UMA PARTIÇÃO DO CONJUNTO DOS GRAFOS CONEXOS DE ORDEM n EM CLASSES DE GRAFOS (a, b)-lineares

Tamanho: px
Começar a partir da página:

Download "UMA PARTIÇÃO DO CONJUNTO DOS GRAFOS CONEXOS DE ORDEM n EM CLASSES DE GRAFOS (a, b)-lineares"

Transcrição

1 UMA PARTIÇÃO DO CONJUNTO DOS GRAFOS CONEXOS DE ORDEM n EM CLASSES DE GRAFOS (a, b)-lineares Patricia Erthal de Moraes Colégio Pedro II Campo de São Cristóvão, 77 - São Cristóvão -Rio de Janeiro, CEP: 9-44 Brasil patricia.erthal@gmail.com Christine Sertã Costa Pontifícia Universidade Católica Rua Marquês de São Vicente, 5, Gávea -Rio de Janeiro, CEP: Brasil cserta@mat.puc-rio.br Nair Maria Maia de Abreu Universidade Federal do Rio de Janeiro Ilha do Fundão, Cidade Universitária, Centro de Tecnologia - Bloco F, Rio de Janeiro, Brasil nair@pep.ufrj.br Andréa Soares Bonifácio Universidade Federal do Rio de Janeiro Ilha do Fundão, Cidade Universitária, Centro de Tecnologia - Bloco F, Rio de Janeiro, Brasil andrea@pep.ufrj.br Cybele T. M. Vinagre Universidade Federal Fluminense Rua Mário Santos Braga s/n, Valonguinho, Niterói, Rio de Janeiro, CEP: Brasil cybl@vm.uff.br RESUMO Dados números racionais da forma, onde, diz-se que um grafo simples com vértices e arestas é um grafo -linear quando e. Este conceito foi introduzido por Moraes et al. () (Graphs with homogeneous density in -linear classes, Congressus Numerantium, 5, 53-64). Em nosso trabalho, utilizamos alguns dos resultados já conhecidos desta teoria para construir uma partição do conjunto de todos os grafos conexos com vértices por meio de classes de grafos -lineares. Estabelecemos ainda uma ordem total entre as classes de tal partição. PALAVRAS CHAVE. Grafo Área de classificação principal: Teoria de Grafos. -linear. Grafos conexos. Grafo simples. ABSTRACT Let be rational numbers of the form,. A simple graph on vertices and edges is said to be a -linear graph if and only if and. This notion was introduced by Moraes et al.() (Graphs with homogeneous density in -linear classes, Congressus Numerantium, 5, 53-64). The goal of this paper is to establish a partition of the set of all simple connected graphs on vertices by means of classes of -linear graphs. We also define a total order on the classes of this partition. KEYWORDS. -linear graphs. Simple graph. Connected graphs. Main area: Graph Theory. XLI SBPO 9 - Pesquisa Operacional na Gestão do Conhecimento Pág. 33

2 . Introdução Os grafos -lineares foram introduzidos por Moraes et al. em, e, nos anos seguintes, alguns artigos foram publicados com resultados relacionando os parâmetros e com conectividade algébrica e conectividade de vértices, veja (Lima et al. (4), Oliveira et al. (5), Abreu (7) e Lima et al. (7)). Nosso objetivo principal é obter uma partição do conjunto de todos os grafos conexos com vértices em classes de grafos lineares. Para isto, fazemos primeiramente uma apresentação autossuficiente dos resultados desta teoria que serão necessários ao desenvolvimento posterior do trabalho. Assim, na seção apresentamos os grafos -lineares e, na seção 3, estudamos os conjuntos de grafos lineares conexos com um certo número de vértices. Na seção 4, estabelecemos uma partição do conjunto dos grafos conexos com vértices em classes de grafos lineares. Além disso, definimos uma ordem total para as classes de tal partição.. Grafos -lineares Seja um grafo simples com vértices e arestas. O grau médio de é, por definição, o número. O top de é definido como, o menor inteiro maior ou igual a. O gap de é o número natural. É claro que podemos descrever o gap de em função do grau médio pondo. Tais invariantes foram introduzidos e estudados por Lima et al. (4). Em tudo o que se segue, indica o conjunto de todos os números racionais da forma com. Definição.: Para, um grafo é dito linear quando e. Indicamos por o conjunto de todos os grafos lineares conexos. Segue da definição que, para cada grafo, existem únicos racionais tais que é um grafo -linear. Exemplo.: Seja o grafo da Figura. é conexo e tem e. Então, e. Logo, e. Portanto,. Figura : Um grafo em S(3/, 3/) Teorema. (Moraes () e Lima et al.(4)) Seja um grafo com vértices e arestas, e. é um grafo linear se e somente se e. Prova: Seja um grafo com vértices e m arestas. Se é linear, então e. Como, obtemos. A desigualdade é sempre verdadeira. Logo. Reciprocamente, suponhamos e. Como temos e XLI SBPO 9 - Pesquisa Operacional na Gestão do Conhecimento Pág. 34

3 portanto,, já que. Além disso, temos que. Assim, é um grafo linear. Destacamos a seguir alguns exemplos de conjuntos de grafos -lineares conexos: Exemplo.: Desde que qualquer grafo é conexo então, no caso em que, temos Um grafo com vértices e arestas é uma árvore se e somente se é conexo e tem e é um grafo unicíclico se e somente se é conexo e (veja Harary (97)). Logo, é exatamente o conjunto de todas as árvores com vértices e é exatamente o conjunto de todos os grafos unicíclicos conexos com vértices. Para todo grafo MOP (maximal outerplanar conexo) com vértices e arestas temos. Logo, todo MOP com vértices pertence ao conjunto. No entanto, contém outros grafos que não são MOP s. Todo grafo planar maximal conexo com vértices possui arestas. Portanto todo grafo planar maximal com vértices pertence ao conjunto, que contém outros grafos além destes. Todo grafo regular conexo tem arestas e, portanto, pertence ao conjunto, que contém outros grafos além destes. 3. Conjuntos de grafos lineares conexos de ordem Sejam. Para cada, o conjunto de todos os grafos -lineares conexos com vértices será denotado por. Notemos que se e então, para todo,, ou seja,. No que se segue, trabalhamos para conseguir condições de garantir que. O próximo resultado é um lema técnico: Lema 3.. Sejam e. Então: se, e então ; se, e então se e somente se é par; se e então se e somente se é ímpar; se e então. Prova: Para provar, suponhamos e,. Então. Como é obviamente um número inteiro, fica provado o primeiro item. Em temos por hipótese que, onde é ímpar, e. É claro que implica par. Reciprocamente, se é par então. Segue se que pelo mesmo raciocínio usado em (i). A afirmação está provada. Para provar, consideremos e, onde e são naturais ímpares, e. Se é ímpar então. Como, então, e portanto. Reciprocamente, se então, para, ou seja,. Como é ímpar, então é ímpar e portanto, é ímpar. Finalmente, se e, onde é um natural ímpar então. A afirmação está provada. O Lema 3. nos garante, portanto, que são vazios os conjuntos para,, se,, e é ímpar ou se, e é par. Há ainda outras condições em que ocorre independentemente do parâmetro, como descrito na seguinte proposição: XLI SBPO 9 - Pesquisa Operacional na Gestão do Conhecimento Pág. 35

4 Proposição 3.. Não existe grafo linear conexo para satisfazendo qualquer das seguintes condições: e ou e ou e e. Prova: Que é verdadeiro, segue do item do Lema 3.. Para o item, suponhamos que exista um grafo conexo com vértices que seja - linear, para algum. Pelo Teorema., possui arestas. Como então contrariando o fato de que é conexo. Para o item, suponhamos por absurdo que exista um grafo conexo linear, onde e. Se possui arestas e vértices então. Desta forma não é conexo, um absurdo. Pela Proposição acima e do Exemplo., para e os conjuntos e são os únicos não vazios. É claro que. Podemos, no entanto, ter com. De fato, vimos que o grafo da Figura pertence a mas temos que para todo par,. A proposição a seguir fornece condições suficientes para que. Proposição 3.. Sejam e tais que e. Se e ou é par, e ou é ímpar e então. Prova: Sejam e. Em qualquer das condições ou acima, temos pelo Lema 3. ( ), que. Suponhamos que e que. Logo os parâmetros e estão fora das condições e da Proposição 3. (vide prova). Portanto, se é o caminho com vértices, podemos inserir aleatoriamente arestas entre os vértices de. Desta forma, obtemos um grafo conexo com vértices e arestas. Calculando o grau médio de obtemos. Como, então. Logo,, pois, e. Portanto,. Proposição 3.3. Sejam e tais que. Então e. Prova: Seja um grafo linear conexo com vértices e arestas. Pela Definição., com. Como então Como, então, ou seja,. Logo. Chegamos, portanto, a e fica provada a primeira desigualdade. Temos que onde. Na divisão euclidiana de por obtemos onde e Se então ; logo. Daí XLI SBPO 9 - Pesquisa Operacional na Gestão do Conhecimento Pág. 36

5 implicando. Agora, se, então. Logo. Como, então, ou seja,. Juntando ambos os casos, podemos afirmar que, o que prova a segunda desigualdade. Corolário 3.. Sejam e tais que. Então (i) se é par então, e ; (ii) se é ímpar, e então e ; (iii) se é ímpar e então. Prova: Para provar, suponhamos par e tais que. O Lema 3. (ou a Proposição 3.) nos garante que, quer tenhamos ou, devemos ter (e que as situações e e não são possíveis, pois ). Como é ímpar, segue da Proposição 3.3 que e. Os itens (ii) e (iii) seguem direto da Proposição 3.3, com as alterações evidentes. 4. Uma partição do conjunto de todos os grafos conexos com vértices Para, denotemos por o conjunto formado por todos os grafos conexos com vértices. Nesta seção vamos mostrar que podemos particionar em um número finito de conjuntos da forma. Além disso, estabelecemos uma ordem total para as classes de tal partição. Consideremos,. Para cada,, ponhamos e definamos os parâmetros e como a seguir: (4.) Proposição 4.. Para fixado, os conjuntos, onde,, e e são definidos como em, determinam uma partição de. Prova: Primeiramente, afirmamos que para cada,,. De fato, fixado um tal, por (4.) temos que ; como podemos concluir que. Além disso,, pois, e. E como então. Agora, é fácil verificar que se então, se é par e então e que, se é ímpar e então, ou seja, que e satisfazem, ou da Proposição 3.. A afirmação está provada. Afirmamos que os conjuntos são dois a dois disjuntos, ou seja, se então e e portanto, os conjuntos são iguais. De fato, suponhamos que para e como em (4.) exista um grafo conexo tal que. Ora, pela Definição. temos que e implicando. Além disso, e, ou seja,, provando a afirmação. Finalmente, afirmamos que. De fato, seja um grafo conexo com vértices. Se possui arestas então. Se tomamos temos então que e. Deste modo, e. Portanto. XLI SBPO 9 - Pesquisa Operacional na Gestão do Conhecimento Pág. 37

6 No que se segue vamos mostrar que uma ordenação das classes que formam a partição de é naturalmente induzida pelos índices. De fato, fixado, se e são classes da partição de estabelecida na Proposição 4., definimos a relação pondo (4.) Proposição 4.. A relação definida em estabelecida na Proposição 4.. induz uma ordem total na partição de Prova: Imediata do fato de que a ordem usual dos naturais induz a ordem definida por. Notar que a relação em (4.) pode ser descrita também como: Segundo esta relação, a -ésima classe da partição de é a que possui grafos com arestas, para. Exemplo 4.. Pela Proposição 4., é particionado em classes não vazias de grafos conexos -lineares de ordem 4. Ora, tem 6 grafos. Para, e a classe é formada pelas duas árvores com 4 vértices e arestas da Figura. Figura : Árvores de S 4 (, ). Para temos e e, portanto, é formada pelos dois grafos unicíclicos conexos com 4 vértices e arestas da Figura 3. Figura 3: Grafos unicíclicos de S 4 (, ). Para temos e. O único elemento de é o grafo com arestas isomorfo ao grafo completo menos uma aresta. E para temos e. O grafo completo é o único elemento da classe. Proposição 4.3. Dado, se e são duas classes da partição de e vale segundo a ordem definida em (4.) então se então, e se então. XLI SBPO 9 - Pesquisa Operacional na Gestão do Conhecimento Pág. 38

7 Prova: Suponhamos. Então, por (4.) vale, de onde obtemos Se e então, e daí (4.3) o que implica. Agora, suponhamos que e. Chamando, temos que e podemos reescrever (4.3) pondo. Ora, pelo Corolário temos que ; logo, pois. Assim, Logo ; mas e portanto,. O primeiro item está provado. Se, da desigualdade em, segue imediatamente o item. Exemplo 4.. Para e temos, respectivamente: e As classes das partições e acima aparecem em ordem crescente segundo a ordenação definida em (4.). De modo geral temos: Proposição 4.4. Para se é par então ; se é ímpar então, temos:. Prova: Segue do Corolário 3.. Para os valores de e, vemos na Figura 4, a representação no plano cartesiano dos pares tais que as classes constituem a partição de. O mesmo é feito na Figura 5 para e. Por exemplo, para, a partição de é constituída de 46 classes da forma, e a ordenação segue como: XLI SBPO 9 - Pesquisa Operacional na Gestão do Conhecimento Pág. 39

8 Classes (a, b)-lineares de grafos conexos de ordem par Classes (a, b)-lineares de ordem n = 4 Classes (a, b)-lineares de ordem n = 6,5,5,5,5,5,5,5,5,5,5 3 Classes (a, b)-linear of order n = 8 Classes (a, b)-linear of order n = valors de b Figura 4: Pares tais que é classe da partição de, para. Classes (a, b)-lineares de grafos conexos de ordem ímpar Classes (a, b)-lineares de ordem n = 5 Classes (a, b)-lineares de ordem n = 7,5,5,5,5,5, Classes (a, b)-lineares de ordem n = 9 Classes (a, b)-lineares de ordem n = Figura 5: Pares tais que é classe da partição de, para. XLI SBPO 9 - Pesquisa Operacional na Gestão do Conhecimento Pág. 3

9 Acknowledgement: As terceira e quarta autoras agradecem ao CNPq (Conselho Brasileiro para o Desenvolvimento Científico e Tecnológico) por todo o suporte recebido. 5. Referências. Abreu, N. M. M de. (7), Old and new results on algebraic connectivity of graphs, Linear Algebra and its Applications 43, Issue, Harary, F, Graph Theory, Addison Wesley, 97. Lima, L. S., Abreu N. M. M., Moraes, P. E. e Sertã, C. (4), Some properties of graphs in -linear classes, Congressus Numerantium, 66, Lima, L. S., Abreu, N. M. M., Oliveira, C. S. e Freitas, M. A. A. (7), Laplacian integral graphs in, Linear Algebra and its Applications 43, Issue, Moraes, P. E., Abreu, N. M. M. e Jurkiewicz, S. (), Graphs with homogeneous density in linear classes, Congressus Numerantium, 5, Oliveira, C. S., Abreu, N. M. M. e Pazoto, A. F. (5), Parameters of connectivity in - linear graphs, Eletronic Notes in Discrete Mathematics,, XLI SBPO 9 - Pesquisa Operacional na Gestão do Conhecimento Pág. 3

Grafos hiperenergéticos e não hiperenergéticos

Grafos hiperenergéticos e não hiperenergéticos Grafos hiperenergéticos e não hiperenergéticos Andréa S. Bonifácio, Nair M. M. de Abreu, Programa de Engenharia de Produção, COPPE, UFRJ, Caixa Postal 68507, CEP 1945-970, Rio de Janeiro, RJ E-mail: andrea@pep.ufrj.br,

Leia mais

GRAFOS EXTREMAIS PARA IRREGULARIDADE SÃO NÃO-BALANCEADOS?

GRAFOS EXTREMAIS PARA IRREGULARIDADE SÃO NÃO-BALANCEADOS? GRAFOS EXTREMAIS PARA IRREGULARIDADE SÃO NÃO-BALANCEADOS? Joelma Ananias de Oliveira Universidade Federal de Mato Grosso - UFMT/Rondonópolis Rodovia Rondonópolis-Guiratinga, KM 06 - Sagrada Família - MT

Leia mais

Grafos Prismas Complementares Bem-cobertos

Grafos Prismas Complementares Bem-cobertos Grafos Prismas Complementares Bem-cobertos Rommel M. Barbosa, Márcia R. C. Santana, Instituto de Informática, UFG, Caixa Postal 131, CEP 74001-970, Goiânia, GO E-mail: rommel@inf.ufg.br, marcia@inf.ufg.br,

Leia mais

Fabio Augusto Camargo

Fabio Augusto Camargo Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Matemática Introdução à Topologia Autor: Fabio Augusto Camargo Orientador: Prof. Dr. Márcio de Jesus Soares

Leia mais

Q-spread de grafos em classes especiais

Q-spread de grafos em classes especiais Q-spread de grafos em classes especiais Carla Oliveira, Escola Nacional de Ciências Estatísticas, ENCE, IBGE, 3-5, Rio de Janeiro, RJ E-mail: carlaoliveira@ibgegovbr Leonardo Lima, Departamento de Engenharia

Leia mais

OBSTRUÇÕES DE COGRAFOS-(K, L)

OBSTRUÇÕES DE COGRAFOS-(K, L) OBSTRUÇÕES DE COGRAFOS-(K, L) Raquel de Souza Francisco COPPE/Sistemas, Universidade Federal do Rio de Janeiro, RJ, 21945-970, Brasil raquelbr@cos.ufrj.br Sulamita Klein IM e COPPE/Sistemas, Universidade

Leia mais

Variação Q-espectral inteira em apenas um lugar é impossível

Variação Q-espectral inteira em apenas um lugar é impossível Variação Q-espectral inteira em apenas um lugar é impossível Maria Aguieiras A. de Freitas, Nair M. M. de Abreu, Programa de Engenharia de Produção, COPPE, UFRJ, Rio de Janeiro, RJ E-mail: maguieiras@im.ufrj.br,

Leia mais

Formulação de Programação Linear Inteira para o Problema de Particionamento em Conjuntos Convexos

Formulação de Programação Linear Inteira para o Problema de Particionamento em Conjuntos Convexos Formulação de Programação Linear Inteira para o Problema de Particionamento em Conjuntos Convexos Teobaldo L. Bulhões Júnior a a Instituto de Computação, Universidade Federal Fluminense, Niterói, RJ, Brazil

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 5: Grafos Conexos. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 5: Grafos Conexos. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 5: Grafos Conexos Preparado a partir do texto: Rangel, Socorro. Teoria do Grafos,

Leia mais

O espaço das Ordens de um Corpo

O espaço das Ordens de um Corpo O espaço das Ordens de um Corpo Clotilzio Moreira dos Santos Resumo O objetivo deste trabalho é exibir corpos com infinitas ordens e exibir uma estrutura topológica ao conjunto das ordens de um corpo.

Leia mais

Os números inteiros. Álgebra (Curso de CC) Ano lectivo 2005/ / 51

Os números inteiros. Álgebra (Curso de CC) Ano lectivo 2005/ / 51 Os números inteiros Abordaremos algumas propriedades dos números inteiros, sendo de destacar o Algoritmo da Divisão e o Teorema Fundamental da Aritmética. Falaremos de algumas aplicações como sejam a detecção

Leia mais

Número de Ramsey multicolorido em Grafos Multipartidos

Número de Ramsey multicolorido em Grafos Multipartidos Trabalho apresentado no XXXV CNMAC, Natal-RN, 2014. Número de Ramsey multicolorido em Grafos Multipartidos Juliana Sanches Programa de Pós-graduação em Matemática Aplicada - UFRGS 91509-900, Porto Alegre,

Leia mais

Um espaço métrico incompleto 1

Um espaço métrico incompleto 1 Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência anos c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Um espaço métrico incompleto

Leia mais

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn 4 Relações 4.1 Preliminares Definição 4.1. Sejam A e B conjuntos. Uma relação binária, R, de A em B é um subconjunto de A B. (R A B) Dizemos que a A está relacionado com b B sss (a, b) R. Notação: arb.

Leia mais

Conceitos Básicos sobre Representações e Caracteres de Grupos Finitos. Ana Cristina Vieira. Departamento de Matemática - ICEx - UFMG

Conceitos Básicos sobre Representações e Caracteres de Grupos Finitos. Ana Cristina Vieira. Departamento de Matemática - ICEx - UFMG 1 Conceitos Básicos sobre Representações e Caracteres de Grupos Finitos Ana Cristina Vieira Departamento de Matemática - ICEx - UFMG - 2011 1. Representações de Grupos Finitos 1.1. Fatos iniciais Consideremos

Leia mais

Capítulo 1 Conceitos e Resultados Básicos

Capítulo 1 Conceitos e Resultados Básicos Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko Capítulo 1 Conceitos e Resultados Básicos Um grafo é um par ordenado (V, A), onde V e A são conjuntos disjuntos, e cada elemento

Leia mais

14 Coloração de vértices Considere cada um dos grafos abaixo:

14 Coloração de vértices Considere cada um dos grafos abaixo: 14 Coloração de vértices Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 11: Grafos Eulerianos. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 11: Grafos Eulerianos. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 11: Grafos Eulerianos Preparado a partir do texto: Rangel, Socorro. Teoria do

Leia mais

GABRIEL BUJOKAS

GABRIEL BUJOKAS APLICAÇÕES DE ÁLGEBRA LINEAR À COMBINATÓRIA GABRIEL BUJOKAS (GBUJOKAS@MIT.EDU) A gente vai discutir algumas das aplicações clássicas de álgebra linear à combinatória. Vamos começar relembrando alguns conceitos

Leia mais

Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios

Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios 1 Conceitos 1. Prove o Teorema da Amizade: em qualquer festa com pelo menos seis pessoas, ou três se conhecem

Leia mais

Notas Sobre Sequências e Séries Alexandre Fernandes

Notas Sobre Sequências e Séries Alexandre Fernandes Notas Sobre Sequências e Séries 2015 Alexandre Fernandes Limite de seqüências Definição. Uma seq. (s n ) converge para a R, ou a R é limite de (s n ), se para cada ɛ > 0 existe n 0 N tal que s n a < ɛ

Leia mais

Parte B Teoria dos Grafos

Parte B Teoria dos Grafos 45 Parte B Teoria dos Grafos B. Grafos e Subgrafos Um grafo G é uma tripla ordenada (V(G), E(G), ), constituindo de um conjunto não vazio V(G) de vértices, um conjunto disjunto E(G) das arestas e uma função

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 16: Grafos Planares. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 16: Grafos Planares. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 16: Grafos Planares Preparado a partir do texto: Rangel, Socorro. Teoria do

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br Grafos Eulerianos Preparado a partir do texto: Rangel, Socorro.

Leia mais

Conjuntos Enumeráveis e Não-Enumeráveis

Conjuntos Enumeráveis e Não-Enumeráveis Conjuntos Enumeráveis e Não-Enumeráveis João Antonio Francisconi Lubanco Thomé Bacharelado em Matemática - UFPR jolubanco@gmail.com Prof. Dr. Fernando de Ávila Silva (Orientador) Departamento de Matemática

Leia mais

Conjuntos Abelianos Maximais

Conjuntos Abelianos Maximais Conjuntos Abelianos Maximais (Dedicado para meu filho Demetrius) por José Ivan da Silva Ramos (Doutor em Álgebra e membro efetivo do Centro de Ciências Exatas e Tecnológicas da Universidade Federal do

Leia mais

Planaridade AULA. ... META Introduzir o problema da planaridade de grafos. OBJETIVOS Ao final da aula o aluno deverá ser capaz de:

Planaridade AULA. ... META Introduzir o problema da planaridade de grafos. OBJETIVOS Ao final da aula o aluno deverá ser capaz de: Planaridade AULA META Introduzir o problema da planaridade de grafos. OBJETIVOS Ao final da aula o aluno deverá ser capaz de: Distinguir grafo planar e plano; Determinar o dual de um grafo; Caracterizar

Leia mais

MATEMÁTICA DISCRETA. Patrícia Ribeiro 2018/2019. Departamento de Matemática, ESTSetúbal 1 / 47

MATEMÁTICA DISCRETA. Patrícia Ribeiro 2018/2019. Departamento de Matemática, ESTSetúbal 1 / 47 1 / 47 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 47 1 Combinatória 2 Aritmética Racional 3 3 / 47 Capítulo 3 4 / 47 não orientados Um grafo não orientado

Leia mais

Dedução Indução Contra-exemplos Contradição Contrapositiva Construção Diagonalização

Dedução Indução Contra-exemplos Contradição Contrapositiva Construção Diagonalização Dedução Indução Contra-exemplos Contradição Contrapositiva Construção Diagonalização 1 Provas, lemas, teoremas e corolários Uma prova é um argumento lógico de que uma afirmação é verdadeira Um teorema

Leia mais

Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios

Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios 1 Conceitos 1. Prove o Teorema da Amizade: em qualquer festa com pelo menos seis pessoas, ou três se conhecem

Leia mais

ALGUNS GRAFOS BEM-COBERTOS LIVRES DE K 1,3

ALGUNS GRAFOS BEM-COBERTOS LIVRES DE K 1,3 ALGUNS GRAFOS BEM-COBERTOS LIVRES DE K 1,3 Márcia R. Cappelle Santana UEG Universidade Estadual de Goiás Campus BR 153, Km 98 Caixa Postal: 459 CEP: 75001-970 Anápolis-GO mcappelle@ueg.br Rommel Melgaço

Leia mais

SOBRE A CONECTIVIDADE ALGÉBRICA EM UMA SUBCLASSE DAS ÁRVORES DE TIPO II

SOBRE A CONECTIVIDADE ALGÉBRICA EM UMA SUBCLASSE DAS ÁRVORES DE TIPO II SOBRE A CONECTIVIDADE ALGÉBRICA EM UMA SUBCLASSE DAS ÁRVORES DE TIPO II Claudia M. Justel Stanley Rodrigues Thiago de Paula Vasconcelos Instituto Militar de Engenharia - IME Praça General Tibúrcio, 80

Leia mais

Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko. Capítulo 3

Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko. Capítulo 3 Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko Capítulo 3 Árvores Problema: Suponha que numa cidade haja n postos telefônicos. Para que seja sempre possível haver comunicação

Leia mais

As Pontes de Königsberg

As Pontes de Königsberg As Pontes de Königsberg Anderson Freitas Ferreira e Lívia Minami Borges 13 de junho de 2015 Resumo A teoria de grafos teve seu início em 1736, quando Euler utilizou uma estrutura para resolver o Problema

Leia mais

Teoria Espectral dos Grafos: um Híbrido entre a Álgebra Linear e a Matemática Discreta e Combinatória com Origens na Química Quântica

Teoria Espectral dos Grafos: um Híbrido entre a Álgebra Linear e a Matemática Discreta e Combinatória com Origens na Química Quântica TEMA Tend. Mat. Apl. Comput., 6, No. 1 (2005), 1-10. c Uma Publicação da Sociedade Brasileira de Matemática Aplicada e Computacional. Teoria Espectral dos Grafos: um Híbrido entre a Álgebra Linear e a

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 14: Conjuntos de Corte e Conectividade Preparado a partir do texto: Rangel,

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 17: Coloração de Vértices Preparado a partir do texto: Rangel, Socorro. Teoria

Leia mais

colorindo mapas A forma de representação mais simples que podemos fazer é um artifício matemático chamado grafo.

colorindo mapas A forma de representação mais simples que podemos fazer é um artifício matemático chamado grafo. V Bienal da SBM Sociedade Brasileira de Matemática UFPB - Universidade Federal da Paraíba 18 a 22 de outubro de 2010 colorindo mapas Gésica Peixoto Campos & Izabelly Marya Lucena da Silva 1 Introdução

Leia mais

O Teorema de Ramsey e o Último Teorema de Fermat em Corpos Finitos.

O Teorema de Ramsey e o Último Teorema de Fermat em Corpos Finitos. O Teorema de Ramsey e o Último Teorema de Fermat em Corpos Finitos. Leandro Cioletti Eduardo A. Silva 12 de setembro de 2011 Resumo O objetivo deste texto é apresentar a prova do Último Teorema de Fermat

Leia mais

Partição dos grafos P 4 -laden em conjuntos independentes e cliques

Partição dos grafos P 4 -laden em conjuntos independentes e cliques Partição dos grafos P 4 -laden em conjuntos independentes e cliques Raquel Bravo 1, Sulamita Klein 1, Samuel Nascimento 2, Loana Nogueira 3, Fábio Protti 3, Rudini Sampaio 2 1 Universidade Federal do Rio

Leia mais

Análise I. Notas de Aula 1. Alex Farah Pereira de Agosto de 2017

Análise I. Notas de Aula 1. Alex Farah Pereira de Agosto de 2017 Análise I Notas de Aula 1 Alex Farah Pereira 2 3 23 de Agosto de 2017 1 Turma de Matemática. 2 Departamento de Análise-IME-UFF 3 http://alexfarah.weebly.com ii Conteúdo 1 Conjuntos 1 1.1 Números Naturais........................

Leia mais

Teoria dos Grafos. Grafos Eulerianos

Teoria dos Grafos.  Grafos Eulerianos Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br, saraujo@ibilce.unesp.br Grafos Eulerianos

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/81 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional

Leia mais

MAT Topologia Bacharelado em Matemática 2 a Prova - 27 de maio de 2004

MAT Topologia Bacharelado em Matemática 2 a Prova - 27 de maio de 2004 MAT 317 - Topologia Bacharelado em Matemática 2 a Prova - 27 de maio de 2004 1 Nome : Número USP : Assinatura : Professor : Severino Toscano do Rêgo Melo 2 3 4 5 Total Podem tentar fazer todas as questões.

Leia mais

Produtos de Grafos Z m -bem-cobertos

Produtos de Grafos Z m -bem-cobertos TEMA Tend. Mat. Apl. Comput., 13, No. 1 (2012), 75-83. doi: 10.5540/tema.2012.013.01.0075 c Uma Publicação da Sociedade Brasileira de Matemática Aplicada e Computacional. Produtos de Grafos Z m -bem-cobertos

Leia mais

Alguns passos da prova do Teorema de Runge

Alguns passos da prova do Teorema de Runge Alguns passos da prova do Teorema de Runge Roberto Imbuzeiro Oliveira 15 de Junho de 2011 1 Os principais passos da prova Teorema 1 Sejam U C aberto, K U compacto e f : U C holomorfa Seja A C \U tal que

Leia mais

Introdução à Teoria dos Números - Notas 1 Os Princípios da Boa Ordem e de Indução Finita

Introdução à Teoria dos Números - Notas 1 Os Princípios da Boa Ordem e de Indução Finita Introdução à Teoria dos Números - Notas 1 Os Princípios da Boa Ordem e de Indução Finita 1 Preliminares Neste curso, prioritariamente, estaremos trabalhando com números inteiros mas, quando necessário,

Leia mais

Estruturas Discretas INF 1631

Estruturas Discretas INF 1631 Estruturas Discretas INF 1631 Thibaut Vidal Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro Rua Marquês de São Vicente, 225 - Gávea, Rio de Janeiro - RJ, 22451-900, Brazil

Leia mais

Energia laplaciana sem sinal de grafos

Energia laplaciana sem sinal de grafos UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA APLICADA Energia laplaciana sem sinal de grafos por Lucélia Kowalski Pinheiro Tese

Leia mais

1 Trajeto Euleriano. > Trajeto Euleriano 0/20

1 Trajeto Euleriano. > Trajeto Euleriano 0/20 Conteúdo 1 Trajeto Euleriano > Trajeto Euleriano 0/20 Um trajeto Euleriano em um grafo G é um trajeto que utiliza todas as arestas do grafo. Definição Um grafo G é Euleriano se e somente se possui um trajeto

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO DEPARTAMENTO DE ESTATÍSTICA. Medida e Probabilidade

UNIVERSIDADE FEDERAL DE PERNAMBUCO DEPARTAMENTO DE ESTATÍSTICA. Medida e Probabilidade UNIVERSIDADE FEDERAL DE PERNAMBUCO DEPARTAMENTO DE ESTATÍSTICA Medida e Probabilidade Aluno: Daniel Cassimiro Carneiro da Cunha Professor: Andre Toom 1 Resumo Este trabalho contem um resumo dos principais

Leia mais

Análise de Algoritmos

Análise de Algoritmos Análise de Algoritmos Técnicas de Prova Profa. Sheila Morais de Almeida DAINF-UTFPR-PG julho - 2015 Técnicas de Prova Definição Uma prova é um argumento válido que mostra a veracidade de um enunciado matemático.

Leia mais

Teoria da Medida e Integração (MAT505)

Teoria da Medida e Integração (MAT505) Teoria da Medida e Integração (MAT505) Modos de convergência V. Araújo Mestrado em Matemática, UFBA, 2014 1 Modos de convergência Modos de convergência Neste ponto já conhecemos quatro modos de convergência

Leia mais

4 planaridade. Exemplo 4.2 O grafo completo em 4 vértices tem uma única imersão plana (Figura 4.3).

4 planaridade. Exemplo 4.2 O grafo completo em 4 vértices tem uma única imersão plana (Figura 4.3). 4 planaridade Um grafo G =(V,E) éditoplanar se pode ser desenhado no plano de forma que suas arestas se interceptam apenas nos extremos. Um tal desenho no plano é chamado uma imersão plana ou representação

Leia mais

Teoria dos Grafos AULA 3

Teoria dos Grafos AULA 3 Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br AULA 3 Trajetos, Caminhos, Circuitos, Grafos Conexos Preparado

Leia mais

Instituto de Computação Universidade Federal Fluminense. Notas de Aula de Teoria dos Grafos. Prof. Fábio Protti Niterói, agosto de 2015.

Instituto de Computação Universidade Federal Fluminense. Notas de Aula de Teoria dos Grafos. Prof. Fábio Protti Niterói, agosto de 2015. Instituto de Computação Universidade Federal Fluminense Notas de Aula de Teoria dos Grafos Niterói, agosto de 2015. Conteúdo 1 Conceitos Básicos 5 1.1 Grafos, vértices, arestas..................... 5 1.2

Leia mais

Semigrupos Numéricos e Corpos de Funções Algébricas

Semigrupos Numéricos e Corpos de Funções Algébricas Semigrupos Numéricos e Corpos de Funções Algébricas THIAGO FILIPE DA SILVA Professor Assistente do Centro de Ciências Exatas da Universidade Federal do Espírito Santo. RESUMO O estudo sobre o número de

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERSIDADE FEDERAL DE UBERLÂNDIA Faculdade de Computação Disciplina : Teoria da Computação - 1 0 Semestre 007 Professora : Sandra Aparecida de Amo Solução da Lista de Exercícios n o 1 Exercícios de Revisão

Leia mais

Começamos relembrando o conceito de base de um espaço vetorial. x = λ 1 x λ r x r. (1.1)

Começamos relembrando o conceito de base de um espaço vetorial. x = λ 1 x λ r x r. (1.1) CAPÍTULO 1 Espaços Normados Em princípio, os espaços que consideraremos neste texto são espaços de funções. Isso significa que quase todos os nossos exemplos serão espaços vetoriais de dimensão infinita.

Leia mais

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares Introdução à Teoria dos Números 2018 - Notas de Aulas 3 Prof Carlos Alberto S Soares 1 Números Primos e o Teorema Fundamental da Aritmética Em notas anteriores já definimos os números primos, isto é, números

Leia mais

Teorema de Sarkovsky

Teorema de Sarkovsky Teorema de Sarkovsky Yuri Lima 8 de janeiro de 2008 Resumo Provaremos um teorema, provado pelo matemático ucraniano A. Sarkovsky em [4] que, em poucas palavras, afirma que Período 3 implica Caos, no seguinte

Leia mais

Indução Matemática. Profa. Sheila Morais de Almeida. junho DAINF-UTFPR-PG

Indução Matemática. Profa. Sheila Morais de Almeida. junho DAINF-UTFPR-PG Indução Matemática Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Indução Matemática junho - 2018 1 / 69 Este material é preparado usando como referências os

Leia mais

CÓDIGO REDUZIDO DE PRÜFER PARA K-ÁRVORES ROTULADAS

CÓDIGO REDUZIDO DE PRÜFER PARA K-ÁRVORES ROTULADAS CÓDIGO REDUZIDO DE PRÜFER PARA K-ÁRVORES ROTULADAS Paulo Renato da Costa Pereira Instituto Militar de Engenharia Praça General Tibúrcio 0 Urca RJ 22290-270 prenato@click2.com.br Lilian Markenzon Núcleo

Leia mais

Teoria dos Conjuntos. (Aula 6) Ruy de Queiroz. O Teorema da. (Aula 6) Ruy J. G. B. de Queiroz. Centro de Informática, UFPE

Teoria dos Conjuntos. (Aula 6) Ruy de Queiroz. O Teorema da. (Aula 6) Ruy J. G. B. de Queiroz. Centro de Informática, UFPE Ruy J. G. B. de Centro de Informática, UFPE 2007.1 Conteúdo 1 Seqüências Definição Uma seqüência é uma função cujo domíno é um número natural ou N. Uma seqüência cujo domínio é algum número natural n N

Leia mais

Largura em Árvore de Grafos Planares Livres de Ciclos Pares Induzidos

Largura em Árvore de Grafos Planares Livres de Ciclos Pares Induzidos Largura em Árvore de Grafos Planares Livres de Ciclos Pares Induzidos Aline Alves da Silva Departamento de Computação Universidade Federal do Ceará (UFC) Campus do Pici, Bloco 910 Fortaleza, CE Brasil

Leia mais

Teoria da Medida e Integração (MAT505)

Teoria da Medida e Integração (MAT505) Modos de convergência Teoria da Medida e Integração (MAT505) Modos de convergência. V. Araújo Instituto de Matemática, Universidade Federal da Bahia Mestrado em Matemática, UFBA, 2014 Modos de convergência

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Existem três companhias que devem abastecer com gás, eletricidade e água três prédios diferentes através de tubulações subterrâneas. Estas tubulações podem estar à mesma profundidade? Isto

Leia mais

15 - Coloração Considere cada um dos grafos abaixo:

15 - Coloração Considere cada um dos grafos abaixo: 15 - Coloração Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual é o número

Leia mais

ALGORITMO DE EUCLIDES

ALGORITMO DE EUCLIDES Sumário ALGORITMO DE EUCLIDES Luciana Santos da Silva Martino lulismartino.wordpress.com lulismartino@gmail.com PROFMAT - Colégio Pedro II 25 de agosto de 2017 Sumário 1 Máximo Divisor Comum 2 Algoritmo

Leia mais

Frisos imperfeitos de números inteiros

Frisos imperfeitos de números inteiros Frisos imperfeitos de números inteiros Mário Bessa Departamento de Matemática, Faculdade de Ciências Universidade da Beira Interior e-mail: bessa@ubi.pt Maria Carvalho Departamento de Matemática, Faculdade

Leia mais

Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas.

Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas. Teoria dos Conjuntos Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas. Porém, não é nosso objetivo ver uma teoria axiomática dos conjuntos.

Leia mais

GRAFOS QUE MODELAM REDES CONFIÁVEIS

GRAFOS QUE MODELAM REDES CONFIÁVEIS GRAFOS QUE MODELAM REDES CONFIÁVEIS Leandro da Silva Teixeira Centro de Análises de sistemas navais (Casnav) Ilha das Cobras s/n, Centro, Rio de Janeiro RJ Leandro.Teixeira@casnav.mar.mil.br Leonardo Silva

Leia mais

ANÁLISE E TOPOLOGIA. 1 o semestre. Estudaremos neste curso alguns dos conceitos centrais da análise matemática: números reais, derivadas,

ANÁLISE E TOPOLOGIA. 1 o semestre. Estudaremos neste curso alguns dos conceitos centrais da análise matemática: números reais, derivadas, ANÁLISE E TOPOLOGIA 1 o semestre Estudaremos neste curso alguns dos conceitos centrais da análise matemática: números reais, derivadas, séries e integrais. 1. Espaços topológicos e métricos Todos estes

Leia mais

Árvores Árvores Geradoras de Custo Mínimo 0/16

Árvores Árvores Geradoras de Custo Mínimo 0/16 Conteúdo 1 Árvores 2 Árvores Geradoras de Custo Mínimo Árvores Árvores Geradoras de Custo Mínimo 0/16 Árvores Definição (Grafo Acíclico) Um grafo acíclico é um grafo que não contém ciclos. Árvores Árvores

Leia mais

d(t x, Ty) = d(x, y), x, y X.

d(t x, Ty) = d(x, y), x, y X. Capítulo 6 Espaços duais 6.1 Preliminares A análise funcional foi nos seus primórdios o estudo de funcionais. Assim, nos dias de hoje um princípio fundamental da análise funcional é a investigação de espaços

Leia mais

Introduzir os conceitos de base e dimensão de um espaço vetorial. distinguir entre espaços vetoriais de dimensão fnita e infinita;

Introduzir os conceitos de base e dimensão de um espaço vetorial. distinguir entre espaços vetoriais de dimensão fnita e infinita; META Introduzir os conceitos de base e dimensão de um espaço vetorial. OBJETIVOS Ao fim da aula os alunos deverão ser capazes de: distinguir entre espaços vetoriais de dimensão fnita e infinita; determinar

Leia mais

Cortes (cut sets) 2010/2 Teoria dos Grafos (INF 5037/INF2781) CC/EC/UFES

Cortes (cut sets) 2010/2 Teoria dos Grafos (INF 5037/INF2781) CC/EC/UFES Cortes (cut sets) (INF 5037/INF2781) Corte por arestas Em um grafo conexo G, um corte de arestas é um conjunto de arestas cuja remoção de G torna G desconexo, desde que nenhum subconjunto próprio desse

Leia mais

Códigos perfeitos e sistemas de Steiner

Códigos perfeitos e sistemas de Steiner CAPÍTULO 7 Códigos perfeitos e sistemas de Steiner Sistemas de Steiner são um caso particular de configurações (ou designs. Neste capítulo pretende-se apenas fazer uma breve introdução aos sistemas de

Leia mais

Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II

Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II 1 Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II 1 O Anel dos Inteiros Módulo n Consideremos um número natural n 2 fixado Para cada número inteiro a definimos a = {x Z; x a mod n} Como

Leia mais

Conceitos Básicos Isomorfismo de Grafos Subgrafos Passeios em Grafos Conexidade

Conceitos Básicos Isomorfismo de Grafos Subgrafos Passeios em Grafos Conexidade Conteúdo 1 Teoria de Grafos Conceitos Básicos Isomorfismo de Grafos Subgrafos Passeios em Grafos Conexidade > Teoria de Grafos 0/22 Conceitos Básicos Inicialmente, estudaremos os grafos não direcionados.

Leia mais

Subgrafos. Se G é um grafo e F A(G) então o subgrafo de G induzido (ou gerado) por F é o

Subgrafos. Se G é um grafo e F A(G) então o subgrafo de G induzido (ou gerado) por F é o Um grafo completo é um grafo simples em que quaisquer dois de seus vértices distintos são adjacentes. A menos de isomorfismo, existe um único grafo completo com n vértices; que é denotado por K n. O grafo

Leia mais

Estruturas Discretas INF 1631

Estruturas Discretas INF 1631 Estruturas Discretas INF 1631 Thibaut Vidal Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro Rua Marquês de São Vicente, 225 - Gávea, Rio de Janeiro - RJ, 22451-900, Brazil

Leia mais

Teoremas fundamentais dos espaços normados

Teoremas fundamentais dos espaços normados Capítulo 9 Teoremas fundamentais dos espaços normados 9.1 Teorema de Hahn-Banach O próximo teorema, conhecido como teorema de Hahn-Banach, é uma generalização do Teorema 4.12, o qual, recordamos para conveniência

Leia mais

Apresentar o conceito de anel, suas primeiras definições, diversos exemplos e resultados. Aplicar as propriedades dos anéis na relação de problemas.

Apresentar o conceito de anel, suas primeiras definições, diversos exemplos e resultados. Aplicar as propriedades dos anéis na relação de problemas. Aula 10 O CONCEITO DE ANEL META Apresentar o conceito de anel, suas primeiras definições, diversos exemplos e resultados. OBJETIVOS Definir, exemplificar e classificar anéis. Aplicar as propriedades dos

Leia mais

O TEOREMA ESPECTRAL PARA OPERADORES SIMÉTRICOS. Marco Antonio Travassos 1, Fernando Pereira Sousa 2

O TEOREMA ESPECTRAL PARA OPERADORES SIMÉTRICOS. Marco Antonio Travassos 1, Fernando Pereira Sousa 2 31 O TEOREMA ESPECTRAL PARA OPERADORES SIMÉTRICOS Marco Antonio Travassos 1, Fernando Pereira Sousa 2 1 Aluno do Curso de Matemática CPTL/UFMS, bolsista do Grupo PET Matemática/CPTL/UFMS; 2 Professor do

Leia mais

GRAFOS ORIENTADOS. PSfrag replacements. Figura 1: Exemplo de um grafo orientado.

GRAFOS ORIENTADOS. PSfrag replacements. Figura 1: Exemplo de um grafo orientado. Introdução à Teoria dos Grafos Bacharelado em Ciência da Computação UFMS, 2005 GRAFOS ORIENTAOS Resumo Existem ocasiões onde grafos não são apropriados para descrever certas situações. Por exemplo, um

Leia mais

Pontos extremos, vértices e soluções básicas viáveis

Pontos extremos, vértices e soluções básicas viáveis Pontos extremos, vértices e soluções básicas viáveis Marina Andretta ICMC-USP 19 de outubro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta

Leia mais

Teorema de Hajós para Coloração Ponderada

Teorema de Hajós para Coloração Ponderada Author manuscript, published in "XXXIX Simpósio Brasileiro de Pesquisa Operacional, SBPO 2007. (2007) 2631-2635" Teorema de Hajós para Coloração Ponderada Júlio César Silva Araújo Universidade Federal

Leia mais

Grafo planar: Definição

Grafo planar: Definição Grafo planar Considere o problema de conectar três casas a cada uma de três infraestruturas (gás, água, energia) como mostrado na figura abaixo. É possível fazer essas ligações sem que elas se cruzem?

Leia mais

Matemática Discreta. Aula 06: Teoria dos Grafos. Tópico 01: Grafos e suas Representações. Observação

Matemática Discreta. Aula 06: Teoria dos Grafos. Tópico 01: Grafos e suas Representações. Observação Aula 06: Teoria dos Grafos Tópico 01: Grafos e suas Representações Nesta aula nós passamos a estudar um outro assunto, mas que também tem muita aplicação na vida prática, a Teoria dos Grafos. Para esta

Leia mais

A DEFINIÇÃO AXIOMÁTICA DO CONJUNTO DOS NÚMEROS NATURAIS.

A DEFINIÇÃO AXIOMÁTICA DO CONJUNTO DOS NÚMEROS NATURAIS. A DEFINIÇÃO AXIOMÁTICA DO CONJUNTO DOS NÚMEROS NATURAIS. SANDRO MARCOS GUZZO RESUMO. A construção dos conjuntos numéricos é um assunto clássico na matemática, bem como o estudo das propriedades das operações

Leia mais

Soma de Quadrados. Faculdade de Matemática, UFU, MG

Soma de Quadrados. Faculdade de Matemática, UFU, MG Soma de Quadrados Stela Zumerle Soares 1 Antônio Carlos Nogueira (stelazs@gmailcom (anogueira@ufubr Faculdade de Matemática, UFU, MG 1 Resultados Preliminares Historicamente, um problema que tem recebido

Leia mais

Teoria da Medida e Integração (MAT505)

Teoria da Medida e Integração (MAT505) Transporte de medidas Teoria da Medida e Integração (MAT505) Transporte de medidas e medidas invariantes. Teorema de Recorrência de Poincaré V. Araújo Instituto de Matemática, Universidade Federal da Bahia

Leia mais

CONJUNTOS ÔMEGA-LIMITE PARA UMA CLASSE DE PERTURBAÇÕES DESCONTÍNUAS DA IDENTIDADE

CONJUNTOS ÔMEGA-LIMITE PARA UMA CLASSE DE PERTURBAÇÕES DESCONTÍNUAS DA IDENTIDADE CONJUNTOS ÔMEGA-LIMITE PARA UMA CLASSE DE PERTURBAÇÕES DESCONTÍNUAS DA IDENTIDADE Marcos Luiz CRISPINO 1 RESUMO: Será obtida uma condição suficiente para que a classe das componentes conexas de cada um

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/29 5 - RELAÇÕES 5.1) Relações e Dígrafos 5.2) Propriedades

Leia mais

1 Conjuntos, Números e Demonstrações

1 Conjuntos, Números e Demonstrações 1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para

Leia mais

Geradores e relações

Geradores e relações Geradores e relações Recordamos a tabela de Cayley de D 4 (simetrias do quadrado): ρ 0 ρ 90 ρ 180 ρ 270 h v d 1 d 2 ρ 0 ρ 0 ρ 90 ρ 180 ρ 270 h v d 1 d 2 ρ 90 ρ 90 ρ 180 ρ 270 ρ 0 d 2 d 1 h v ρ 180 ρ 180

Leia mais

Coloração Equilibrada dos Grafos Ímpares e Triangulares

Coloração Equilibrada dos Grafos Ímpares e Triangulares Coloração Equilibrada dos Grafos Ímpares e Triangulares Milene Pimenta IME, Universidade Federal Fluminense, Brasil, milene@vm.uff.br RESUMO Uma coloração de vértices de um grafo G(,E) é uma aplicação

Leia mais

b-coloração de grafos com poucos P 4 s

b-coloração de grafos com poucos P 4 s b-coloração de grafos com poucos P 4 s V. Campos, C. Linhares Sales, A. Maia, R. Sampaio Departamento de Computação, Universidade Federal do Ceará Campus do Pici, Bloco 910, 60455 760 Fortaleza, CE, Brazil

Leia mais