CALIBRAÇÃO DE UM ESPECTROSCÓPIO DE PRISMA
|
|
|
- Emanuel Espírito Santo Belo
- 8 Há anos
- Visualizações:
Transcrição
1 TRABALHO PRÁTICO Nº 7 CALIBRAÇÃO DE UM ESPECTROSCÓPIO DE PRISMA Objectivos - Este trabalho consiste de duas partes. Numa primeira faz-se a determinação do índice de refracção de um poliedro de vidro. Na segunda parte procede-se à calibração de um espectroscópio de prisma, e determina-se os comprimentos de onda das riscas amarela e verde dos espectros de emissão do sódio e do tálio, respectivamente. 1. Introdução 1.1. Refracção da Luz A luz propaga-se no vácuo com uma velocidade constante (cerca de km.s -1 ). Nos diferentes meios materiais, no entanto, a luz propaga-se a velocidade inferior, cujo valor depende do próprio meio e da frequência da luz incidente. Chama-se índice de refracção do meio (n) à razão entre a velocidade da luz no vácuo (c) e a velocidade da luz no meio (v): c n = (1) v Trata-se, portanto, de uma grandeza adimensional e sempre maior que 1. Quando a luz passa de um meio caracterizado por um índice de refracção n 1 para outro de índice de refracção n 2, sendo θ 1 o ângulo de incidência e θ 2 o ângulo de refracção, a relação entre estes parâmetros é expressa pela lei de Snell: n senθ = n sen (2) θ 2 De acordo com esta lei, quando a luz passa de um meio menos refringente (índice de refracção menor) para um meio mais refringente (índice de refracção maior) os raios luminosos refractados aproximam-se da normal ao plano de incidência. Esta situação esquematiza-se na figura 1. I N θ 1 n 1 n 2 S θ 2 Figura 1. Refracção de um raio I de luz incidente sobre a superfície S que separa dois meios de índice de refracção diferente, n 1 < n 2. O raio R refractado aproxima-se da normal N ao plano de incidência: θ 1 > θ 2 O índice de refracção de um meio, por sua vez, varia com a frequência da luz incidente, pois se tem da equação (1): c c n = = (3) v λf onde λ é o comprimento de onda e f é a frequência. Departamento de Física da FCTUC 1/9 R
2 Como a luz branca é uma mistura de ondas luminosas de diferentes frequências, quando a luz incide num material a determinado ângulo de incidência, cada uma das suas componentes é desviada de um ângulo diferente, de acordo com a sua frequência própria, e o espectro das diferentes cores torna-se visível Fontes luminosas e espectros de emissão Feixe luminoso heterocromático é um feixe constituído por radiações de diferentes comprimentos de onda (c.d.o.) ou frequências (cores). As lâmpadas incandescentes são as fontes heterocromáticas de uso mais comum. Elas são basicamente constituídas por um filamento (geralmente de tungsténio) que, ao ser aquecido, emite energia radiante sob a forma de luz branca. Ao atravessar um prisma, por exemplo, a luz branca decompõe-se num espectro de diferentes cores dito espectro contínuo de emissão. Diz-se contínuo porque a sequência de cores se sucede de forma contínua. É "de emissão" por ser emitido pela fonte luminosa. Os sólidos e líquidos incandescentes emitem espectros contínuos. Os espectros obtidos a partir de vapores e gases incandescentes são descontínuos e apresentam algumas riscas com cores perceptíveis à nossa visão. Para se obterem vapores luminosos é suficiente, em muitos casos, introduzir um pouco da substância que se quer vaporizar, sólida ou líquida, numa chama incolor, por exemplo a parte mais calorífica da chama de um bico de Bunsen. Outra possibilidade para a obtenção de espectros de emissão descontínuos é a utilização de tubos de vidro nos quais se introduzem os gases que se pretendem estudar em quantidades muito pequenas (pressões baixas - gases rarefeitos). Os gases são tornados luminosos por meio de uma descarga eléctrica entre dois eléctrodos situados nas extremidades dos tubos. Neste trabalho prático serão utilizadas fontes luminosas deste tipo, com características monocromáticas, ou heterocromáticas Dispersão da luz por um prisma Um prisma (traço a cheio na figura 2) é formado por dois dióptros planos (superfície que separa dois meios diferentes), fazendo entre si um determinado ângulo. O índice de refracção do prisma, n, depende não só do material que o constitui mas também do c.d.o. da luz incidente, λ, variando com este segundo a relação: k2 n = k1 + (4) 2 λ em que k 1 e k 2 são constantes que caracterizam o material. a) b) Figura 2. a) Dispersão de um raio de luz monocromática por um prisma. D é o ângulo de desvio total, relativamente à direcção de incidência. b) Dispersão de um raio de luz heterocromática por um prisma. Os ângulos de desvio variam consoante o c.d.o. das componentes do raio incidente. Departamento de Física da FCTUC 2/9
3 Por outro lado, sabe-se que o ângulo de desvio D no prisma é função crescente do seu índice de refracção n (figura 2). Assim, quando λ diminui, n aumenta e D aumenta também. Quer dizer, se fizermos incidir na face do prisma um feixe de luz heterocromática (luz branca) obteremos vários feixes de luz monocromática emergentes, uma vez que, para cada radiação do feixe incidente com um dado comprimento de onda λ i, existirá um índice de refracção n i distinto. Assim, depois de refractado, o feixe incidente heterocromático apresenta-se decomposto nas radiações que o constituem (figura 2-b)). Como está indicado nessa figura, a radiação violeta sofre um desvio superior ao da radiação vermelha, uma vez que o seu c.d.o. é menor Constituição e funcionamento de um espectroscópio de prisma O espectroscópio de Bunsen que vamos usar, está esquematicamente representado na figura 3. É constituído pelas seguintes partes: - um óculo, com duas lentes (a ocular L 1 e a objectiva L 2 ), móvel em torno de um eixo vertical, - um colimador fixo, com uma objectiva L 3 num dos extremos e uma fenda regulável F no outro, - uma plataforma onde está colocado o prisma, na posição de desvio mínimo para a zona média do espectro, e - um tubo fixo onde se encontra uma escala E, colocada no plano focal de uma objectiva L 4. Figura 3. Representação esquemática de um espectroscópio de Bunsen No colimador existe uma fenda estreita F, iluminada por uma fonte luminosa. A fenda serve de objecto. Deve estar colocada no plano focal da objectiva L 3 para que o feixe que sai do colimador seja um feixe de raios paralelos. Nestas condições, se a referida fonte luminosa for heterocromática, o feixe que incide no prisma é heterocromático e de raios paralelos (fig. 3). Então, devido à dispersão no prisma obtêm-se, à saída deste, vários feixes de raios paralelos, cada um com seu c.d.o. (portanto com sua cor). Cada um deles atravessa a lente L 2 convergindo no seu plano focal, onde forma a imagem da fenda F (uma risca). O conjunto destas imagens (riscas), correspondente às diferentes radiações monocromáticas que compõem a luz emitida pela fonte, constitui o espectro de emissão da fonte luminosa em causa. No plano focal da objectiva do óculo a imagem de uma escala E sobrepõe-se à do espectro de emissão. Para se ver essa imagem, essa escala deve ser iluminada por uma lâmpada de incandescência, colocada à entrada do tubo fixo (fig. 3). A escala está colocada no plano focal de L 4 e o feixe de raios paralelos que emerge desta lente é reflectido na face AB do prisma dando origem a uma imagem da escala no plano focal de L 2. Para observar as imagens sobrepostas do espectro e da escala foca-se a ocular L 1 para o plano onde se formam essas imagens. Departamento de Física da FCTUC 3/9
4 1.5. Calibração do espectroscópio Calibrar um aparelho de medida é estabelecer uma correspondência entre a graduação da escala que lhe está associada e os valores numéricos de uma grandeza física mensurável com esse aparelho. Neste trabalho pretende-se conhecer os c.d.o. das riscas amarela (sódio) e verde (tálio) dos espectros de emissão do sódio e do tálio, respectivamente. No entanto, como poderá verificar, a escala associada ao espectroscópio que vai usar não está dimensionada. É por isso necessário começar por calibrar o aparelho, ou seja, fazer corresponder à graduação da escala, valores numéricos da grandeza física "comprimento de onda". A calibração será efectuada do modo seguinte: - utilizando riscas cujos c.d.o. são conhecidos (tabela 1), regista-se a localização dessas riscas na escala E associada ao espectroscópio, Tabela 1. Riscas dos espectros de emissão de cádmio e mercúrio Material Risca Comprimento de onda (Å) Características Observações Cádmio Vermelha 6438,5 (intensa) Verde 5085,8 (intensa) Azul (l a. risca) 4799,9 (intensa) Azul (2 a. risca) (intensa) Mercúrio Amarela (muito intensa) Amarela (muito intensa) Verde (intensa) Verde azulado (intensa média) Azul (intensa) Violeta 4078 (intensa média) Violeta (intensa média) Não são resolvidas, <λ>= num gráfico, com escala apropriada, representa-se o c.d.o. das riscas observadas, em função das posições da escala onde as mesmas apareceram, e - traça-se a melhor curva - curva de calibração do espectroscópio - de modo a que os desvios dos pontos experimentais que permaneçam acima e abaixo da curva se compensem. Na figura 4 apresenta-se um exemplo de uma curva de calibração. O c.d.o. de qualquer risca do espectro visível pode ser determinado a partir da curva de calibração, desde que se conheça a localização dessa risca na escala graduada do espectroscópio. Comprimento de onda (Angström) 6500 Calibração do espectroscópio Divisão da escala Figura 4. Exemplo de curva de calibração de um espectroscópio de prisma Departamento de Física da FCTUC 4/9
5 2. Procedimento experimental 2.1. Determinação do índice de refracção do acrílico Material necessário: semicilindro de acrílico, fonte luminosa, folha branca com transferidor Coloque o semicilíndro sobre o transferidor para que o seu centro coincidisse com o centro do transferidor e a face plana com o diâmetro marcado NORMAL (figura 5). Prepare a fonte luminosa seleccionando apenas uma fenda para a saída dos raios luminosos. Regule as posições da fonte e do poliedro a fim de poder ver claramente a incidência dos raios do lado plano do semicilíndro (interface ar-plástico) e a saída dos raios da superfície cilíndrica. Repare que os raios são refractados duas vezes: a primeira vez na interface ar-vidro e a segunda vez na interface vidro-ar. No entanto, na segunda face a trajectória da luz não é alterada porque os raios luminosos incidentes à superfície cilíndrica são perpendiculares a esta e então de acordo com a lei de Snell (eq.2) θ 2 = θ1. Figura 5. Meidção do índice de refracção do acrílico Anote as posições angulares, lidas no transferidor, do raio incidente na primeira interface - θ 1 - e do raio refractado nessa mesma interface - θ 2. Registe os valores na folha de dados Repita as medidas anteriores para mais três ângulos de incidência diferentes. Tratamento dos dados - Usando a equação (2), calcule o índice de refracção do poliedro para cada uma das 3 orientações. Tome o valor 1 como índice de refracção do ar. Indique os valores na folha de registo de dados. - Com base nos valores calculados, determine o valor médio do índice de refracção <n> e o respectivo desvio padrão σ <n>. Análise do resultado Procure na literatura ou internet os valores do índice de refracção de materiais similares e compare com o valor obtido. Comente. Departamento de Física da FCTUC 5/9
6 2.2. Calibração de um espectroscópio de prisma Material necessário: espectroscópio de prisma, lâmpada de cádmio, lâmpada de vapor de mercúrio, lâmpada de tálio, lâmpada de sódio e lâmpada de incandescência. ATENÇÃO: Durante a execução deste trabalho deve ter o cuidado de não dar nenhum encontrão ou toque brusco no espectroscópio. Isso pode provocar um deslocamento do prisma e, consequentemente, uma alteração da posição relativa das riscas na escala. Quando tal acontece, as posições das riscas antes do toque brusco seguem uma determinada curva (figura 4) e as riscas depois do toque seguem claramente uma outra, paralela à primeira Coloque junto à fenda do colimador uma lâmpada de cádmio. Regule a tiragem do óculo de modo a observar nitidamente o espectro de riscas emitido Ilumine a escala do aparelho (colocada na extremidade do tubo mais curto) com a lâmpada de incandescência. Observe a imagem da escala Na folha de registo de dados anote a posição da escala em que se forma cada uma das riscas, Deve fazer uma única leituras de cada vez. A fim de evitar erros de paralaxe desloque o óculo para cada medida de forma a fazer a leitura tendo a risca no centro da imagem Substitua a lâmpada de cádmio por uma lâmpada de vapor de mercúrio e proceda como na alínea anterior Determinação dos c.d.o. das riscas verde do tálio e amarela do sódio Coloque a fonte de tálio em frente da fenda do colimador e registe a divisão da escala correspondente à sua risca verde. Anote o valor na folha de registo de dados Faça o mesmo para a risca amarela da fonte de sódio Observação de um espectro contínuo de emissão Substitua as fontes luminosas até aqui utilizadas e coloque junto à fenda do colimador a própria lâmpada de incandescência que usou para iluminar a escala do espectroscópio. Tome nota do fenómeno observado, para o explicar no ponto de análise dos resultados. Tratamento dos dados - Numa única folha de papel construa um gráfico que ocupará a totalidade da folha (com margens), a fim de permitir uma leitura fácil e precisa. Marque em ordenadas os valores dos c.d.o. das riscas observadas nos espectros de cádmio e de vapor de mercúrio e em abcissas os valores das divisões da escala onde se formaram as respectivas riscas. - Sobre o gráfico trace a curva de calibração. A folha do gráfico e curva deve ser incluída em anexo ao relatório do trabalho. - Utilizando a curva de calibração, determine o c.d.o. da risca verde do tálio e da risca amarela do sódio e avalie as respectivas incertezas. A largura das riscas, o erro de paralaxe etc. provocar a Departamento de Física da FCTUC 6/9
7 incerteza na leitura da escala que se reflecte no comprimento de onda determinado pelo gráfico de calibração (ver Figura 6). Indique os valores na respectiva tabela da folha de registo de dados. Figura 6. Determinação da incerteza no comprimento de onda - Compare os valores obtidos no ponto anterior com valores tabelados em bibliografia (c.d.o. da risca verde do tálio Å, e c.d.o. da risca amarela do sódio Å). Comente. Análise dos resultados Identifique a origem dos erros experimentais e sugira procedimento para os minimizar. Descreva o espectro de emissão que foi observado para a lâmpada de iluminação. Relatório Elabore um relatório do trabalho efectuado seguindo as indicações que lhe foram dadas. Bibliografia [1] Paul Tipler, Óptica e Física Moderna, Editora Guanabara-Koogan, 4ª Edição (2000). [2] Jenkins F.A. & White H.E. - Fundamentals of Optics. [3] M.M.R.R. Costa e M.J.B.M. de Almeida, Fundamentos de Física, 2ª edição, Coimbra, Livraria Almedina (2004). [4] M. Alonso e E. Finn, Física, Addison-Wesley Iberoamericana (1999) [5] N. Ayres de Campos, Algumas noções elementares de análise de dados, Coimbra, Dep. Física da FCTUC (1993/94). Departamento de Física da FCTUC 7/9
8 P7 - CALIBRAÇÃO DE UM ESPECTROSCÓPIO DE PRISMA Visto do Professor REGISTO DE DADOS E CÁLCULOS Nome do aluno 2.1. Determinação do índice de refracção de um poliedro Ângulo de incidência - θ 1 (º) Ângulo de refracção - θ 2 (º) Índice de refracção - n Valor médio e a sua incerteza, < n > ± σ < n>, 2.2. Calibração de um espectroscópio de prisma Risca Comprimento de onda (Å) Divisão da escala vermelha de cádmio 6438,5 amarela de mercúrio (média de duas riscar muito próximas) 5780 verde de mercúrio verde de cádmio 5085,8 verde azulado de mercúrio azul de cádmio(1ª risca) 4799,9 azul de cádmio (2ª risca) 4678,1 azul de mercúrio violeta (1ª risca) de mercúrio 4078 violeta (2ª risca) de mercúrio Determinação dos c.d.o. das riscas verde do tálio e amarela do sódio Risca Divisão da escala Comprimento de onda determinado (Å) Comprimento de onda tabelado (Å) Verde do tálio ± ± 5351 Amarela do sódio ± ± 5895 Departamento de Física da FCTUC 8/9
9 Comentários e conclusões. Departamento de Física da FCTUC 9/9
CALIBRAÇÃO DE UM ESPECTROSCÓPIO DE PRISMA
TRABALHO PRÁTICO Nº 7 CALIBRAÇÃO DE UM ESPECTROSCÓPIO DE PRISMA Objectivos - Este trabalho consiste de duas partes. Numa primeira faz-se a determinação do índice de refracção de um poliedro de vidro. Em
CALIBRAÇÃO DE UM ESPECTROSCÓPIO DE PRISMA
TRABALHO PRÁTICO Nº 7 CALIBRAÇÃO DE UM ESPECTROSCÓPIO DE PRISMA Objectivos - Este trabalho consiste de duas partes. Numa primeira faz-se a determinação do índice de refracção de um poliedro de vidro. Na
CALIBRAÇÃO DE UM ESPECTROSCÓPIO DE PRISMA
TRABALHO PRÁTICO CALIBRAÇÃO DE UM ESPECTROSCÓPIO DE PRISMA Objectivo: Neste trabalho prático pretende-se: na 1ª parte, determinar o índice de refracção de um poliedro de vidro; na 2ª parte, proceder à
Espectroscopia do Visível
Faculdade de Ciências da Universidade de Lisboa Faculdade de Belas Artes da Universidade de Lisboa Espectroscopia do Visível Relatório da Atividade Experimental Curso de Ciências da Arte e do Património
Faculdade de Ciências da Universidade de Lisboa Departamento de Física. Electromagnetismo e Óptica. Objectivo
Faculdade de Ciências da Universidade de Lisboa Departamento de Física Electromagnetismo e Óptica Ano lectivo 2009/2010 TL 5 Reflexão e refracção da luz visível Objectivo Este trabalho laboratorial tem
Física IV. Prática: Espectroscopia e Determinação da constante de Rydberg
Física IV Prática: Espectroscopia e Determinação da constante de Rydberg Baseado no material preparado por Sandro Fonseca Helena Malbouisson Clemencia Mora Parte I: Espectroscopia Linhas de emissão e estrutura
3º Trabalho de Laboratório Óptica geométrica
3º Trabalho de Laboratório Óptica geométrica NOTA: Os valores esperados devem ser calculados antes da realização experimental deste trabalho. Experiência 1: Determinação do índice de refracção de um vidro
8.2. Na extremidade de uma corda suficientemente longa é imposta uma perturbação com frequência f = 5 Hz que provoca uma onda de amplitude
Constantes Velocidade do som no ar: v som = 344 m /s Velocidade da luz no vácuo c = 3 10 8 m/s 8.1. Considere uma corda de comprimento L e densidade linear µ = m/l, onde m é a massa da corda. Partindo
Espectroscopia. Átomo de Hidrogênio
Espectroscopia Espectroscopia Um gás monoatômico, quando tem seus átomos excitados, emite luz numa cor característica do elemento químico que o compõe. O gás neon, por exemplo, emite luz vermelho-alaranjada,
1º trabalho de Laboratório Óptica geométrica
1º trabalho de Laboratório Óptica geométrica Experiência 1: Determinação do índice de refracção de um vidro acrílico A direcção de propagação da luz altera-se quando a luz atravessa uma superfície de separação
Laboratório de Estrutura da Matéria I. Espectroscopia
Laboratório de Estrutura da Matéria I Espectroscopia Espectroscopia Espectroscopia Espectro contínuo Linhas espectrais Linhas'de'emissão'e'estrutura'atómica Os átomos excitados de um gás monoatômico emitem
defi departamento de física
defi departamento de física Laboratórios de Física www.defi.isep.ipp.pt Estudo das leis da reflexão e da refracção Instituto Superior de Engenharia do Porto Departamento de Física Rua Dr. António Bernardino
UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL
UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL Laboratório de Física Moderna I Análise de Espectros Atômicos com o Espectrômetro com Prisma Objetivo Familiarizar-se e aprender
2º trimestre TB- FÍSICA Data: Ensino Médio 1º ano classe: Prof. J.V. Nome: nº
º trimestre TB- FÍSICA Data: Ensino Médio 1º ano classe: Prof. J.V. Nome: nº Valor: 10 Nota:.. 1. (Ufsm 011) Na figura a seguir, são representados um objeto (O) e a sua imagem (I) formada pelos raios de
Óptica Geométrica Séries de Exercícios 2018/2019
Óptica Geométrica Séries de Exercícios 2018/2019 24 de Maio de 2019 =2= 2018/2019 Óptica Geométrica Série de exercícios n.1 Propagação da luz 1. A velocidade da luz amarela de sódio num determinado líquido
1-A figura 1 a seguir mostra um feixe de luz incidindo sobre uma parede de vidro que separa o ar da água.
REFRAÇÃO- LEI DE SNELL DESCARTES -A figura a seguir mostra um feixe de luz incidindo sobre uma parede de vidro que separa o ar da água. Os índices de refração são,00 para o ar,,50 para vidro e,33 para
Fís. Monitor: João Carlos
Professor: Leonardo Gomes Monitor: João Carlos Refração da Luz 27 set RESUMO Refração da Luz A refração da luz consiste na passagem da luz de um meio para outro acompanhada de variação em sua velocidade
ESTUDO DO MOVIMENTO UNIFORMEMENTE ACELERADO DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE
TRABALHO PRÁTICO ESTUDO DO MOVIMENTO UNIFORMEMENTE ACELERADO DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE Objectivo Pretende-se estudar o movimento rectilíneo e uniformemente acelerado medindo o tempo gasto
INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA PARAÍBA Campus Princesa Isabel. Refração da Luz. Disciplina: Física II Professor: Carlos Alberto
ISTITUTO FEDERAL DE EDUCAÇÃO CIÊCIA E TECOLOGIA PARAÍBA Campus Princesa Isabel Refração da Luz Disciplina: Física II Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá:
REFRAÇÃO DA LUZ PROFESSOR RODRIGO PENNA PRODUÇÃO E DESENVOLVIMENTO
REFRAÇÃO DA LUZ PROFESSOR RODRIGO PENNA PRODUÇÃO E DESENVOLVIMENTO RODRIGO RODRIGO PENNA: PENNA: o quadradinho quadradinho branco branco é um um ângulo ângulo reto. reto. Mostrar Mostrar os os ângulos
defi departamento de física
defi departamento de física Laboratórios de Física www.defi.isep.ipp.pt Interferómetro de Michelson Instituto Superior de Engenharia do Porto Departamento de Física Rua Dr. António Bernardino de Almeida,
ONDAS ELETROMAGNÉTICAS:3 CAPÍTULO 33 HALLIDAY, RESNICK. 8ª EDIÇÃO. Revisão: Campos se criam mutuamente. Prof. André L. C.
ONDAS ELETROMAGNÉTICAS:3 Prof. André L. C. Conceição DAFIS CAPÍTULO 33 HALLIDAY, RESNICK. 8ª EDIÇÃO Ondas eletromagnéticas Revisão: Campos se criam mutuamente Lei de indução de Faraday: Lei de indução
FÍSICA - A ª SÉRIE P2
LISTA DE EXERCÍCIOS COMPLEMENTARES FÍSICA - A - 2011 2ª SÉRIE P2 ALUNO: TURMA: CARTEIRA: MATRÍCULA: DATA: / / Assunto(s): Refração da Luz 01- (PUC) Quando um feixe de luz monocromático sofre uma mudança
Exp. 3 - Espectroscopia por refração - O Prisma
Exp. 3 - Espectroscopia por refração - O Prisma Quando a luz atravessa uma superfície entre dois meios, ela sofre um desvio refração Se a luz for composta de vários comprimentos de onda (λ), os desvios
ESPECTROSCOPIA ÓTICA
INSTITUTO DE FÍSICA DA UFBA DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO DISCIPLINA: ESTRUTURA DA MATÉRIA I (FIS101) ESPECTROSCOPIA ÓTICA I. OBJETIVOS DO EXPERIMENTO: 1. Familiaridade com um espectrômetro ótico
EXPERIMENTO 8 DIFRAÇÃO EM FENDA ÚNICA E EM FENDAS MÚLTIPLAS
EXPERIMENTO 8 DIFRAÇÃO EM FENDA ÚNICA E EM FENDAS MÚLTIPLAS Nesta atividade de laboratório você irá observar e analisar os efeitos provocados quando luz incide em uma fenda simples ou num sistema de muitas
Universidade Federal do Rio Grande do Sul. Instituto de Física Departamento de Física. FIS01184 Física IV-C Área 1 Lista 1
Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Física FIS01184 Física IV-C Área 1 Lista 1 1.A luz do Sol no limite superior da atmosfera terrestre tem uma intensidade de
EO-Sumário 18. Raquel Crespo Departamento Física, IST-Tagus Park
EO-Sumário 18 Raquel Crespo Departamento Física, IST-Tagus Park Ondas electromagnéticas: Oscilação de campos eléctricos e magnéticos Os campos eléctricos e magnéticos oscilam de uma forma perpendicular
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO
53 Experimento 2: Óptica Geométrica em meios homogêneos e isotrópicos 2.2.1 Objetivos Conceituar raios de luz; Verificar os princípios da óptica geométrica para meios homogêneos e isotrópicos; Verificar
Introdução às Ciências Físicas Módulo 1 Aula 1
Experimento 2 A emissão da luz por diferentes fontes Objetivo: Construir um modelo para a emissão de luz por uma fonte não puntiforme. Material utilizado! caixa escura! máscaras! fonte de luz 1 com lâmpadas
UNIVERSIDADE ESTADUAL PAULISTA. FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA Departamento de Física e Química
UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA Departamento de Física e Química Apostila da Disciplina Fundamentos de Óptica (FIS0935) Docentes: Prof.Dr.
Física IV Aula 3 Sandro Fonseca de Souza Helena Malbouisson
Física IV [email protected] Aula 3 Sandro Fonseca de Souza Helena Malbouisson 1 Aula Anterior Pressão de radiação; Polarização. 2 Aula de Hoje Óptica Geométrica; Reflexão e Refração;
Espectroscopia de emissão/absorção com espectrómetro de prisma
Estrutura da Matéria 5/6 Espectroscopia de emissão/absorção com espectrómetro de prisma Objectivo: Estudar o espectro de emissão de um sólido incandescente (filamento de tungsténio); egistar e interpretar
Índice de refracção e propriedades ópticas. Química 12º Ano. Unidade 3 Plásticos, vidros e novos materiais Actividades de Projecto Laboratorial
Índice de refracção e propriedades ópticas Química 12º Ano Unidade 3 Plásticos, vidros e novos materiais Actividades de Projecto Laboratorial Dezembro 2005 Jorge R. Frade, Ana Teresa Paiva Dep. Eng. Cerâmica
Sala de Estudos FÍSICA Evandro 1 trimestre Ensino Médio 3º ano classe: Prof.Evandro Nome: nº
Sala de Estudos FÍSICA Evandro 1 trimestre Ensino Médio º ano classe: Prof.Evandro Nome: nº Sala de Estudos: Refração, dioptro plano, lâminas de faces paralelas e prismas. 1. (Unicamp) Uma lente de Fresnel
Colégio XIX de Março Educação do jeito que deve ser
Colégio XIX de Março Educação do jeito que deve ser 2018 2ª PROVA PARCIAL DE FÍSICA Aluno(a): Nº Ano: 2º Turma: Ziraldo Data: 18/08/2018 Nota: Professor(a): Miguel Moreira Valor da Prova: 40 pontos Orientações
3 - Na figura a seguir, está esquematizado um aparato experimental que é utilizado. 1 - Dois raios de luz, um vermelho (v) e outro
1 - Dois raios de luz, um vermelho (v) e outro azul (a), incidem perpendicularmente em pontos diferentes da face AB de um prisma transparente imerso no ar. No interior do prisma, o ângulo limite de incidência
Óptica Física - Índice de Refração
Óptica Física - Índice de Refração O desvio que a luz sofre quando passa de um meio para outro, depende da velocidade da luz nos dois meios. A grandeza física que relaciona as velocidades nos dois meios,
1 Conceitos iniciais. 2 Índice de refração absoluto. 3 Dioptro plano (conceito) 4 Elementos da refração. 5 1ª lei da refração. 6 2ª lei da refração
1 Conceitos iniciais 2 Índice de refração absoluto 3 Dioptro plano (conceito) 4 Elementos da refração 5 1ª lei da refração 6 2ª lei da refração 7 Simulador 8 Análise do desvio do raio incidente (n 2 >
Interbits SuperPro Web
1. (Ulbra 016) Um objeto está à frente de um espelho e tem sua imagem aumentada em quatro vezes e projetada em uma tela que está a,4 m do objeto, na sua horizontal. Que tipo de espelho foi utilizado e
Exercícios 2 fase aula 2
Exercícios 2 fase aula 2 1. (Ufu 2017) Uma luneta astronômica é um equipamento que emprega duas lentes dispostas num mesmo eixo de simetria, sendo uma objetiva e a outra ocular. A luz de um astro distante,
Física. Refração Luminosa ÓPTICA GEOMÉTRICA. Professor Eurico ( Kiko )
Física ÓPTICA GEOMÉTRICA Refração Luminosa Professor Eurico ( Kiko ) Refração da Luz: fenômeno que ocorre quando a luz, propagando-se em um meio, atinge uma superfície de separação e passa a se propagar
Física. Óptica. Professor Alexei Muller.
Física Óptica Professor Alexei Muller www.acasadoconcurseiro.com.br Física ÓPTICA Introdução à Óptica Óptica Geométrica A óptica geométrica estuda a geometria dos raios de luz, sem buscar explicações
Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna
Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna Bloco 01: AS LINHAS DE BALMER A teoria quântica prevê uma estrutura de níveis de energia quantizados para os elétrons
Apostila de Laboratório. ZAB0474 Física Geral e Experimental IV
Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos Departamento de Ciências Básicas Apostila de Laboratório ZAB0474 Física Geral e Experimental IV Caio Eduardo de Campos Tambelli
3. Câmeras digitais, como a esquematizada na figura, possuem mecanismos automáticos de focalização.
1. Num ambiente iluminado, ao focalizar um objeto distante, o olho humano se ajusta a essa situação. Se a pessoa passa, em seguida, para um ambiente de penumbra, ao focalizar um objeto próximo, a íris
3Parte. FICha De avaliação N.º 3. Grupo I
FICha De avaliação N.º 3 ESCOLA: NOME: N. O : TURMA: DATA: Grupo I 1 As ondas eletromagnéticas foram previstas por Maxwell e comprovadas experimentalmente por Hertz. 1.1 Selecione a opção correta. A. as
Professora Bruna CADERNO 1. Capítulo 4. Fenômenos Ópticos: Refração, Absorção e Dispersão da Luz
CADERNO 1 Capítulo 4 Fenômenos Ópticos: Refração, Absorção e Dispersão da Luz FENÔMENOS ÓPTICOS No capítulo anterior demos início ao estudo dos fenômenos ópticos. Um fenômeno óptico ocorre quando a luz
POLARIZAÇÃO DA LUZ. Figura 1 - Representação dos campos elétrico E e magnético B de uma onda eletromagnética que se propaga na direção x.
POLARIZAÇÃO DA LUZ INTRODUÇÃO Uma onda eletromagnética é formada por campos elétricos e magnéticos que variam no tempo e no espaço, perpendicularmente um ao outro, como representado na Fig. 1. A direção
Física IV - Laboratório. Difração
Física IV - Laboratório Difração Difração l Fenômeno característico das ondas em que estas tendem a contornar obstáculos, curvando-se após passar por suas bordas. l É um caso especial do fenômeno de interferência,
Lista de Problemas. Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Física FIS01044 UNIDADE III Interferência
Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Física FIS01044 UNIDADE III Interferência Lista de Problemas Problemas extraídos de HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentos
A Luz e o mundo que nos rodeia. A luz é fundamental para observarmos o que existe à nossa volta.
LUZ A Luz e o mundo que nos rodeia A luz é fundamental para observarmos o que existe à nossa volta. A luz e os corpos Corpos luminosos corpos que produzem ou têm luz própria Corpos iluminados corpos que
Lista Extra Refração de Ondas Prof. Caio
1. (Ufrgs 2013) Assinale a alternativa que preenche corretamente as lacunas do texto abaixo, na ordem em que aparecem. A radiação luminosa emitida por uma lâmpada a vapor de lítio atravessa um bloco de
Medição da Velocidade da Luz
Laboratório de Introdução à Física Experimental 2017/18 1 Medição da Velocidade da Luz em diferentes materiais homogéneos e isotrópicos 1 Introdução Em muitas das experiências descritas na literatura para
Lista 17 Revisão de Refração e Reflexão Total
Lista 17 Revisão de Refração e Reflexão Total 1. (Espcex (Aman) 017) Um raio de luz monocromática propagando-se no ar incide no ponto O, na superfície de um espelho, plano e horizontal, formando um ângulo
Simulação do Espectro Contínuo emitido por um Corpo Negro 1ª PARTE
ACTIVIDADE PRÁCTICA DE SALA DE AULA FÍSICA 10.º ANO TURMA A Simulação do Espectro Contínuo emitido por um Corpo Negro Zoom escala do eixo das ordenadas 1ª PARTE Cor do corpo Definir temperatura do corpo
Ótica geométrica. Num sistema ótico arbitrário, um raio de luz percorre a mesma trajetória quando o seu sentido de propagação é invertido
Ótica geométrica Princípio da Reversibilidade Num sistema ótico arbitrário, um raio de luz percorre a mesma trajetória quando o seu sentido de propagação é invertido Deriva directamente do princípio do
Elementos de Óptica ÓPTICA GEOMÉTRICA. Um feixe luminoso como um conjunto de raios perpendiculares à frente de onda.
ÓPTICA GEOMÉTRICA Dimensões dos componentes ópticos muito superiores ao comprimento de onda da luz. Um feixe luminoso como um conjunto de raios perpendiculares à frente de onda. lente onda ÍNDICES DE REFRACÇÃO,
Espectroscopia Atómica com uma Rede de Transmissão
LABORATÓRIO DE FÍSICA ATÓMICA, ÓPTICA E FÍSICA DAS RADIAÇÕES Mestrado Integrado em Engenharia Física Tecnológica Espectroscopia Atómica com uma Rede de Transmissão 1. Objectivos O estudo de diversos espectros
A luz propaga-se em linha reta e em todas as direções. - Formação de sombras; - Eclipses.
A luz propaga-se em linha reta e em todas as direções. - Formação de sombras; - Eclipses. Quando as ondas incidem numa superfície de separação entre dois meios, verifica-se que parte da sua energia é refletida,
DETERMINAÇÃO DA VELOCIDADE DE PROPAGAÇÃO DA LUZ NO AR, ÁGUA E NUMA RESINA EPÓXICA
DETERMINAÇÃO DA VELOCIDADE DE PROPAGAÇÃO DA LUZ NO AR, ÁGUA E NUMA RESINA EPÓXICA OBJECTIVO Esta experiência permite determinar a velocidade de propagação da luz no ar, e noutros meios materiais. 1. INTRODUÇÃO
Apostila 2. Capítulo 9. Refração. Página 321. Gnomo
Apostila 2 Capítulo 9 Página 321 Refração Refração Refração da luz é a passagem da luz de um meio para outro, acompanhada de variação em sua velocidade de propagação. O que caracteriza a refração é a variação
COLÉGIO ESTADUAL LICEU DE MARACANAÚ TD DE RECUPERAÇÃO DE FÍSICA 1º SEMESTRE. ALUNO(a): Nº
COLÉGIO ESTADUAL LICEU DE MARACANAÚ TD DE RECUPERAÇÃO DE FÍSICA 1º SEMESTRE ALUNO(a): Nº SÉRIE: 2 0 TURMAS: C-D-H-I TURNO: [M] [T] Prof.(s): Diva. 1- A luz amarela se propaga em um determinado vidro com
Fenómenos Ondulatórios
Fenómenos Ondulatórios Fenómenos Ondulatórios a) Reflexão b) Refração c) Absorção Reflexão da onda: a onda é devolvida para o primeiro meio. Transmissão da onda: a onda continua a propagar-se no segundo
INTERFERÊNCIA E DIFRACÇÃO DE LUZ
INTERFERÊNCIA E DIFRACÇÃO DE LUZ OBJECTIVO Esta experiência consiste em estudar efeitos de interferência de duas fontes luminosas, ou da difracção de luz por fendas ou objectos opacos. Em ambos os casos
1. (Fuvest) Note e adote (graus) sen cos 25 0,42 0, ,50 0, ,71 0, ,77 0, ,82 0, ,87 0, ,91 0,42 n sen n sen
1. (Fuvest) Uma fibra ótica é um guia de luz, flexível e transparente, cilíndrico, feito de sílica ou polímero, de diâmetro não muito maior que o de um fio de cabelo, usado para transmitir sinais luminosos
Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna
Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna Bloco 0: AS LINHAS DE BALMER Introdução A teoria quântica prevê uma estrutura de níveis de energia quantizados para os
Se um feixe de luz laser incidir em uma direção que passa pela borda da caixa, fazendo um ângulo θ com a vertical, ele só poderá iluminar a moeda se
1. (Udesc 2011) Considere uma lâmina de vidro de faces paralelas imersa no ar. Um raio luminoso propaga-se no ar e incide em uma das faces da lâmina, segundo um ângulo θ em relação à direção normal ao
Determinação da constante de Planck: o efeito fotoeléctrico
Determinação da constante de Planck: o efeito fotoeléctrico Objectivos: - Verificação experimental do efeito fotoeléctrico - Determinação da energia cinética dos fotoelectrões em função da frequência da
Leis da Refração. Meio 1 - n 1. Meio 2 - n 2
Ótica Leis da Refração Meio 1 - n 1 i Meio 2 - n 2 r 1ª Lei da Refração: O raio incidente, o raio refratado e a reta normal são coplanares. 2ª Lei de Refracção (Snell-Descartes) n 1.sen i = n 2.sen r Leis
LEI de SNELL - DESCARTES
Prof.Silveira Jr LEI de SNELL - DESCARTES 1. (Pucrj 017) Um feixe luminoso proveniente de um laser se propaga no ar e incide sobre a superfície horizontal da água fazendo um ângulo de 45 com a vertical.
Figura 1 - Onda electromagnética colimada
Biofísica P12: Difração e interferência 1. Objectivos Observação de padrões de difração e interferência Identificação das condições propícias ao aparecimento de fenómenos de difração e interferência Aplicação
Feixe de luz: É um conjunto de infinitos raios de luz; um feixe luminoso pode
ÓPTICA Luz - Comportamento e princípios Prof. Patricia Caldana A luz, ou luz visível como é fisicamente caracterizada, é uma forma de energia radiante. É o agente físico que, atuando nos órgãos visuais,
REFRACTOMETRTIA. Medição do índice de refracção de um sólido e de um líquido com o Refractómetro de Abbe
REFRACTOMETRTIA Medição do índice de refracção de um sólido e de um líquido com o Refractómetro de Abbe 1. OBJECTIVO PRINCIPAL: Determinação do índice de refracção de uma amostra sólida (lâmina de vidro)
Comunicações Ópticas. Profº: Cláudio Henrique Albuquerque Rodrigues, M. Sc.
Comunicações Ópticas Profº: Cláudio Henrique Albuquerque Rodrigues, M. Sc. Corpos luminosos e Corpos iluminados O Sol, as estrelas, uma lâmpada ou uma vela, acesas, são objetos que emitem luz própria,
CALIBRAÇÃO DE ESPECTRÓMETROS E OBSERVAÇÃO DE ESPECTROS DE EMISSÃO
CALIBRAÇÃO DE ESPECTRÓMETROS E OBSERVAÇÃO DE ESPECTROS DE EMISSÃO 1. Objectivo Pretende-se efectuar a calibração de dois espectrómetros, um baseado num prima e outro baseado numa rede de difracção, utilizando
