TC 1 de Revisão Final UECE ª Fase. Prof. Vasco Vasconcelos

Tamanho: px
Começar a partir da página:

Download "TC 1 de Revisão Final UECE 2012.1 2ª Fase. Prof. Vasco Vasconcelos"

Transcrição

1 ª Fase UECE 01.1 TC 1 de Revisão Final UECE 01.1 ª Fase Prof. Vasco Vasconcelos 1. (Cefet-mg 011) O eletroscópio da figura, eletrizado com carga desconhecida, consiste de uma esfera metálica ligada, através de uma haste condutora, a duas folhas metálicas e delgadas. Esse conjunto encontra-se isolado por uma rolha de cortiça presa ao gargalo de uma garrafa de vidro transparente, como mostra a figura. Sobre esse dispositivo, afirma-se: I. As folhas movem-se quando um corpo neutro é aproximado da esfera sem tocá-la. II. O vidro que envolve as folhas delgadas funciona como uma blindagem eletrostática. III. A esfera e as lâminas estão eletrizadas com carga de mesmo sinal e a haste está neutra. IV. As folhas abrem-se ainda mais quando um objeto, de mesma carga do eletroscópio, aproxima-se da esfera sem tocá-la. Estão corretas apenas as afirmativas a) I e II. b) I e IV. c) II e III. d) III e IV. Solução: I. Correta: haverá indução; II. Errada: para haver blindagem, o material deve ser condutor; III. Errada: a carga distribui-se por todo o material condutor; IV. Correta: haverá indução. Opção correta: b. (Uftm 011) A indução eletrostática consiste no fenômeno da separação de cargas em um corpo condutor (induzido), devido à proximidade de outro corpo eletrizado (indutor).preparando-se para uma prova de física, um estudante anota em seu resumo os passos a serem seguidos para eletrizar um corpo neutro por indução, e a conclusão a respeito da carga adquirida por ele. Passos a serem seguidos: I. Aproximar o indutor do induzido, sem tocá-lo. II. Conectar o induzido à Terra. III. Afastar o indutor. IV. Desconectar o induzido da Terra. Conclusão: No final do processo, o induzido terá adquirido cargas de sinais iguais às do indutor. Ao mostrar o resumo para seu professor, ouviu dele que, para ficar correto, ele deverá Página 1 de 16

2 ª Fase UECE 01.1 a) inverter o passo III com IV, e que sua conclusão está correta. b) inverter o passo III com IV, e que sua conclusão está errada. c) inverter o passo I com II, e que sua conclusão está errada. d) inverter o passo I com II, e que sua conclusão está correta. Solução: Os passos III e IV devem ser invertidos e, na eletrização por indução, os corpos adquirem cargas de sinais opostos. Quando o indutor é positivo, ele atrai elétrons da terra para o induzido (o induzido fica com carga negativa); e quando ele é negativo, repele elétrons do induzido para a terra (o induzido fica com carga positiva). Opção correta: b. (Ufpb 011-adaptada) Uma esfera condutora A, carregada positivamente, é aproximada de uma outra esfera condutora B, que é idêntica à esfera A, mas está eletricamente neutra. Sobre processos de eletrização entre essas duas esferas, identifique a afirmativa incorreta: a) Ao aproximar a esfera A da B, sem que haja contato, uma força de atração surgirá entre essas esferas. b) Ao aproximar a esfera A da B, havendo contato, e em seguida separando-as, as duas esferas sofrerão uma força de repulsão. c) Ao aproximar a esfera A da B, havendo contato, e em seguida afastando-as, a esfera A ficará neutra e a esfera B ficará carregada positivamente. d) Ao aproximar a esfera A da B, sem que haja contato, e em seguida aterrando a esfera B, ao se desfazer esse aterramento, ambas ficarão com cargas elétricas de sinais opostos. Solução: (V) A esfera neutra polariza-se e ocorre a atração entre elas: (V) Havendo contato, a carga irá distribuir-se igualmente pelas duas esferas: Quando elas forem afastadas, haverá repulsão: (F) Contraria o que foi explicado acima. (V) Ao aterrarmos a esfera B, as cargas positivas serão neutralizadas por elétrons que vêm da Terra. 4. (Uel 011) Devido ao balanceamento entre cargas elétricas positivas e negativas nos objetos e seres vivos, não se observam forças elétricas atrativas ou repulsivas entre eles, em distâncias macroscópicas. Para se ter, entretanto, uma ideia da intensidade da força gerada pelo desbalanceamento de cargas, considere duas pessoas com mesma altura e peso separadas pela distância de 0,8 m. Supondo que cada uma possui um excesso de prótons correspondente a 1% de sua massa, a estimativa da intensidade da força elétrica resultante Página de 16

3 ª Fase UECE 01.1 desse desbalanceamento de cargas e da massa que resultará numa força-peso de igual intensidade são respectivamente: Dado: Massa de uma pessoa: m = 70 kg, massa de um próton: 1,75 x 10-7 kg, k = 9 x 10 9 N m /C e g= 10m/s. a) 9 x N e 6 x 10 kg b) 60 x 10 4 N e 6 x 10 4 kg c) 9 x 10 N e 6 x 10 kg d) 4 x N e 4 x kg Solução: Dados: M = 70 kg; r = 0,8 m; m = 1%M. Calculando a massa de prótons: 1 m = 1% M = 70 m = 0,7 kg. Considerando a massa do próton igual a 1, kg, a 100 0,7 6 quantidade (n) de prótons é: n = n = 4, ,7 10 Sendo e = 1, C o valor da carga elementar, a carga (Q) de cada pessoa é: Q = ne = 4,1 10 1,6 10 = 6,6 10 C. Pela lei de Coulomb, calculamos a intensidade da força de repulsão entre as pessoas. Considerando a constante eletrostática K = N.m /C, vem: ( ) kq , ,56 10 F = = = d 0,8 0,64 4 F kg. A massa correspondente a um peso de igual intensidade é: 4 P = F = mg = m 10 4 m = 6 10 kg. ( ) 5. (Uft 011) Três cargas elétricas possuem a seguinte configuração: A carga q0 é negativa e está fixa na origem. A carga q 1 é positiva, movimenta-se lentamente ao longo do arco de círculo de raio R e sua posição angular varia de θ 1 = 0 a θ 1 = π [radianos]. A carga q está sobre o arco inferior e tem posição fixa dada pela coordenada angular θ. O sistema de coordenadas angulares é o mesmo para as cargas q 1 e q e suas posições angulares são definidas por θ1 e θ respectivamente (ver desenho). As componentes Fx e Fy da força elétrica resultante atuando na carga q0 são mostradas nos gráficos abaixo. Baseado nestas informações qual das alternativas abaixo é verdadeira? Página de 16

4 ª Fase UECE 01.1 a) As três cargas possuem módulos iguais, q é positiva e está fixa em uma coordenada θ = ( / ) π. b) As cargas q 1 e q possuem módulos diferentes, q é positiva e está fixa em uma coordenada θ = (5 / ) π. c) As cargas q 1 e q possuem módulos diferentes, q é positiva e está fixa em uma coordenada θ = ( / ) π. d) As cargas q 1 e q possuem módulos diferentes, q é positiva e está fixa em uma coordenada θ = ( / ) π. Solução: Observe que quando θ 1 = π Fx, o que nos leva à seguinte configuração: Nesta configuração observamos que a força resultante é negativa (sentido contrário ao de y). Como a força entre q 1, q e q 0 é atrativa (sentido positivo de y) devemos ter uma força atrativa entre q e q 0 (sentido contrário ao de y) maior que a primeira. Portanto, q deve ser positiva e maior que q 1. Opção correta: d 6. (Ufrs 011) Assinale a alternativa que preenche corretamente as lacunas no fim do enunciado que segue, na ordem em que aparecem. Três esferas metálicas idênticas, A, B e C, são montadas em suportes isolantes. A esfera A está positivamente carregada com carga Q, enquanto as esferas B e C estão eletricamente neutras. Colocam-se as esferas B e C em contato uma com a outra e, então, coloca-se a esfera A em contato com a esfera B, conforme representado na figura. Página 4 de 16

5 ª Fase UECE 01.1 Depois de assim permanecerem por alguns instantes, as três esferas são simultaneamente separadas. Considerando-se que o experimento foi realizado no vácuo ( k N m / C ) = e que a distância final (d) entre as esferas A e B é muito maior que seu raio, a força eletrostática entre essas duas esferas é e de intensidade igual a. a) repulsiva k ( ) 0Q / 9d b) atrativa k0q / ( 9d ) c) repulsiva k0q / ( 6d ) d) atrativa k0q / ( 4d ) Solução: O triplo contato faz com que a carga total divida-se por três. Q Q x Q k0q Portanto, qa = qb =. A força será repulsiva de valor: k 0 =. Opção correta: a d 9d 7. (Ufsm 011) A luz é uma onda eletromagnética, isto é, a propagação de uma perturbação dos campos elétrico e magnético locais. Analise as afirmações a seguir, que estão relacionadas com as propriedades do campo elétrico. I. O vetor campo elétrico é tangente às linhas de força. II. Um campo elétrico uniforme se caracteriza por ter as linhas de força paralelas e igualmente espaçadas. III. O número de linhas de força por unidade de volume de um campo elétrico é proporcional à quantidade de cargas do corpo. Está(ão) correta(s) a) apenas I. b) apenas II. c) apenas I e II. d) apenas III. Solução: I. Correta. O vetor campo elétrico é perpendicular às linhas de força. II. Correta. III. Incorreta. De acordo com a lei de Gauss, o número de linhas de força por unidade de área de um campo elétrico é proporcional à quantidade de carga do corpo. Opção correta: c 8. (Upe 011) Considere três cargas elétricas puntiformes, positivas e iguais a Q, colocadas no vácuo, fixas nos vértices A, B e C de um triângulo equilátero de lado d, de acordo com a figura a seguir: Página 5 de 16

6 ª Fase UECE 01.1 A energia potencial elétrica do par de cargas, disponibilizadas nos vértices A e B, é igual a 0,8 J. Nessas condições, é correto afirmar que a energia potencial elétrica do sistema constituído das três cargas, em joules, vale a) 0,8 b) 1, c) 1,6 d),4 Solução: Observe a figura abaixo. Cada par de cargas armazena uma energia potencial de 0,8J. Utotal = Upar = x0,8 =, 4J Opção correta: d 9. (Uesc 011) A figura representa o esquema de funcionamento de um gerador eletrostático. Com base na figura e nos conhecimentos sobre as propriedades físicas oriundas de cargas elétricas em repouso, é correto afirmar: a) O campo elétrico entre a superfície interna e a externa da esfera metálica é uniforme e constante. b) As cargas positivas migram para a Terra quando um fio condutor conecta a esfera metálica à Terra. Página 6 de 16

7 ª Fase UECE 01.1 c) O potencial elétrico de um ponto da superfície externa da esfera metálica é maior do que o potencial elétrico no centro desta esfera. d) As cargas se acumulam na esfera, enquanto a intensidade do campo elétrico gerado por essas cargas é menor do que a rigidez dielétrica do ar. Solução: As cargas vão acumulando-se na parte externa da esfera provocando um campo elétrico cada vez maior. A d.d.p. entre a esfera e a Terra tende a aumentar até romper a rigidez dielétrica do ar, havendo, portanto, uma descarga elétrica entre a esfera e a Terra. O que acontece com os relâmpagos é semelhante. Opção correta: d 10. (Ufrj 011) Um íon de massa m e carga elétrica q incide sobre um segundo íon, de mesma massa m e mesma carga q. De início, enquanto a separação entre eles é grande o bastante para que as forças mútuas sejam desprezíveis, o primeiro mantém uma velocidade constante de módulo v o e o segundo se mantém em repouso, como indica a figura 1. Ao se aproximarem, as forças elétricas coulombianas entre eles, não mais desprezíveis, passam a mudar continuamente suas velocidades. Despreze quaisquer outras forças, considere dados os valores de m, q, v o e 4πε 0 e suponha que todos os movimentos se deem em uma reta. Calcule a velocidade do segundo íon quando a velocidade do íon incidente for igual a v o /4 (como indicado na figura ). a) v 0 / b) v 0 / c) v 0 /4 d) v 0 /5 Solução: Como os dois íons formam um sistema mecanicamente isolado (livres de ação de forças externas), ocorre conservação da quantidade de movimento do sistema ( Q Sist ). Assim, para as duas situações mostradas: I II v0 v0 QSist = Q Sis m v0 = m m v v v = 4 v0 v =. 4 Opção correta: c 11.Calcule a distância entre eles no instante da situação considerada no item anterior. a) 4q /πε 0 mv 0 b) q /4πε 0 mv 0 c) q /πε 0 mv 0 d) q /πε 0 mv 0 Solução: Aplicando a conservação da energia para as duas situações: Página 7 de 16

8 ª Fase UECE 01.1 I II II m m v 0 m v0 k q Cin Cin Pot 0 E = E + E v = d 9 m v m v = + d k q m v k q 6 m v m v 16 q d k. d 16 m v 0 0 = = = 0 1 Como k = vem: 4 πε q d = 4πε m v 0 0 Opção correta: a 4 q = πε 0m v0 d. Página 8 de 16

9 ª Fase UECE 01.1 TC de Revisão Final UECE 01.1 ª Fase Prof. Vasco Vasconcelos 1. (Ufpe 011) Em uma solução iônica, N( + ) = 5,0 10 íons positivos, com carga individual Q( + ) = + e, se deslocam para a direita a cada segundo. Por outro lado, N( ) = 4,0 10 íons negativos, com carga individual igual a Q( ) = e, se movem em sentido contrário a cada segundo. Qual é a corrente elétrica, em ma, na solução? a) 6 b) 7 c) 8 d) 9 Solução: Uma carga negativa movendo-se em um sentido tem o mesmo efeito que a mesma carga positiva movendo-se em sentido contrário. ( )(, ) ( 4 10 )( 1, ) Opção correta:d Q i = = = 0,008A = 8mA t 1,0. (Epcar - 011) No circuito representado pela figura abaixo, estando o capacitor completamente carregado, leva-se a chave K da posição A para a posição B A quantidade de energia, em mj dissipada pelo resistor de 1Ω, após essa operação, é igual a a) 5,0 b) 10 c) 5 d) 50 Solução: Dados: U 0 = 100 V; C = 1 µf = F; R 1 = 10 Ω; R = 5 Ω e R = 1 Ω. A figura mostra o circuito com o capacitor carregado, a chave fechada em B e os três resistores através dos quais é efetuada a descarga de energia. Página 9 de 16

10 ª Fase UECE 01.1 À medida que vai ocorrendo a descarga, a tensão (U) no capacitor vai diminuindo, diminuindo igualmente a tensão em cada um dos resistores, pois eles estão em paralelo, ligados ao capacitor. O tempo de descarga ( t) também é igual ao tempo de funcionamento dos três resistores. O capacitor está carregado quando está sob tensão igual à da bateria, ou seja, U 0 = 100 V. A energia potencial elétrica (E P ) armazenada no capacitor é: E E P P ( ) CU = = = = 0,065 J = 65 mj. Essa energia é descarregada (dissipada) através dos resistores por efeito Joule: E = E + E + E. (I) P 1 Lembrando que a energia dissipada em um resistor é U E = t, podemos obter as energias dissipadas em R 1 e R, em função da energia dissipada R em R. Assim: U t E1 R1 R 1 = = E = E. (II) 1 E U t R1 10 R Analogamente, obtemos 1 E = E. (III) 5 Substituindo (II) e (III) em (I): 1 1 ( ) EP = E + E + E = E EP = E E = EP = E = 50 J. P Opção correta: d. (Ufu 011-adaptada) É muito comum em casas que não dispõem de forno microondas, pessoas utilizarem uma resistência elétrica ligada à tomada para aquecer água para fazer chá ou café. Em uma situação mais idealizada, é possível estudar esse problema e aprender um pouco mais de Física. Para isso, considere, inicialmente, um sistema em equilíbrio térmico composto por um recipiente com paredes adiabáticas que possui em seu interior uma esfera maciça, cujo raio é de 50 cm, a massa é de 5 toneladas 4 1 e o coeficiente de dilatação linear é α esf = 1 10 ºC. O restante do recipiente está completamente cheio com.500 kg de água pura à temperatura T 0 = 0 C, como mostra a figura abaixo. A resistência R = Ω que está dentro do recipiente é, então, ligada durante certo intervalo de tempo aos terminais de uma bateria ideal de V = 00 V. Página 10 de 16

11 ª Fase UECE 01.1 Dados: CH O = 1 cal / gºc, Cesf = 0,1 cal / gºc, 1 cal 4J. Considerando que toda a dissipação de energia ocorrerá apenas na resistência R e desconsiderando a capacidade térmica da resistência e do recipiente, qual a temperatura inicial da esfera na escala Fahrenheit? a) 17 o F b) 4 o F c) 68 o F d) 90 o F TC TF 0 TF º Solução: = = TF = 68 F. Opção correta:c (Ufu 011-adaptada)Quanto tempo a resistência deve ficar ligada para que o sistema atinja a temperatura de equilíbrio T f = 80 C? a) 0,h b) 0,5h c) 0,8h d) 1,0h Solução: P = V = Q Δt = Q.R R Δt V água esfera 6 6 Q = (mc Δθ) + (mc Δθ) =, , Q = 1,8 10 cal = 7, 10 J 7 Q.R 7, 10 Δt = = = 600s = 1,0h V 00 Opção correta: d 5.(Ufu 011-adaptada) Quando o sistema atinge o equilíbrio, a temperatura final da água é 80 C, neste caso, qual será a variação no volume da e sfera? a) 1000π cm b) 1500π cm c) 000π cm d) 000π cm Solução: ΔV = V0γΔθ = πr 0. αδθ. = π = 000 π cm. Opção correta:d 6. (Ufpe 011-adaptada) Uma pequena lanterna utiliza uma pilha do tipo AA. A pilha tem resistência interna r = 0,5 Ω e fornece uma forca eletromotriz de ε = 1,5 V. Calcule a energia Página 11 de 16

12 ª Fase UECE 01.1 dissipada pela lâmpada, de resistência elétrica r = 0,5 Ω, quando esta e ligada durante t = 0 s. Obtenha o resultado em J. a) 60J b) 70J c) 80J d) 90J Solução: Dados: ε = 1,5 V; r = 0,5 Ω ; R = 0,5 Ω; t = 0 s. Pela lei de Ohm-Pouillet, calculamos a corrente no circuito. ε 1,5 i = = i = A. R + r 0,75 A energia dissipada no resistor é: ( ) ( ) E = Ri t = 0,5 0 = 0,5 4 0 E = 60 J. Opção correta: a 7. (Unicamp 011-adaptada) Quando dois metais são colocados em contato formando uma junção, surge entre eles uma diferença de potencial elétrico que depende da temperatura da junção. Uma aplicação usual desse efeito é a medição de temperatura através da leitura da diferença de potencial da junção. A vantagem desse tipo de termômetro, conhecido como termopar, é o seu baixo custo e a ampla faixa de valores de temperatura que ele pode medir. O gráfico a) abaixo mostra a diferença de potencial U na junção em função da temperatura para um termopar conhecido como Cromel-Alumel. Considere um balão fechado que contém um gás ideal cuja temperatura é medida por um termopar Cromel-Alumel em contato térmico com o balão. Inicialmente o termopar indica que a temperatura do gás no balão é T i = 00 K. Se o balão tiver seu volume quadruplicado e a pressão do gás for reduzida por um fator, qual será a variação U = U final U inicial da diferença de potencial na junção do termopar? a) mv b) mv c) 4mV d) 5mV P Solução: Dados: T i = 00 K; P f = i ; V f = 4 V i. Aplicando a equação geral dos gases ideais: Pi Pi Vi Pf Vf Pi Vi 4Vi 4 = = Tf = 00 T T 00 T i f f T f = 400 K. Página 1 de 16

13 ª Fase UECE 01.1 Do gráfico dado: U = 4 mv. Tinicial = 00 K Uinicial = 1 mv Tfinal = 400 K Ufinal = 16 mv Opção correta:c U = U U = 16 1 final inicial 8.Outra aplicação importante do mesmo efeito é o refrigerador Peltier. Neste caso, dois metais são montados como mostra a figura b) abaixo. A corrente que flui pelo anel é responsável por transferir o calor de uma junção para a outra. Considere que um Peltier é usado para refrigerar o circuito abaixo, e que este consegue drenar 10% da potência total dissipada pelo circuito. Dados R 1 = 0, Ω, R = 0, 4 Ω e R = 1, Ω. Qual é a corrente i c que circula no circuito, sabendo que o Peltier drena uma quantidade de calor Q = 540 J em t = 40 s? a) 10A b) 15A c) 0A d) 5A Solução:Dados: R 1 = 0, Ω, R = 0, 4 Ω ; R = 1, Ω ; Q = 540 J; t = 40 s. Calculando a resistência equivalente do circuito mostrado: R R 0,4 1, Req = R1 + = 0, + = 0, + 0, Req = 0,6 Ω. R + R 0,4 + 1, Q 540 A potência drenada é: P dren = = Pdren = 1,5 W. t 40 Mas a potência drenada é 10% da potência total dissipada: Pdren 1,5 P dren = 0,1 P T P T = = PT = 15 W. 0,1 0,1 Usando a expressão da potência dissipada em um circuito: P 15 P = R i i = = = 5 I c = 15 A. Opção correta: b R 0,6 T T eq c c eq 9. (Uel 011) Um circuito de malha dupla é apresentado na figura a seguir. Página 1 de 16

14 ª Fase UECE 01.1 Sabendo-se que R 1 = 10Ω, R = 15Ω, ε 1 = 1V e ε = 10V, o valor da corrente i é, aproximadamente: a) 10 A b) 10 ma c) 1 A d) 0,4 A Solução: Dados: R 1 = 10 Ω, R = 15 Ω, ε 1 = 1 V e ε = 10 V Apliquemos as leis de Kirchoff. Malha abcdefa: ε = R + R i + R i + i' 0 = i + 10 i + i' 0 = 10i + 15i + 10i + 10i' ( ) ( ) ( ) ( ) = 5i + 10i' (I) Malha defgd: ε + ε = R i + i' + R i' = 10 i + i' + 15i' = 10i + 10i' + 15i' 1 1 ( ) ( ) = 10i + 5i' (II) Multiplicando a equação (I) por -,5 e montando o sistema: 50 = 87,5i 5i' 8 = 77,5i i 0,6 A. Opção correta: d = 10i + 5i' 10. (Epcar (Afa) 011) O esquema abaixo mostra uma rede elétrica constituída de dois fios fase e um neutro, alimentando cinco resistores ôhmicos. Se o fio neutro se romper no ponto A, a potência dissipada irá aumentar apenas no(s) resistor(es) a) R1 e R b) R e R 5 c) R d) R 4 Página 14 de 16

15 ª Fase UECE 01.1 Solução: Quando o fio neutro se rompe, alteram-se as tensões apenas nos resistores R e R 4. No circuito original a tensão em cada um deles é U 1 = 110 V. Calculemos, então, as respectivas potências (P e P 4 ) dissipadas nesses dois resistores nessa situação original. U1 110 P = = P = 55 W. R 0 U1 110 P = = = 4 P4 110 W. R4 110 Com o fio neutro rompido, esses dois resistores ficam associados em série e a associação submetida à tensão U = 0 V e percorridos pela mesma corrente (i), como mostra a figura a seguir. ' ' Para calcular as novas potências ( P e P 4 ) nesses resistores, precisamos primeiramente calcular as novas tensões a que eles ficam submetidos (U e U 4 ), respectivamente. U + U = U U + U = 0 V. I { ( ) 4 4 Mas: U = R i U = 0 i U 0 i = = U = U 4. (II) U4 = R4 i U4 = 110 i U4 110 i Substituindo (II) em (I): 0 U4 + U4 = 0 U4 = V. Voltando em II: U = U = V. Assim: ( 440) ' U = = 880 ' P = P 9 W. R 0 ( 0) ' U4 = = 440 ' P 4 = P4 49 W. R4 110 Página 15 de 16

16 ª Fase UECE 01.1 ' ' Comparando as duas situações: P > P e P < P. 4 4 Portanto, a potência dissipada aumenta apenas no resistor R. Opção correta:c 11. (Cesgranrio 011) Um circuito é composto por uma bateria, cuja diferença de potencial elétrico (d.d.p.) vale V, além de duas lâmpadas idênticas e duas chaves (interruptores). Todos os componentes do circuito estão em perfeito funcionamento. A probabilidade de que a chave C 1 esteja aberta é de 60%. A probabilidade de que a chave C esteja aberta é de 40%. Qual a probabilidade de que pelo menos uma das duas lâmpadas esteja apagada? a) 76% b) 60% c) 5% d) 40% Solução: Se a chave C 1 estiver aberta, ambas as lâmpadas ficarão apagadas, independentemente do estado da chave C. Por outro lado, se a chave C 1 estiver fechada e a C estiver aberta, a lâmpada L ficará apagada. Portanto, a probabilidade pedida é dada por: 0,6 + (1 0,6) 0,4 = 0,76 = 76%. Opção correta: a Se a chave C1 estiver aberta, ambas as lâmpadas ficarão apagadas, independentemente do estado da chave C. Por outro lado, se a chave C1 estiver fechada e a C estiver aberta, somente a lâmpada L ficará apagada. Não há maneira possível de apenas a lâmpada L1 ficar apagada. Portanto, a probabilidade pedida é dada por: P(ambas apagadas) + P(só L 1 apagada)+ P(só L apagada) = 76% 0, (1-0,6) 0,4 = 0,6 + 0,16 = 0,76 Página 16 de 16

Lista de Eletrostática da UFPE e UPE

Lista de Eletrostática da UFPE e UPE Lista de Eletrostática da UFPE e UPE 1. (Ufpe 1996) Duas pequenas esferas carregadas repelem-se mutuamente com uma força de 1 N quando separadas por 40 cm. Qual o valor em Newtons da força elétrica repulsiva

Leia mais

Introdução à Eletricidade e Lei de Coulomb

Introdução à Eletricidade e Lei de Coulomb Introdução à Eletricidade e Lei de Coulomb Introdução à Eletricidade Eletricidade é uma palavra derivada do grego élektron, que significa âmbar. Resina vegetal fossilizada Ao ser atritado com um pedaço

Leia mais

EDITORIAL MODULO - WLADIMIR

EDITORIAL MODULO - WLADIMIR 1. Como funciona a Máquina de Xerox Quando se inicia a operação em uma máquina de Xerox, acende-se uma lâmpada, que varre todo o documento a ser copiado. A imagem é projetada por meio de espelhos e lentes

Leia mais

Problemas de eletricidade

Problemas de eletricidade Problemas de eletricidade 1 - Um corpo condutor está eletrizado positivamente. Podemos afirmar que: a) o número de elétrons é igual ao número de prótons. b) o número de elétrons é maior que o número de

Leia mais

Atividades de Aprimoramento Física 2ª série do Ensino Médio (MODELO ENEM)

Atividades de Aprimoramento Física 2ª série do Ensino Médio (MODELO ENEM) Atividades de Aprimoramento Física 2ª série do Ensino Médio 01 - (G1 - ifce) Três esferas metálicas idênticas, A, B e C, se encontram isoladas e bem afastadas uma das outras. A esfera A possui carga Q

Leia mais

Exercícios de Eletrização

Exercícios de Eletrização Exercícios de Eletrização 1-Um corpo inicialmente neutro recebe 10 milhões de elétrons. Este corpo adquire uma carga de: (e = 1,6. 10 19 C). a) 1,6. 10 12 C b) 1,6. 10 12 C c) 16. 10 10 C d) 16. 10 7 C

Leia mais

Lista de Eletrostática - Mackenzie

Lista de Eletrostática - Mackenzie Lista de Eletrostática - Mackenzie 1. (Mackenzie 1996) Uma esfera eletrizada com carga de + mc e massa 100 g é lançada horizontalmente com velocidade 4 m/s num campo elétrico vertical, orientado para cima

Leia mais

COLÉGIO NOSSA SENHORA DE FÁTIMA ALUNO(A): Nº PROF.: André Harada

COLÉGIO NOSSA SENHORA DE FÁTIMA ALUNO(A): Nº PROF.: André Harada COLÉGIO NOSSA SENHORA DE FÁTIMA ALUNO(A): Nº PROF.: André Harada DISCIPLINA: Física II SÉRIE: 2ª Ensino Médio TURMA: DATA: 1. (Uerj 2000) Duas partículas de cargas +4Q e -Q coulombs estão localizadas sobre

Leia mais

Carga Elétrica e Eletrização dos Corpos

Carga Elétrica e Eletrização dos Corpos ELETROSTÁTICA Carga Elétrica e Eletrização dos Corpos Eletrostática Estuda os fenômenos relacionados às cargas elétricas em repouso. O átomo O núcleo é formado por: Prótons cargas elétricas positivas Nêutrons

Leia mais

Unidade 12 - Capacitores

Unidade 12 - Capacitores Unidade 1 - Capacitores Capacidade Eletrostática Condutor Esférico Energia Armazenada em um capacitor Capacitor Plano Associação de Capacitores Circuitos com capacitores Introdução Os primeiros dispositivos

Leia mais

4 - (AFA-2003) Considere a associação da figura abaixo: As cargas, em C, de cada capacitor C1, C2 e C3 são, respectivamente:

4 - (AFA-2003) Considere a associação da figura abaixo: As cargas, em C, de cada capacitor C1, C2 e C3 são, respectivamente: 1 - (UEL-2003) A câmara de TV é o dispositivo responsável pela captação da imagem e pela transformação desta em corrente elétrica. A imagem é formada num mosaico constituído por grânulos de césio, que

Leia mais

RECUPERAÇÃO TURMAS: 2º ANO FÍSICA

RECUPERAÇÃO TURMAS: 2º ANO FÍSICA RECUPERAÇÃO TURMAS: 2º ANO Professor: XERXES DATA: 22 / 11 / 2015 RECUPERAÇÃO FINAL FORÇA ELÉTRICA (LEI DE COULOMB) FÍSICA Para todas as questões, considere a constante eletrostática no vácuo igual a 9.10

Leia mais

1 a QUESTÃO: (2,0 pontos) Avaliador Revisor

1 a QUESTÃO: (2,0 pontos) Avaliador Revisor 1 a QUESTÃO: (,0 pontos) Avaliador Revisor Uma montagem experimental simples permite a medida da força entre objetos carregados com o auxílio de uma balança (A. Cortel, Physics Teacher 7, 447 (1999)).

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA EXERCÍCIOS NOTAS DE AULA I Goiânia - 014 1. Um capacitor de placas paralelas possui placas circulares de raio 8, cm e separação

Leia mais

CURSO DE APROFUNDAMENTO FÍSICA ENSINO MÉDIO

CURSO DE APROFUNDAMENTO FÍSICA ENSINO MÉDIO CURSO DE APROFUNDAMENTO FÍSICA ENSINO MÉDIO Prof. Cazuza 1. Arthur monta um circuito com duas lâmpadas idênticas e conectadas à mesma bateria, como mostrado nesta figura: Considere nula a resistência elétrica

Leia mais

Um pouco de história. Um pouco de história. Um pouco de história. Um pouco de história CORPOS ELETRIZADOS E NEUTROS CARGA ELÉTRICA

Um pouco de história. Um pouco de história. Um pouco de história. Um pouco de história CORPOS ELETRIZADOS E NEUTROS CARGA ELÉTRICA Um pouco de história O conhecimento de eletricidade data de antes de Cristo ~ 600 a.c. Ambar, quando atritado, armazena eletricidade William Gilbert em 1600 conseguiu eletrizar muitas substâncias diferentes

Leia mais

Associação de Geradores

Associação de Geradores Associação de Geradores 1. (Epcar (Afa) 2012) Um estudante dispõe de 40 pilhas, sendo que cada uma delas possui fem igual a 1,5 V e resistência interna de 0,25. Elas serão associadas e, posteriormente,

Leia mais

ELETROSTÁTICA 3ª SÉRIE

ELETROSTÁTICA 3ª SÉRIE ELETROSTÁTICA 3ª SÉRIE 1. (Pucrj 013) Duas cargas pontuais q1 3,0 μc e q 6,0 μc são colocadas a uma distância de 1,0 m entre si. Calcule a distância, em metros, entre a carga q 1 e a posição, situada entre

Leia mais

Questão 1. Questão 2. Resposta. Resposta

Questão 1. Questão 2. Resposta. Resposta Questão 1 Na natureza, muitos animais conseguem guiar-se e até mesmo caçar com eficiência, devido à grande sensibilidade que apresentam para a detecção de ondas, tanto eletromagnéticas quanto mecânicas.

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 1 a QUESTÃO Valor: 1,00 A L 0 H mola apoio sem atrito B A figura acima mostra um sistema composto por uma parede vertical

Leia mais

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r Exercícios Capacitores e) 12,5 J 1-Capacitores são elementos de circuito destinados a: a) armazenar corrente elétrica. b) permitir a passagem de corrente elétrica de intensidade constante. c) corrigir

Leia mais

1 a QUESTÃO: (2,0 pontos) Avaliador Revisor

1 a QUESTÃO: (2,0 pontos) Avaliador Revisor 1 a QUESTÃO: (,0 pontos) Avaliador evisor Vários fenômenos físicos podem ser explicados pela propagação retilínea da luz em meios homogêneos. Essa hipótese é conhecida como o modelo do raio luminoso da

Leia mais

FÍSICA 3ª Série LISTA DE EXERCÍCIOS/ELETROSTÁTICA Data: 20/03/07

FÍSICA 3ª Série LISTA DE EXERCÍCIOS/ELETROSTÁTICA Data: 20/03/07 1. O campo elétrico de uma carga puntiforme em repouso tem, nos pontos A e B, as direções e sentidos indicados pelas flechas na figura a seguir. O módulo do campo elétrico no ponto B vale 24V/m. O módulo

Leia mais

( ) ( ) ( ( ) ( )) ( )

( ) ( ) ( ( ) ( )) ( ) Física 0 Duas partículas A e, de massa m, executam movimentos circulares uniormes sobre o plano x (x e representam eixos perpendiculares) com equações horárias dadas por xa ( t ) = a+acos ( ωt ), ( t )

Leia mais

ELETROSTÁTICA. Ramo da Física que estuda as cargas elétricas em repouso. www.ideiasnacaixa.com

ELETROSTÁTICA. Ramo da Física que estuda as cargas elétricas em repouso. www.ideiasnacaixa.com ELETROSTÁTICA Ramo da Física que estuda as cargas elétricas em repouso. www.ideiasnacaixa.com Quantidade de carga elétrica Q = n. e Q = quantidade de carga elétrica n = nº de elétrons ou de prótons e =

Leia mais

ESTUDO DIRIGIDO DE REVISÃO PARA RECUPERAÇÃO FINAL - 2015

ESTUDO DIRIGIDO DE REVISÃO PARA RECUPERAÇÃO FINAL - 2015 Nome: 3ª série: n o Professor: Luiz Mário Data: / / 2015. ESTUDO DIRIGIDO DE REVISÃO PARA RECUPERAÇÃO FINAL - 2015 Orientações: - Este estudo dirigido poderá ser usado para revisar a matéria que será cobrada

Leia mais

tem Note e adote: ELETROSTÁTICA 3ª SÉRIE 3,2 10 kg, permanecia com velocidade constante no interior da câmara. Essa esfera carga do elétron 1,6 10 C

tem Note e adote: ELETROSTÁTICA 3ª SÉRIE 3,2 10 kg, permanecia com velocidade constante no interior da câmara. Essa esfera carga do elétron 1,6 10 C 1. (Mackenzie 015) Uma esfera metálica A, eletrizada com carga elétrica igual a 0,0 μc, é colocada em contato com outra esfera idêntica B, eletricamente neutra. Em seguida, encosta-se a esfera B em outra

Leia mais

Aprimorando os Conhecimentos de Eletricidade Lista 1 Processos de Eletrização I e II Prof.: Célio Normando

Aprimorando os Conhecimentos de Eletricidade Lista 1 Processos de Eletrização I e II Prof.: Célio Normando Aprimorando os Conhecimentos de Eletricidade Lista 1 Processos de Eletrização I e II Prof.: Célio Normando 1 ) (U.F. Lavras-MG) No modelo atômico atual, o nêutron tem a composição (u, d, d), no qual (u)

Leia mais

Circuitos de Corrente Contínua

Circuitos de Corrente Contínua Circuitos de Corrente Contínua Conceitos básicos de eletricidade Fundamentos de Eletrostática Potencial, Diferença de Potencial, Corrente Tipos de Materiais Circuito Elétrico Resistores 1 Circuitos de

Leia mais

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo.

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo. Capacitores e Dielétricos Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo. Imaginemos uma configuração como a de um capacitor em que os

Leia mais

Questão 1) ELETRICIDADE

Questão 1) ELETRICIDADE Eletricidade 1 Questão 1) Uma esfera condutora A, carregada positivamente, é aproximada de uma outra esfera condutora B, que é idêntica à esfera A, mas está eletricamente neutra. Sobre processos de eletrização

Leia mais

SETOR A. 2. Um espelho côncavo tem 80 cm de raio. Um objeto real é colocado a 30 cm de distância dele. Determine: a) A distância focal

SETOR A. 2. Um espelho côncavo tem 80 cm de raio. Um objeto real é colocado a 30 cm de distância dele. Determine: a) A distância focal 2014_Física_2 ano_3º tri ALUNO(a): Nº: SÉRIE: 2º TURMA: UNIDADE: VV JC JP PC DATA: / /2014 Obs.: Esta lista deve ser entregue apenas ao professor no dia da aula de Recuperação SETOR A 1. Um objeto é colocado

Leia mais

Circuitos Elétricos 1º parte. Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento

Circuitos Elétricos 1º parte. Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento Circuitos Elétricos 1º parte Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento Introdução Um circuito elétrico é constituido de interconexão de vários

Leia mais

Sobriedade e objetividade nessa caminhada final e que a chegada seja recheado de SUCESSO! Vasco Vasconcelos

Sobriedade e objetividade nessa caminhada final e que a chegada seja recheado de SUCESSO! Vasco Vasconcelos Prezado aluno, com o intuito de otimizar seus estudos para a 2ª fase do Vestibular da UECE, separamos as questões, por ano, por assunto e com suas respectivas resoluções! Vele a pena dar uma lida e verificar

Leia mais

Exercícios Leis de Kirchhoff

Exercícios Leis de Kirchhoff Exercícios Leis de Kirchhoff 1-Sobre o esquema a seguir, sabe-se que i 1 = 2A;U AB = 6V; R 2 = 2 Ω e R 3 = 10 Ω. Então, a tensão entre C e D, em volts, vale: a) 10 b) 20 c) 30 d) 40 e) 50 Os valores medidos

Leia mais

Os capacitores são componentes largamente empregados nos circuitos eletrônicos. Eles podem cumprir funções tais como o armazenamento de cargas

Os capacitores são componentes largamente empregados nos circuitos eletrônicos. Eles podem cumprir funções tais como o armazenamento de cargas Os capacitores são componentes largamente empregados nos circuitos eletrônicos. Eles podem cumprir funções tais como o armazenamento de cargas elétricas ou a seleção de freqüências em filtros para caixas

Leia mais

Professor João Luiz Cesarino Ferreira

Professor João Luiz Cesarino Ferreira Exercícios 1º Lei de Ohm e Potência elétrica 1º) 2º) 3º) Um fio com uma resistência de 6,0Ω é esticado de tal forma que seu comprimento se torna três vezes maior que o original. Determine a resistência

Leia mais

Exercícios de Física sobre Circuitos Elétricos com Gabarito

Exercícios de Física sobre Circuitos Elétricos com Gabarito Exercícios de Física sobre Circuitos Elétricos com Gabarito (Unicamp-999 Um técnico em eletricidade notou que a lâmpada que ele havia retirado do almoxarifado tinha seus valores nominais (valores impressos

Leia mais

P R O V A DE FÍSICA II

P R O V A DE FÍSICA II 1 P R O V A DE FÍSICA II QUESTÃO 16 A figura mostra uma barra rígida articulada no ponto O. A barra é homogênea e seu peso P está em seu ponto médio. Sobre cada uma de suas extremidades são aplicadas forças

Leia mais

5. Uma esfera metálica A, eletrizada com carga elétrica igual a 20,0 μc,

5. Uma esfera metálica A, eletrizada com carga elétrica igual a 20,0 μc, 1. Uma pequenina esfera vazada, no ar, com carga elétrica igual a 1μ C e massa 10 g, é perpassada por um aro semicircular isolante, de extremidades A e B, situado num plano vertical. Uma partícula carregada

Leia mais

Universidade Federal do Ceará 2ª ETAPA PROVA ESPECÍFICA DE FÍSICA PROVA ESPECÍFICA DE FÍSICA. Data: 14.12.2009 Duração: 04 horas CORRETOR 1

Universidade Federal do Ceará 2ª ETAPA PROVA ESPECÍFICA DE FÍSICA PROVA ESPECÍFICA DE FÍSICA. Data: 14.12.2009 Duração: 04 horas CORRETOR 1 1ª AVALIAÇÃO AVALIAÇÃO FINAL CORRETOR 1 01 02 03 04 05 06 07 08 Reservado à CCV Universidade Federal do Ceará Coordenadoria de Concursos - CCV Comissão do Vestibular Reservado à CCV 2ª ETAPA PROVA ESPECÍFICA

Leia mais

Prof. Rogério Porto. Assunto: Eletrostática

Prof. Rogério Porto. Assunto: Eletrostática Questões COVEST Física Elétrica Prof. Rogério Porto Assunto: Eletrostática 1. Duas esferas condutoras A e B possuem a mesma carga Q. Uma terceira esfera C, inicialmente descarregada e idêntica às esferas

Leia mais

E irr = P irr T. F = m p a, F = ee, = 2 10 19 14 10 19 2 10 27 C N. C kg = 14 1027 m/s 2.

E irr = P irr T. F = m p a, F = ee, = 2 10 19 14 10 19 2 10 27 C N. C kg = 14 1027 m/s 2. FÍSICA 1 É conhecido e experimentalmente comprovado que cargas elétricas aceleradas emitem radiação eletromagnética. Este efeito é utilizado na geração de ondas de rádio, telefonia celular, nas transmissões

Leia mais

CAPACIDADE ELÉTRICA. Unidade de capacitância

CAPACIDADE ELÉTRICA. Unidade de capacitância CAPACIDADE ELÉTRICA Como vimos, a energia elétrica pode ser armazenada e isso se faz através do armazenamento de cargas elétricas. Essas cargas podem ser armazenadas em objetos condutores. A capacidade

Leia mais

O que você deve saber sobre

O que você deve saber sobre O que você deve saber sobre Além de resistores, os circuitos elétricos apresentam dispositivos para gerar energia potencial elétrica a partir de outros componentes (geradores), armazenar cargas, interromper

Leia mais

Receptores elétricos

Receptores elétricos Receptores elétricos 1 Fig.20.1 20.1. A Fig. 20.1 mostra um receptor elétrico ligado a dois pontos A e B de um circuito entre os quais existe uma d.d.p. de 12 V. A corrente que o percorre é de 2,0 A. A

Leia mais

= R. Sendo m = 3,3. 10 27 kg, V = 3,0. 10 7 m/s e R = 0,45m, calcula-se a intensidade da força magnética. 3,3. 10 27. (3,0. 10 7 ) 2 = (N) 0,45

= R. Sendo m = 3,3. 10 27 kg, V = 3,0. 10 7 m/s e R = 0,45m, calcula-se a intensidade da força magnética. 3,3. 10 27. (3,0. 10 7 ) 2 = (N) 0,45 37 a FÍSICA Em um cíclotron tipo de acelerador de partículas um deutério alcança velocidade final de 3,0 x 10 7 m/s, enquanto se move em um caminho circular de raio 0,45m, mantido nesse caminho por uma

Leia mais

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20.

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20. 11 FÍSICA Um bloco de granito com formato de um paralelepípedo retângulo, com altura de 30 cm e base de 20 cm de largura por 50 cm de comprimento, encontra-se em repouso sobre uma superfície plana horizontal.

Leia mais

FÍSICA. Sempre que for necessário, utilize g= 10m/s 2

FÍSICA. Sempre que for necessário, utilize g= 10m/s 2 FÍSICA Sempre que for necessário, utilize g= 10m/s 2 28 d Leia com atenção a tira da Turma da Mônica mostrada abaixo e analise as afirmativas que se seguem, considerando os princípios da Mecânica Clássica.

Leia mais

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r Exercícios Potencial Elétrico 01. O gráfico que melhor descreve a relação entre potencial elétrico V, originado por uma carga elétrica Q < 0, e a distância d de um ponto qualquer à carga, é: 05. Duas cargas

Leia mais

Corrente elétrica corrente elétrica.

Corrente elétrica corrente elétrica. Corrente elétrica Vimos que os elétrons se deslocam com facilidade em corpos condutores. O deslocamento dessas cargas elétricas é chamado de corrente elétrica. A corrente elétrica é responsável pelo funcionamento

Leia mais

Exercícios Tensão e Corrente

Exercícios Tensão e Corrente Exercícios Tensão e Corrente TEXTO PARA A PRÓXIMA QUESTÃO: Atualmente há um número cada vez maior de equipamentos elétricos portáteis e isto tem levado a grandes esforços no desenvolvimento de baterias

Leia mais

Primeira lista de física para o segundo ano 1)

Primeira lista de física para o segundo ano 1) Primeira lista de física para o segundo ano 1) Dois espelhos planos verticais formam um ângulo de 120º, conforme a figura. Um observador está no ponto A. Quantas imagens de si mesmo ele verá? a) 4 b) 2

Leia mais

Física FUVEST ETAPA. ε = 26 cm, e são de um mesmo material, Resposta QUESTÃO 1 QUESTÃO 2. c) Da definição de potência, vem:

Física FUVEST ETAPA. ε = 26 cm, e são de um mesmo material, Resposta QUESTÃO 1 QUESTÃO 2. c) Da definição de potência, vem: Física QUESTÃO 1 Um contêiner com equipamentos científicos é mantido em uma estação de pesquisa na Antártida. Ele é feito com material de boa isolação térmica e é possível, com um pequeno aquecedor elétrico,

Leia mais

-----> V = 73,3V. Portanto: V2 = 73,3V e V1 = 146,6V, com isso somente L1 brilhará acima do normal e provavelmente queimará.

-----> V = 73,3V. Portanto: V2 = 73,3V e V1 = 146,6V, com isso somente L1 brilhará acima do normal e provavelmente queimará. TC 3 UECE 01 FASE POF.: Célio Normando Conteúdo: Lâmpadas Incandescentes 1. A lâmpada incandescente é um dispositivo elétrico que transforma energia elétrica em energia luminosa e energia térmica. Uma

Leia mais

IME - 2003 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

IME - 2003 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR IME - 2003 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Física Questão 01 Um pequeno refrigerador para estocar vacinas está inicialmente desconectado da rede elétrica e o ar em seu interior encontra-se

Leia mais

Valores eternos. MATÉRIA. PROFESSOR(A) Hermann ---- ---- 1. Para a associação da figura, a resistência equivalente entre os terminais A e B é igual a:

Valores eternos. MATÉRIA. PROFESSOR(A) Hermann ---- ---- 1. Para a associação da figura, a resistência equivalente entre os terminais A e B é igual a: Valores eternos. TD Recuperação ALUNO(A) MATÉRIA Física III PROFESSOR(A) Hermann ANO SEMESTRE DATA 3º 1º Julho/2013 TOTAL DE ESCORES ESCORES OBTIDOS ---- ---- 1. Para a associação da figura, a resistência

Leia mais

Valores eternos. MATÉRIA PROFESSOR(A) ---- ----

Valores eternos. MATÉRIA PROFESSOR(A) ---- ---- Valores eternos. TD Recuperação ALUNO(A) MATÉRIA Física I PROFESSOR(A) Raphael ANO SEMESTRE DATA 2º 1º Julho/2013 TOTAL DE ESCORES ESCORES OBTIDOS ---- ---- 1. Em um determinado local do espaço, existe

Leia mais

Eletricidade Aula 1. Profª Heloise Assis Fazzolari

Eletricidade Aula 1. Profª Heloise Assis Fazzolari Eletricidade Aula 1 Profª Heloise Assis Fazzolari História da Eletricidade Vídeo 2 A eletricidade estática foi descoberta em 600 A.C. com Tales de Mileto através de alguns materiais que eram atraídos entre

Leia mais

Q 4 10. e 1,6 10. A partícula (eletrizada positivamente) perdeu 2,5 10 4 elétrons. Resposta: B

Q 4 10. e 1,6 10. A partícula (eletrizada positivamente) perdeu 2,5 10 4 elétrons. Resposta: B 01 15 Q 4 10 n = n = n = 2,5 10 19 e 1,6 10 4 A partícula (eletrizada positivamente) perdeu 2,5 10 4 elétrons. Resposta: B 1 02 Sendo e o módulo da carga do elétron, temos: 2 1 u = e e d = e 3 3 A carga

Leia mais

TC DE FÍSICA 2 a SÉRIE ENSINO MÉDIO

TC DE FÍSICA 2 a SÉRIE ENSINO MÉDIO TC DE FÍSICA 2 a SÉRIE ENSINO MÉDIO Professor(es): Odair Mateus 14/6/2010 1.Na(s) questão(ões) a seguir, escreva no espaço apropriado a soma dos itens corretos. Sobre os conceitos e aplicações da Eletricidade

Leia mais

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de? Física 01. Um fio metálico e cilíndrico é percorrido por uma corrente elétrica constante de. Considere o módulo da carga do elétron igual a. Expressando a ordem de grandeza do número de elétrons de condução

Leia mais

(www.inpe.br/webelat/homepage/menu/el.atm/perguntas.e.respostas.php. Acesso em: 30.10.2012.)

(www.inpe.br/webelat/homepage/menu/el.atm/perguntas.e.respostas.php. Acesso em: 30.10.2012.) 1. (G1 - ifsp 2013) Raios são descargas elétricas de grande intensidade que conectam as nuvens de tempestade na atmosfera e o solo. A intensidade típica de um raio é de 30 mil amperes, cerca de mil vezes

Leia mais

TD de Física 2 Capacitores

TD de Física 2 Capacitores 1. (Ufpr 2014) No circuito esquematizado abaixo, deseja-se que o capacitor armazene uma energia elétrica de 125 μ J. As fontes de força eletromotriz são consideradas ideais e de valores ε1 10 V e ε2 5

Leia mais

Potência elétrica. 06/05/2011 profpeixinho.orgfree.com pag.1

Potência elétrica. 06/05/2011 profpeixinho.orgfree.com pag.1 1. (Unicamp) Um aluno necessita de um resistor que, ligado a uma tomada de 220 V, gere 2200 W de potência térmica. Ele constrói o resistor usando fio de constante N. 30 com área de seção transversal de

Leia mais

Capítulo 04. Geradores Elétricos. 1. Definição. 2. Força Eletromotriz (fem) de um Gerador. 3. Resistência interna do gerador

Capítulo 04. Geradores Elétricos. 1. Definição. 2. Força Eletromotriz (fem) de um Gerador. 3. Resistência interna do gerador 1. Definição Denominamos gerador elétrico todo dispositivo capaz de transformar energia não elétrica em energia elétrica. 2. Força Eletromotriz (fem) de um Gerador Para os geradores usuais, a potência

Leia mais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais LEI DE OHM Conceitos fundamentais Ao adquirir energia cinética suficiente, um elétron se transforma em um elétron livre e se desloca até colidir com um átomo. Com a colisão, ele perde parte ou toda energia

Leia mais

Prof.: Geraldo Barbosa Filho

Prof.: Geraldo Barbosa Filho AULA 07 GERADORES E RECEPTORES 5- CURVA CARACTERÍSTICA DO GERADOR 1- GERADOR ELÉTRICO Gerador é um elemento de circuito que transforma qualquer tipo de energia, exceto a elétrica, em energia elétrica.

Leia mais

Considerando que = 9,0

Considerando que = 9,0 LISTA 4 POTENIAL ELÉTRIO 01 - (FEPES DF) onsidere uma carga puntiforme positiva q fixa num ponto do espaço. Verifica-se que o campo elétrico em um ponto P 1, a uma distância R dessa carga, tem módulo E

Leia mais

Tânia observa um lápis com o auxílio de uma lente, como representado nesta figura:

Tânia observa um lápis com o auxílio de uma lente, como representado nesta figura: PROVA DE FÍSICA QUESTÃO 0 Tânia observa um lápis com o auxílio de uma lente, como representado nesta figura: Essa lente é mais fina nas bordas que no meio e a posição de cada um de seus focos está indicada

Leia mais

Questão 46. Questão 47. Questão 48. alternativa E. alternativa C

Questão 46. Questão 47. Questão 48. alternativa E. alternativa C Questão 46 O movimento de uma partícula é caracterizado por ter vetor velocidade e vetor aceleração não nulo de mesma direção. Nessas condições, podemos afirmar que esse movimento é a) uniforme. b) uniformemente

Leia mais

(Desconsidere a massa do fio). SISTEMAS DE BLOCOS E FIOS PROF. BIGA. a) 275. b) 285. c) 295. d) 305. e) 315.

(Desconsidere a massa do fio). SISTEMAS DE BLOCOS E FIOS PROF. BIGA. a) 275. b) 285. c) 295. d) 305. e) 315. SISTEMAS DE BLOCOS E FIOS PROF. BIGA 1. (G1 - cftmg 01) Na figura, os blocos A e B, com massas iguais a 5 e 0 kg, respectivamente, são ligados por meio de um cordão inextensível. Desprezando-se as massas

Leia mais

Aula de Véspera - Inv-2008

Aula de Véspera - Inv-2008 01. Um projétil foi lançado no vácuo formando um ângulo θ com a horizontal, conforme figura abaixo. Com base nesta figura, analise as afirmações abaixo: (001) Para ângulos complementares teremos o mesmo

Leia mais

CAPACITORES. Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br

CAPACITORES. Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br CAPACITORES DEFINIÇÕES Quando as placas do capacitor estão carregadas com cargas iguais e de sinais diferentes, estabelece-se entre as placas uma diferença de potencial V que é proporcional à carga. Q

Leia mais

TURMA: 3º ANO: Campo Elétrico

TURMA: 3º ANO: Campo Elétrico DISCIPLINA: FÍSICA SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR UNIDADE POLIVALENTE MODELO VASCO

Leia mais

a) 2,0. b) 2,4. c) 3,0. d) 4,8. e) 7,2.

a) 2,0. b) 2,4. c) 3,0. d) 4,8. e) 7,2. LISTA 08 GERADORES 1. (Uesb-BA) A força eletromotriz de um gerador é de 12V e a sua resistência interna é de 2,0. Quando esse gerador alimenta um dispositivo cuja resistência ôhmica é 4,0, a intensidade

Leia mais

Eletrodinâmica. Circuito Elétrico

Eletrodinâmica. Circuito Elétrico Eletrodinâmica Circuito Elétrico Para entendermos o funcionamento dos aparelhos elétricos, é necessário investigar as cargas elétricas em movimento ordenado, que percorrem os circuitos elétricos. Eletrodinâmica

Leia mais

TD DE FÍSICA 2 Questões de Potencial elétrico e Trabalho da Força Elétrica PROF.: João Vitor

TD DE FÍSICA 2 Questões de Potencial elétrico e Trabalho da Força Elétrica PROF.: João Vitor 1. (Ita) Considere as afirmações a seguir: I. Em equilíbrio eletrostático, uma superfície metálica é equipotencial. II. Um objeto eletrostaticamente carregado induz uma carga uniformemente distribuída

Leia mais

As leituras no voltímetro V e no amperímetro A, ambos ideais, são, respectivamente,

As leituras no voltímetro V e no amperímetro A, ambos ideais, são, respectivamente, 1. (Espcex (Aman) 015) Em um circuito elétrico, representado no desenho abaixo, o valor da força eletromotriz (fem) do gerador ideal é E 1,5 V, e os valores das resistências dos resistores ôhmicos são

Leia mais

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx Soluções das Questões de Física do Processo Seletivo de dmissão à Escola Preparatória de Cadetes do Exército EsPCEx Questão Concurso 009 Uma partícula O descreve um movimento retilíneo uniforme e está

Leia mais

Resolução Comentada CEFET/MG - 2 semestre 2014

Resolução Comentada CEFET/MG - 2 semestre 2014 Resolução Comentada CEFET/MG - 2 semestre 2014 01 - A figura mostra um sistema massa-mola que pode oscilar livremente, sem atrito, sobre a superfície horizontal e com resistência do ar desprezível. Nesse

Leia mais

Resolução O período de oscilação do sistema proposto é dado por: m T = 2π k Sendo m = 250 g = 0,25 kg e k = 100 N/m, vem:

Resolução O período de oscilação do sistema proposto é dado por: m T = 2π k Sendo m = 250 g = 0,25 kg e k = 100 N/m, vem: 46 c FÍSICA Um corpo de 250 g de massa encontra-se em equilíbrio, preso a uma mola helicoidal de massa desprezível e constante elástica k igual a 100 N/m, como mostra a figura abaixo. O atrito entre as

Leia mais

Leis de Kirchoff. a) 2, 2/3, 5/3 e 4. b) 7/3, 2/3, 5/3 e 4. c) 4, 4/3, 2/3 e 2. d) 2, 4/3, 7/3 e 5/3. e) 2, 2/3, 4/3 e 4.

Leis de Kirchoff. a) 2, 2/3, 5/3 e 4. b) 7/3, 2/3, 5/3 e 4. c) 4, 4/3, 2/3 e 2. d) 2, 4/3, 7/3 e 5/3. e) 2, 2/3, 4/3 e 4. Leis de Kirchoff 1. (Ita 2013) Considere o circuito elétrico mostrado na figura formado por quatro resistores de mesma resistência, R 10, e dois geradores ideais cujas respectivas forças eletromotrizes

Leia mais

Física II Eng. Química + Eng. Materiais

Física II Eng. Química + Eng. Materiais Física II Eng. Química + Eng. Materiais Carga Eléctrica e Campo Eléctrico Lei de Gauss Potencial Eléctrico Condensadores 1. Nos vértices de um quadrado ABCD, com 10 cm de lado, estão colocadas cargas pontuais

Leia mais

TC 1 UECE 2012 FASE 2. PROF.: Célio Normando

TC 1 UECE 2012 FASE 2. PROF.: Célio Normando TC 1 UECE 01 FASE PROF.: Célio Normando Conteúdo: Aritmética Ordem de Grandeza 1. Racionalizar o uso da água significa usá-la sem desperdício e considerá-la uma prioridade social e ambiental, para que

Leia mais

LEI DE OHM LEI DE OHM. Se quisermos calcular o valor da resistência, basta dividir a tensão pela corrente.

LEI DE OHM LEI DE OHM. Se quisermos calcular o valor da resistência, basta dividir a tensão pela corrente. 1 LEI DE OHM A LEI DE OHM é baseada em três grandezas, já vistas anteriormente: a Tensão, a corrente e a resistência. Com o auxílio dessa lei, pode-se calcular o valor de uma dessas grandezas, desde que

Leia mais

Física. Resolução. Q uestão 01 - A

Física. Resolução. Q uestão 01 - A Q uestão 01 - A Uma forma de observarmos a velocidade de um móvel em um gráfico d t é analisarmos a inclinação da curva como no exemplo abaixo: A inclinação do gráfico do móvel A é maior do que a inclinação

Leia mais

Hoje estou elétrico!

Hoje estou elétrico! A U A UL LA Hoje estou elétrico! Ernesto, observado por Roberto, tinha acabado de construir um vetor com um pedaço de papel, um fio de meia, um canudo e um pedacinho de folha de alumínio. Enquanto testava

Leia mais

Lista 2 - FCC UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE FÍSICA

Lista 2 - FCC UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE FÍSICA UNIESIDADE DO ESTADO DE SANTA CATAINA CENTO DE CIÊNCIAS TECNOLÓGICAS DEPATAMENTO DE FÍSICA Lista - FCC 1. Um eletrômetro é um instrumento usado para medir carga estática: uma carga desconhecida é colocada

Leia mais

POTENCIAL ELÉTRICO E FORÇA ELÉTRICA

POTENCIAL ELÉTRICO E FORÇA ELÉTRICA POTENCIAL ELÉTRICO E FORÇA ELÉTRICA 1. No movimento de A para B (figura) ao longo de uma linha de campo elétrico, o campo realiza 3,94 x 10-19 J de trabalho sobre um elétron. Quais são as diferenças de

Leia mais

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo 01 - (PUC SP) Na figura abaixo temos a representação de dois

Leia mais

Laboratório 7 Circuito RC *

Laboratório 7 Circuito RC * Laboratório 7 Circuito RC * Objetivo Observar o comportamento de um capacitor associado em série com um resistor e determinar a constante de tempo do circuito. Material utilizado Gerador de função Osciloscópio

Leia mais

Resolução Vamos, inicialmente, calcular a aceleração escalar γ. Da figura dada tiramos: para t 0

Resolução Vamos, inicialmente, calcular a aceleração escalar γ. Da figura dada tiramos: para t 0 46 a FÍSICA Um automóvel desloca-se a partir do repouso num trecho retilíneo de uma estrada. A aceleração do veículo é constante e algumas posições por ele assumidas, bem como os respectivos instantes,

Leia mais

Física C Extensivo V. 8

Física C Extensivo V. 8 Extensivo V 8 Exercícios 0) E I Verdadeira C ε o A d II Falsa A capacitância se reduz à metade III Falsa Não depende da carga 0) B P Q Como o tempo de transferência é pequeno, a t potência é máxima 0)

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4 Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 4 Faraday Lenz Henry Weber Maxwell Oersted Conteúdo 4 - Capacitores e Indutores...1 4.1 - Capacitores...1 4.2 - Capacitor

Leia mais

UFJF CONCURSO VESTIBULAR 2012 GABARITO DA PROVA DE FÍSICA

UFJF CONCURSO VESTIBULAR 2012 GABARITO DA PROVA DE FÍSICA UFJF CONCURSO VESTIBULAR GABARITO DA PROVA DE FÍSICA Na solução da prova, use quando necessário: Aceleração da gravidade g = m / s ; Densidade da água ρ =, g / cm = kg/m 8 Velocidade da luz no vácuo c

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Medeiros EXERCÍCIOS NOTA DE AULA III Goiânia - 014 1 E X E R C Í C I O S 1. Uma corrente de 5,0 A percorre

Leia mais

Interbits SuperPro Web Física XIII Paulo Bahiense, Naldo, Wilson e Ausgusto

Interbits SuperPro Web Física XIII Paulo Bahiense, Naldo, Wilson e Ausgusto 1. (Unesp 015) Em um experimento de eletrostática, um estudante dispunha de três esferas metálicas idênticas, A, B e C, eletrizadas, no ar, com cargas elétricas 5Q, 3Q e Q, respectivamente. Utilizando

Leia mais

ELETRICIDADE UFRGS de 1998-2012

ELETRICIDADE UFRGS de 1998-2012 ELETRICIDADE UFRGS de 1998-2012 (UFRGS 98) Duas partículas, cada uma com carga elétrica positiva q, estão colocadas nas posições A e B, conforme indica a figura abaixo. Outra partícula, com carga elétrica

Leia mais

Geradores elétricos GERADOR. Energia dissipada. Símbolo de um gerador

Geradores elétricos GERADOR. Energia dissipada. Símbolo de um gerador Geradores elétricos Geradores elétricos são dispositivos que convertem um tipo de energia qualquer em energia elétrica. Eles têm como função básica aumentar a energia potencial das cargas que os atravessam

Leia mais