULARES. Laboratório de Topografia e Cartografia - CTUFES


Topografia D. Material de apoio da aula do dia 31/08/18

Topografia Aula 4 (Parte 1)- Planimetria - Goniologia RESUMO PARTE 1

TOPOGRAFIA RUMOS E AZIMUTES MAGNÉTICOS E VERDADEIROS EXERCÍCIOS Prof. Carlos Eduardo Troccoli Pastana

1ª LISTA DE EXERCICIOS DE TOPOGRAFIA

CENTRO DE SERVIÇOS TÉCNICO-EDUCACIONAIS E CIENTÍFICOS CENTRO DE EDUCAÇÃO TECNOLÓGICA - CET. Aluno: Data: AVALIAÇÃO DE TOPOGRAFIA

LISTA DE EXERCÍCIOS DE FIXAÇÃO Planimetria Parte 01 TOPOGRAFIA B-I

LISTA DE EXERCÍCIOS DE FIXAÇÃO Planimetria Parte 01 TOPOGRAFIA I


Lista de Exercícios de Topografia Planimetria

Universidade Federal do Paraná Setor de Ciências da Terra - Departamento de Geomática Prof a Regiane Dalazoana

TOPOGRAFIA. Prof. Michel Andraus

TOPOGRAFIA PLANIMETRIA: AZIMUTES E DISTÂNCIAS. Prof. Dr. Daniel Caetano

TOPOGRAFIA PLANIMETRIA: AZIMUTES E DISTÂNCIAS. Prof. Dr. Daniel Caetano

Topografia Aplicada à Engenharia Civil AULA 07

TOPOGRAFIA PLANIMETRIA: AZIMUTES E DISTÂNCIAS. Prof. Dr. Daniel Caetano

TOPOGRAFIA PLANIMETRIA: AZIMUTES E DISTÂNCIAS. Prof. Dr. Daniel Caetano

TOPOGRAFIA PLANIMETRIA: AZIMUTES E DISTÂNCIAS. Prof. Dr. Daniel Caetano

PROF. D. Sc. JOÃO PAULO BESTETE DE OLIVEIRA

TOPOGRAFIA TRIANGULAÇÃO e TRIGONOMETRIA

UNIVERSIDADE DE PERNAMBUCO - UPE ESCOLA POLITÉCNICA DE PERNAMBUCO Aluno(a) Turma. 1ª LISTA DE EXERCICIOS de Topografia I

Geomática Aplicada à Engenharia Civil

Orientação. Profa. Dra. Rúbia Gomes Morato Prof. Dr. Reinaldo Paul Pérez Machado

P1 CORREÇÃO DA PROVA. GA116 Sistemas de Referência e Tempo

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Transportes

Departamento de Engenharia de Transportes PTR Laboratório de Topografia e Geodésia LTG

Exercícios de Planimetria

Norte Verdadeiro, Norte Magnético, Azimute, Rumo

INTRODUÇÃO AO PROJETO DE RODOVIAS 1/2.

Orientação e escala. Cartografia Prof. Dr. Raoni W. D. Bosquilia

FUCAMP Fundação Carmelitana Mário Palmério. Topografia Básica. Aula 03 Goniologia (Medições de ângulos, azimutes e rumos) Profº Weldon Martins

Aula 5 NOÇÕES BÁSICAS DE GEODÉSIA E ASTRONOMIA DE POSIÇÃO. Antônio Carlos Campos

Planimetria DOCENTES: LUCAS H. P. SILVA PRISCILA B. ALVES

LISTA DE EXERCÍCIOS DE FIXAÇÃO Planimetria Parte 02 TOPOGRAFIA B-I

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA UNIDADE DE FLORIANÓPOLIS DEPARTAMENTO ACADÊMICO DE CONSTRUÇÃO CIVIL

TOPOGRAFIA RUMOS E AZIMUTES MAGNÉTICOS E VERDADEIROS

EXEMPLO NUMÉRICO DE LEVANTAMENTO PLANIMÉTRICO PELO MÉTODO DE CAMINHAMENTO (POLIGONAÇÃO)

LAJE PRÉ-MOLDADA EXERCÍCIO

Topografia Aplicada à Engenharia Civil AULA 05. Laboratório de Cartografia Digital - CTUFES

ANO 17 N O NOVOS RUMOS

Exercícios de Azimutes, Rumos e Estaqueamento

UNIDADE II Processos de medição de ângulos e distâncias.

TOPOGRAFIA PLANIMETRIA: CÁLCULO DE AZIMUTES EM POLIGONAIS E COORDENADAS. Prof. Dr. Daniel Caetano

SISTEMA CARTESIANO BIDIMENSIONAL

Sistemas de coordenadas tridimensionais

TOPOGRAFIA MEDIDAS E REFERÊNCIAS: FORMA DA TERRA

SISTEMA CARTESIANO BIDIMENSIONAL

TOPOGRAFIA MEDIDAS E REFERÊNCIAS: FORMA DA TERRA

TOPOGRAFIA MEDIDAS E REFERÊNCIAS: FORMA DA TERRA

Universidade do Estado de Mato Grosso UNEMAT. Estradas 1 Projeto geométrico. 3 Estudos de traçado

GA069 TOPOGRAFIA I 2ª LISTA DE EXERCÍCIOS

FOLHA DE PROVA. Tabela 1: Características operacionais de campo. Operação Aração 1,20 5,50 78 Gradagem 3,40 7,10 80 Semeadura 3,50 6,00 65

CAPÍTULO I I TRANSPORTE DE COORDENADAS RETANGULARES POLIGONAIS ABERTAS

Prof. Heni Mirna Cruz Santos

Coordenadas geográficas. Porto Alegre 2015

TOPOGRAFIA PLANIMETRIA: CÁLCULO DE AZIMUTES EM POLIGONAIS E COORDENADAS. Prof. Dr. Daniel Caetano

Universidade do Estado de Mato Grosso UNEMAT. Estradas 1 Projeto geométrico

TOPOGRAFIA MEDIDAS E REFERÊNCIAS: FORMA DA TERRA

ELEMENTOS GEOMÉTRICOS DAS ESTRADAS

UNIVERSIDADE DE PERNAMBUCO - UPE ESCOLA POLITÉCNICA DE PERNAMBUCO. Aluno(a) turma. 1ª Lista de Exercícios de Topografia 1 (2013.2)

FÍSICA - VETORES. Aula 1: Grandezas vetoriais x escalares.

UNIVERSIDADE DE SÃO PAULO Escola Superior de Agricultura Luiz de Queiroz Departamento de Engenharia de Biossistemas

Notas de aulas de Estradas (parte 2)

TOPOGRAFIA: Erros e correções

Pavimentos de Estradas I PLANO DE ENSINO

Tipos de poligonal. Poligonal fechada Poligonal enquadrada Poligonal aberta

Interbits SuperPro Web

Topografia Aula 5 Orientações para trabalhos topográficos. Prof. Luiz Miguel de Barros

O objetivo da Topografia é, representar graficamente uma porção limitada do terreno, através das etapas:

VERSÃO PARA IMPRESSÃO

A Topografia no Sistema CR - Campeiro 7.0

Capítulo 10 DIREÇÃO E ORIENTAÇÃO DE MAPAS

CADEIRA DE MECÂNICA E ONDAS 2º Semestre de 2011/2012. Problemas de cinemática, com resolução

Medidas de Direções. Material de apoio Topografia

Programa Analítico de Disciplina ECV310 Fundamentos de Cartografia e Topografia

TOPOGRAFIA - Planimetria. Alex Mota dos Santos

Explorando o Universo: dos quarks aos quasares. Astronomia de Posição. Professor: Alan Alves Brito Agradecimento: Professor Roberto Bockzo

Introdução. Vento Movimento do ar atmosférico em relação à superfície terrestre. Gerado por:

CALENDÁRIO PARA 1/ TOPOGRAFIA I

Topografia. Técnicas de Levantamento Planimétrico. Aula 7. Prof. Diego Queiroz. Vitória da Conquista, Bahia

UNIVERSIDADE DO ESTADO DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA CIVIL TOPOGRAFIA I

TOPOGRAFIA PLANIMETRIA: CÁLCULO DE AZIMUTES EM POLIGONAIS E COORDENADAS. Prof. Dr. Daniel Caetano

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Transportes

a) Triângulo retângulo: É o triângulo que possui um ângulo reto (90 ).

EXERCÍCIOS DE NIVELAMENTO

FUCAMP Fundação Carmelitana Mário Palmério. Topografia Básica. Aula 07 Levantamento Topográfico. Profº Weldon Martins

PARTE II PLANIMETRIA. Distância Horizontal (DH): é a distância medida entre dois pontos, no

TRABALHOS PRELIMINARES

2- Sistemas de orientação 3- Norte geográfico e magnético. 4- Rumos e azimutes 5- Declinação magnética

CURVAS HORIZONTAIS CIRCULARES

Transcrição:

200784 Topografia I TOPOGRAFIA RUMOS E AZIMUTES Prof. Carlos Eduardo Troccoli Pastana pastana@projeta.com.br (14) 3422-4244 AULA 4

1. RUMOS E AZIMUTES: Norte Oeste Leste Sul 200784 Topografia I 2

1. RUMOS E AZIMUTES: NW Norte N NE Oeste W Leste E SW SE Sul S 200784 Topografia I 3

1. RUMOS E AZIMUTES: 2 NW N NE W 1 E SW SE S 200784 Topografia I 4

1. RUMOS E AZIMUTES: 2 NW N NE W 1 E SW SE S 200784 Topografia I 5

1. RUMOS E AZIMUTES: Rumo de uma linha é o menor ângulo horizontal, formado entre a direção NORTE/SUL e a linha, medindo a partir do NORTE ou do SUL, no sentido horário (à direita) ou sentido anti-horário (à esquerda) e variando de 0º a 90º ou 0 g a 100 g.. 200784 Topografia I 6

1. RUMOS E AZIMUTES: Azimute de uma linha é o ângulo horizontal formado entre a direção Norte/Sul e o alinhamento em questão. É medido a partir do Norte, no sentido horário (à direita), podendo variar de 0º a 360º ou de 0 g a 400 g. 200784 Topografia I 7

1. RUMOS E AZIMUTES: 2 NW N Az 12 NE R 12 W 1 E SW SE S 200784 Topografia I 8

1. RUMOS E AZIMUTES: 2 NW N Az 12 NE R 12 R Az 1 2 12 W 1 E SW SE S 200784 Topografia I 9

1. RUMOS E AZIMUTES: NW N NE R Az 1 2 12 W 1 Az 13 E R 13 SW S 200784 Topografia I R SE 3 o 13 180 Az1 3 10

1. RUMOS E AZIMUTES: NW N NE R Az 1 2 12 W 1 E R 14 SW R Az 180 4 14 13 Az 14 S 200784 Topografia I o R SE Az o 13 180 13 11

1. RUMOS E AZIMUTES: W R NW 5 Az 15 Az o 15 360 15 R 15 N 1 NE R Az 1 2 12 E SW R Az 180 14 13 S 200784 Topografia I o R SE Az o 13 180 13 12

N 1. RUMOS E AZIMUTES: N 1 Pede-se: Indique os Rumos! 4 62º 36º 36º RA1 R A2 36º 00 00 NE 46º 00 00 SE W A E R A3 R A4 R 1A 28º 00 00 SW 62º 00 00 NW 36º 00 00 SW 3 28º S 46º 2 200784 Topografia I 13

N 1. RUMOS E AZIMUTES: R 1 A R RÉ A1 36 o 00'00"SW N 1 Pede-se: Indique os Rumos! 4 62º 36º 36º RA1 R A2 36º 00 00 NE 46º 00 00 SE W A E R A3 R A4 R 1A 28º 00 00 SW 62º 00 00 NW 36º 00 00 SW 3 28º S 46º 2 200784 Topografia I 14

N 1. RUMOS E AZIMUTES: N 1 Pede-se: Indique os Azimutes! 4 62º 36º Az A1 36º 00 00 Az A2 Az A3 134º 00 00 208º 00 00 W 36º A 46º E Az A4 Az 1A 298º 00 00 216º 00 00 3 28º S 2 200784 Topografia I 15

N 1. RUMOS E AZIMUTES: N 1 Pede-se: Indique os Azimutes! 4 62º 36º Az A1 36º 00 00 Az A2 Az Az A A3 Az 1 1 134º 00 00 Az 208º RÉ A1 A 00 00 W 180 o 00'00" 36º 216 A 46º o 00'00" E Az A4 Az 1A 298º 00 00 216º 00 00 3 28º S 2 200784 Topografia I 16

2. CONVERSÕES ENTRE RUMOS E AZIMUTES: Valor numérico do Rumo será igual ao valor numérico do Azimute. Quando transformamos de Azimute para Rumo não podemos esquecer de indicar o quadrante. 200784 Topografia I 17

2. CONVERSÕES ENTRE RUMOS E AZIMUTES: Quadrante NE RA1 36º 00 00 NE Az 36º 00 00 A1 200784 Topografia I 18

2. CONVERSÕES ENTRE RUMOS E AZIMUTES: Quadrante SE RA2 46º 00 00 SE 180º 00 00-46º 00 00 Portanto: Az A2 134º 00 00 200784 Topografia I 134º 00 00 19

2. CONVERSÕES ENTRE RUMOS E AZIMUTES: Quadrante SW RA3 28º 00 00 SW 28º 00 00 + 180º 00 00 Portanto: Az A3 208º 00 00 200784 Topografia I 208º 00 00 20

2. CONVERSÕES ENTRE RUMOS E AZIMUTES: Quadrante NW RA4 62º 00 00 NW 360º 00 00-62º 00 00 Portanto: Az A4 298º 00 00 200784 Topografia I 298º 00 00 21

3. DEFLEXÕES: É o ângulo formado entre o prolongamento do alinhamento anterior e o alinhamento que segue. Varia de 0 a 180 e necessita da indicação da direita (sentido horário) ou da esquerda (sentido anti-horário). Az12 78º 20 00 D + 30º 20 00 d Az 108º 40 00 23 =30º 20 200784 Topografia I 22

3. DEFLEXÕES: =114º 50 45 =59º 20 20 =25º 15 05 =55º 30 25 =89º 35 40 Portanto: 200784 Topografia I 23

3. DEFLEXÕES: =114º 50 45 =59º 20 20 =25º 15 05 =55º 30 25 =89º 35 40 Portanto: 200784 Topografia I 24

4. CÁLCULO DOS AZIMUTES SENDO DADOS OS ÂNGULOS HORIZONTAIS: Az 8-7 200784 Topografia I 25

4. CÁLCULO DOS AZIMUTES SENDO DADOS OS ÂNGULOS HORIZONTAIS: Az 8-7 200784 Topografia I 26

200784 Topografia I 27

1. EXERCÍCIOS a. Determine os azimutes para os lados 1-2, 2-3 e 3-4 no esboço a seguir, onde os rumos são dados: 2 1 4 3 200784 Topografia I 28

1. EXERCÍCIOS a. Determine os azimutes para os lados 1-2, 2-3 e 3-4 no esboço a seguir, onde os rumos são dados: 2 1 4 3 LINHA 1-2 = Quadrante NE (R = Az) Portanto: Az 1-2 = 70º 18 44 200784 Topografia I 29

1. EXERCÍCIOS a. Determine os azimutes para os lados 1-2, 2-3 e 3-4 no esboço a seguir, onde os rumos são dados: 2 1 4 3 LINHA 2-3 = Quadrante SE (R = 180º - Az) Portanto: 180º 00 00 51º 10 12 (-) Az 2-3 = 128º 49 48 200784 Topografia I 30

1. EXERCÍCIOS a. Determine os azimutes para os lados 1-2, 2-3 e 3-4 no esboço a seguir, onde os rumos são dados: 2 1 4 3 LINHA 3-4 = Quadrante NE (R = Az) Portanto: Az 3-4 = 82º 19 52 200784 Topografia I 31

1. EXERCÍCIOS b. Encontre os rumos dos lados BC e CD na figura seguinte: B C D 119º 36 A 218º 22 200784 Topografia I 32

1. EXERCÍCIOS b. Encontre os rumos dos lados BC e CD na figura seguinte: B Ângulo Horário em B: 360º 00 00 119º 36 00 (-) 240º 24 00 C D 119º 36 A 218º 22 200784 Topografia I 33

1. EXERCÍCIOS b. Encontre os rumos dos lados BC e CD na figura seguinte: 240º 24 00 B Azimute A-B = 76º 36 00 Ângulo B = 240º 24 00 (+) 180º 00 00 (-) Azimute B-C = 137º 00 00 141º 38 00 C D 119º 36 A 218º 22 Rumo B-C = 43º 00 00 SE 200784 Topografia I 34

1. EXERCÍCIOS b. Encontre os rumos dos lados BC e CD na figura seguinte: 240º 24 00 B Azimute B-C = 137º 00 00 Ângulo C = 141º 38 00 (+) 180º 00 00 (-) Azimute C-D = 98º 38 00 141º 38 00 C D 119º 36 A 218º 22 Rumo C-D = 81º 22 00 SE 200784 Topografia I 35

1. EXERCÍCIOS c. Calcule os rumos dos lados BC e CD na figura seguinte: B 97º 18 88º 26 C A D 200784 Topografia I 36

1. EXERCÍCIOS c. Calcule os rumos dos lados BC e CD na figura seguinte: Rumo B-C = 26º 36 00 SE B DdB = 82º 42 97º 18 88º 26 C A Azimute A-B = 70º 42 DdB = 82º 42 (+) D Azimute B-C = 153º 24 200784 Topografia I 37

1. EXERCÍCIOS c. Calcule os rumos dos lados BC e CD na figura seguinte: Azimute B-C = 153º 24 DdC = 91º 34 (+) Azimute C-D = 244º 58 B DdB = 82º 42 97º 18 88º 26 C A Rumo C-D = 64º 58 00 SW D DdC = 91º 34 200784 Topografia I 38

1. EXERCÍCIOS d. A partir dos dados fornecidos, calcule os rumos que faltam. 1-2 = 2-3 = 3-4 = 08º10 00 NW 4-1 = Ângulo Interno em 1 = 51º16 00 Ângulo Interno em 2 = 36º22 00 Ângulo Interno em 4 = 221º37 56 1 4 3 2 200784 Topografia I 39

1. EXERCÍCIOS d. A partir dos dados fornecidos, calcule os rumos que faltam. 1-2 = 2-3 = 3-4 = 08º10 00 NW 51º16 00 4-1 = 1 Ângulo Interno em 1 = 51º16 00 4 Ângulo Interno em 2 = 36º22 00 Ângulo Interno em 4 = 221º37 56 36º22 00 3 2 221º37 56 200784 Topografia I 40

1. EXERCÍCIOS Cálculos dos Azimutes 3-4 e 4-1 : O Rumo 3-4 encontra-se no quadrante NW. Portanto: 36º22 00 2 1 51º16 00 4 221º37 56 3 200784 Topografia I 41

1. EXERCÍCIOS Cálculo do Azimute 1-2: 36º22 00 2 1 51º16 00 4 221º37 56 OU 3 200784 Topografia I 42

1. EXERCÍCIOS Cálculo do Azimute 2-3: 36º22 00 2 OU 1 51º16 00 4 221º37 56 R 23 42 o 34'04"SW 3 200784 Topografia I 43

1. EXERCÍCIOS Cálculo dos ângulos internos: 36º22 00 2 1 51º16 00 4 221º37 56 Portanto: 3 200784 Topografia I 44

1. EXERCÍCIOS Cálculo do Azimute 3-4: 36º22 00 2 Transformando o Azimute em Rumo temos: 1 51º16 00 4 3 221º37 56 OK 200784 Topografia I 45

200784 Topografia I 46