CAPÍTULO III TERMOQUÍMICA



Documentos relacionados
TERMOQUÍMICA. Desta forma podemos dizer que qualquer mudança química geralmente envolve energia.

LOQ Físico-Química Capítulo 2: A Primeira Lei: Conceitos TERMOQUÍMICA Atkins & de Paula (sétima edição)

Leonnardo Cruvinel Furquim TERMOQUÍMICA 2

CALOR, TEMPERATURA E CAPACIDADES CALORÍFICAS. C = q/ T. C = n. C m

EXERCÍCIOS PROPOSTOS RESUMO. ΔH: variação de entalpia da reação H R: entalpia dos reagentes H P: entalpia dos produtos

Exercícios sobre Termoquímica- lei de hess

11.1 EQUAÇÃO GERAL DOS BALANÇOS DE ENERGIA. Acúmulo = Entrada Saída + Geração Consumo. Acúmulo = acúmulo de energia dentro do sistema

Exercícios sobre Termoquímica- variação de entalpia

Equipe de Química QUÍMICA

38 C 37 B 39 D. Sabendo-se que a amônia (NH 3. ) é constituída por moléculas polares e apresenta boa solubilidade em água. o diclorometano (CH 2.

H = +25,4 kj / mol Neste caso, dizemos que a entalpia da mistura aumentou em 25,4 kj por mol de nitrato de amônio dissolvido.

Calor de Reação Forma de determinar a energia absorvida ou liberada em uma reação = ΔH da reação.

Processo Seletivo/UFU - Janeiro ª Prova Comum - PROVA TIPO 1 QUÍMICA QUESTÃO 32

Termodinâmica Química

ESCOLA ESTADUAL PROFESSOR MORAIS. Atividade: Lista de Exercícios sobre termoquímica Valor: Nota:

Lista de Exercícios de Recuperação do 2 Bimestre

Química. 2º Ano. Nome completo: N.º

Projeto rumo ao ita. Química. Exercícios de Fixação. Exercícios Propostos. Termodinâmica. ITA/IME Pré-Universitário Um gás ideal, com C p

CURSO APOIO QUÍMICA RESOLUÇÃO


TERMOQUÍMICA RITA SIMÕES

OPERAÇÕES UNITÁRIAS. Processo de Combustão

Aula sobre Soluções Aula 01 (ENEM) Profº.: Wesley de Paula

UFU 2014 VESTIBULAR DE MAIO 1ª FASE

As Propriedades das Misturas (Aulas 18 a 21)

Gás Ideal ou Perfeito

Nome:...N o...turma:... Data: / / ESTUDO DOS GASES E TERMODINÂMICA

Pergunta I II III IV Total. Nota: Apresente todos os cálculos que efetuar

Propriedades Físicas das Soluções. Tipos de Soluções

SOLUÇÕES. As misturas homogêneas possuem uma fase distinta. As misturas heterogêneas possuem duas ou mais fases distintas.

P R O V A D E Q UÍMICA I. A tabela abaixo apresenta os pontos de ebulição e a solubilidade em água de alguns álcoois e éteres importantes.

Prova de Química Resolvida Segunda Etapa Vestibular UFMG 2011 Professor Rondinelle Gomes Pereira

Aulas 11 e 12 Segunda e Terceira Lei da Termodinâmica

Introdução ao Estudo da Corrente Eléctrica

Solubilidade & Unidades de Concentração

PROVA DESAFIO EM QUÍMICA 04/10/14

EXERCÍCIOS DE APLICAÇÃO

COLÉGIO DA POLÍCIA MILITAR

ATIVIDADES SOBRE TRABALHO, CALOR, ENERGIA INTERNA, PRIMEIRA LEI DA TERMODINÂMICA E ENTALPIA

ENERGIA E AS REAÇÕES QUÍMICAS

O estado no qual um ou mais corpos possuem a mesma temperatura e, dessa forma, não há troca de calor entre si, denomina-se equilíbrio térmico.

Tecnologias de Micro-Geração e Sistemas Periféricos PARTE II Tecnologias de Aproveitamento de Calor -

RESUMOS TEÓRICOS de QUÍMICA GERAL e EXPERIMENTAL

Aula 19 PROPRIEDADES DAS SOLUÇÕES. Eliana Midori Sussuchi Samísia Maria Fernandes Machado Valéria Regina de Souza Moraes

SEPARAÇÃO DE MISTURAS. Pr ofª Tatiana Lima

03/04/2016 AULAS 11 E 12 SETOR A

UFMG º DIA QUÍMICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

Questão 13. Questão 15. Questão 14. alternativa C. alternativa E

16) O produto nr tem um valor constante de 50atm.cm 3 /K. 32) A densidade final do gás foi de 50% do valor inicial.

EX Y > EX=Y > EX Y Etripla > Edupla > Esimples RESUMO EXERCÍCIO RESOLVIDO

Actividade Laboratorial

CPV o cursinho que mais aprova na fgv Fgv - 05/12/2004

LOQ Físico-Química Capítulo 4: A Segunda Lei: Conceitos

DISPERSÕES. Profa. Kátia Aquino

Termodinâmica Química Lista 2: 1 a Lei da Termodinâmica. Resolução comentada de exercícios selecionados

UFMG º DIA QUÍMICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

Associação Catarinense das Fundações Educacionais ACAFE PARECER RECURSO DISCIPLINA QUÍMICA

Química 2. Módulo 9: Termoquímica ATIVIDADE III

Solubilidade. Ricardo Queiroz Aucélio Letícia Regina de Souza Teixeira

Aulas 13 e 14. Soluções

Leonnardo Cruvinel Furquim TERMOQUÍMICA

CONCEITOS BÁSICOS DA TERMODINÂMICA

INSTITUTO POLITÉCNICO DE TOMAR ESCOLA SUPERIOR DE TECNOLOGIA. Departamento de Engenharia Química e do Ambiente. QUÍMICA I (1º Ano/1º Semestre)

Vestibular UFRGS Resolução da Prova de Química

QUÍMICA POR QUE ESTUDAR QUÍMICA?

ESTUDO DA MATÉRIA. QUÍMICA - Prof. Marcelo Uchida -

*******************TIPO 1*******************

Departamento de Química Inorgânica 2. SOLUÇÕES

REDUÇÃO E OXIDAÇÃO EM SISTEMAS INORGÂNICOS

LISTA COMPLEMENTAR DE EXERCÍCIOS. Ensino Médio 3º ano. Cinética Química Equilíbrio Químico Equilíbrio Iônico

TERMOQUÍMICA. Profa. Kátia Aquino

CALORIMETRIA. H T = c m T.

Resoluções das Atividades

QUÍMICA. 3. (FCC BA) A reação abaixo pode ser classificada como endotérmica ou exotérmica? Justifique H2(g) + ½ O2(g) H2O(g) + 242kJ

Liquido saturado é aquele que está numa determinada temperatura e pressão eminente de iniciar a transformação para o estado vapor.

Experimento 3 Termoquímica: Construção de um calorímetro simples e medição da entalpia de uma reação

a) Incorreta. O aumento da temperatura desloca o equilíbrio para o lado direito, no sentido da formação do vapor (transformação endotérmica).

Box 2. Estado da solução Estado do solvente Estado do soluto Exemplos

B) Determine a quantidade máxima, em gramas, de ácido sulfúrico que pode ser produzido a partir da combustão completa de g de enxofre.

Prática sobre ponto de fulgor de combustíveis líquidos

Química. Energia de formação (KJ mol -1 )

Apresentar os conceitos relacionados à mistura simples e equilíbrios de fases e equilíbrio químico.

SOLUÇÕES. Curvas de Solubilidade

Exercícios Sobre LigaÇões iônicas

EXERCÍCIOS ON LINE DE CIÊNCIAS - 9 ANO

Determinação de Massas Moleculares de Polímeros

Olimpíada Brasileira de Química

Resolução da Prova de Química Vestibular Verão UERGS/2003 Prof. Emiliano Chemello

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P p = = (N/m 2 ) A 0,20.

IX Olimpíada Catarinense de Química Etapa I - Colégios

PROPRIEDADES COLIGATIVAS

As propriedades coligativas não dependem da natureza química do soluto, mas apenas do número de partículas do soluto presente em relação ao total.

Cadex Pré-vestibular Química Volume I Série 4 Geometria molecular; polaridade; forças intermoleculares

ELETRÓLISE - TEORIA. Eletrólitos são condutores iônicos de corrente elétrica. Para que ocorra essa condução, é necessário:

Professora Sonia Exercícios sobre Cinética gasosa

APOSTILA DE FÍSICA II BIMESTRE

Aquecimento / Arrefecimento forma de climatização pela qual é possível controlar a temperatura mínima num local.

Bombas de Calor Geotérmicas

DETERMINAÇÃO DA CAPACIDADE TÉRMICA MÁSSICA DE UM SÓLIDO PELO MÉTODO DAS MISTURAS

MATÉRIA Química II. Helder

Transcrição:

CAPÍTULO III - Termoquímica 40 CAPÍTULO III TERMOQUÍMICA Podemos designar a termoquímica como o estudo do calor envolvido nas transformações físicas e químicas. Vamos considerar um sistema constituído por um vaso reaccional. Se entra calor no sistema, Q é positivo, e dizemos que o processo é endotérmico. Se o sistema liberta calor, então Q < 0, e o processo é exotérmico. A volume constante, e se não houverem outras formas de trabalho para além do trabalho de expansão, Q V = U. A pressão constante, Q p =. Geralmente deparamo-nos com processos a p constante, daí o grande interesse no estudo de variações de entalpia em processos físico-químicos. A entalpia A variação de entalpia num dado processo depende de vários factores, nomeadamente do estado de agregação dos componentes (sólido, líquido ou gasoso), da pressão e temperatura, e da natureza da transformação. Dado a entalpia depender do estado de agregação das substâncias, é conveniente definir estados padrão. Para os sólidos, o estado padrão é a sua forma mais estável, a 1 bar e temperatura especificada. Para os líquidos, o estado padrão é a forma mais estável a 1 bar e temperatura especificada. Para os gases, o estado padrão é o gás a 1 bar. Considera-se geralmente a temperatura padrão de 25 C, ou 298.15 K. A variação de entalpia padrão,, corresponde à variação de entalpia num processo em que todas as substâncias envolvidas se encontram no respectivo estado padrão, no estado inicial e no estado final. Vamos de seguida considerar alguns processos físico-químicos onde ocorrem variações de entalpia.

CAPÍTULO III - Termoquímica 41 Entalpia de vaporização, vap A entalpia de vaporização é a variação de entalpia envolvida no processo de vaporização de um líquido. Consideremos o seguinte exemplo: 2 O(l) -------------> 2 O(g), vap = 40.66 kj.mol -1 a 373 K Trata-se de um processo endotérmico. Efectivamente, se colocarmos uma porção de acetona na palma da mão, o que sentimos? A acetona no processo de vaporização rouba calor à mão, provocando a sensação de frio. Entalpia de fusão, fus A entalpia de fusão é a variação de entalpia envolvida no processo de fusão de um sólido. Consideremos o exemplo: 2 O(s) -----------> 2 O(l), fus = 6.01 kjmol -1, a 273 K Trata-se de novo de um processo endotérmico. Entalpia de sublimação, subl A entalpia de sublimação é a variação de entalpia envolvida no processo de sublimação de um sólido. Mais uma vez, este processo é endotérmico, como podemos ver no exemplo seguinte: C(s, grafite) -----------> C(g), subl = 716.7 kjmol -1 Entalpia de solução, sol A entalpia de solução corresponde à variação de entalpia no processo de dissolução de uma substância inicialmente no seu estado gasoso. Consideremos o exemplo:

CAPÍTULO III - Termoquímica 42 Cl(g) -----------> Cl(aq), sol = -75.14 kjmol -1. Este é um processo exotérmico. São libertados 75 kj de energia quando 1 mole de Cl é dissolvido em água, a diluição infinita. Podemos exemplificar este processo de dissolução para um sal, o NaCl. A dissolução do sal pode ser dividida conceptualmente em 2 etapas: vaporização do sal, a que corresponde a energia de rede do composto iónico, e posterior introdução dos iões no seio do solvente. No caso da água a esta etapa corresponde a entalpia de hidratação. Noutros solventes será a entalpia de solvatação. Na figura seguinte encontra-se esquematizado este processo: Figura 3.1. Dissolução do NaCl em água As entalpias de hidratação são sempre negativas, pois resultam da formação de interacções soluto/solvente, energeticamente favoráveis. No entanto, as entalpias de solução podem ser positivas ou negativas, pois resultam da soma entre a energia de rede e a entalpia de hidratação. No exemplo anterior, sol > 0. Para o NaNO 3 temos sol = 25.7 kjmol -1. Se dissolvermos estes sais num copo este vai arrefecer, pois retira calor ao exterior através das paredes do recipiente (fronteira do sistema). Já quando diluímos o Cl, há libertação de calor, e o recipiente aquece. Repare-se no tipo de estrutura formada em solução. A hidratação dos iões positivos e negativos é diferente, como mostra a figura seguinte:

CAPÍTULO III - Termoquímica 43 Na+ Cl - Figura 3.2. Estrutura de uma solução aquosa de NaCl Variação de entalpia em reacções químicas Uma das aplicações da 1ª Lei da Termodinâmica é a Lei de ess: a entalpia de uma reacção é a soma das entalpias das reacções em que esta pode ser dividida. Vamos exemplificar esta lei com um exemplo simples: C(grafite) + 1/2 O 2 (g) -----> CO(g) Conhecendo as entalpias para as seguintes reacções: C(grafite) + O 2 (g) ----> CO 2 (g), 1 CO(g) + 1/2 O 2 (g) ----> CO 2 (g), 2 Então a entalpia de reacção vem: r = 1-2 Entalpias de formação padrão A entalpia molar de formação padrão de uma substância é a entalpia de reacção para a sua formação a partir dos elementos no estado padrão. Consideremos o seguinte exemplo:

CAPÍTULO III - Termoquímica 44 6 C(s, grafite) + 3 2 (g) ----> C 6 6 (l) f (C 6 6, l) = 49 kjmol -1 A variação de entalpia numa reacção química pode ser calculada se soubermos a entalpia de formação padrão de todos os reagentes e produtos. Isto deve-se ao facto da entalpia ser uma função de estado, e é uma aplicação da Lei de ess. O valor da entalpia de formação padrão dos elementos no estado padrão é zero. Consideremos a seguinte reacção química: 2 N 3 + 2 NO -----> 2 O 2 + 4 N 2 Os valores das entalpias de formação padrão encontram-se na tabela seguinte: Substância f (kjmol -1 ) N 3 264.0 NO 90.25 N 2 0 2 O 2-187.8 A partir dos dados anteriores podemos calcular a variação de entalpia para a reacção acima, que vem: r = ( -187.8 + 4 0) - (2 264 + 2 90.25) = - 896.3 kj Reacções de combustão Um tipo de reacções química muito importante a nível industrial são as reacções de combustão. A entalpia de combustão padrão, c, é a entalpia para a reacção de oxidação completa de compostos orgânicos a CO 2 (g), 2 O(l), e ainda N 2 (g) se houver N presente.

CAPÍTULO III - Termoquímica 45 Todas as reacções de combustão são bastante exotérmicas. Um exemplo é a reacção de combustão da glicose: C 6 12 O 6 (s) + 6 O 2 (g) -----> 6 CO 2 (g) + 6 2 O(l) c = - 2808 kjmol -1 Para determinar experimentalmente calores de combustão podem ser utilizados vários métodos. Geralmente são utilizados calorímetros adiabáticos. Na figura seguinte encontra-se um calorímetro deste tipo: Figura 3.3. Calorímetro adiabático para determinação de calores de combustão A partir de uma substância padrão determina-se a capacidade calorífica do conjunto bomba de combustão/água, medindo a elevação de temperatura quando queimamos uma dada quantidade dessa substância. Uma das substância padrão é o ácido benzóico, para o qual temos:

CAPÍTULO III - Termoquímica 46 U (ácido benzóico) = - 6316 cal g -1 A partir da elevação de temperatura registada, podemos calcular a capacidade calorífica do calorímetro: U = C V (calorímetro) T A variação de entalpia pode agora ser obtida através de: = U + nrt Medindo a elevação de temperatura para qualquer outra substância podemos determinar o calor de combustão dessa substância. Variação da entalpia com a temperatura A maior parte das reacções com interesse laboratorial ou industrial ocorrem a temperaturas diferentes de 298.15 K. Como é que podemos calcular a estas temperaturas? Vamos considerar o seguinte ciclo termodinâmico: Reagentes (T) reacção (T) Produtos (T) R P 298 Reagentes (298 K) Produtos (298 K) Figura 3.4. Ciclo termodinâmico que permite calcular a variação de entalpia para a reacção Reagentes-->Produtos à temperatura T. Como a entalpia é uma função de estado, ciclo = 0, isto é:

CAPÍTULO III - Termoquímica 47 R + 298 + P - reacção (T) = 0 Então, reacção (T) = 298 + R + P O valor de 298 encontra-se geralmente tabelado, pelo que necessitamos de calcular R e P. A partir da expressão para a capacidade calorífica a pressão constante, temos: d = C p dt Integrando entre dois limites de temperatura, obtemos: f T ( ) T ( ) CdT = f i p T T i Se a capacidade calorífica for aproximadamente constante entre os dois limites de temperatura considerados, obtemos simplesmente: = C p (T f - T i ) = C p T Se C p varia com a temperatura temos de calcular o integral respectivo. Esta equação aplica-se a todas as substâncias envolvidas na reacção química, e logo também para R e P. Para um caso genérico temos: T ( ) = ( 298) + Cp ( TdT ) T 298 A equação anterior é designada por Lei de Kirchoff. Para uma reacção genérica, aa + bb ---> cc + dd, C p é dado por:

CAPÍTULO III - Termoquímica 48 C p = (cc p (C) + dc p (D)) - (ac p (A) + bc p (B)) Geralmente, a capacidade calorífica de substâncias orgânicas expressa-se da seguinte forma: C p (T) = a + bt + ct 2 Para gases inorgânicos temos: C p (T) = α + βt + τt -2 Temperatura teórica de chama Vimos atrás como se podem obter entalpias de formação padrão a partir de reacções de combustão. A temperatura máxima que pode ser atingida pela combustão de um gás com uma certa quantidade de ar designa-se por temperatura teórica de chama. Esta temperatura é atingida quando o processo ocorre adiabaticamente. Transferência de calor para o exterior, combustão incompleta, ou fenómenos de dissociação, resultam em temperaturas inferiores. A temperatura máxima para uma dada combinação de combustível e oxidante ocorre quando a mistura é estequiométrica. Considere-se a figura seguinte: Figura 3.5. Esquema de um processo adiabático. Como o processo é adiabático, a = 0 = 1 + 2, correspondendo 1 ao calor de combustão à temperatura do estado inicial (por exemplo, 298.15 K). Por conveniência define-se capacidade calorífica média:

CAPÍTULO III - Termoquímica 49 _ P C = T T f i ( T C f p dt T ) i Assim, a variação de entalpia, ou calor envolvido no processo a pressão constante, na passagem de T i para T f é dado por: _ = C ( T T ) 2 p f i A figura seguinte mostra o esquema de uma câmara de combustão: Figura 3.6. Câmara de combustão A tabela seguinte mostra alguns exemplos de temperaturas teóricas de chama: Temperatura teórica de chama Fuel Oxigénio como oxidante Ar como oxidante idrogénio, 2 3079 2384 Metano, C 4 3054 2227 Propano, C 3 8 3095 2268 Octano, C 8 18 3108 2277