Aula 16. Modelagem de Transformador
|
|
|
- Theodoro Nobre Castelhano
- 10 Há anos
- Visualizações:
Transcrição
1 Aula 16 Modelagem de Transformador
2 Modelagem Iremos apresentar o modelo do transformador para uso no cálculo de fluxo de potência em redes de alta tensão. Estes modelos descrevem matematicamente o comportamento do transformador sob condições estacionárias, com as tensões e correntes variando senoidalmente, ou seja, em regime permanente para a freqüência fundamental do sistema (60 Hz). Para estas condições poderemos representar os transformadores trifásicos por seu equivalente de seqüência positiva. No caso de ligações em delta iremos converter para ligações em estrela equivalentes para podermos trabalhar com a seqüência positiva.
3 Modelagem (cont.) Os transformadores utilizados em sistema de potência (alta tensão) têm algumas características diferentes dos demais. Em geral os efeitos de corrente de magnetização podem ser desprezados (em condições de regime permanente). Os modelos que iremos utilizar serão semelhantes aos modelos Pis utilizados para linhas de transmissão. Iremos rever o sistema pu e aplicaremos o conceito para transformadores. Finalmente apresentaremos as equações de fluxo de potência para os transformadores em condições de regime permanente (representados por seu equivalente de seqüência positiva em pu).
4 Equivalentes de transformador monofásico Dado o transformador monofásico a seguir Podemos representá-lo pelo modelo abaixo. I p + r d j x d + I s p g m j b m s - a : 1 - Este modelo será utilizado para dedução da expressão de fluxo de potência através do transformador.
5 Modelo teórico No modelo o comportamento elétrico do transformador é representado por um transformador ideal, com relação de transformação a:1. A impedância série representa o fluxo de dispersão (reatância) e a perda no cobre (resistência). A admitância transversal representa a perda de magnetização (susceptância) e as perdas no ferro (Foucault -condutância).
6 Indutâncias Da teoria de transformadores surgem as indutâncias Lp indutância própria do primário Ls indutância própria do secundário Mps indutância mútua primáriosecundário Estas indutâncias são descritas pela permeabilidade magnética do material, um fator que depende da geometria do trafo e um fator de dispersão, além do número de espiras dos enrolamentos primário e secundário.
7 Indutâncias (cont.) Analisando os fasores das tensões no primário e no secundário do transformador pode-se relacionar estas indutâncias com as impedâncias longitudinais e transversais do modelo.
8 Transformador monofásico ideal Circuito equivalente: Relações de tensão: dϕ v1 N1 v dt 1 N N 1 N a dϕ dt a relação de espiras Relação de corrente: i 1 N1 i N 0 i1 N 1 i N a 1
9 Transformador monofásico ideal Relações de Potência: * * 1 1 I1 I S S Não há perdas (potência de entrada igual a potência de saida) Relações de impedâncias(reflexão): a Z a 1 1 a Z I I 1 I a
10 Transformador monofásico real Considera-se: Perdas ôhmicas, resistência dos enrrolamentos do primário e secundário (r 1, r ); Perdas magnéticas por dispersão de fluxo magnético Representadas por Reatâncias lineares (x 1, x ). Perdas no núcleo Perdas ativas por Foulcaut e histerese representada por resistência (r c ) e a magnetização do núcleo aproximada por reatância linear (aprox. Pela componente de 1ª h da Corrente de magnetização em quadratura com o fluxo) - x m ; Circuito equivalente: A relação de espiras é válida para 1 e e para I 1 e I.
11 Transformador 1φ real (em vazio) EM AZIO (SECUNDÁRIO EM ABERTO) I 0 I 1 0; A impedância do ramo de magnetização (rc e xm ) é muito maior que a impedância série equivalente (pode-se desprezar os parâmetros série). Circuito equivalente: Corrente no primário (da ordem de 5 % da corrente nominal do trafo): i1 ( t) i ϕ ( t) + im ( t) Corrente no tensão no secundário: 1 a
12 Transformador 1φ real (em vazio) Devido à não linearidades da curva B x H do núcleo (ciclo de histerese e eventualmente saturação): A corrente de excitação não é senoidal; A análise de Fourier mostra que a corrente de magnetização possui uma componente fundamental em fase com o fluxo e harmónicas de ordem ímpar (3ª, 5ª, ) Como a If é pequena considera-se somente a componente de primeira harmônica: I 1 Iϕ Diagrama fasorial
13 Transformador 1φ real (com carga) I 0 Todos os parâmetros do circuito equivalente são considerados; Podemos eliminar o transformador ideal refletindo as impedâncias do secundário para o primário e utilizando a relação de transformação de tensão e corrente. Circuito equivalente: Como Iϕ << I 1 pode-se desprezar o ramo de magnetização: Em geral para trafos de Potência (centenas de ka), depreza-se as perdas ôhmicas.
14 Ensaios A partir de ensaios é possível determinar os parâmetros do modelo do transformador nas condições de regime permanente : Curto-circuito Com o lado de baixa (secundário) em curtocircuito impõe-se uma tensão menor do que a nominal no lado de alta (primário) de modo a se ter corrente nominal no secundário em curto e mede-se a tensão e a corrente no primário, além da corrente no secundário e a potência consumida no primário. Em azio Com o terminal do lado de alta (secundário) em vazio ompõe-se tensão nominal no lado de baixa (primário) e mede-se a tensão no secundário, além da corrente no primário e a potência consumida no primário.
15 Determinação de parâmetros (Ensaio em vazio) Teste em aberto: Um dos lados do transformador é deixado em aberto, normalmente o lado de alta tensão. Instrumentos de medição são conectados para medir a corrente I 1, 1 e a potência ativa na entrada P 1. A tensão aplicada 1 deve ser igual a tensão nominal do transformador (dado de placa). Como um dos lados em vazio teremos: I 0 I 1 0; A impedância do ramo de magnetização (rc e xm ) é muito maior que a impedância série equivalente (pode-se desprezar os parâmetros série). Toda a corrente é responsável pela magnetização do núcleo do trafo.
16 Determinação de parâmetros (Ensaio em vazio) Como foram desprezadas as perdas ôhmicas no cobre, toda a potência ativa medida representa as perdas ôhmicas no núcleo do tranformador, e desta forma calculamos r c e x m : Resistência do ramo de magnetização r c 1 1 P Correntes Ic e Im do ramo de magnetização 1 Ic I m I1 Ic rc Reatância de magnetização: 0 I X 1 m1 m Nota: Os parâmetros são referentes ao lado de aplicação da tensão 1.
17 Determinação de parâmetros (ensaio em curto) Ensaio em curto: Um dos lados do transformador é curto-circuitado, normalmente o lado de baixa tensão. Instrumentos de medição são conectados para medir as correntes I, I 1, e potência ativa na entrada P. A tensão aplicada deve ser tal que I1 seja igual a corrente nominal do transformador (dado de placa). Com o terminal em curto (situação de plena carga) a tensão aplicada que resulta na corrente nominal é muito menor que a tensão nominal do trafo no lado em que a tensão é aplicada; Como vimos a corrente de magnétização é de pequena ordem de grandeza, na prática as perdas no ramo de magnetização são desprezadas neste ensaio.
18 Determinação de parâmetros (ensaio em curto) Desta forma calcula-se o módulo da impedância, Z Z I Resistência de perdas no cobre: r equiv P I 1 Reatância de dispersão: x equiv Z r
19 Exemplos (circuito equivalente) Testes são feitos em um transformador monofásico, 10 ka, 00/0, 60 Hz e anotados na tabela abaixo. Circuito Aberto Curto Circuito Tensão () Corrente (A) 0, ,55 Potência (W) (a)encontre o circuito equivalente aproximado, com os parametros refletidos de alta e do lado de baixa tensão. (b)expressa a corrente de excitação como uma porcentagem da corrente nominal. (c)determine o fator de potência para os testes de circuito aberto (sem carga) e curto circuito(plena carga).
20 Solução: Os valores nominais (em módulo) do trafo são descritos abaixo. (nominal) 00 1(nominal) 0 00 a I (nominal) 4,55A I 1(nominal) 45,5A 00 0 I(nominal) 1 I1(nominal) 10kA (a) Parâmetros do Circuito equivalente. Diagrama fasorial para o teste de circuito aberto. r 1 0 c 1 P1 100 I r c c 484Ω 0,45A Im I1 Ic,5 0,45 X I 0,46 1 m 1 m 89,4Ω,46 A Parâmetros referidos para o lado de alta r c a rc 48400Ω Xm a Xm 8940Ω 1
21 Solução: Circuito equivalente e diagrama fasorial para o teste de curto-circuito. P 15 requiv 10,4Ω I 4,55 x Z , 97Ω 4,55 equiv equiv Z r 3,97 10,4 31, 3Ω Parâmetros referidos para o lado de baixa 1 rc 0, 104Ω a requiv 1 x 1 x 0, 313Ω a equiv1 equiv
22 Solução: (b) Relação porcentual entre corrente de magnetização e nominal. Do teste de circuito aberto, a corrente (magnetização) é de,5 A. Portanto: I ϕ I no min al %,5 45,5 5,5% (c) Fatores de potência Teste de circuito aberto fp S P 100,5 0 0,18 Teste de curto-circuito fp S P 100 4, ,315
23 Modelos referidos ao primário e secundário Nos modelos para regime permanente o transformador é representado por um transformador ideal, com sua relação de transformação e a impedância série referida a um dos lados. O ramo da magnetização e as perdas no ferros são desprezados. Modelo referido ao secundário I p + z s I s + p s - a : 1 Modelo referido ao primário - I p + z p a z s I s + p s - a : 1 -
24 Conexões de transformadores trifásicos Transformadores trifásicos são utilizados para mudar a tensão dos sistemas trifásicos. Normalmente em alta tensão se utiliza bancos de transformadores trifásicos formador por 03 unidades monofásicas. Os enrolamentos primário e secundário podem ser conectados em delta ou estrela, formando bancos - ; Y ; Y ou Y Y. Os transformadores Y-Y têm um menor custo de isolamento (tensão do enrolamento menor) e permitem acesso ao neutro para aterramento. Para eliminar harmônicas um terceiro conjunto de enrolamento (terciário) é conectado em delta (harmônicas de seqüência zero 3a harm.). O enrolamento terciário é utilizado para alimentação local e instalação de compensação reativa.
25 Conexões de transformadores trifásicos (cont.) A tensão do enrolamento terciário é normalmente menor (por ex., 500 Y 30 Y 69 ). A conexão em delta tem que se isolada para tensão de linha (custo maior). As conexões Y e Y são bastante freqüentes e são utilizadas como transformadores elevadores junto a usinas e transformadores abaixadores junto a cargas. O neutro do Y normalmente é aterrado.
26 Relação de transformação de transformadores trifásicos Define-se a relação de transformação dos transformadores trifásicos como sendo a relação entre as tensões nominais dos enrolamentos primário e secundário (relação entre o número de espiras). a a' Transformador Z c enrp b a enrp eq enrs b' enrs carga Z c Z c c c' amos analisar o banco de transformador Y-Y e Y-.
27 Transformador Y-Y ou Como definimos, a relação de transformação a é definida pela razão entre as tensões dos enrolamentos primário e secundário. b a b' a' Z c p s Z c carga Z c c c' No caso do banco trifásico com conexão Y-Y (ou ) a relação entre as tensões de linha primário/secundário é igual à relação entre as tensões de fase primário/secundário (igual à tensão dos enrolamentos) e não há defasagem entre as tensões dos lados de alta e baixa : a p s p s φt φt p s φφ φφ 3 3 p s φφ φφ
28 Ou seja, para o transformador trifásico Y-Y (ou ) a relação de transformação a pode ser obtida da razão entre as tensões nominais de linha ou da razão entre as tensões nominais de fase dos lados primário/secundário.
29 Exercício 1 Um banco de transformador conectado em Y- Y alimenta uma carga de 80 MA fp 0,85 ind. Representar o conjunto transformador + carga em Ω. N1 N carga Diagrama unifilar Dados Transformador 138 k/13,8 k X dispersão : 15,3 Ω (alta) Potência nominal S 100 MA Carga S 80 MA fp 0,85 atras. nominal 13,8 k
30 Carga no lado de baixa S Z Z S f 1φ ( ) 13,8/ 3 ( 80 / 3) ,8 80,3805 Ω Carga vista do lado de alta Z alta 138, , 05 13,8 Ângulo da impedância Ω θ cos 1 0,85 31,79 Reatância de dispersão no lado de baixa X 13,8 15,3 0, Ω
31 Sistema visto do lado de alta N1 j 15,3 Ω N trafo carga 0,34 + j 15,40 Ω Sistema visto do lado de baixa N1 j 0,153 Ω N trafo carga,034 + j 1,540 Ω
32 Transformador Y- ou Y Analisando o transformador trifásico Y- e lembrando que a relação de transformação é dada pela relação entre as tensões dos enrolamentos primário/secundário vemos que : No lado em Y a tensão do enrolamento corresponde à tensão de fase do sistema, No lado em a tensão do enrolamento corresponde à tensão de linha do sistema. b a b' a' Z c p s Z c carga Z c c c'
33 Desta forma temos : a p φ t pφφ ou s φφ s φφ 3 a No caso do banco trifásico com conexão Y- a relação entre as tensões de linha é igual a 3 vezes a relação entre as espiras. Lembrando do diagrama fasorial trifásico vemos que um transformador -Y atua como um elemento defasador, por incluir uma defasagem de 30º entre as tensões /Y. ca c b ab a b bc
34 A relação de transformação passa a ser vetorial, onde a tensão no lado do está adiantada de 30º em relação a do lado Y. a s φφ p.e φt jπ / 6 p jπ / 6 A relação de transformação pode ser representada como a associação em série de dois elementos, o primeiro com relação de transformação real e o segundo somente com a defasagem. φφ s φφ 3.e a a T r a r p + a φφ s φφ d 3 p φφ s φφ 3.e jπ / 6 d a 1.e jπ / 6
35 Normalmente a defasagem é cancelada devido à existência de vários transformadores em cascata. Num sistema radial a defasagem pode ser ignorada a não ser que haja interesse no ângulo das tensões. Com relação ao fluxo de potência no sistema radial não há impacto porque tanto a tensão quanto a corrente sofrem o mesmo defasamento. Em sistemas com malha fechada é preciso verificar se a defasagem precisa ser representada. No Brasil existe uma interligação entre Cemig e Escelsa onde foi instalado um transformador Y- (300 MA 30/138 k) para gerar a defasagem devido à restrições de fluxo de potência e esta defasagem deve ser corretamente modelada.
36 Y equivalente amos então desprezar a defasagem e lembrar que estamos trabalhando com a representação de seqüência positiva ( uma fase ). Iremos representar a conexão por um Y equivalente e assim trabalharemos somente com uma fase, supondo que o sistema esteja equilibrado (para que os neutros estejam no mesmo potencial). Quando uma impedância for referida ao lado do ela deve ser corrigida para o Y equivalente, lembrando que Z Y Z Neste caso a relação de transformação Y-Yeq passa a ser dada pelas relações entre as tensões de linha (como no caso Y-Y). 3
37 Exercício Trafo Y- Represente o transformador conectado em Y- por seu equivalente de seqüência positiva. Desprezar a defasagem gerada pelo transformador. N1 N Diagrama unifilar Dados Transformador 138 k/13,8 k Y- X dispersão : 15,3 Ω (alta) Potência nominal S 100 MA
38 Reatância de dispersão no lado de baixa X 13,8 15,3 0, / 3 Ω Trabalhando com Y equivalente Reatância de dispersão no lado de baixa X 0,4569 0, Ω
39 Transformador visto do lado de alta N1 138 k j 15,3 Ω trafo N Transformador visto do lado de baixa (Y equivalente seq pos) N1 j 0,153 Ω trafo N 13,8 k
40 Reparem que as impedâncias variam com a relação de entre as tensões de linha. O transformador Y- pode ser substituído por um equivalente Y-Y : N1 N N1 N 138 k-13,8 k 138 k-13,8 k As relações de transformação serão : a f1 L a L1 L
PEA 2400 - MÁQUINAS ELÉTRICAS I 60 CARACTERIZAÇÃO DAS PERDAS E RENDIMENTO NO TRANSFORMADOR EM CARGA: PERDAS NO FERRO (HISTERÉTICA E FOUCAULT)
PEA 400 - MÁQUINAS ELÉTRICAS I 60 CARACTERIZAÇÃO DAS PERDAS E RENDIMENTO NO TRANSFORMADOR EM CARGA: PERDAS NO FERRO (HISTERÉTICA E FOUCAULT) PERDAS CONSTANTES: p C INDEPENDENTES DA CARGA EFEITO DO CAMPO
P r o f. F l á v i o V a n d e r s o n G o m e s
UNIVERSIDADE FEDERAL DE JUIZ DE FORA Análise de Sistemas Elétricos de Potência 1 5.3 Componentes Simétricas - Transformadores P r o f. F l á v i o V a n d e r s o n G o m e s E - m a i l : f l a v i o.
Eletrotécnica TEXTO Nº 6
Eletrotécnica TEXTO º 6 TRAFORMADORE DE POTÊCIA. ITRODUÇÃO OBJETIO PRICIPAL: Estabelecimento de modelos matemáticos para transformadores de potência monofásicos, de forma a propiciar o cálculo das correntes,
C A D E R N O D E P R O V A S
CONCURSO PÚBLICO ASSEMBLEIA LEGISLATIVA DO ESTADO DE MINAS GERAIS C A D E R N O D E P R O V A S CADERNO 7 ESPECIALIDADE: ENGENHEIRO ELETRICISTA PROVA: CONHECIMENTOS ESPECÍFICOS - DISCURSIVA LEIA ATENTAMENTE
CONHECIMENTOS ESPECÍFICOS TÉCNICO EM ELETROTÉCNICA
CONHECIENTOS ESPECÍFICOS TÉCNICO E ELETROTÉCNICA 26. Analise o circuito a seguir. Considerando que a lâmpada L foi projetada para funcionar numa rede de 120 V, dissipando 60 W, o valor da resistência Rx,
Lista de Exercícios Circuitos Trifásicos Equilibrados. Prof. Marcelo. Engenharia Elétrica IFG/Jataí
Lista de Exercícios Circuitos Trifásicos Equilibrados Prof. Marcelo Engenharia Elétrica IFG/Jataí 8) Encontrar os parâmetros elétricos assinalados no circuito abaixo, e ilustrá-los através de um diagrama
LABORATÓRIO DE ELETROTÉCNICA GERAL I EXPERIÊNCIA: ENERGIA, POTÊNCIA E FATOR DE POTÊNCIA (EP)
LABORATÓRIO DE ELETROTÉCNICA GERAL I EXPERIÊNCIA: ENERGIA, POTÊNCIA E FATOR DE POTÊNCIA (EP) NOTA RELATÓRIO -.... Grupo:............ Professor:...Data:... Objetivo:............ 1 - Considerações gerais
Questão 3: Um resistor de 10Ω é alimentado por uma tensão contínua de 50V. A potência dissipada pelo resistor é:
Questão 1: Dois resistores de 1Ω e 2Ω, conectados em série, são alimentados por uma fonte de tensão contínua de 6V. A tensão sobre o resistor de 2Ω é: a) 15V. b) 2V. c) 4V. d) 5V. e) 55V. Questão 2:A resistência
REPRESENTAÇÃO DE SISTEMAS DE POTÊNCIA
1 REPRESENTAÇÃO DE SISTEMAS DE POTÊNCIA revisão mar06 1 - Introdução A maioria dos sistemas elétricos de potência é em corrente alternada. As instalações em corrente contínua são raras e tem aplicações
Objetivo Geral: - Conhecer o método mais utilizado para obter os parâmetros de um transformador de tensão a partir de ensaios.
( ) Prova ( ) Prova Semestral ( ) Exercícios ( ) Prova Modular ( ) Segunda Chamada ( ) Exame Final ( ) Prática de Laboratório ( ) Aproveitamento Extraordinário de Estudos Nota: Disciplina: Turma: Aluno
Fundamentos de Máquinas Elétricas
Universidade Federal do C Engenharia de nstrumentação, utomação e Robótica Fundamentos de Máquinas Elétricas rof. Dr. José Luis zcue uma Regulação de tensão Rendimento Ensaios de curto-circuito e circuito
WWW.escoladoeletrotecnico.com.br
CURSO PREPARATÓRIO PARA CONCURSOS EM ELETROTÉCNICA CPCE AULA 2 Ligações do transformador trifásico Prof.: Jean WWW.escoladoeletrotecnico.com.br 19 de novembro de 2009 Transformador trifásico (3φ) O transformador
LABORATÓRIO DE ELETROTÉCNICA GERAL I EXPERIÊNCIA - ENERGIA, POTÊNCIA E FATOR DE POTÊNCIA
LABORATÓRIO DE ELETROTÉCNICA GERAL I EXPERIÊNCIA - ENERGIA, POTÊNCIA E FATOR DE POTÊNCIA RELATÓRIO - NOTA... Grupo:............ Professor:...Data:... Objetivo:............ 1 - Considerações gerais A parte
TRANSFORMADORES. P = enrolamento do primário S = enrolamento do secundário
TRANSFORMADORES Podemos definir o transformador como sendo um dispositivo que transfere energia de um circuito para outro, sem alterar a frequência e sem a necessidade de uma conexão física. Quando existe
LISTA DE EXERCÍCIOS PARTE 2
UNIFEI - UNIERSIDADE FEDERAL DE ITAJUBÁ LISTA DE EXERCÍCIOS PARTE 2 MEDIDOR DE POTÊNCIA ATIA 1.1. Dispõe-se de um wattímetro para 1500W e 300. A escala tem 150 divisões. Pede-se: a) Corrente nominal do
Introdução a Transformadores
Introdução a Transformadores O transformador possibilita a geração de energia elétrica em média tensão, pois pode transformar essa energia em alta tensão para uma transmissão mais econômica. As tensões
ENGENHEIRO ELETRICISTA
ENGENHEIRO ELETRICISTA QUESTÃO 01 O projeto de uma S.E. consumidora prevê dois transformadores, operando em paralelo, com as seguintes características: 500kVA, 13800//220/127V, Z = 5% sob 13.8KV; I n =
Transformador Trifásico [de isolamento]
ISTITTO POLITÉCICO DE ISE ESCOLA SPERIOR DE TECOLOGIA Transformador Trifásico [de isolamento] Ligações do transformador trifásico de isolamento. Objectivos * Conhecer as possibilidades para a transformação
TRANSFORMADORES. Figura 6 1. Transformador
6 TRANSFORMADORES 6.. ASPECTOS CONSTRUTIVOS Núcleo: Confeccionado com chapas de Aço-Silicio laminado, empilhadas e prensadas, as quais apresentam permeabilidades magnéticas elevadas. Enrolamentos: Confeccionados
Conversão de Energia I
Departamento de Engenharia Elétrica Conversão de Energia I Aula 2.7 Transformadores Prof. Clodomiro Vila Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução
1 a Lista de Exercícios Exercícios para a Primeira Prova
EE.UFMG - ESCOLA DE ENGENHARIA DA UFMG CURSO DE GRADUAÇÃO EM ENGENHARIA ELÉTRICA ELE 0 - CIRCUITOS POLIFÁSICOS E MAGNÉTICOS PROF: CLEVER PEREIRA 1 a Lista de Exercícios Exercícios para a Primeira Prova
ABAIXO ENCONTRAM-SE 10 QUESTÕES. VOCÊ DEVE ESCOLHER E RESPONDER APENAS A 08 DELAS
ABAIXO ENCONTRAM-SE 10 QUESTÕES. VOCÊ DEVE ESCOLHER E RESPONDER APENAS A 08 DELAS 01 - Questão Esta questão deve ser corrigida? SIM NÃO Um transformador de isolação monofásico, com relação de espiras N
EXPERIMENTO 11: DEMONSTRAÇÕES SOBRE ELETROMAGNETISMO. Observar, descrever e explicar algumas demonstrações de eletromagnetismo.
EXPERIMENTO 11: DEMONSTRAÇÕES SOBRE ELETROMAGNETISMO 11.1 OBJETIVOS Observar, descrever e explicar algumas demonstrações de eletromagnetismo. 11.2 INTRODUÇÃO Força de Lorentz Do ponto de vista formal,
Sistemas trifásicos. Introdução
Sistemas trifásicos Introdução Em circuitos elétricos de potência, a energia elétrica é gerada, transmitida, distribuída e consumida sob a forma e trifásica, Uma das vantagens dos circuitos trifásicos
XXIX Olimpíada Internacional de Física
XXIX Olimpíada Internacional de Física Reykjavík, Islândia Parte Experimental Segunda-feira, 6 de Julho de 1998 Lê isto primeiro: Duração: 5 H 1. Utiliza apenas a esferográfica que te foi dada. 2. Usa
Ensaio em Vazio de um Transformador Trifásico
Ensaio em Vazio de um Transformador Trifásico Em um ensaio em vazio, como o próprio nome diz, o transformador é ensaiado sem carga. Os objetivos do teste em vazio do transformador trifásico são: Determinar
Finalmente, para adaptar o nível de tensão às necessidades de consumo, são necessários outros transformadores (de distribuição).
TRASFORMADORES TRFÁSCOS van Camargo Março de 007 ) ntrodução e Aspectos Construtivos Os transformadores trifásicos são equipamentos indispensáveis para o funcionamento de um sistema elétrico. O transformador
GABARITO - DEF30. Questão 1
GABARITO - DEF30 Questão 1 a) Ensaio em aberto: Um dos lados do transformador é deixado em aberto, normalmente o lado de alta tensão. Instrumentos de medição são conectados para medir a corrente I 1, V
3 Faltas Desbalanceadas
UFSM Prof. Ghendy Cardoso Junior 2012 1 3 Faltas Desbalanceadas 3.1 Introdução Neste capítulo são estudados os curtos-circuitos do tipo monofásico, bifásico e bifase-terra. Durante o estudo será utilizado
EQUACIONAL ELÉTRICA E MECÂNICA LTDA CIRCUITO EQUIVALENTE PARA REGULADOR DE TENSÃO TIPO INDUÇÃO
TELEFONE () 00-0777 - FAX () 00-0779 - CEP 033-0 CIRCUITO EQUIVALENTE PARA REGULADOR DE TENSÃO TIPO INDUÇÃO O artigo a seguir propõe um circuito equivalente para regulador de tensão, simples e prático,
ESTUDO DIRIGIDO - TRANSFORMADORES. Transformadores monofásicos
UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA DISCIPLINA DE ELETRÔNICA DE POTÊNCIA 1 PROF.: LEANDRO MICHELS ESTUDO DIRIGIDO - TRANSFORMADORES
Constituição - Núcleo. Constituição. Tipos de núcleos. Núcleo ferromagnético. Constituição - Enrolamentos. Tipos de núcleos 02/03/2015
02/03/2015 es monofásico Eletricista de Instalações trifásico es de tensão de medida 2014/ 2015 de intensidade 1 monofásico 2 4 Simbologia es: o aparelhos eletromagnéticos o sem partes móveis o destinados
Transformadores trifásicos
Transformadores trifásicos Transformadores trifásicos Transformadores trifásicos Por que precisamos usar transformadores trifásicos Os sistemas de geração, transmissão e distribuição de energia elétrica
Capítulo II. Faltas entre fases e entre espiras Por Geraldo Rocha e Paulo Lima* Proteção de geradores
22 Capítulo II Faltas entre fases e entre espiras Por Geraldo Rocha e Paulo Lima* A proteção do gerador deve ser analisada cuidadosamente, não apenas para faltas, mas também para as diversas condições
TEMA DA AULA PROFESSOR: RONIMACK TRAJANO DE SOUZA
TEMA DA AULA TRANSFORMADORES DE POTÊNCIA PROFESSOR: RONIMACK TRAJANO DE SOUZA TRANSFORMADORES - PERDAS EM VAZIO Potência absorvida pelo transformador quando alimentado em tensão e frequência nominais,
2 ANÁLISE DE IRREGULARIDADES NA MEDIÇÃO DE ENERGIA ELÉTRICA
24 2 ANÁLISE DE IRREGULARIDADES NA MEDIÇÃO DE ENERGIA ELÉTRICA 2.1 INTRODUÇÃO Como conseqüência direta das privatizações do mercado de energia, as concessionárias do setor elétrico começaram a investigar
2. Suponha que o primário do transformador anterior tinha 800 espiras. Qual será o número de espiras do secundário?
1. Um transformador tem a seguinte característica: 220/110 V. Responda as seguintes questões: a) 0 transformador é redutor ou elevador? b) Indique o valor da tensão no primário e a do secundário. c) Calcule
Representação em PU P r o f. F l á v i o V a n d e r s o n G o m e s
UNERDADE FEDERAL DE JU DE FORA Análise de istemas Elétricos de Potência Representação em PU P r o f. F l á v i o a n d e r s o n G o m e s E - m a i l : f l a v i o. g o m e s @ u f j f. e d u. b r E N
Gerador CC- Excitação Independente
Gerador CC- Excitação Independente Necessidade de uma fonte externa: Outro gerador CC; Retificador (diodo ou controlado); Bateria; etc... Gerador CC- Excitação Independente Analisando o circuito: Rfw ->
1 Problemas resolvidos
1 Problemas resolvidos Sistemas Electromecânicos 1. Circuitos eléctricos monofásicos 2. Circuitos eléctricos trifásicos 3. Circuitos magnéticos 4. Transformador Paulo Branco (2004/2005) 1 2 Circuitos eléctricos
Aula 2 TRANSFORMADORES I. Prof. Dr. Maurício Salles [email protected] USP/POLI/PEA
Aula 2 TRANSFORMADORES I Prof. Dr. Maurício Salles [email protected] USP/POLI/PEA Aula 2 TRANSFORMADORES Utilização do transformador Princípio de funcionamento do transformador (ideal e real) Transformador
Mestrado Integrado em Engenharia Electrónica Industrial e Computadores 2006/2007 Máquinas Eléctricas - Exercícios
Mestrado Integrado em Engenharia Electrónica Industrial e Computadores 2006/2007 Máquinas Eléctricas - Exercícios Nome Nº ATENÇÃO: A justificação clara e concisa das afirmações e cálculos mais relevantes
INSTALAÇÕES ELÉTRICAS INDUSTRIAIS
INSTALAÇÕES ELÉTRICAS INDUSTRIAIS DIMENSIONAMENTO DE ELÉTRICOS INTRODUÇÃO Os fatores básicos que envolvem o dimensionamento de um condutor são: tensão nominal; freqüência nominal; potência ou corrente
Acionamento de Motores CA
Fundação Universidade Federal ACIONAMENTOS de Mato Grosso do CA Sul 1 Acionamentos Eletrônicos de Motores Acionamento de Motores CA Prof. Márcio Kimpara Prof. João Onofre. P. Pinto Universidade Federal
Introdução ao Estudo da Corrente Eléctrica
Introdução ao Estudo da Corrente Eléctrica Num metal os electrões de condução estão dissociados dos seus átomos de origem passando a ser partilhados por todos os iões positivos do sólido, e constituem
Professor Mário Henrique Farias Santos [email protected]
Professor Mário Henrique Farias Santos [email protected] Conceitos preliminares Introdução às máquinas CA e CC Força Magnetomotriz (FMM) de enrolamentos concentrados e de enrolamentos distribuídos
CONCEITOS TEORICOS ESSESNCIAIS
EXEÊNCA CCUTOS C SÉE COEÇÃO DO FATO DE OTÊNCA OBJETOS: - Aprender a ler os valores dos capacitores de poliéster e cerâmico; - erificar o comportamento do indutor em corrente alternada; - erificar o comportamento
Eletricista Instalador Predial de Baixa Tensão Eletricidade Básica Jones Clécio Otaviano Dias Júnior Curso FIC Aluna:
Ministério da Educação - MEC Secretaria de Educação Profissional e Tecnológica (SETEC) Instituto Federal de Educação, Ciência e Tecnologia do Ceará Eletricista Instalador Predial de Baixa Tensão Eletricidade
TECNOLOGIA MECÂNICA. Aula 04. Carregamento Axial Tensão Normal
FACULDADE DE TECNOLOGIA SHUNJI NISHIMURA POMPÉIA TECNOLOGIA MECÂNICA Aula 04 Carregamento Axial Tensão Normal Prof. Me. Dario de Almeida Jané Mecânica dos Sólidos - Revisão do conceito de Tensão - Carregamento
- SISTEMA TRIFÁSICO. - Representação senoidal
- SISTEMA TRIFÁSICO - Representação senoidal As ligações monofásicas e bifásicas são utilizadas em grande escala na iluminação, pequenos motores e eletrodomésticos Nos níveis da geração, transmissão e
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA SÉRIE DE EXERCÍCIO #A3 (1A) CONVERSÃO TEMPERATURA-TENSÃO (A) Determine
Modelamento de Saturação em Transformadores
Modelamento de Saturação em Transformadores O Circuito Equivalente do Transformador na Figura 1 pode ser modificado para incluir os efeitos não-lineares da característica do núcleo. Esta modificação pode
TRANSFORMADORES ELÉTRICOS
TRANSFORMADORES ELÉTRICOS (Módulo 3 TEM) Prof. Dr. Emerson Silveira Serafim FONTE:http://br.geocities.com/salad efisica7/funciona/transformador.htm SUMÁRIO 1.1 Introdução 1.2 Definição 1.2.1 Princípio
UFSM Prof. Ghendy Cardoso Junior 2012 1
UFSM Prof. Ghendy Cardoso Junior 2012 1 2 Faltas Balanceadas 2.1 Introdução O problema consiste em determinar as tensões de barra e as correntes nas linhas de transmissão para diferentes tipos de faltas.
Máquinas e Equipamentos Elétricos e Mecânicos
Indicação de ícones Os ícones são elementos gráficos utilizados para ampliar as formas de linguagem e facilitar a organização e a leitura hipertextual. Atenção: indica pontos de maior relevância no texto.
Fundamentos de Medidas Elétricas em Alta Freqüência
Centro de Pesquisas de Energia Elétrica Fundamentos de Medidas Elétricas em Alta Freqüência Apresentador: André Tomaz de Carvalho Área: DLE Medidas Elétricas em Alta Frequência Quando o comprimento de
APOSTILA TECNOLOGIA MECANICA
FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de
Medidas elétricas em altas frequências
Medidas elétricas em altas frequências A grande maioria das medidas elétricas envolve o uso de cabos de ligação entre o ponto de medição e o instrumento de medida. Quando o comprimento de onda do sinal
Prof. Sérgio Rebelo. Curso Profissional Técnico de Eletrónica, Automação e Comando
Prof. Sérgio ebelo Curso Profissional Técnico de Eletrónica, Automação e Comando Eletricidade e Eletrónica - Elenco Modular Módulo Análise de Circuitos em Corrente Contínua 3 Módulo Análise de Circuitos
Métodos normalizados para medição de resistência de aterramento
30 Capítulo VIII Métodos normalizados para medição de resistência de aterramento Parte 3: Método da queda de potencial com injeção de alta corrente e ensaios em instalações energizadas Jobson Modena e
Aula -2 Motores de Corrente Contínua com Escovas
Aula -2 Motores de Corrente Contínua com Escovas Introdução Será descrito neste tópico um tipo específico de motor que será denominado de motor de corrente contínua com escovas. Estes motores possuem dois
Experimento 3 # Professor: Data: / / Nome: RA:
BC-0209 Fenômenos Eletromagnéticos Experimento 3 # Campo Magnético de Correntes Elétricas Professor: Data: / / Introdução e Objetivos Relatos históricos indicam que a bússola já era um instrumento utilizado
DESTAQUE: A IMPORTÂNCIA DOS TRANSFORMADORES EM SISTEMAS DE ENERGIA ELÉTRICA
Capítulo 0 Transformadores DESTAQE: A IMPORTÂNCIA DOS TRANSFORMADORES EM SISTEMAS DE ENERGIA ELÉTRICA Os geradores elétricos, que fornecem tensões relativamente baixas (da ordem de 5 a 5 kv), são ligados
Modelagem de Sistemas Dinâmicos Aula 7
Modelagem de Sistemas Dinâmicos Aula 7 Prof. Daniel Coutinho [email protected] Programa de Pós-Graduação em Engenharia de Automação e Sistemas Universidade Federal de Santa Catarina PGEAS/UFSC DAS9060
TEMA DA AULA PROFESSOR: RONIMACK TRAJANO DE SOUZA
TEMA DA AULA TRANSFORMADORES DE INSTRUMENTOS PROFESSOR: RONIMACK TRAJANO DE SOUZA MEDIÇÃO DE GRANDEZAS ELÉTRICAS Por que medir grandezas elétricas? Quais grandezas elétricas precisamos medir? Como medir
Distância de acionamento. Distância sensora nominal (Sn) Distância sensora efetiva (Su) Distância sensora real (Sr) 15/03/2015
Ministério da educação - MEC Secretaria de Educação Profissional e Técnica SETEC Instituto Federal de Educação Ciência e Tecnologia do Rio Grande do Sul Campus Rio Grande Sensores São dispositivos que
Atividade de Recuperação- Física
Atividade de Recuperação- Física 3º Ano- 1º Trimestre Prof. Sérgio Faro Orientação: Refazer os exemplos seguintes e resolver os demais exercícios no caderno e anotar eventuais dúvidas para esclarecimento
WWW.escoladoeletrotecnico.com.br
CURSO PREPARATÓRO PARA COCURSOS EM ELETROTÉCCA CPCE ELETRCDADE AULA TRASFORMADOR: Polaridade de u enrolaento Enrolaento e série e e paralelo Ensaio a vazio e e curto-circuito Ligações de u transforador
INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO. Grupo:... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Experiência 8 LINHA DE TRANSMISSÃO
INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO Laboratório de Eletromagnetismo (4300373) Grupo:......... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Data : / / Experiência 8 LINHA DE TRANSMISSÃO
ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 01 A LEI DE OHM e AS LEIS DE KIRCHHOFF
ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 01 A LEI DE OHM e AS LEIS DE KIRCHHOFF NOME: TURMA: DATA: / / OBJETIVOS: Ler o valor nominal de cada resistor através do código de cores. Conhecer os tipos de
Boletim da Engenharia
Boletim da Engenharia 17 Procedimentos para Correção do Fator de Potência 05/04 1 Descrições Gerais 1.1 Determinação Nacional Visando a otimização do consumo racional de energia elétrica gerada no país,
ANÁLISE DE CIRCUITOS
NÁLISE DE CIRCUITOS Corrente Contínua 1 Na figura seguinte representa um voltímetro e um amperímetro. Se indicar 0,6 m, quanto deverá marcar? U 50kΩ Figura 1 2 Se R b = 3R a, qual a tensão entre e B (sabendo
CONHECIMENTOS ESPECÍFICOS
CONHECIMENTOS ESPECÍFICOS Considerando que um transformador monofásico será submetido aos ensaios de curto-circuito e a vazio para determinação dos parâmetros do seu circuito equivalente, o qual deverá
Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta
Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Classificação dos movimentos Introdução Velocidade Média
AULAS 03-04 UNIDADE 1 DINÂMICA DE MÁQUINAS ELÉTRICAS (DME) Prof. Ademir Nied [email protected]
Universidade do Estado de Santa Catarina Departamento de Engenharia Elétrica Curso de Pós-Graduação em Engenharia Elétrica AULAS 03-04 UNIDADE 1 DINÂMICA DE MÁQUINAS ELÉTRICAS (DME) Prof. Ademir Nied [email protected]
Efeito magnético da corrente elétrica
Efeito magnético da corrente elétrica Descoberta Um condutor percorrido por uma corrente elétrica faz desviar uma agulha magnética - efeito magnético da corrente elétrica. Observação Um condutor percorrido
PROJETO DE SUBESTAÇÃO ABRIGADA DE
PROJETO DE SUBESTAÇÃO ABRIGADA DE 750kVA DESTINADA AO PRÉDIO DA PROCURADORIA REGIONAL DO TRABALHO DE PERNAMBUCO, SITUADO NO MUNICÍPIO DE RECIFE NO ESTADO DE PERNAMBUCO. MEMORIAL DESCRITIVO 1. FINALIDADE:
Seja um circuito que consome uma potência aparente de 12kVA quando a alimentação é 220V RMS. A corrente consumida vale: RMS
Uma instalação elétrica é, na maioria dos casos, formada por cargas indutias (motores elétricos), portanto, faz-se necessária uma análise do fator de potência da instalação. A diminuição do fator de potência
LABORATÓRIO DE CONTROLE I APLICAÇÃO DE COMPENSADORES DE FASE DE 1ª ORDEM E DE 2ª ORDEM
UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO COLEGIADO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE CONTROLE I Experimento 5: APLICAÇÃO DE COMPENSADORES DE FASE DE 1ª ORDEM E DE 2ª ORDEM COLEGIADO DE ENGENHARIA
Introdução à Máquina Síncrona
Apostila 2 Disciplina de Conversão de Energia B 1. Introdução Introdução à Máquina Síncrona Esta apostila descreve resumidamente as principais características construtivas e tecnológicas das máquinas síncronas.
DEFINIÇÃO DE FILTROS DE HARMÔNICOS
ART460-07 - CD 6-07 - PÁG.: 1 RESUMO DEFINIÇÃO DE FILTROS DE HARMÔNICOS João Roberto Cogo Escola Federal de Engenharia de Itajubá Av. BPS, 1303 - Caixa Postal 50-37500-000 - Itajubá - MG - Brasil Fone:
Aula 1 Introdução. Análise de redes em condições transitórias. rias:
Proteção de Sistemas Elétricos Aula 1 Introdução Análise de redes em condições transitórias condições transitórias: rias: chaveamento CC falta de fase formas de ondas anormais descargas atmosféricas origem:
Circuitos Retificadores
Circuitos Retificadores 1- INTRODUÇÃO Os circuito retificadores, são circuitos elétricos utilizados em sua maioria para a conversão de tensões alternadas em contínuas, utilizando para isto no processo
Circuitos Elétricos Circuitos Magneticamente Acoplados
Introdução Circuitos Elétricos Circuitos Magneticamente Acoplados Alessandro L. Koerich Engenharia de Computação Pontifícia Universidade Católica do Paraná (PUCPR) Os circuitos que estudamos até o momento
UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III INDUTORES E CIRCUITOS RL COM ONDA QUADRADA
UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III INDUTORES E CIRCUITOS RL COM ONDA QUADRADA 1. OBJETIVO O objetivo desta aula é estudar o comportamento
PUCGoiás Física I. Lilian R. Rios. Rotação
PUCGoiás Física I Lilian R. Rios Rotação O movimento de um cd, de um ventilador de teto, de uma roda gigante, entre outros, não podem ser representados como o movimento de um ponto cada um deles envolve
TRANSFORMADOR. A figura 1 mostra o esquema de um transformador básico.
TRAFORMADOR O transformador é constituído basicamente por dois enrolamentos que, utilizando um núcleo em comum, converte primeiramente e- nergia elétrica em magnética e a seguir energia magnética em elétrica.
XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA
XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA Versão 1.0 GPC.YY 22 a 25 Novembro de 2009 Recife - PE GRUPO V GRUPO DE ESTUDO DE PROTEÇÃO, MEDIÇÃO E CONTROLE EM SISTEMA DE POTÊNCIA
CORRENTE CONTÍNUA E CORRENTE ALTERNADA
CORRENTE CONTÍNUA E CORRENTE ALTERNADA Existem dois tipos de corrente elétrica: Corrente Contínua (CC) e Corrente Alternada (CA). A corrente contínua tem a característica de ser constante no tempo, com
- 106 - - TRANSFORMADOR MONOFÁSICO CONSIDERAÇÕES INICIAIS: NOÇÕES DE ELETROMAGNETISMO PRINCIPAIS LEIS:
- 6 - CAÍTULO X - TRAFORMADOR MOOFÁICO COIDERAÇÕE IICIAI: OÇÕE DE ELETROMAGETIMO RICIAI LEI: a) LEI DE BIOT - AVART : "Uma corrente elétrica percorrendo um condutor, cria em torno deste condutor um campo
Transformador Monofásico [de Isolamento]
Transformador Monofásico [de Isolamento] Determinação do rendimento para a carga nominal Curva característica do rendimento η = f (S 2 ), para vários factores de potência 1 - Informação Geral A potência
Levantamento. Levantamento altimétrico:
Levantamento planimétrico trico: projeção plana que não traz informações acerca do relevo do terreno levantado; somente acerca de informações relativas à medições feitas na horizontal. Levantamento altimétrico:
Laboratório 7 Circuito RC *
Laboratório 7 Circuito RC * Objetivo Observar o comportamento de um capacitor associado em série com um resistor e determinar a constante de tempo do circuito. Material utilizado Gerador de função Osciloscópio
DATA: / / 2014 ETAPA: 3ª VALOR: 20,0 pontos NOTA:
DISCIPLINA: Física PROFESSORES: Fabiano Vasconcelos Dias DATA: / / 2014 ETAPA: 3ª VALOR: 20,0 pontos NOTA: NOME COMPLETO: ASSUNTO: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 3ª SÉRIE EM TURMA: Nº: I N S T R
CAP. 3 - EXTENSÔMETROS - "STRAIN GAGES" Exemplo: extensômetro Huggenberger
CAP. 3 - EXTENSÔMETOS - "STAIN GAGES" 3. - Extensômetros Mecânicos Exemplo: extensômetro Huggenberger Baseia-se na multiplicação do deslocamento através de mecanismos de alavancas. Da figura: l' = (w /
TEMA DA AULA PROFESSOR: RONIMACK TRAJANO DE SOUZA
TEMA DA AULA TRANSFORMADORES DE POTÊNCIA PROFESSOR: RONIMACK TRAJANO DE SOUZA TRANSFORMADORES DE POTÊNCIA Transformadores são máquinas de operação estática que transferem energia elétrica de um circuito
Os motores de CA podem ser monofásicos ou polifásicos. Nesta unidade, estudaremos os motores monofásicos alimentados por uma única fase de CA.
Motores elétricos Os motores de CA podem ser monofásicos ou polifásicos. Nesta unidade, estudaremos os motores monofásicos alimentados por uma única fase de CA. Para melhor entender o funcionamento desse
**Transformadores MEGA Ltda. Caixa Postal 6302 CEP 89068-970 - Blumenau - SC Fone/Fax 047 337 2000 [email protected]
Modelagem Estática e Dinâmica do Comportamento de Materiais Magnéticos sob Regimes Senoidais Puro e Com Harmônicos Sérgio H. L. Cabral* Thair I. Mustafa* André Carvalho** Jonas B. N. Coral** *Fundação
