Fig. 2. Painel de instalação



Documentos relacionados
Considerações sobre redimensionamento de motores elétricos de indução

Variação de velocidade

SOBRE NoBreak s Perguntas e respostas. Você e sua empresa Podem tirar dúvidas antes de sua aquisição. Contulte-nos. = gsrio@gsrio.com.

O especial é o nosso padrão.

Eficiência Energética em Filtros de Manga

ÍNDICE. davantisolar.com.br O QUE É ARQUITETURA VERDE FUNDAMENTOS POR QUE FAZER MÃOS A OBRA VANTAGENS PARA O PROJETO VANTAGENS PARA O IMÓVEL

Diretrizes para determinação de intervalos de comprovação para equipamentos de medição.

CADERNOS DE INFORMÁTICA Nº 1. Fundamentos de Informática I - Word Sumário

Trabalho sobre No-breaks

A nova funcionalidade tem a finalidade de gerenciar o Plano de Cuidados de cada

Manual das planilhas de Obras v2.5

Energia Eólica. Atividade de Aprendizagem 3. Eixo(s) temático(s) Ciência e tecnologia / vida e ambiente

Ajustes para o sistema de web conferências Adobe Connect


V.7. Noções Básicas sobre o uso da Potência e do Torque do Motor.

Guia do Usuário. idocs Content Server v

Inversores de Frequência Aplicados em Processos de Mineração Trazem Ganho de Produtividade, Economia de Energia e Manutenção Reduzida.

Virtual Box. Guia. Instalação E Utilização. Criado por Wancleber Vieira wancleber.vieira@ibest.com.br

Tecnologia GreenTech EC

WIN-SOFT STARTER. Software de simulação e especificação para soft starters SIRIUS 3RW. Win-Soft Starter Versão 1.

Esse produto é um produto composto e tem subprodutos

Centro de Seleção/UFGD Técnico em Refrigeração ==Questão 26==================== Assinale a alternativa que define refrigeração.

Eficiência Energética Chocolates Garoto

BOMBEAMENTO DE ÁGUA COM ENERGIA SOLAR FOTOVOLTAICA

Simulado Informática Concurso Correios - IDEAL INFO

9º ENTEC Encontro de Tecnologia: 23 a 28 de novembro de 2015

DDP, Potência e Energia Elétrica Resolução: youtube.com/tenhoprovaamanha

Figura 1: tela inicial do BlueControl COMO COLOCAR A SALA DE INFORMÁTICA EM FUNCIONAMENTO?

Balanço Energético Nacional Manual do Sistema de Coleta de Dados para o BEN 2012

Os motores de CA podem ser monofásicos ou polifásicos. Nesta unidade, estudaremos os motores monofásicos alimentados por uma única fase de CA.

BR DOT COM SISPON: MANUAL DO USUÁRIO

15/02/2012. IV.2_Controle e Automação II. Introdução. Conteúdo SENSORES

SUBSTITUIÇÃO DE GRUPOS ELETROBOMBA: ABORDAGEM DETERMINÍSTICA BASEADA EM ESTUDOS DE EFICIÊNCIA ENERGÉTICA.

Prof. André Motta - mottabip@hotmail.com_ C) O calor contido em cada um deles é o mesmo. D) O corpo de maior massa tem mais calor que os outros dois.

ESTUDO DE VIABILIDADE. Santander, Victor - Unioeste Aula de Luiz Eduardo Guarino de Vasconcelos

ESTUDO COMPARATIVO ENTRE A EFICIÊNCIA ENERGÉTICA DE COMPRESSORES OPERANDO COM O AR EM DIFERENTES TEMPERATURAS

PROGRAMAÇÃO BÁSICA DE CLP

Tipos de malha de Controle

Fontes de Alimentação

PRODUTOS SUSTENTÁVEIS

Saiba como reduzir a conta de luz mudando os hábitos e equipamentos em casa

Manual do Teclado de Satisfação Online WebOpinião

LÍDER GLOBAL NO DESENVOLVIMENTO DE ENERGIAS RENOVÁVEIS

Nota Técnica 005/2012

Lâmpadas. Ar Condicionado. Como racionalizar energia eléctrica

ÂMBIO PARA INVESTIDORES NO FOREX

TUDO SOBRE ENERGIA SOLAR FOTOVOLTAICA

1. Introdução. Avaliação de Usabilidade Página 1

FONTES E FORMAS DE ENERGIA

Guia do professor. Introdução

Especificação do Trabalho

SISTEMA DE SERVIÇOS DE INFRA-ESTRUTURA DA UFRGS

Manual de Rotinas para Usuários. Advogados da União. Procuradoria da União no Estado do Ceará PU/CE SAPIENS. Sistema da AGU de Inteligência Jurídica

WebQualis 3.0 MANUAL CAPES/MEC. Diretoria de Avaliação - DAV

ENGENHEIRO ELETRICISTA

muito gás carbônico, gás de enxofre e monóxido de carbono. extremamente perigoso, pois ocupa o lugar do oxigênio no corpo. Conforme a concentração

Procedimentos de montagem e instalação

Inventário WMS. SCM Concept (47)

Estudo de Caso realizado na ETUFOR utilizando a eficiência energética como ferramenta para reduzir custos.

9. MANUTENÇÃO DE TRANSFORMADORES:

Manual de Utilização

Tanto na visão semanal como diária você tem a sua disposição algumas opções uteis que facilitarão seu dia a dia.

INSCRIÇÃO ON- LINE REVEZAMENTOS A PARTIR DE 2015 INDICADO PARA TÉCNICOS

Renovação e filtragem do ar são determinantes em salas de aulas Bom projeto e manutenção periódica têm impacto direto sobre o rendimento

DIFERENÇA ENTRE ENERGIA SOLAR FOTOVOLTAICA E TÉRMICA DAVANTISOLAR.COM.BR

FUNCIONALIDADES DO SISTEMA HOTEL CONTROLL. Login no Sistema:

Exclusivo: Secretária de Gestão do MPOG fala sobre expectativas do Governo Dilma

Boletim da Engenharia

Boletim Eletrônico de Recolhimento Manual do Sistema. Boletim Eletrônico de Recolhimento. Manual do Sistema

Figura Ar sangrado do compressor da APU

Primeiros passos das Planilhas de Obra v2.6

MEDIÇÃO DE FATURAMENTO PARA CONSUMIDORES LIVRES (SMF)

Manual do Usuário. Protocolo

Simulador PMP - 4º Edição Exame de Certificação do PMI

Tópicos Especiais de Análise de Balanços

SISTEMA DE CLIMATIZAÇÃO

LEILÕES DE ENERGIA NOVA A-5 e A-3/2007 DÚVIDAS FREQÜENTES

NOSSA VISÃO NOSSOS VALORES

AGHOS - GESTÃO E REGULAÇÃO ASSISTENCIAL E FINANCEIRA DE SAÚDE MÓDULO DE REGULAÇÃO AMBULATORIAL DE CONSULTAS ESPECIALIZADAS

Professor: Venicio Paulo Mourão Saldanha Site:

Caracterização de Termopares

ENERGIA SOLAR VS. ENERGIAS SUJAS. Danielle Beatriz de Sousa Borges Isadora M. Carvalho A. Menezes

6.1 A Simulação Empresarial tem utilização em larga escala nos cursos de Administração, em seus diversos níveis de ensino no Brasil?

MODELO PARA ENVIO DE CONTRIBUIÇÕES REFERENTE À CONSULTA PÚBLICA Nº 004/2014

Acumuladores hidráulicos

EATON Fácil V1.00 Guia de utilização

Manual de Instalação SIM/SINASC

Conectar diferentes pesquisas na internet por um menu

TECNOLOGIA EM CONSTRUÇÃO DE EDIFÍCIOS. CONFORTO AMBIENTAL Aula 6

BOAS PRÁTICAS NO GERENCIAMENTO SUSTENTÁVEL DE ENERGIA

Ajuda On-line - Sistema de Central de Materiais Esterilizados. Versão 1.0

LINEAR-HCS RUA SÃO JORGE, 269 TELEFONE: (11) SÃO CAETANO DO SUL SÃO PAULO CEP:

Raquel Netto Cavallari do Nascimento IFG/Goiânia. Aylton José Alves - aylton.alves@ifg.edu.br IFG/Goiânia

Implantação do sistema Condominium

1. TSA Inovação - TSA DT_Arquivo_de_Log_do_Integrador_Separado_por_Thread DT_Central_de_Ajuda_UX9...

Manual do Painel Aceno Digital A3000/A Rua Porto Alegre, 212 Jd. Agari Cep: 86.

MANUAL DA SECRETARIA

ATERRAMENTO ELÉTRICO 1 INTRODUÇÃO 2 PARA QUE SERVE O ATERRAMENTO ELÉTRICO? 3 DEFINIÇÕES: TERRA, NEUTRO, E MASSA.

COLETÂNEA DESAFIO DA SUSTENTABILIDADE I - PRÁTICAS IMEDIATAS E PERMANENTES PARA PROMOVER O USO RACIONAL DA ENERGIA ELÉTRICA:

Transcrição:

ANÁLISE DE EFICIÊNCIA ENERGÉTICA EM SISTEMAS DE VENTILAÇÃO INDUSTRIAL Alex Gomes da Fonseca, Alin de Amaral Martins, Cecília de Melo Batalhone, Décio Bispo, Antônio Carlos Delaiba. Universidade Federal de Uberlândia, Faculdade de Engenharia Elétrica, Uberlândia MG, alexgf10@yahoo.com.br, alinivolt@gmail.com, ceciliabatalhone@yahoo.com.br, decio_bispo@yahoo.com.br, delaiba@ufu.br Resumo - O objetivo deste documento é de apresentar uma metodologia para análise da eficiência energética em sistemas de ventilação industrial. A análise será dirigida, mais precisamente ao estudo de um ventilador centrífugo instalado no Laboratório de Eficiência Energética na Faculdade de Engenharia Elétrica UFU. alavras-chave Eficiência Energética, Ventilador. ENERGY EFFICIENCY ANALYSIS IN A INDUSTRIAL FAN SYSTEM Abstract - The objective of this document is to present a methodology for the energetic efficiency analysis in industrial fan systems. The analysis, more precisely, will be towards the study of a centrifugal fan installed in the Electric Engineering department s Energetic Efficiency Laboratory. 1 Keywords Energetic Efficiency, Fan. I. INTRODUÇÃO A ameaça de esgotamento das reservas de combustíveis fósseis, a pressão dos resultados econômicos e as preocupações ambientais, levam-nos a encarar a eficiência energética como uma das soluções para equilibrar o modelo de consumo existente e para combater as alterações climáticas. Aprender a utilizar de forma responsável a energia de que dispomos é garantir um futuro melhor para as gerações futuras. No entanto, para que isso ocorra, precisamos alterar a nossa atitude em relação ao consumo de energia. Ao falarmos de eficiência energética, falamos em efetuar o mesmo trabalho, utilizando a menor quantidade de energia possível, ou seja, manter a mesma qualidade e eficiência sem perder as vantagens e conforto oferecido pelo equipamento, porém consumindo menos energia. A conservação de energia elétrica é o meio mais barato e mais limpo existente, pois não agride o meio ambiente. Desta maneira, a energia conservada, por exemplo, no motor bem dimensionado pode ser utilizada para iluminar uma creche ou atender a uma escola, sem ser desperdiçada. Neste projeto iremos aprofundar em um caso mais especifico, em sistemas de ventilação industrial, os quais são amplamente utilizados em diversos processos. São utilizados para promoverem a circulação de ar condicionado (resfriado ou aquecido) para o conforto humano, para removerem ar contaminado de ambientes, para removerem, com auxílio de uma corrente de gás, particulado sólido gerado em processos industriais, para promoverem a filtragem de ar de ambientes críticos e para muitas outras aplicações. Com a análise desse projeto, pretendemos comprovar algumas formas de se obter uma maior eficiência em sistemas de ventilação. II. DESCRIÇÃO DA BANCADA DE ENSAIO A bancada do ventilador consiste em um sistema completo de acionamento. Ela é composta por duas mesas e um painel. Na primeira mesa está instalado um micro-computador (CU, monitor, mouse, teclado e no-break). Este microcomputador é responsável pela supervisão da bancada através do supervisório Indusoft 6.1. Na segunda mesa estão instalados dois motores (Standard e Alto Rendimento), o módulo de carga (com variação de 0 a 120% da carga nominal do motor) e dispositivos de sensoriamento e atuação. O ventilador existente na bancada é classificado como centrífugo erando com pequenas vazões e grandes pressões, o mesmo tem a possibilidade de trabalhar com certa variação de vazão com pouco decréscimo do rendimento e pode erar com variação de rotação mantendo praticamente o mesmo rendimento, o qual é excelente para o estudo em questão [1]. Na Figura 1 temos a bancada de ensaio: Nota de rodapé na página inicial será utilizada apenas pelo professor avaliador para indicar o andamento do processo de revisão. Não suprima esta nota de rodapé quando editar seu artigo. Fig. 1. Bancada de ensaio

No painel estão instalados os dispositivos de partida (contator, soft-starter e inversor de freqüência), o controlador programável (CL), medidor de grandezas elétricas e elementos de acionamento e proteção como contatores, disjuntores e fusíveis: uma vazão constante no sistema utilizando-se o controlador de vazão ID. É aconselhável que se faça a escolha de uma vazão de tal forma que os motores erem próximos à sua potência nominal. Sendo assim, para determinar essa vazão procedese da seguinte forma. Acle um dos motores ao sistema; Antes de partir o motor fecha-se o damper completamente, ou seja, coloque o valor 0 zero no campo <MV> da janela do ID. ara esse procedimento é necessário que esteja selecionado o controle manual do damper; arte-se o motor através da partida direta (TeSys) ou partida suave (Soft-starter); Abre-se a janela de medição das grandezas elétricas e seleciona-se a leitura de corrente; Varia-se gradativamente a abertura do damper através do campo <MV> da janela do ID observando-se o valor da corrente. Deve-se parar de variar a abertura do damper assim que a corrente lida atingir o valor nominal do motor; Anota-se o valor do campo <MV> para que o ensaio do outro motor seja feito com a mesma abertura do damper. Fig. 2. ainel de instalação Na bancada de ensaio é possível analisar um sistema de ventilação simulando diversas cargas através de um damper (equipamento responsável pelo controle de fluxo de ar na tubulação através da sua abertura e fechamento.) ou de um inversor de freqüência (dispositivo que converte um sinal elétrico contínuo em um sinal elétrico alternado em uma freqüência qualquer, para isso, são utilizadas chaves eletrônicas.), além de apresentar a possibilidade de comparar a eficiência de dois motores (1,5 cv), um da linha padrão (standard) e outro de alto rendimento. A descrição completa da bancada pode ser encontrada em [2]. III. ENSAIOS Através da bancada descrita anteriormente podem ser realizados vários tipos de ensaio para análise de eficiência energética. Entretanto, este projeto tem como objetivo mostrar a perda de energia devido à utilização de um motor com menor rendimento e também devido à utilização de um sistema mecânico (damper) para controle de vazão de ar. A. Consumo de motores da linha padrão e de alto rendimento Neste momento será apresentado o procedimento a ser realizado para verificar-se a eficiência energética da bancada do ventilador no que diz respeito à utilização do motor standard e do motor de alto rendimento. O ensaio será realizado submetendo-se os dois motores às mesmas condições de carga. ara tanto, é necessário fixar O procedimento descrito acima leva em consideração que o motor está erando na condição nominal, porém o ensaio pode ser feito para qualquer carregamento do motor. Mas é importante que o ensaio dos dois motores seja feito submetendo-os à mesma condição de carga. ara a análise de consumo de energia dos dois motores procede-se assim: Acla-se o motor Standard ao sistema; Fecha-se o damper totalmente e aciona-se o motor com a partida direta ou Soft-starter. É importante partir-se o motor com o damper fechado para que a partida seja mais rápida e o motor esteja submetido à corrente de partida por um período mais curto; Com o sistema acionado, abre-se o damper na posição encontrada no procedimento descrito anteriormente; Ao estabilizar o sistema, ou seja, quando o damper já estiver aberto na posição desejada e o valor de vazão do sistema estiver estabilizado, anota-se o valor da potência elétrica ativa trifásica no sistema. Esta informação se encontra na janela <Medições>. Escolher as ções <otência> e <Ativa>. Além da potência ativa, é interessante anotar a vazão de ar no sistema para essa condição. A seguir é necessário fazer a análise do motor de Alto Rendimento, para isso, procede-se da seguinte maneira: Acla-se o motor de Alto Rendimento ao sistema; Fecha-se o damper totalmente e aciona-se o motor com a partida direta ou Soft-starter; Com o sistema acionado, abre-se o damper na posição encontrada no procedimento descrito anteriormente. Neste momento é importante observar se a vazão no sistema apresenta o mesmo valor quando feito ensaio

com o motor Standard, caso seja diferente, é importante fazer um reajuste na abertura do damper para que a vazão no sistema seja a mesma para as duas situações. O reajuste deverá ser realizado manualmente alterandose o valor do campo <MV> da janela ID; Ao estabilizar o sistema, ou seja, quando o damper já estiver aberto na posição desejada e o valor de vazão do sistema estiver estabilizado, anota-se o valor da potência elétrica ativa trifásica no sistema. Esta informação se encontra na janela <Medições>. Escolher as ções <otência> e <Ativa>. ara uma situação em que tem-se um ventilador erando t por um período de tempo de, a economia de energia ao se utilizar o motor de alto rendimento ao invés do motor da linha padrão nesse período será de: Economia ( St ) t Economia - Economia de energia; St = (1) - otência no sistema com motor Standard; - otência no sistema com motor de Alto Rendimento; t - tempo de eração do ventilador em uma situação genérica. Em percentual a economia de energia seria: ( St ) 100 Eco % = Eco % - Economia de energia em porcentagem; B. Controle de vazão de Ar por Damper e por Inversor de Neste ensaio, pretende-se verificar a eficiência do sistema de ventilação quando submetido a um controle de vazão de ar por meio de um inversor de freqüência em substituição ao damper. ara a realização do ensaio procede-se da seguinte forma: Fecha-se o damper manualmente através da janela ID; Aciona-se o sistema (motor Standard ou Alto Rendimento) através da partida direta ou Soft-starter; Abri-se o damper numa primeira posição e anota-se o valor da potência elétrica ativa no sistema; Repete-se o item anterior para várias aberturas do damper; ara cada abertura do damper verificar se o sistema não está erando em sobrecarga, caso esteja, coloca-se o damper numa posição em que isso não ocorra; Traça-se um gráfico otência Ativa x Vazão. Os pontos para a construção do gráfico podem ser obtidos no St (2) momento do ensaio ou através do banco de dados que armazena todos os dados necessários durante o ensaio; Repete-se o procedimento anterior. orém com o damper aberto na posição de carga nominal quando se utiliza partida direta. ara a obtenção dos diferentes valores de vazão, varia-se a freqüência do inversor de freqüência na janela Comando. É importante que os valores de vazão nesse momento sejam próximos dos valores de vazão do ensaio realizado com damper. Constrói-se o gráfico otência Ativa x Vazão agora utilizando o inversor de freqüência. Com os dados obtidos do ensaio descrito anteriormente pode-se verificar a maior eficiência do sistema quando utilizado o inversor de freqüência. A economia de energia deve ser analisada em cada ponto, ou seja, teremos um valor de economia de energia diferente para cada valor de vazão no sistema. ara verificar essa economia basta utilizar a equação seguinte: ( ) Economia = t (3) damper inversor Economia - Economia de energia; - otência ativa para uma dada vazão damper utilizando damper; - otência ativa para uma dada vazão inversor utilizando inversor de freqüência; t - tempo de eração do ventilador em uma situação genérica. Em percentual a economia de energia seria: ( damper inversor ) 100 Eco (4) % = damper Eco % - Economia de energia em porcentagem; IV. ESTUDO DE CASO Neste momento será realizado o estudo do sistema de ventilação do laboratório que é objeto desse trabalho. rimeiramente será realizado o estudo de eficiência energética no que diz respeito à utilização do motor de alto rendimento em substituição ao motor da linha padrão [3]. osteriormente será analisada a eficiência do sistema quanto à utilização de um inversor de freqüência em substituição ao damper. O inversor de freqüência e o damper são utilizados nos sistemas de ventilação para variarem a vazão de ar no sistema. As análises serão realizadas tendo-se como base as seguintes informações:

O sistema erará durante 4000 horas no ano, sendo 1400 horas com vazão de 8 m³/min, 1500 horas com vazão de 13 m³/min e 1100 horas com vazão de 18 m³/min; A tarifa de energia elétrica é de R$ 0,30/kWh A. Consumo de motores da linha padrão e de alto rendimento A análise será direcionada a utilização de um motor de alto rendimento em substituição a um da linha padrão. Foram realizados os ensaios descritos anteriormente. Chegou-se aos seguintes resultados: L otência (Watts) 1500 1000 500 0 1 2 5 6 8 13 15 19 20 Vazão (m³/min) Fig. 3. Curva otência x Vazão - Linha adrão - Alto Rendimento A partir da análise do gráfico, e dos dados coletados é possível encontrar os valores de potência para a vazão desejada. Com esses valores de potência podemos construir a tabela abaixo. TABELA I Ensaio utilizando motores padrão e de alto rendimento Linha adrão Alto Rendimento Tempo de Economia Eco Vazão (m³/min) ot. (W) Vazão (m³/min) ot. (W) eração (horas) (kwh) (%) 8 816 8 790 1400 36,4 3,2 13 998 13 952 1500 69 4,6 18 1365 18 1303 1100 68,2 4,5 Total 4000 172,2 4,1 Como pode ser visto na tabela acima a economia de energia em um ano de eração do sistema de ventilação substituindo o motor da linha padrão pelo motor de alto rendimento é de 172,2 kwh/ano, equivalente a 4,1%. Supondo a tarifa de energia ser de R$ 0,30/kWh, a economia seria de R$ 51,66/ano. Com base nessa economia, deve se fazer um estudo de tempo de retorno de investimento para saber se vale a pena investir. Isso porque os motores de alto rendimento são mais caros que os da linha padrão devido ao uso de materiais especiais na construção dos mesmos. Uma observação que não pode faltar quanto à curva de otência x Vazão na fig. 1. na qual em determinados pontos da curva a potência consumida nos dois motores é a mesma, podendo até chegar o caso no qual o motor de alto rendimento gaste mais energia do que o da linha padrão para a mesma carga, isso ocorre porque na especificação do rendimento do motor, realizado de maneira indireta, tem se um erro em torno do valor encontrado para mais ou para L menos, sendo assim, pode haver o caso que o erro do motor de alto rendimento seja para menos, e no motor de linha padrão para mais, ocorrendo a equivalência de rendimentos para mesma carga. B. Controle de vazão de Ar por Damper e por Inversor de A análise agora será direcionada à utilização de um inversor de freqüência em substituição ao tradicional damper utilizado para variar a vazão de ar em sistemas de ventilação. Foram realizados os ensaios descritos anteriormente. Chegou-se aos seguintes resultados: otência (Watts) 1500 1000 500 0 1 2 5 6 8 13 15 19 Vazão (m³/min) Fig. 4. Curva otência x Vazão Damper Inversor A partir da análise do gráfico e dos dados coletados no ensaio, é possível encontrar os valores de potência para a vazão desejada. Com esses valores de potência podemos construir a tabela abaixo. TABELA II Ensaio utilizando Damper e Inversor de Damper Inversor de Tempo de Economia Eco eração (kwh) (%) Vazão ot. Vazão ot. (horas) (m³/min) (W) (m³/min) (W) 8 790 8 100 1400 1003,8 87,7 13 952 13 340 1500 918 64,3 18 1303 18 1100 1100 223,3 15,6 Total 4000 2145,1 54 Como pode ser visto na tabela acima a economia de energia em um ano de eração do sistema de ventilação substituindo o uso de damper pelo inversor de freqüência é de 2145,1 kwh/ano, equivalente a 54%. Supondo a tarifa de energia ser de R$ 0,30/kWh, a economia seria de R$ 643,53/ano. Com base nessa economia, deve se fazer um estudo de tempo de retorno de investimento, contabilizando o preço do inversor de freqüência e uma análise do tipo de carga a qual o motor está aclado, isso porque existem algumas cargas onde não se pode usar o inversor de freqüência como dispositivo de acionamento, como por exemplo, compressor a pistão, o qual não permite variação de rotação. É importante que se faça outra análise relacionada à qualidade da energia elétrica. Normalmente, os inversores de freqüência causam muita poluição na rede, isso pode gerar algumas complicações em determinadas áreas em que o mesmo será utilizado. ara minimizar os distúrbios causados pelo uso de inversores são utilizados filtros de harmônicos,

entretanto esses dispositivos são caros. Sendo assim, a utilização desses equipamentos deve ser incluída no estudo de viabilidade de implementação do inversor de freqüência no sistema. V. CONCLUSÕES A análise realizada nesse projeto permite concluir que é possível consumir menos energia para realização do mesmo trabalho em sistemas de ventilação industrial. Algumas soluções para isso são: a substituição de motores da linha padrão por motores de alto rendimento, salvo a necessidade de uma análise do caso, verificando o custo e o retorno do investimento, outra solução seria a substituição de um sistema mecânico (damper) de controle de vazão por um sistema eletrônico (Inversor de ), ressaltando a necessidade de uma análise do tipo de carga a ser acionada, e o custo do inversor ara finalizar, foi analisada a eficiência de um ventilador centrífugo de pequeno porte, lembrando que em sistemas maiores os valores seriam mais expressivos. REFERÊNCIAS BIBLIOGRÁFICAS [1] VIANA, A. N. C. rograma de Eficientização Industrial Módulo Ventiladores e Exaustores. ELETROBRÁS/ROCEL. [2] S. F.. Silva, A. C. Delaiba, D. Bispo, at all Especificação para um Laboratório de Eficiência Industrial. II CBEE, Vitória ES, 2007. [3] LOCATELLI, E. rograma de Eficientização Industrial Módulo Motor Elétrico. ELETROBRÁS/ROCEL. DADOS BIOGRÁFICOS Alex Gomes da Fonseca, nascido em 26/03/1986 em Itumbiara-GO, é estudante de engenharia elétrica na Alin de Amaral Martins, nascida em 29/09/1986 em Uberlândia-MG, é estudante de engenharia elétrica na Cecília de Melo Batalhone, nascida em 27/09/1986 em Uberlândia-MG, é estudante de engenharia elétrica na Décio Bispo, é engenheiro eletricista, mestre (1985) e doutor (2000) pela UNICAM. Atualmente é professor de Máquinas Elétricas e Manutenção de Sistemas Industriais na Universidade Federal de Uberlândia. Antônio Carlos Delaiba, é engenheiro eletricista, mestre (1987) e doutor (1997) pela US/S. Atua na área de Qualidade da Energia Elétrica. rofessor na Universidade Federal de Uberlândia.