RACIOCÍNIO LÓGICO
|
|
|
- Eric de Paiva Branco
- 7 Há anos
- Visualizações:
Transcrição
1 RACIOCÍNIO LÓGICO 01. Cinco pessoas brincam conforme uma sequencia elaborada pelo professor Vinicius Motta, elas correm em fila. A primeira, chamada de número 10, a segunda chamada de número 20, a terceira chamada de número 30, a quarta chamada de número 40 e a quinta chamada de número 50. Após 15 segundos de caminhada, a número 10 para, deixa todas as outras passarem por ela e continua a caminhada atrás de todas as outras. Após 20 segundos, as duas primeiras pessoas da fila, a número 20 e a número 30, param e deixam que todos os outros, ordenadamente, passem a frente, e seguem atrás de todos, mantendo a ordenação, com o 20 à frente do 30. E assim essa troca segue. Após o intervalo de 15 segundos, a pessoa a frente para e os demais passam. Em seguida, após o intervalo de 20 segundos, as duas pessoas que estavam à frente param e deixam todas as outras passarem e continuam a caminhada atrás delas, e na mesma ordem em que estavam entre si. Volta a acontecer o intervalo de 15, depois o de 20, volta o de 15 e segue. Essa troca ocorre ordenadamente, com todas as componentes e da maneira como foi descrita durante 2 minutos e 40 segundos. Após esse tempo, todos param. A pessoa que, nesse momento de parada, ocupa a última posição na fila é a chamada de número: a) 10. b) 20. c) 30. d) 40. e) Três lojas concorrem vendendo a mesma camisa pelo mesmo preço a unidade. Uma promoção na loja Q oferece 4 dessas camisas pelo preço de 3. A loja M, oferece 25% de desconto em cada uma das camisetas a partir da terceira camiseta comprada em uma mesma compra. A loja, V vende a primeira camisa com o preço anunciado, a segunda camisa igual é vendida com um desconto de 10%, a terceira camisa igual é vendida com desconto de 20% e a quarta camisa igual com desconto de 30%. Ordenando os valores pagos por três clientes que compraram 4 dessas camisas, cada um deles em uma dessas três lojas, observa-se que o cliente que pagou menos, pagou X % a menos do que o segundo cliente nessa ordenação crescente, em relação ao valor pago por esse segundo cliente. Desta forma, o valor de X é aproximadamente a) 50 b) 33,3 c) 25 d) 22,5 e) O encarregado dos eletricistas de uma empresa, Vinicius Motta, começou um dia de serviço com novidade: quem tem menos que 25 anos vai colocar uma certa quantidade de metros de fio hoje; quem tem de 25 até 45 anos coloca três quartos do que colocam esses mais jovens; aqueles com mais de 45 anos colocam dois quintos do que colocam aqueles que têm de 25 a 45 anos; e, para terminar, os que têm de 25 até 45 anos colocarão hoje, cada um, 210 metros. O grupo dos eletricistas era formado por dois rapazes de 22 anos, 3 homens de 30 e um homeme de 48 anos. Todos trabalharam segundo o plano estabelecido por Vinicius Motta. E, dessa maneira, o total em metros instalado nesse dia, por esses eletricistas, foi a) 952. b) c) d) e) 1.584
2 04. Duas crianças, A e B, estão de costas, encostadas uma na outra num terreno plano. Estão olhando para direções opostas. A criança A caminha 10 metros na direção que olha, gira 90 para esquerda e caminha 20 metros nessa nova direção, gira 90 para a direita e caminha 40 metros nessa nova direção, gira 90 para esquerda e caminha 80 metros nessa nova direção e para. A criança B caminha 10 metros na direção que olha, gira 90 para sua direita e caminha 10 metros nessa nova direção, gira 90 para sua esquerda e caminha 30 metros nessa nova direção, gira 90 para sua direita e caminha 30 metros nessa nova direção, gira 90 para sua esquerda e caminha 20 metros nessa nova direção, gira 90 para sua direita e caminha 60 metros nessa nova direção e para. Após esses movimentos de ambas as crianças, a distância entre elas é de a) 80 metros b) 90 metros c) 100 metros d) 110 metros e) 120 metros. 05. Em uma feira chamava a atenção um vendedor de troncos. Ele só pegava troncos inteiros e agia da seguinte maneira: o primeiro troncos ele colocava inteiro de um lado; o segundo ele dividia ao meio e colocava as metades em outro lugar; o terceiro troncos ele dividia em três partes iguais e colocava os terços de coco em um terceiro lugar, diferente dos outros lugares; o quarto troncos ele dividia em quatro partes iguais e colocava os quartos de troncos em um quarto lugar diferente dos outros lugares. No quinto troncos agia como se fosse o primeiro troncos e colocava inteiro de um lado, o seguinte dividia ao meio, o seguinte em três partes iguais, o seguinte em quatro partes iguais e seguia na sequência: inteiro, meios, três partes iguais, quatro partes iguais, inteiro, meios, três partes iguais, quatro partes iguais. Fez isso com exatamente 59troncos quando alguém disse ao vendedor: eu quero três quintos dos seus terços de tronco e metade dos seus quartos de tronco. O vendedor atendeu e vendeu para o cliente a) 52 pedaços de tronco b) 55 pedaços de tronco c) 59 pedaços de tronco d) 98 pedaços de tronco e) 101 pedaços de tronco 06. Uma mulher teve 6 filhos. Sabendo que cada filho lhe deu 5 netos, cada neto lhe deu 4 bisnetos e cada bisneto teve 3 filhos, quantos são os descendentes desta senhora? a) 516 b) 484 c) 460 d) 380 e) Observe a seguinte sequencia: (1, 3, 6, 18, 21, 63, 66,...) A soma 9º com o 10º termos é: a) 201 b) 603 c) 804 d) 1041 e) Observe as seguintes palavras: ARMARAM RAMA ORNAMENTAL TALO
3 ENTENDER -??? A palavra que completa corretamente a sequência é: a) Rede b) Tende c) Nerde d) Dere e) malo 09. Observe a sequencia apresentada: ABC EFG IJK MNO -?? Mantendo-se o padrão apresentado, a próxima letra a ser escrita será: a) O b) P c) Q d) R e) S 10. A figura seguinte mostra uma pilha de cubos de mesmas dimensões. O número de cubos que não podemos ver, mas que foram usados na montagem dessa pilha é: a) 1 b) 2 c) 3 d) 4 e) 5 GABARITO 01. C Comentário: Observe que nesta questão não há fórmula previamente estabelecida pela matemática, você deve montar as sequências e ir verificando: 1ª vez (15 s) 1, 2, 3, 4, 5.
4 2ª vez (20 s) 2, 3, 4, 5, 1. 3ª vez (15 s) 4, 5, 1, 2, 3. 4ª vez (20 s) 5, 1, 2, 3, 4. E assim sucessivamente até que cheguemos em 2 min. e 40 s = 160 s Observe que quando isto ocorrer estaremos numa sequência de 20 s, mas incompleta, as pessoas irão parar nos primeiros 5 segundos, mas, não há problema. Na penúltima seqencia, teremos 15 s com o 30 na frente e ele será colocado no fim da próxima fila, que será a última, portanto, a resposta é 30. Atenção, é necessário que você faça as sequencias. 02. E Comentário: como a questão não coloca absolutamente nenhum valor, use o valor falso de 100 reais. Portanto, suponha que a camisa custe 100 reais. 1ª loja leve 4 e pague 3 : 100 x 3 = 300 2ª loja Pelo proposto, temos: = 350 3ª loja pelo proposto: = 340 Concluímos que a 1ª e a 3ª são as mais baratas. Daí, monte uma regra de três com 340 pcrc 100% e 300 para X, Percebe-se, após a conta que X = 88 % ( aproximadamente), daí, a vantagem é de 12%. 03. D Comentário: Divida os grupos e organize as idéias: Já foi fornecido que o grupo do meio instala 210m, cada um. Como são 3, temos: 3 x 210 = 630m Para o 1º grupo, temos: 3 / 4 de 210 = 280 Como são dois elementos: 2 x 280 = 560 No 3º grupo, temos: 2/ 5 de 210 = 84 Ao somarmos tudo chegamos na letra D. 04. D Comentário: Faça o movimento de cada uma das pessoas, observe que elas se alternam entre andar em frente e andar para o lado, então some os metros que uma pessoa anda para frente e anda para o lado, você constatará que ambas se afastaram em 100 metros para o lado e uma se afastou em 60m em frente e a outra em 50m. Suas novas distãncias são 110m. 05. B Comentário: como a sequencia ocorre de 4 em 4, divida 59 por 4, dá 14 com resto 3. Isto significa que tivemos 14 sequencias completas mais três troncos. Tivemos, portanto 15 troncos divididos em 3: 3 / 5 x 15 x 3 = 27 E, tivemos 14 divididos em 4 Metade de 4 x 14 = = 55.
5 06. A Comentário: faça ordenadamente: Filhos: 6 Netos: 5 x 6 = 30 Bisnetos: 4 x 30 = 120 Tataranetos: 120 x 3 = 360 Agora some todos os descendentes. 07. C Comentário: observe que os números se alternam entre o triplo do anterior e a soma com 3 unidades. Se você seguir a sequencia, chegará a 201 e 603, sua soma é D Comentário: observe que foram usadas as três últimas letras com a primeira letra de cada palavra. 09. C Comentário: foram escritas 3 letras e uma foi pulada. 10. C Comentário: observe que na base há 2 atrás e no 2º pavimento há um.
Atividades de Funções do Primeiro Grau
Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse
QUESTÃO 1 ALTERNATIVA B
1 QUESTÃO 1 O tabuleiro 7 7 pode ser facilmente preenchido e constata-se que na casa central deve aparecer o número 25, mas existe uma maneira melhor de fazer isto: no tabuleiro quadrado de casas, a quantidade
Atividades de Funções do Primeiro Grau
Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse
Programa de Recuperação Paralela PRP - 01
Programa de Recuperação Paralela PRP - 01 Nome: 1ª Etapa 013 Disciplina: Matemática - 8º Ano Página 1 de 11-8/6/013-6:15 PROGRAMA DE RECUPERAÇÃO PARALELA PRP 01 MATEMÁTICA 01- Resolva a expressão: 1 0
Prova da primeira fase - Nível 1
Prova da primeira fase - Nível Instruções: O tempo de duração da prova é de uma hora e trinta minutos. Este é um teste de múltipla escolha. Cada questão é seguida por cinco opções (a, b, c, d, e). Somente
15 - EXERCÍCIOS ENVOLVENDO FRAÇOES E SISTEMAS
1 15 - EXERCÍCIOS ENVOLVENDO FRAÇOES E SISTEMAS 1 - (UFMG 99) Uma agência de publicidade estudou o comportamento de um grupo de n consumidores de refrigerante de certa cidade, durante o ano de 1997. Nessa
Prova TCE/SP Resolvida Raciocínio Lógico e Matemático Agente da Fiscalização. Prof. Thiago Cardoso. Olá, Alunos, tudo bem?
Olá, Alunos, tudo bem? A prova do TCE/SP 2017 foi dentro do esperado, um pouco acima do nível de dificuldade padrão da Vunesp, porém, nada do outro mundo. Nesse arquivo, estamos corrigindo a prova de.
PROVA DE MATEMÁTICA QUESTÃO 31 QUESTÃO 32
PROVA DE MATEMÁTICA QUESTÃO 31 Dona Margarida comprou terra adubada para sua nova jardineira, que tem a forma de um paralelepípedo retângulo, cujas dimensões internas são: 1 m de comprimento, 25 cm de
QUESTÕES COMENTADAS DE RACIOCÍNIO LÓGICO-MATEMÁTICO FCC LISTA 5
QUESTÕES COMENTADAS DE RACIOCÍNIO LÓGICO-MATEMÁTICO FCC LISTA 5 1. (DPE RS 2013 Técnico) Na 1ª fase de um campeonato, o percentual médio de acerto de um jogador de basquete nos lances livres foi de 80%.
1. Progressão aritmética Resumo e lista
Colégio Estadual Conselheiro Macedo Soares ª ano do Ensino Médio Atividade de Matemática do 1º bimestre de 019 Conteúdo: Progressão aritmética, Progressão geométrica Aluno(s):... N o(s) :... Aluno(s):...
01) Comprei um objeto por reais e o vendi por reais. Quantos por cento eu obtive de lucro?
CURSO DE NIVELAMENTO EM MATEMÁTICA Lista de exercícios 03 Porcentagem. Equação do primeiro grau. Q01) Resolver os seguintes problemas: 01) Uma televisão custa 300 reais. Pagando à vista você ganha um desconto
04- Para obter o resultado -9, qual é o número a ser adicionado a cada um dos números abaixo? a) -3 b) -6
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - ÁLGEBRA - 7º ANO - ENSINO FUNDAMENTAL ============================================================================ 01- Determine o módulo dos números
1. Onze cubinhos, todos de mesma aresta, foram colados conforme a figura a seguir.
XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível a. Fase Olimpíada Regional AL BA GO PA PB PI RS RN SC - A duração da prova é de 3 horas. - Não é permitido o uso de calculadoras nem consultas
Programa de Recuperação Paralela PRP - 01
Programa de Recuperação Paralela PRP - 01 Nome: Apostila - 1ª Etapa 2018 Disciplina: Matemática - 8º Ano Página 1 de 11-7/6/2018-5:16 Página 2 de 11-7/6/2018-5:16 APOSTILA - PROGRAMA DE RECUPERAÇÃO PARALELA
Roteiro B. Nome do aluno: Número: Revisão
Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Roteiro B Nome do aluno: Número: Periodo: Grupo: Revisão Tópicos Tarefa Pesquisar história da fórmula de Bhaskara: descobrir
LISTA 1. a) [57, 60] c) [60, 180[ b) ]58, 116] d) ]57, 178]
LISTA 1 1- Seja n N tal que n dividido por 5 deia resto 3, n dividido por 4 deia resto e n dividido por 3 deia resto 1. Os três primeiros números naturais que satisfazem as condições de n pertencem ao
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 A afirmação é falsa ou verdadeira e porque? Todo divisor de 12 é múltiplo de 3 Questão 2 O mês de abril pode
SUB14 Campeonato de Resolução de Problemas de Matemática Edição 2008/2009
A dúvida das idades Das quatro afirmações que se seguem, 3 são verdadeiras e 1 é falsa. 1. O Francisco é mais velho do que o Filipe. 2. O Fábio é mais novo do que o Filipe. 3. A soma das idades do Filipe
Múltiplos e Divisores Questões Extras
Múltiplos e Divisores Questões Extras x 1. O número 2 36 20 possui exatamente 96 divisores inteiros positivos quando x é um número natural igual a a) 20. b) 14. c) 16 d) 18. e) 12. 2. Um ferreiro dispõe
Matemática Guarda Municipal de Curitiba. Prof.: Braian Azael da Silva
Matemática Guarda Municipal de Curitiba Prof.: Braian Azael da Silva CONJUNTOS NUMÉRICOS Exercício A sequência abaixo foi criada repetindo-se as letras da palavra JANEIRO na mesma ordem: J A N E I R O
Considerando x e y como fatores de proporcionalidade nas duas situações: 15x = 4000 l x = l 9x = 9 l =2400 l.
VESTIBULAR 00 da UNESP. PROVA DEMATEMÁTICA. Resolução pela Profa. Maria Antônia Gouveia. 01. Para manter funcionando um chuveiro elétrico durante um banho de 15 minutos e um forno de microondas durante
Questões MATEMÁTICA / PROFESSOR: RONILTON LOYOLA O1. Os anos bissextos têm, ao contrário dos outros anos, 366 dias. Esse dia a mais é colocado sempre no final do mês de fevereiro, que, nesses casos, passa
Raciocínio Lógico. Resolução de Questões FGV
Raciocínio Lógico Resolução de Questões FGV Questão 1 (FGV, 2010) Analise as afirmativas a seguir: I - 6 é maior do que 5/2 II 0,555...é um número racional. III Todo número inteiro tem antecessor. Assinale:
38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO
38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 2 1) C 6) B 11) B 16) D 21) A 2) C 7) C 12) C 17) D 22) A 3) D 8) E 13) D 18) C
CENTRO EDUCACIONAL NOVO MUNDO MATEMÁTICA
CENTRO EDUCACIONAL NOVO MUNDO www.cenm.com.br 1 o DESAFIO CENM - 2015 MATEMÁTICA Direção: Ano: 7 E F 1. Leia atentamente a tirinha apresentada a seguir. Nessa tirinha, o pai de Calvin comete um erro matemático.
CENTRO EDUCACIONAL NOVO MUNDO Matemática
Desafio de Matemática 3 ano EF 4D 2014 1/ 6 CENTRO EDUCACIONAL NOVO MUNDO www.cenm.com.br 4 o DESAFIO CENM - 2014 Matemática 1. Observe a informação sobre o peso da roupa do astronauta. Direção: Ano: 3
LISTA DE EXERCÍCIOS 2º ANO GABARITO
º ANO GABARITO Questão Matemática I 8 9 7 a9 = = 7 9 6 a8 = = 6 9 55 a7 = = Portanto, a média aritmética dos últimos termos será dada por: 8 7 6 55 + + + 7 7 M = = = 6 Questão O número de vigas em cada
Prova da primeira fase - Nível I
Instruções: O tempo de duração da prova é de uma hora e trinta minutos. Este é um teste de múltipla escolha. Cada questão é seguida por cinco opções (a, b, c, d, e). Somente uma resposta é correta. Marque
FUNÇÃO MODULAR. pcdamatematica. f : definida por. x, se x. Função definida por mais de uma sentença Ex01: Seja f : uma função definida por.
Função definida por mais de uma sentença Ex01: Seja f : uma função definida por Calcule: a) f ( 3), f (0) e f ( 3). x, se x f ( x) x 3, se x 1. x 5, se x 1 e) f ( 1. 3) f) f ( 1). f ( 3) Ex03: Em um encarte
1º Trimestre MATEMÁTICA Atividade Extra Ensino Fundamental 8º ano: Prof. Ândrea Nome: nº..
º Trimestre MATEMÁTICA Atividade Extra Ensino Fundamental 8º ano: Prof. Ândrea Nome: nº... Os bancos oferecem a seus clientes um serviço denominado cheque especial. Com ele, pode retirar mais dinheiro
1. Se x e y são números reais positivos, qual dos números a seguir é o maior?
XXII OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 - A duração da prova é de 3 horas. - Não é permitido o uso de calculadoras nem consulta a notas ou livros. - Você pode solicitar papel para
Ciências da Natureza e Matemática
Ciências da Natureza e 1 CEDAE Acompanhamento Escolar Ciências da Natureza e 2 CEDAE Acompanhamento Escolar Ciências da Natureza e 1) Numa certa cidade existem duas empresas de TV por assinatura prestando
Canguru Matemático sem Fronteiras 2014
http://www.mat.uc.pt/canguru/ Destinatários: alunos dos 10. o e 11. o anos de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta.
Colégio Nossa Senhora de Lourdes. Matemática - Professor: Leonardo Maciel
Colégio Nossa Senhora de Lourdes Matemática - Professor: Leonardo Maciel 1. (Pucrj 015) Uma pesquisa realizada com 45 atletas, sobre as atividades praticadas nos seus treinamentos, constatou que 15 desses
QUESTÃO 2 ALTERNATIVA B Trocamos a posição de dois algarismos vizinhos do número , conforme a tabela
1 QUESTÃO 1 Alvimar recebeu de troco 5,00 3,50 = 1,50 reais. Dividindo 1,50 por 0,5, obtemos o número de moedas de 5 centavos que ele recebeu. Como 1,50 0,5 = 6, segue que ele recebeu de troco seis moedas
ELABORAÇÃO: PROF. OCTAMAR MARQUES. RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. QUESTÕES DE 01 A 08.
RESOLUÇÃO DA 1 a AVALIAÇÃO DE MATEMÁTICA _ U I _ANO 007 a SÉRIE DO EM _ COLÉGIO ANCHIETA BA ELABORAÇÃO: PROF OCTAMAR MARQUES RESOLUÇÃO: PROFA MARIA ANTÔNIA GOUVEIA QUESTÕES DE 01 A 08 Nas questões de 01
B) R$ 6, 50 C) R$ 7, 00 D) R$ 7, 50 E) R$ 8, 00
1 Matemática Q1. (OBMEP) Joãozinho escreveu os números 1, 2 e 3 como resultados de operações envolvendo exatamente quatro algarismos 4, como nos exemplos a seguir: 1 = (4 + 4) (4 + 4) 2 = 4 4 + 4 4 3 =
Conteúdos Exame Final e Avaliação Especial 2017
Componente Curricular: Matemática Série/Ano: 9º ANO Turma: 19 A, B, C, D Professora: Lisiane Murlick Bertoluci Conteúdos Exame Final e Avaliação Especial 017 1. Geometria: área de Figuras, Volume, Capacidade..
MATEMÁTICA Revisão II Módulo 2. Professor Marcelo Gonzalez Badin
MATEMÁTICA Revisão II Módulo 2 Professor Marcelo Gonzalez Badin 1.(Unicamp-2009) Em uma bandeja retangular, uma pessoa dispôs brigadeiros formando n colunas, cada qual com m brigadeiros, como mostra a
EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA
COLÉGIO FRANCO-BRASILEIRO NOME: N : TURMA: PROFESSOR(A: ANO: 7º DATA: / 07 / 0 Calcule o valor das expressões: a ( 6 ( ( EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA b { [ 9 ( ]} ( [ 6( ] c ( 9 : ( 7. ( ² +
EDUCACIONAL NOVO MUNDO MATEMÁTICA
CENTRO EDUCACIONAL NOVO MUNDO www.cenm.com.br 3 o DESAFIO CENM - 2013 MATEMÁTICA 1. Leia a propaganda de alguns produtos e responda. Direção: ANO: 3 EF Caneca de porcelana R$ 24,00 cada Cofre em formato
Atividades de Matemática/8ºAno Atividades de Revisão dos capítulos XIV e XV.
Atividades de Matemática/8ºAno Atividades de Revisão dos capítulos XIV e XV. 1) André e Tiago estão fazendo um trabalho de escola em conjunto e perceberam que, juntos, produzem duas páginas por hora. Observaram
Lista 3-B Acréscimos e decréscimos Prof. Ewerton
Lista 3-B Acréscimos e decréscimos Prof. Ewerton 01) (Unicamp 2015 1ª fase) (Acréscimo e decréscimo percentual) Uma compra no valor de 1.000 reais será paga com uma entrada de 600 reais e uma mensalidade
Lógica de Programação Módulo I Prof.: Ricardo Lokchin. Fazer os exercícios abaixo na Linguagem C ou em ALGORITMOS.
Curso Superior de Tecnologia em Sistemas para Internet a Distância Instituto Federal Sul-rio-grandense - IFSUL Sistema Universidade Aberta do Brasil UAB Núcleo de Produção de Tecnologia e Ensino - NPTE
Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSA O 5 O ANO DO ENSINO FUNDAMENTAL EM 2018 Disciplina: MATEMÁTICA
Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA O 5 O ANO DO ENSINO FUNDAMENTAL EM 2018 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 11 Uma pilha de cartas numeradas de 2 a
VUNESP PM/SP 2017) A tabela mostra a movimentação da conta corrente de uma pessoa em determinado dia.
O professor Arthur Lima, que leciona as disciplinas de exatas no curso preparatório Estratégia Concursos, separou as questões de matemática da prova da PM-SP, aplicada no último dis 5 de fevereiro para
Gabarito da Lista de Exercícios sobre Recursão e Relação de Recorrência
Universidade Federal Fluminense Curso: Sistemas de Informação Disciplina: Fundamentos Matemáticos para Computação Professora: Raquel Bravo Gabarito da Lista de Exercícios sobre Recursão e Relação de Recorrência
A conta do = = 8 Logo, = 385 Como você poderia estabelecer o produto de um número de três algarismos abc por 11.
Aula n ọ 05 A conta do 11 Para multiplicar um número de dois algarismos por 11, podemos fazê-lo assim: conservamos a unidade na unidade do resultado; a dezena na centena do resultado; e a dezena do resultado
Pipocas do 9 o ano. Dinâmica 3. Aluno PRIMEIRA ETAPA COMPARTILHAR IDÉIAS. 9 Ano 3º Bimestre ATIVIDADE JOGO DA LINGUAGEM MATEMÁTICA
Reforço escolar M ate mática Pipocas do 9 o ano Dinâmica 3 9 Ano 3º Bimestre Matemática 9 Ano do Ensino Fundamental Algébrico-Simbólico Funções PRIMEIRA ETAPA COMPARTILHAR IDÉIAS ATIVIDADE JOGO DA LINGUAGEM
Módulo Números Inteiros e Números Racionais. Exercícios sobre Operações com Números Inteiros. 7 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Números Inteiros e Números Racionais Exercícios sobre Operações com Números Inteiros 7 ano E.F. Professores Cleber Assis e Tiago Miranda Números Inteiros e Números Racionais Exercícios sobre Operações
Instruções para a realização da Prova Leia com muita atenção!
Nível 1 Instruções para a realização da Prova Leia com muita atenção! Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima segunda edição da Olimpíada de Matemática de São José do
Pipocas do 9 o ano. Dinâmica 3. Aluno Primeira Etapa Compartilhar idéias. 9 Ano 3º Bimestre
Reforço escolar M ate mática Pipocas do 9 o ano Dinâmica 3 9 Ano 3º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Fundamental 9º Algébrico-Simbólico Funções Primeira Etapa Compartilhar idéias
Nível 6.º e 7.º anos do Ensino Fundamental 1. a Fase 21 de maio de 2019
Nível 6.º e 7.º anos do Ensino Fundamental 1. a Fase 21 de maio de 2019 1 QUESTÃO 1 ALTERNATIVA A Como 17 3 = 1 e 20 16 =, a conta com o borrão é a mesma que Ora, qual é o número que somado com dá 1? É
Exercícios Propostos
Cursinho: Universidade para Todos Professor: Cirlei Xavier Lista: 5 a Lista de Matemática Aluno (a): Disciplina: Matemática Conteúdo: Equações e Funções Turma: A e B Data: Setembro de 016 01. Resolva 11
ALGORITMOS E PROGRAMAÇÃO DE COMPUTADORES I. Trabalho 1 (T1)
ALGORITMOS E PROGRAMAÇÃO DE COMPUTADORES I Trabalho 1 (T1) Grupo de até três acadêmicos; Entregar os algoritmos escritos; Entregar as implementações dos algoritmos em arquivo organizados em uma pasta,
XXVII Olimpíada Brasileira de Matemática GABARITO Segunda Fase
Soluções Nível 1 Segunda Fase Parte A XXVII Olimpíada Brasileira de Matemática GABARITO Segunda Fase CRITÉRIO DE CORREÇÃO: PARTE A Cada questão vale pontos se, e somente se, para cada uma o resultado escrito
Segunda Etapa SEGUNDO DIA 2ª ETAPA MATEMÁTICA COMISSÃO DE PROCESSOS SELETIVOS E TREINAMENTOS
Segunda Etapa SEGUNDO DIA ª ETAPA MATEMÁTIA OMISSÃO DE PROESSOS SELETIVOS E TREINAMENTOS Matemática 01. Analise as afirmações a seguir, considerando a função f, tendo como domínio e contradomínio o x conjunto
Questões desenvolvidas pelos alunos na aula.
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL COLÉGIO DE APLICAÇÃO - PROJETO AMORA - ASSESSORIA DE MATEMÁTICA INSTITUTO DE MATEMÁTICA LABORATÓRIO DE PRÁTICA DE ENSINO-APRENDIZAGEM EM MATEMÁTICA Questões desenvolvidas
PROFESSOR(A): MARCELO PESSOA 9º ANO DO ENSINO FUNDAMENTAL
NOME: TURMA: PROFESSOR(A): MARCELO PESSOA MATEMÁTICA DATA: / / 9º ANO DO ENSINO FUNDAMENTAL Lista de exercícios de equação do 2º grau 1)Quais das equações abaixo são do 2º grau? ( ) x 5x + 6 = 0 ( ) 2x³
CADERNO DE EXERCÍCIOS 3F
CADERNO DE EXERCÍCIOS 3F Ensino Fundamental Matemática Questão Conteúdo Habilidade da Matriz da EJA/FB 1 Ângulos H25 2 Máximo divisor comum H8 3 Porcentagem H15 Frações H13 Adição H6 4 Escala H36 5 Análise
b) Um pacote de amendoim e dois sucos custam 20 reais, e dois pacotes de amendoim e suco custam 25 reais.
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - GEOMETRIA - 7º ANO - ENSINO FUNDAMENTAL ============================================================================================= Responda às questões
Resolvendo equações. 2 = 26-3 α φ-1
A UA UL LA Resolvendo equações Introdução À medida que os problemas se tornam mais complicados, o método algébrico vai se impondo naturalmente ao método aritmético. Resolver equações fará parte das nossas
CONCURSO DE ADMISSÃO 1º ANO/ENS. MÉDIO MATEMÁTICA 2011/12 PAG. 02 PROVA DE MATEMÁTICA
CONCURSO DE ADMISSÃO 1º ANO/ENS. MÉDIO MATEMÁTICA 2011/12 PAG. 02 PROVA DE MATEMÁTICA Marque no cartão-resposta anexo a única opção correta correspondente a cada questão. 1. Estamos no mês de outubro.
Gabarito de Matemática do 8º ano do E.F. Lista de Exercícios (L17)
Gabarito de Matemática do 8º ano do E.F. Lista de Eercícios (L7) Queridos alunos, nesta lista vamos resolver equações fracionárias (aquelas que possuem incógnita nos denominadores) e mais algumas situações-problema
Professor: Danilo Menezes de Oliveira Machado
Professor: Danilo Menezes de Oliveira Machado O QUE PRECISA SER LEMBRADO Progressão aritmética: a n = a 1 + (n 1)r Parte fixa: a 1 Parte variável: (n 1)r Variável: n Tipo de variável: Discreta (IN) Juros
Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho
Contagem e Probabilidade Exercícios Adicionais Paulo Cezar Pinto Carvalho Exercícios Adicionais Contagem e Probabilidade Para os alunos dos Grupos 1 e 2 1. Um grupo de 4 alunos (Alice, Bernardo, Carolina
// QUESTÃO 01 PROENEM 27/02/2019. A quantidade de números inteiros positivos n, que satisfazem a desigualdade: 3 7 < n 14 < 2 3 é
MATEMÁTICA PROF. THIAGO LAINETTI // QUESTÃO 01 A quantidade de números inteiros positivos n, que satisfazem a desigualdade: 3 7 < n 14 < 2 3 é a) 2. b) 3. c) 4. d) 5. // QUESTÃO 02 Na bula de um analgésico,
Conteúdos Exame Final 2018
Componente Curricular: Matemática Ano: 7º ANO Turmas: 17 A, B, C, D e E. Professoras: Fernanda, Kelly e Suziene Conteúdos Exame Final 2018 1. Números Racionais 2. Área e perímetro de figuras planas 3.
OPEMAT. Olimpíada Pernambucana de Matemática
OPEMAT Olimpíada Pernambucana de Matemática - 206 Nível. O ano de 206 está acabando, vamos ver se você conhece bem esse número. Para isso, julgue os itens a seguir: (V) (F) A maior potência de 2 que divide
Problemas dos Círculos Matemáticos. Problemas extras para o Capítulo 4
Problemas dos Círculos Matemáticos Problemas extras para o Capítulo 4 Problemas dos Círculos Matemáticos - Capítulo 4 1 Exercícios Introdutórios Exercício 1. Quantos triângulos existem na figura abaixo?
AULÃO DE MATEMÁTICA
AULÃO DE MATEMÁTICA 2016-2 PREENCHIMENTO DA GRADE PROGRESSÃO ARITMÉTICA P.A Diz-se que Gauss estava na primeira série do primário quando desvendou uma Progressão Aritmética! O professor estava cansado
Lista de Exercícios de Matemática
Lista de Exercícios de Matemática Álgebra e Aritmética 01) (Epcar/2003) - De dois conjuntos A e B, sabe-se que: I) O número de elementos que pertencem a A B é 45; II) 40% desses elementos pertencem a ambos
SIMULADO GERAL DAS LISTAS
SIMULADO GERAL DAS LISTAS 1- Sejam as funções f e g definidas em R por f ( x) x + αx g β, em que α e β são números reais. Considere que estas funções são tais que: = e ( x) = ( x x 50) f g Valor mínimo
Números Inteiros e Números Racionais. Números Racionais e Exercícios. 7 ano E.F. Professores Cleber Assis e Tiago Miranda
Números Inteiros e Números Racionais Números Racionais e Exercícios 7 ano E.F. Professores Cleber Assis e Tiago Miranda Números Inteiros e Números Racionais Números Racionais e Exercícios Exercícios Introdutórios
SIMULADO DE MATEMÁTICA FUNDAMENTAL. a) ( ) x = 01; b) ( ) x = 10; c) ( ) x = 05; d) ( ) x = 04;
NOME: DATA DE ENTREGA: / / SIMULADO DE MATEMÁTICA FUNDAMENTAL 1) Assinale a sentença correta: a) ( ) 31 ao conjunto dos números pares; b) ( ) {1, 3, 5 } { números ímpares}; c) ( ) 4 C { números pares};
CURSO ANUAL DE MATEMÁTICA VOLUME 1
CURSO ANUAL DE MATEMÁTICA VOLUME ) SISTEMA DE NUMERAÇÃO DECIMAL O sistema de numeração que usamos é o sistema de numeração decimal, pelo fato de contarmos os elementos em grupos de dez. Dezenas cada grupo
Cones e cilindros. Matemática 29/10/2015. Exatas para Todos
Cones e cilindros 1. Um recipiente cilíndrico de 60 cm de altura e base com 20 cm de raio está sobre uma superfície plana horizontal e contém água até a altura de 40 cm, conforme indicado na figura. lmergindo-se
Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus. (Fernanda Aranzate)
12 PC Sampaio Alex Amaral Rafael Jesus Semana (Fernanda Aranzate) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos
7º ANO. Lista extra de exercícios
7º ANO Lista extra de exercícios 1. Se um termômetro estiver marcando 8 o C, quantos graus vai marcar: a) se a temperatura diminuir três graus? b) se a temperatura aumentar seis graus? c) se a temperatura
Volume de pirâmides. Dinâmica 5. Aluno PRIMEIRA ETAPA COMPARTILHAR IDEIAS. 2ª Série 3º Bimestre ATIVIDADE QUAL É A SUA ÁREA?
Reforço escolar M ate mática Volume de pirâmides Dinâmica 5 2ª Série º Bimestre Matemática 2 Série do Ensino Médio Geométrico Geometria Espacial: Pirâmides e Cones. Aluno PRIMEIRA ETAPA COMPARTILHAR IDEIAS
C) D) E) A) 410,00 B) 460,00 C) 425,00 D) 435,00 E) 420,00 A) ,00 B) ,00 C) 2.400,00 D) ,00 E) 21.
MATEMÁTICA NÍVEL FUNDAMENTAL I. PORCENTAGEM 1.Fração Percentual 20%= 0,2 35%= 0,35 4%= 0,04 2. Cálculo da porcentagem de um número Exs: a) Calcular 25% de 600 0,25 x 600 = 150 b) Calcular 8% de 50 0,08
Olimpíada Brasileira de Raciocínio Lógico Nível IV Fase I 2014
1 2 Questão 1 Em um edifício garagem, 5 andares são destinados para aluguem dos carros que querem estacionar nos modos semanal e mensal. Em determinada tarde foram estacionados 81 carros ao todo. Ao longo
IGUALDADES EM IR IDENTIDADES NOTÁVEIS
IGUALDADES EM IR Uma relação muito importante definida em IR (conjunto dos números reais) é a relação de igualdade. Na igualdade A = B, A é o primeiro membro e B é o segundo membro. As igualdades entre
Portanto, o percentual de meninas na turma deste ano será:
PROFMAT EXAME NACIONAL DE ACESSO 2018 (21/10/2017) [01] No ano passado uma turma tinha 31 estudantes. Neste ano o número de meninas aumentou em 20% e o de meninos diminuiu em 25%. Como resultado, a turma
A partir da próxima segunda, todos os produtos com 30% de desconto.
2ª ETAPA G A B A R I T O 1 Matemática 31) Certo dia um comerciante colocou o seguinte cartaz na porta da sua loja: A partir da próxima segunda, todos os produtos com 30% de desconto. Porém, ao abrir a
Instruções para a realização da Prova Leia com muita atenção
Nível 3 Instruções para a realização da Prova Leia com muita atenção Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima terceira edição da Olimpíada de Matemática de São José do
QUESTÃO 16 Quando simplificamos a expressão:
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 7 Ọ ANO DO ENSINO FUNDAMENTAL EM 206 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 Quando simplificamos a expressão: ( 0)
MATEMÁTICA PARA CONCURSOS PÚBLICOS
MATEMÁTICA PARA CONCURSOS PÚBLICOS Porcentagem 1) Em um concurso havia 1000 homens e 00 mulheres. Sabe-se que 60% dos homens e % das mulheres foram aprovados. Do total de candidatos, quantos por cento
Prova de literacia matemática. Fase I. Questão 1. Observa a imagem e responde às questões.
Fase I Observa a imagem e responde às questões. Questão 1 Um libanês e um turco gastaram, no total, o dinheiro de 8 horas de trabalho em água. Quantos litros compraram? A tua resposta deve ser um número
Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter. (Roberta Teixeira) (Gabriella Teles) Este conteúdo pertence ao Descomplica.
13 PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter Semana (Roberta Teixeira) (Gabriella Teles) Este conteúdo pertence ao Descomplica. Está vedada a cópia CRONOGRAMA 04/05 Progressão Aritmética Exercícios
OLIMPÍADA DE MATEMÁTICA 6º e 7º Ano FASE 1
OLIMPÍADA DE MATEMÁTICA 6º e 7º Ano FASE 1 1) Cada visitante pode passar pela fronteira entre dois países carregando compras no valor de até R$ 300. Se a compra ultrapassar esse valor, é cobrado um imposto
Lista de Recuperação Bimestral de Matemática 2
Lista de Recuperação Bimestral de Matemática NOME Nº SÉRIE: DATA / /01 BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática VISTO COORDENAÇÃO INSTRUÇÕES EM Visto: 1) Preencha seu nome número e série
Prova da segunda fase - Nível 2
Caro Aluno, Parabéns pela sua participação na nona edição da Olimpíada de Matemática de São José do Rio Preto! Lembre-se de que uma Olimpíada é diferente de uma prova escolar. Muitas vezes, as questões
MECÂNICA - Princípios do Movimento Unidimensional Exercícios selecionados - OBF. .:. Entre no nosso grupo e participe das discussões:
MECÂNICA - Princípios do Movimento Unidimensional Exercícios selecionados - OBF.:. Em caso de dúvidas: [email protected] [email protected] Email do autor (Pedro Henrique de Oliveira Alves).:.
MATEMÁTICA APLICADA. 3 + está entre e 1. A Demonstre que a soma. < y? Justifique a sua resposta. B Se x e y são dois números reais positivos tais que
1 A Demonstre que a soma 7 1 3 + está entre e 1. 8 9 4 B Se x e y são dois números reais positivos tais que x < y e x y = 100, é correto afirmar que x < 10 < y? Justifique a sua resposta. 1 1 7 1 7 1 A
fios ( ) 8 = 2704 m
Resposta da questão 1: [C] A quantidade de fios necessária será igual ao perímetro da chácara multiplicado por 8, o seja: fios (52 + 52 + 117 + 117) 8 = 2704 m Se as estacas estão igualmente espaçadas,
