LÓGICA SEQÜENCIAL Prof. Corradi

Tamanho: px
Começar a partir da página:

Download "LÓGICA SEQÜENCIAL Prof. Corradi www.corradi.junior.nom.br"

Transcrição

1 LÓGICA SEQÜENCIAL Prof. Corradi

2 SUMÁRIO Página 1 A NECESSIDADE DA MEMÓRIA OU ESTADO SEQÜENCIAL Conceito de memória Impacto da memória seqüencial no desempenho de sistemas automatizados Obtenção do efeito memória (buffer realimentado) A DEFINIÇÃO DE FLIP-FLOPS Flip-flop SR básico Diagrama de tempo APERFEIÇOAMENTO DO FLIP-FLOP Necessidade de sincronismo Lógica (terminais e estados) Flip-flop SR comandado por pulso de clock Flip-flop JK (eliminação do estado proibido) Flip-flop JK Mestre-Escravo (eliminação da oscilação) Flip-flop JK Mestre-Escravo com terminais de programa entradas preset e clear Flip-flop T (Toggle) Flip-flop D (Data) Experiência REGISTRADORES DE DESLOCAMENTO Conceito Características Aplicações Classificação Configurações Registrador de deslocamento usado como divisor por Registrador de deslocamento usado como multiplicador por Experiência CONTADORES Contadores assíncronos Contadores síncronos Contadores para circuitos temporizados Contadores integrados Experiência Experiência Experiência MEMÓRIAS SEMICONDUTORAS Introdução Estrutura e organização da memória Princípios de operação Estruturas de endereçamento Classificação das memórias Tipos de memórias Experiência MÁQUINAS DE ESTADOS Modelo geral Análise de máquinas de estados Síntese de máquinas de estados REFERÊNCIAS BIBLIOGRÁFICAS

3 1 A NECESSIDADE DA MEMÓRIA OU ESTADO SEQÜENCIAL 1.1 CONCEITO DE MEMÓRIA Qualquer dispositivo ou circuito que tem dois estados estáveis é dito biestável como, por exemplo, uma chave de conexão. Ela pode estar aberta ou fechada, dependendo da posição da alavanca. Esta chave possui uma memória, visto que ela permanecerá em um estado definido até que alguém ou algo mude a posição da alavanca. Quando um sinal de entrada é aplicado num dispositivo, a saída muda em resposta à entrada. Quando o sinal de entrada é removido, a saída retorna ao seu estado original. Este dispositivo não exibe a propriedade de memória, já que sua saída volta ao estado anterior. Existem dispositivos e circuitos digitais que possuem memória, onde quando um sinal de entrada é aplicado, a saída poderá mudar seu estado, mas permanecerá neste estado mesmo após a entrada ter sido removida. Esta propriedade de reter sua resposta a uma entrada momentânea é chamada memória. Portanto, memória é todo dispositivo que permite a perpetuação de uma informação ao longo do tempo. Costumamos classificar como tendo capacidade de memória a mente humana e os processadores digitais, mas há inúmeras outras formas de memória. Os livros, as fotografias, os discos de música são também dispositivos de memória. Mesmo coisas muito simples podem funcionar como memórias. Conta-se que Albert Einstein usava a caneta no bolso esquerdo ou direito para lembrar se já havia almoçado ou não. Portanto, é a memória que nos dá, pela lembrança do passado, a noção de tempo. Sem ela, viveríamos num eterno presente, não poderíamos discriminar o que é, daquilo que já foi e do que será. É o que ocorre aos sistemas digitais baseados em lógica combinacional. Os estados de suas saídas são dependentes apenas dos estados presentes (instantâneos) das entradas, logo, estes sistemas não conseguem lidar com a variável tempo e perceber seqüências de eventos, portanto, são incapazes de resolver qualquer problema que envolva a noção de tempo. Tome-se o exemplo do controle automático de enchimento de uma caixa d água. Pretende-se que o sistema controle a válvula de entrada V a partir de dois sensores de nível de água A e B, como no esquema a seguir. 2

4 A V LÓGICA COMBINACIONAL B Pretende-se que a válvula V seja aberta quando o sensor B estiver descoberto e só volte a ser fechada quando o sensor A estiver coberto. Se tentarmos resolver o problema usando lógica combinacional, obtém-se a tabela da verdade. Usando a convenção para: - Sensores A e B: 0 descoberto; 1 coberto - Válvula V : 0 fechada; 1 aberta A B V ? (0 quando esvazia e 1 quando enche) 1 0 X (impossível) Portanto, alguma variável precisa informar à lógica se no momento a caixa está em processo de enchimento ou esvaziamento, lembrando qual foi o último estado alcançado, isto é, cheio (V=0) ou vazio (V=1). O novo diagrama é mostrado abaixo. A V B M LÓGICA COMBINACIONAL MEMÓRIA Uma nova tabela da verdade, incorporando a variável de memorização é mostrada abaixo. M A B V (liga válvula, caixa acabou de esvaziar) (caixa esvaziando) X (impossível) (válvula foi recentemente desligada) (válvula foi recentemente ligada) (caixa enchendo) X (impossível) (desliga válvula, caixa acabou de encher) Ao conjunto do bloco combinacional mais o dispositivo de memória chamamos lógica seqüencial. Nesta lógica, os estados presentes das saídas não dependem apenas dos estados das entradas, mas também dos estados anteriores do próprio sistema. Para a solução do problema da caixa d água usamos um dispositivo de memória capaz de armazenar um bit, que é a definição funcional de flip-flop. 3

5 1.2 IMPACTO DA MEMÓRIA SEQÜENCIAL NO DESEMPENHO DE SISTEMAS AUTOMATIZADOS Os sistemas digitais dividem-se em duas classes: sistemas combinacionais e sistemas seqüenciais. Nos sistemas combinacionais, uma saída no tempo t depende somente da entrada no tempo t. Neste caso, o sistema não tem memória porque a saída não depende de entradas prévias. Portanto, a saída é dependente, única e exclusivamente, das variáveis de entrada. Exemplo: um cadeado de códigos (usado para prender bicicletas) o cadeado será aberto num dado tempo t quando o código do cadeado é colocado nas entradas em t, sem considerar a história nas entradas. Se for o código 234, por exemplo, o cadeado será aberto quando esta combinação for colocada nas entradas, independentemente da ordem de colocação dos dígitos do código. Nos sistemas seqüenciais, uma saída no tempo t depende da entrada no tempo t e, possivelmente, também depende da entrada no tempo anterior a t. A saída é dependente das variáveis de entrada e/ou de seus estados anteriores armazenados. Exemplo: um sistema de discagem telefônica o número de um assinante a ser discado será efetuado num dado instante t, se forem satisfeitas as seguintes condições: a) os dígitos discados antes do instante t devem seguir a seqüência daquela do número do assinante; b) o dígito discado no instante t, isto é, o último a ser discado, corresponde ao último dígito do número do assinante; c) todos os dígitos devem estar memorizados e disponibilizados na mesma seqüência da discagem no instante t. 1.3 OBTENÇÃO DO EFEITO MEMÓRIA (BUFFER REALIMENTADO) Construtivamente, um flip-flop pode ser descrito como um inversor realimentado por um outro inversor, como mostra o desenho abaixo. D Q Observando o diagrama, percebemos que uma vez imposto um estado lógico à entrada D, o estado da saída Q se manterá indefinidamente. Como podemos mudar do estado de Q sem provocar uma contradição com o estado de Q? A solução é adicionar terminais de entrada, substituindo os inversores por portas lógicas Não-E. S Q S Q Q R R Q 4

6 Agora podemos levar Q a 1 impondo 0 em S (set) e levar Q a 0 impondo 0 em R (reset), armazenando o estado que desejamos no flip-flop. Entretanto, o flip-flop deve ser aperfeiçoado para satisfazer à definição lógica de flip-flop: Um dispositivo com duas saídas complementares Q e Q, com duas entradas S e R que operam de acordo com a tabela abaixo. S R Q Q 0 0 não permitido Q A Q A Um circuito eletrônico é biestável quando possui dois estados estáveis, isto é, sua saída é 0 Vcc (nível lógico 0) ou +5V (nível lógico 1). Assim, este dispositivo pode ser usado para armazenar um dígito binário (bit). 5

7 2 A DEFINIÇÃO DE FLIP-FLOPS O flip-flop é um elemento de circuito que pode apresentar em seu funcionamento apenas dois estados estáveis. Com a aplicação de um sinal de entrada pode-se efetuar a mudança de um estado para outro e de se conhecer o respectivo estado em que se encontra. Assim, este circuito é considerado como uma célula básica de memória da lógica seqüencial capaz de armazenar um bit. 2.1 FLIP-FLOP SR BÁSICO Possui duas entradas, definidas como Set e Reset e duas saídas Q e Q. Estas saídas somente podem permanecer com valores lógicos complementares. S R Q A Q F S R Q F estável Q A 0 0 Q A estável estável instável 1 1 não perm instável estável instável (não permitido) instável (não permitido) 2.2 DIAGRAMA DE TEMPO Os gráficos ou diagramas de nível lógico x tempo fornecem uma representação visual do desenvolvimento de sinais no tempo, bem como uma demonstração gráfica de comparação entre sinais em vários pontos de um circuito lógico. Assim, são muito usados em sistemas seqüenciais. 6

8 Exemplo de diagrama de tempo de um flip-flop SR S R Q Q 7

9 3 APERFEIÇOAMENTO DO FLIP-FLOP 3.1 NECESSIDADE DE SINCRONISMO O flip-flop visto anteriormente não permite nenhum tipo de controle sobre as entradas, isto é, quando as informações chegam às entradas, são imediatamente processadas sem nenhum tipo de controle. Para corrigir este problema é incorporada uma entrada de controle denominada clock (para flip-flops) ou enable (para latches), permitindo um controle sobre as informações de entrada e estabelecendo um sincronismo na operação do circuito. Desse modo, é possível sincronizar o flip-flop (ativar ou desativar) com o intuito de armazenar a informação em qualquer instante e, então, reter a informação armazenada por qualquer período de tempo desejado. 3.2 LÓGICA (TERMINAIS E ESTADOS) O flip-flop pode ser representado por um bloco com duas saídas Q e Q, entradas para as variáveis e uma entrada de controle (clock/enable). As duas saídas correspondem aos dois estados estáveis e complementares. Para que o flip-flop possa assumir um destes estados, é necessário que haja uma combinação das variáveis de entrada e de um pulso de controle clock/enable. Com este pulso, o flip-flop permanecerá nesse estado ou mudará até a chegada de um novo pulso de controle, que poderá novamente manter ou mudar o estado. Portanto, a saída depende dos valores das entradas e/ou dos estados armazenados; Entrada 1 Clock/Enable Entrada 2 FLIP-FLOP Q Q 3.3 FLIP-FLOP SR COMANDADO POR CONTROLE ENABLE Para Enable = 0 a saída Q do flip-flop mantém seu estado armazenado; Para Enable = 1 o flip-flop responde conforme os níveis lógicos das entradas. 8

10 CONVENÇÕES E SIMBOLOGIAS O latch responde em nível (0 ou 1) e o flip-flop responde em transição (subida ou descida). Se o circuito de controle detecta: - transição Clock (Ck) - nível Enable (En) 1 0 sub desc Exemplo de diagrama de tempo de um flip-flop SR ativado em nível lógico 1 Ck S R Q Q 3.4 FLIP-FLOP JK (ELIMINAÇÃO DO ESTADO PROIBIDO) Objetivo: evitar a saída Q com situação não permitida. J K Q A Q A S R Q F J K Q F Q A 0 0 Q A Q A Q A

11 Circuito análogo do Flip-flop JK (com portas lógicas Não-E) Característica inconveniente no funcionamento do circuito Para J e K = 1, ocorrem constantes oscilações (mudanças de estado) na saída Q, em função das duplas realimentações. Possíveis soluções forçar o clock para zero num tempo conveniente após a aplicação dos níveis lógicos nas entradas J e K (deve levar em conta o atraso na propagação de cada porta lógica); inserir blocos (portas lógicas) de atraso em série com as linhas de realimentação e comutar a entrada clock da mesma forma. 3.5 FLIP-FLOP JK MESTRE-ESCRAVO (ELIMINAÇÃO DA OSCILAÇÃO) O flip-flop JK, quando ativado, funciona como um circuito combinacional, isto é, ocorre a passagem das entradas J e K e da realimentação, provocando alterações sucessivas na saída Q. Objetivo: evitar as constantes oscilações na saída Q quando as entradas J e K = 1. Seqüência de funcionamento Para clock = 1: ocorre a passagem dos níveis lógicos J e K do Mestre; não passagem de Q 1 e Q 1, porque o clock do escravo é zero. Para clock = 0: Q 1 e Q 1 estavam bloqueadas com o último estado assumido; passagem das entradas S e R (escravo), mudando as saídas Q e Q. 10

12 Conclusão: o circuito só reconhece as entradas J e K quando o clock passa de 1 para zero. 3.6 FLIP-FLOP JK MESTRE-ESCRAVO COM TERMINAIS DE PROGRAMA - ENTRADAS PRESET E CLEAR A maioria dos flip-flops com clock também possui uma ou mais entradas de programa, ditas assíncronas, que operam independentemente das entradas síncronas e da entrada de clock. Estas entradas assíncronas podem ser usadas para colocar o flip-flop no estado 0 ou no estado 1, em qualquer instante. Assim, estas entradas se sobrepõem a todas as outras entradas. Clr Pr Q F 0 0 Não permitido Func. normal FLIP-FLOP TIPO T (TOGGLE) Trata-se de um flip-flop JK com as entradas curto-circuitadas, de modo a assumir apenas duas condições de entrada. Pr T Ck J K Q Q Clr 11

13 J K T Q F T Q F Q A 0 Q A Q A Q A FLIP-FLOP TIPO D (DATA) Trata-se de um flip-flop JK com as entradas invertidas, obtidas através de uma porta lógica inversora conectada entre as mesmas. Pr D Ck J K Q Q Clr J K D Q F D Q F

14 EXERCÍCIOS 1. Analise o flip-flop abaixo, preencha a tabela de transição e especifique o seu tipo. X Q A Q F X Q F Dado o circuito do flip-flop abaixo, determine sua tabela de transição para todas as situações possíveis nas entradas A e B. Após, obtenha a tabela compacta e identifique seu tipo. A B Q A Q F A B Q F Desenhe a forma de onda na saída Q do flip-flop JK abaixo. J Q K=1 13

15 J Ck Q 4. Analise o flip-flop abaixo, preencha a tabela de transição e especifique o seu tipo. X Q A Q F X Q F Dado o circuito do flip-flop abaixo, determine sua tabela de transição para todas as situações possíveis nas entradas A e B. Após, obtenha a tabela compacta e identifique seu tipo. X Y Q A Q F X Y Q F

16 6. Desenhe a forma de onda na saída Q do flip-flop tipo T abaixo. Ck CLR PR T Q 7. Determine a forma de onda da saída Q do flip-flop tipo D, a partir dos sinais apresentados abaixo: Ck PR CLR D Q 15

17 8. Apresente as saídas Q dos flip-flops abaixo, a partir dos sinais de Clock e Entrada. E Ck Q1 Q2 Q3 Q4 9. A partir das formas de onda de um flip-flop JK apresentadas abaixo, determine a forma de onda na saída Q. Ck CLR PR J K Q 10. Dado o circuito do flip-flop abaixo, determine sua tabela de transição para todas as situações possíveis nas entradas X e Y. Após, obtenha a tabela compacta e identifique seu tipo. 16

18 X Q Ck Y Q' X Y Q A Q F X Y Q F

19 EXPERIÊNCIA 1 - FLIP-FLOPS 1. Identifique a pinagem dos circuitos integrados e monte em matriz de contatos os seguintes circuitos digitais. Em seguida, obtenha a tabela de transição e defina como o flip-flop é ativado Flip-flop SR com clock, usando portas lógicas Não-E (7400); Flip-flop SR com clock, usando portas lógicas Não-Ou (7402); S Q Ck R Q Flip-flop JK com Preset e Clear (7476); Flip-flop tipo T (7476); Flip-flop tipo D (7474). 18

20 1.6 Circuitos anti-repique 2. Na seqüência, energize os circuitos e simule, via chaves, os valores possíveis para as entradas; 3. Organize e interprete os dados coletados na experimentação. Verifique se os valores encontrados na saída correspondem à análise teórica do circuito (tabela de transição); 4. Desmonte os circuitos e reponha o equipamento e componentes aos seus lugares; 5. Mantenha sempre limpo e organizado o ambiente de experimentação educativa. 19

21 4 REGISTRADORES DE DESLOCAMENTO 4.1 CONCEITO Um registro de deslocamento (shift register) consiste de um grupo de flip-flops interconectados com a propriedade de deslocar dados armazenados nas suas saídas Q de um flip-flop para outro. A direção do deslocamento pode ser para a direita ou para a esquerda, cuja operação é síncrona e sendo regida por um sinal de clock. 4.2 CARACTERÍSTICAS Um registrador pode deslocar informações de dois tipos: Informação paralela São dados que trafegam em várias linhas ou fios, uma para cada bit do número/palavra binário, não existindo a necessidade de referenciar a um clock. Informação série São dados que trafegam em uma única linha ou fio, um bit de cada vez, a uma taxa de transferência que é constante e em fase com um clock de referência. 4.3 APLICAÇÕES Os computadores trabalham com pacotes de informações binárias de 8, 16 ou 32 bits. Os bytes são processados e/ou transportados num computador através de barramentos. A forma de transmissão paralela é usada em computadores porque é muito mais rápida e as distâncias são pequenas. Por outro lado, o formato serial é usado para mover dados de/para teclado e monitor e para comunicação digital entre microcomputadores. Os registradores também são usados para algumas operações aritméticas como complementação, multiplicação e divisão binária. 4.4 CLASSIFICAÇÃO Os registradores de deslocamento são classificados de acordo com três aspectos básicos. a) Quanto à forma de manipulação dos dados - Entrada série e saída série - Entrada série e saída paralela - Entrada paralela e saída série - Entrada paralela e saída paralela b) Quanto à direção de deslocamento - Deslocamento para a esquerda (shift left) - Deslocamento para a direita (shift right) - Deslocamento bidirecional c) Quanto à capacidade de armazenamento - Relacionado com o número de bits que pode ser armazenado no registrador 4.5 CONFIGURAÇÕES Os dados num registrador são possíveis de deslocar: - em série e em paralelo - para dentro e para fora Em função disso, podem ser construídos quatro tipos básicos de registradores: - em série para dentro ou carga (load) em série para fora ou descarga (shift) - em série para carga em paralelo para descarga - em paralelo para carga em série para descarga - em paralelo para carga em paralelo para descarga 20

22 4.5.1 REGISTRADOR DE DESLOCAMENTO DE ENTRADA SÉRIE E SAÍDA SÉRIE Após a entrada da informação, cada bit é deslocado uma casa à direita após a ocorrência do clock. Assim, são deslocados 4 bits de dados em modo série para dentro (à direita) dos flip-flops. Entrada de informação: através da entrada série; Saída da informação: em Q0 21

23 4.5.2 REGISTRADOR DE DESLOCAMENTO DE ENTRADA SÉRIE E SAÍDAS PARALELAS O funcionamento deste registrador é idêntico ao registrador anterior, exceto que as saídas são obtidas, simultaneamente, após 4 pulsos de clock, nos terminais Q 3, Q 2, Q 1 e Q REGISTRADOR DE DESLOCAMENTO DE ENTRADAS PARALELAS E SAÍDA SÉRIE Entrada da informação: Se limparmos o registrador (Clear=0) e introduzirmos a informação paralela através dos terminais PR, então, as saídas Q dos flip-flops assumirão estes valores. Saída da informação: Para Clear=0, a cada descida do Clock, Q0 irá assumir os valores, seqüencialmente, de Q0, Q1, Q2 e Q3. Se Enable=0 Preset (PR) dos flip-flops são iguais a 1 e atuam normais; Se Enable=1 Preset (PR) dos flip-flops terão valores complementares às entradas PR3, PR2, PR1, PR0 e, portanto, as saídas assumirão os valores destes terminais. Exemplo: Se PR 3 = 0 Pr=1 Q 3 mantém seu estado; Se PR 3 = 1 Pr=0 Q 3 = 1. 22

24 4.5.4 REGISTRADOR DE DESLOCAMENTO DE ENTRADA PARALELA E SAÍDAS PARALELAS Entrada de informação: através dos terminais Preset e Clear; Saída da informação: inibindo o clock, as saídas são obtidas pelos terminais Q3, Q2, Q1 e Q REGISTRADOR DE DESLOCAMENTO USADO COMO DIVISOR POR 2 (SHIFT RIGHT) Q3 Q2 Q1 Q0 Entrada Ck Registrador de Deslocamento Entra-se com zero na Entrada Série e, através do clock, desloca-se uma casa à direita. Exemplo: 1010 (2) = 10 (10) 0101 (2) = 5 (10) 4.7 REGISTRADOR DE DESLOCAMENTO USADO COMO MULTIPLICADOR POR 2 (SHIFT LEFT) Q3 Q2 Q1 Q0 Entrada Ck Registrador de Deslocamento Desloca-se uma casa à esquerda através do clock e força-se Q0 = 0. Exemplo: 0001 (2) = 1 (10) 0010 (2) = 2 (10) 23

25 EXERCÍCIOS 1. Esboce as formas de onda para o Registrador de Deslocamento abaixo, em função dos sinais aplicados, considerando a entrada Enable = 0 Enable PR2 PR1 PR0 Q2 Q1 Q0 E Ck D CP S R Q _ Q D CP S R Q _ Q D CP S R Q _ Q Clr Ck Clr E Q2 Q1 Q0 2. Na questão anterior, aplicando os níveis lógicos nas entradas PRs indicados abaixo, determina as formas de onda nas saídas Q. Considere Enable=1. Clr PR 2 PR 1 PR 0 Q 2 Q 1 Q 0 24

26 3. Quanto tempo em segundos levará para deslocar um número binário de 8 bits para dentro do circuito integrado 74164, se o clock é de 1 MHz? 4. Desenhe as formas de onda na saída P do circuito abaixo. 25

27 EXPERIÊNCIA 2 - REGISTRADORES DE DESLOCAMENTO 1. Identifique a pinagem do circuito integrado e monte em matriz de contatos o seguinte circuito digital: Registrador de Deslocamento de 4 bits (7495) Outputs Shift Shift Right Left Vcc Q A Q B Q C Q D Ck 1 Ck R. D. 4 bits Entrada paralela/série Saída paralela Serial A B C D Mode GND Input control Inputs Etapa 1 Mode control = 0 Ck1 (série/paralelo) Mode control = 1 Ck2 (paralelo/paralelo) Etapa 2 Ck1 e mode control = 0 deslocamento à direita Ck2 e mode control = 1 deslocamento à esquerda 1.2 Registrador de Deslocamento de 8 bits através de cascateamento (2 x 7495) saídas 1 saídas 2 ck1 ck (1) 7495 (2) entrada entrada shift shift mode right left control 26

28 1.3 Registrador de deslocamento usado na transmissão de dados (74194 e 7495) S1 S0 Ck Vcc Q A Q B Q C Q D Ck S 1 S Conversão P/S Clr SI-right A B C D SI-left GND Vcc Q A Q B Q C Q D SR SL 7495 Conversão S/P SI A B C D MC GND Simulação com chaves Mode control SI-R SI-L Mode S 1 S 0 FUNÇÃO DO control ck1 1 1 transfere dados das entradas para as saídas ck1 0 1 desloca dados da esquerda para a direita ck2 1 1 transfere dados das entradas para as saídas ck2 1 0 desloca dados da direita para a esquerda 27

29 1.4 Registrador de deslocamento de 8 bits em anel (74164) Vcc Q H Q G Q F Q E Reset Ck R. D. 8 bits Entrada série Saídas paralelas A B Q A Q B Q C Q D GND 2. Na seqüência, energize o circuito e simule, via chaves, os valores possíveis para as entradas; 3. Organize e interprete os dados coletados na experimentação. Verifique se os valores encontrados na saída correspondem à análise teórica do circuito; 4. Desmonte o circuito e reponha o equipamento e componentes aos seus lugares; 5. Mantenha sempre limpo e organizado o ambiente de experimentação educativa. 28

30 5 CONTADORES Conceito O contador digital é um circuito seqüencial, configurado de tal modo que para cada estado presente nas saídas dos flip-flops, existe um estado seguinte bem definido. Durante a operação de contagem, o contador desloca-se de um estado para o outro de acordo com uma seqüência especificada. Características Variam os seus estados, sob comando de pulsos de clock, de acordo com uma seqüência pré-determinada; São usados para contagens, divisores de freqüência, geradores de forma de onda, conversores analógico-digitais, etc; Classificação quanto ao sincronismo Assíncrono: quando o sinal de clock é aplicado apenas ao primeiro estágio (flip-flop). Os estágios seguintes utilizam como sinal de sincronismo a saída de cada estágio anterior. Síncrono: quando o sinal de clock é único e externo, sendo aplicado a todos os estágios ao mesmo tempo. Classificação quanto ao modo de contagem Crescente (progressivo): quando conta numa seqüência de números crescentes. Decrescente (regressivo): quando conta numa seqüência de números decrescentes. Aleatória: quando conta numa seqüência qualquer programada CONTADORES ASSÍNCRONOS Um contador assíncrono, de modo geral, tem as saídas e entradas ligadas e polarizadas conforme a rotina: a) a saída de cada flip-flop deve ser conectada a entrada clock dos flip-flops seguintes; b) as entradas J e K de todos os flip-flops devem ser polarizadas com nível lógico 1, na configuração do flip-flop tipo T; c) o sinal de clock do contador deve acionar a entrada clock do primeiro flip-flop. As saídas do primeiro e último flip-flop correspondem, respectivamente, aos bits menos (LSB) e mais (MSB) significativos do contador. A interligação de todas as entradas clear dos flip-flops fornece uma entrada que corresponde à linha clear (reset) do contador, usada para garantir um estado inicial zero CONTADOR BINÁRIO Apresenta na saída a seqüência de contagem do código binário. 29

31 Inicialmente, supõem-se as saídas zeradas. Aplica-se um pulso de clock no primeiro flipflop, cuja mudança de estado na saída ocorrerá na descida do clock. O flip-flop seguinte mudará o nível lógico na saída sempre que ocorrer a mudança (descida do clock) de nível lógico no flip-flop anterior. O diagrama de tempo abaixo ilustra melhor a seqüência de funcionamento do contador. Após o 16 0 pulso de clock, o contador irá reiniciar a contagem. Observa-se que este circuito possui também a característica de divisor de freqüência por 2, 4, 8 e 16 (f n = f ck /2 n ). Ck Q0 Q1 Q2 Q3 O maior número que um contador pode registrar em sua saída é dado por: (2 n 1), onde n é o número de flip-flops do contador. Exemplo: Para uma contagem limite do contador = = O número de flip-flops necessários será: 2 n 1 = 31 n = 5 flip-flops Obs: A soma dos tempos de transição em cada flip-flop provoca a ocorrência de estados lógicos falsos, que podem ser indesejáveis quando se têm contadores com muitos flipflops e alta freqüência do clock CONTADOR MÓDULO QUALQUER Para o projeto de um contador assíncrono com módulo de contagem qualquer N, basta verificar quais as saídas do contador para o caso N+1. Estas saídas devem ser conectadas a uma porta lógica tipo NÃO-E, cuja saída será remetida para as entradas clear dos flip-flops do contador. Exemplo: Contador de quando as saídas apresentarem Q 2 Q 1 Q 0 = 110 (2) = 6 (10), um pulso zero será encaminhado às entradas clear, zerando o contador e reiniciando a contagem. 30

32 CONTADOR BCD (DÉCADAS) Para contar de 0 a 9: somente quando as saídas apresentarem Q 3 Q 2 Q 1 Q 0 = 1010 (2) = 10 (10) A lógica auxiliar (porta Não-E) assume nível lógico zero em sua saída, encaminhado a todos os terminais clear, zerando todas as saídas e o contador reinicia a contagem CONTADOR BINÁRIO DECRESCENTE O circuito que efetua a contagem decrescente se diferencia da contagem crescente apenas pela forma de obtenção dos clocks dos flip-flops: a partir das saídas complementares. Um outro circuito com mesmo resultado pode ser obtido quando as saídas do contador são extraídas das saídas complementares dos flip-flops. O diagrama de tempo a seguir demonstra a seqüência de contagem. 31

33 Ck Q0 Q1 Q2 Q CONTADOR BINÁRIO CRESCENTE E DECRESCENTE Uma superposição de contadores crescente e decrescente resulta num contador bidirecional, onde uma variável de controle X define se: - contagem crescente X = 1 - contagem decrescente X = 0 Uma outra estrutura pode ser construída usando multiplexadores (TTL 74157) entre os vários estágios do contador que selecionam para a linha clock do próximo estágio a saída Q ou seu complemento Q do flip-flop. O controle da contagem ascendente ou descente é feito pela entrada de seleção C do multiplex: - Para C = 0 a contagem é crescente - Para C = 1 a contagem é decrescente 32

34 5.1.6 CONTADOR ASSÍNCRONO PROGRAMÁVEL Um contador digital pode ser programado com um número binário de tamanho igual ou menor que seu módulo. Uma vez definida a programação, pode-se empregar um circuito comparador que efetua a comparação entre os bits das saídas Q do contador com os bits programados nas entradas A 0, A 1, A 2 e A 3. Quando forem iguais, um sinal controla a parada do contador. 33

35 5.2 CONTADORES SÍNCRONOS Um contador síncrono tem todas as entradas de clock interconectadas, de modo que cada flip-flop muda de estado lógico ao mesmo tempo. Antes de cada pulso de clock, as entradas devem ser estabelecidas com os níveis lógicos apropriados, assegurando nas saídas os estados lógicos desejados. Isto é, o projeto de contadores síncronos requer a alteração conveniente dos níveis lógicos das entradas J e K dos flip-flops, a cada pulso introduzido no clock. Seguindo tal orientação, pode-se construir uma tabela da transição que estabelece os valores nas entradas J e K dos flip-flops, obtida a partir das possíveis combinações de estados na saída Q, antes e depois da aplicação do pulso de clock. J K Q F Q A Q F J K 0 0 Q A X X X Q A 1 1 X CONTADOR BINÁRIO (Procedimento de projeto) O procedimento para projeto de um contador síncrono desenvolvido a seguir pode ser aplicado a qualquer seqüência desejada. a) Determine o número de bits necessários (número de flip-flops) e a seqüência de contagem desejada. Contagem = 2 n 1, onde: n=número de flip-flops Ex: contagem = 15 = 2 n 1 n=4 flip-flops b) Desenhe o diagrama da transição dos estados possíveis, incluindo aqueles que não fazem parte da seqüência de contagem desejada Os números que na fazem parte da contagem podem ser orientados para: a) ir para o início da contagem; b) b) ir para o número imediatamente superior; c) torná-lo irrelevante

CAPÍTULO 5 CONTADORES NA FORMA DE CIRCUITO INTEGRADO

CAPÍTULO 5 CONTADORES NA FORMA DE CIRCUITO INTEGRADO 1 CAPÍTULO 5 CONTADORES NA FORMA DE CIRCUITO INTEGRADO INTRODUÇÃO Devido a necessidade geral de contadores, já existem muitos contadores de forma de CI's. Na série TTL 74 os mais simples são o 74LS90,

Leia mais

Circuitos Seqüenciais: Latches e Flip-Flops. Fabrício Noveletto

Circuitos Seqüenciais: Latches e Flip-Flops. Fabrício Noveletto Circuitos Seqüenciais: Latches e Flip-Flops Fabrício Noveletto Objetivos Usar portas lógicas para construir latches básicos Explicar a diferença entre um latch S-R e um latch D Reconhecer a diferença entre

Leia mais

Capítulo VIII Registradores de Deslocamento e Contadores

Capítulo VIII Registradores de Deslocamento e Contadores Capítulo VIII Registradores de Deslocamento e Contadores 1 Introdução Vimos no capítulo anterior que flip-flops são dispositivos capazes de memorizar o seu estado (SET ou RESET). Neste capítulo estudaremos

Leia mais

MINISTÉRIO DA EDUCAÇÃO IFSC - Campus São José. CST em Telecomunicações ELETRÔNICA DIGITAL CONTADORES. Marcos Moecke

MINISTÉRIO DA EDUCAÇÃO IFSC - Campus São José. CST em Telecomunicações ELETRÔNICA DIGITAL CONTADORES. Marcos Moecke MINISTÉRIO DA EDUCAÇÃO IFSC - Campus São José CST em Telecomunicações ELETRÔNICA DIGITAL CONTADORES Marcos Moecke São José - SC, 29 SUMÁRIO 5. CONTADORES... 5. CONTADORES ASSÍNCRONOS 5. C 5.2 C ASSÍNCRONOS......

Leia mais

Circuitos Digitais Cap. 6

Circuitos Digitais Cap. 6 Circuitos Digitais Cap. 6 Prof. José Maria P. de Menezes Jr. Objetivos Flip-Flops e Dispositivos Correlatos Latch com portas NAND Latch com portas NOR Sinais de Clock e Flip-Flops com Clock Flip-Flop S-C

Leia mais

Flip-Flops (Aplicações) Prof. Rômulo Calado Pantaleão Camara

Flip-Flops (Aplicações) Prof. Rômulo Calado Pantaleão Camara Flip-Flops (Aplicações) Prof. Rômulo Calado Pantaleão Camara Carga Horária: 2h/60h Pulsos Digitais Pulso positivo: executa sua função quando está em nível alto Pulso negativo: executa sua função quando

Leia mais

Contadores (Aula1) Prof. Rômulo Calado Pantaleão Camara

Contadores (Aula1) Prof. Rômulo Calado Pantaleão Camara Contadores (Aula1) Prof. Rômulo Calado Pantaleão Camara Carga Horária: 2h/60h Contadores Contadores (cont.) Os contadores podem ser classificados por: Tipo de controle - Assíncrono - Síncrono Tipo de contagem

Leia mais

MINISTÉRIO DA EDUCAÇÃO CEFET/SC - Unidade de São José. Curso Técnico em Telecomunicações CONTADORES. Marcos Moecke

MINISTÉRIO DA EDUCAÇÃO CEFET/SC - Unidade de São José. Curso Técnico em Telecomunicações CONTADORES. Marcos Moecke MINISTÉRIO DA EDUCAÇÃO - Unidade de São José Curso Técnico em Telecomunicações CONTADORES Marcos Moecke São José - SC, 25 SUMÁRIO 5. CONTADORES... 5. CONTADORES ASSÍNCRONOS... CONTADOR ASSÍNCRONO CRESCENTE...

Leia mais

CAPÍTULO 5 CIRCUITOS SEQUENCIAIS

CAPÍTULO 5 CIRCUITOS SEQUENCIAIS CAPÍTULO 5 CIRCUITOS SEQUENCIAIS Circuitos com memória Latches NAND e NOR e exemplos de utilização Estado do Flip-flop ao ligar o circuito Pulsos digitais Sinais de clock e flip-flops com clock circuitos

Leia mais

MEMÓRIAS. Sistemas Digitais II Prof. Marcelo Wendling Set/10

MEMÓRIAS. Sistemas Digitais II Prof. Marcelo Wendling Set/10 MEMÓRIAS Sistemas Digitais II Prof. Marcelo Wendling Set/10 1 Definição São blocos que armazenam informações codificadas digitalmente números, letras, caracteres quaisquer, comandos de operações, endereços

Leia mais

Conceitos básicos do

Conceitos básicos do Conceitos básicos Conceitos básicos do Este artigo descreve os conceitos de memória eletrônica. Apresentar os conceitos básicos dos flip-flops tipo RS, JK, D e T, D Apresentar o conceito da análise de

Leia mais

Contadores. Contadores Assíncronos Crescentes

Contadores. Contadores Assíncronos Crescentes Contadores Variam seus estados sob o comando de um clock; São utilizados para: Contagens diversas; Divisão de frequência; Medição de frequência e tempo; Geração de formas de onda; Conversão analógico para

Leia mais

Memórias. O que são Memórias de Semicondutores? São componentes capazes de armazenar informações Binárias (0s e 1s)

Memórias. O que são Memórias de Semicondutores? São componentes capazes de armazenar informações Binárias (0s e 1s) Memórias O que são Memórias de Semicondutores? São componentes capazes de armazenar informações Binárias (0s e 1s) Essas informações são guardadas eletricamente em células individuais. Chamamos cada elemento

Leia mais

LABORATÓRIO DE ELETRÔNICA DIGITAL Experiência 9: Análise de Circuitos com Contadores

LABORATÓRIO DE ELETRÔNICA DIGITAL Experiência 9: Análise de Circuitos com Contadores 45 1. Objetivos Realizar a analise detalhada de todos os blocos constituintes de um relógio digital. Implementar um relógio digital. 2. Conceito Um contador é construído a partir de flip-flops (T, D JK,

Leia mais

PROGRAMAÇÃO EM LINGUAGEM LADDER LINGUAGEM DE RELÉS

PROGRAMAÇÃO EM LINGUAGEM LADDER LINGUAGEM DE RELÉS 1 PROGRAMAÇÃO EM LINGUAGEM LADDER LINGUAGEM DE RELÉS INTRODUÇÃO O processamento interno do CLP é digital e pode-se, assim, aplicar os conceitos de lógica digital para compreen8 der as técnicas e as linguagens

Leia mais

Circuitos Sequenciais. Sistemas digitais

Circuitos Sequenciais. Sistemas digitais Circuitos Sequenciais Sistemas digitais Agenda } Introdução } Latchs (trava) } Latch NAND e Latch NOR } Flip-Flop Set-Reset (FF S-R) } FF S-R Latch NAND, FF S-R Latch NOR, FF S-R Latch NAND com Clock }

Leia mais

ARQUITETURA DE COMPUTADORES - 1866

ARQUITETURA DE COMPUTADORES - 1866 7 Unidade Central de Processamento (UCP): O processador é o componente vital do sistema de computação, responsável pela realização das operações de processamento e de controle, durante a execução de um

Leia mais

Arquitetura de Computadores Circuitos Combinacionais, Circuitos Sequênciais e Organização de Memória

Arquitetura de Computadores Circuitos Combinacionais, Circuitos Sequênciais e Organização de Memória Introdução Arquitetura de Computadores Circuitos Combinacionais, Circuitos Sequênciais e O Nível de lógica digital é o nível mais baixo da Arquitetura. Responsável pela interpretação de instruções do nível

Leia mais

EA773 - Experimento 5

EA773 - Experimento 5 EA773 - Experimento 5 Wu Shin - Ting DCA - FEEC - Unicamp 19 de Novembro de 2009 O projeto consiste em implementar uma calculadora com memória com uso de barramento de 8 bits. Neste documento são discutidos

Leia mais

Capítulo 7 Circuitos sequenciais: latches, flipflops, registradores, contadores

Capítulo 7 Circuitos sequenciais: latches, flipflops, registradores, contadores MC62 Mario Côrtes IC / Unicamp IC-UNICAMP MC 62 Circuitos Lógicos e Organização de Computadores IC/Unicamp Prof Mario Côrtes Capítulo 7 Circuitos sequenciais: latches, flipflops, registradores, contadores

Leia mais

3. Arquitetura Básica do Computador

3. Arquitetura Básica do Computador 3. Arquitetura Básica do Computador 3.1. Modelo de Von Neumann Dar-me-eis um grão de trigo pela primeira casa do tabuleiro; dois pela segunda, quatro pela terceira, oito pela quarta, e assim dobrando sucessivamente,

Leia mais

Sistemas Digitais para Computação. AULAS TEÓRICAS 19 a 33

Sistemas Digitais para Computação. AULAS TEÓRICAS 19 a 33 Departamento de Computação Sistemas Digitais para Computação AULAS TEÓRICAS 9 a 33 Prof. MSc. Mário Oliveira Orsi Prof. MSc. Carlos Alexandre Ferreira de Lima Abril de 29 Sistemas Digitais para Computação

Leia mais

Figura 1 - Diagrama de um sistema de controle de temperatura que requer conversão analógico-digital para permitir o uso de técnicas de processamento

Figura 1 - Diagrama de um sistema de controle de temperatura que requer conversão analógico-digital para permitir o uso de técnicas de processamento 1 2 3 Figura 1 - Diagrama de um sistema de controle de temperatura que requer conversão analógico-digital para permitir o uso de técnicas de processamento digital - (Sistemas Digitais: Princípios e Aplicações

Leia mais

GUIA DE LABORATÓRIO DE SISTEMAS DIGITAIS PARA O CURSO DE ENGENHARIA DE CONTROLE E AUTOMAÇÃO

GUIA DE LABORATÓRIO DE SISTEMAS DIGITAIS PARA O CURSO DE ENGENHARIA DE CONTROLE E AUTOMAÇÃO GUIA DE LABORATÓRIO DE SISTEMAS DIGITAIS PARA O CURSO DE ENGENHARIA DE CONTROLE E AUTOMAÇÃO Agosto/2004 V2 INTRODUÇÃO Este guia foi preparado para auxilio às aulas de laboratório para o curso de Engenharia

Leia mais

TÉCNICAS DIGITAIS I (CURSO DE ENGENHARIA DE TELECOMUNICAÇÕES)

TÉCNICAS DIGITAIS I (CURSO DE ENGENHARIA DE TELECOMUNICAÇÕES) CENTRO TECNOLÓGICO ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA DE TELECOMUNICAÇÕES-TET APOSTILA DE TÉCNICAS DIGITAIS I (CURSO DE ENGENHARIA DE TELECOMUNICAÇÕES) &CIRCUITOS DIGITAIS (CURSO DE CIÊNCIAS

Leia mais

Tais operações podem utilizar um (operações unárias) ou dois (operações binárias) valores.

Tais operações podem utilizar um (operações unárias) ou dois (operações binárias) valores. Tais operações podem utilizar um (operações unárias) ou dois (operações binárias) valores. 7.3.1.2 Registradores: São pequenas unidades de memória, implementadas na CPU, com as seguintes características:

Leia mais

INSTITUTO DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE COORDENADORIA DE ELETRÔNICA CONTADORES

INSTITUTO DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE COORDENADORIA DE ELETRÔNICA CONTADORES INSTITUTO DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE COORDENADORIA DE ELETRÔNICA CONTADORES Relatório técnico apresentado como requisito parcial para obtenção de aprovação na disciplina de Sistemas Digitais.

Leia mais

Conversor Analógico /Digital

Conversor Analógico /Digital O que é: Um sistema eletrônico que recebe uma tensão analógica em sua entrada e converte essa tensão para um valor digital em sua saída. Processo de conversão Consiste basicamente em aplicar uma informação

Leia mais

CONTROLE DIGITAL DE VOLUME 1.-----------------------------------------------------------------------------

CONTROLE DIGITAL DE VOLUME 1.----------------------------------------------------------------------------- CONTROLE DIGITAL DE VOLUME 1.----------------------------------------------------------------------------- Uma boa gama de aplicações atuais utiliza o controle de volume digital. Não nos referimos apenas

Leia mais

ULA Sinais de Controle enviados pela UC

ULA Sinais de Controle enviados pela UC Solução - Exercícios Processadores 1- Qual as funções da Unidade Aritmética e Lógica (ULA)? A ULA é o dispositivo da CPU que executa operações tais como: Adição Subtração Multiplicação Divisão Incremento

Leia mais

Memórias Prof. Galvez Gonçalves

Memórias Prof. Galvez Gonçalves Arquitetura e Organização de Computadores 1 s Prof. Galvez Gonçalves Objetivo: Compreender os tipos de memória e como elas são acionadas nos sistemas computacionais modernos. INTRODUÇÃO Nas aulas anteriores

Leia mais

R S Q 0 0 1 0 1 0 1 0 0 1 1 0 Tabela 17 - Tabela verdade NOR

R S Q 0 0 1 0 1 0 1 0 0 1 1 0 Tabela 17 - Tabela verdade NOR 19 Aula 4 Flip-Flop Flip-flops são circuitos que possuem a característica de manter os bits de saída independente de energia, podem ser considerados os princípios das memórias. Um dos circuitos sequenciais

Leia mais

Aula 09. Memórias e Circuitos Digitais Seqüenciais

Aula 09. Memórias e Circuitos Digitais Seqüenciais Aula 09 Memórias e Circuitos Digitais Seqüenciais Introdução Os circuitos lógicos estudados até aqui são chamados de combinacionais (ou combinatórios). São assim chamados porque a sua saída depende apenas

Leia mais

Circuito integrado 555 e suas aplicações

Circuito integrado 555 e suas aplicações Circuito integrado 555 e suas aplicações Introdução Um circuito integrado popular é o versátil 555. Introduzido pela em 1973 pela Signetcs, este circuito integrado tem aplicações que variam de equipamentos

Leia mais

DECODIFICADOR DE DISPLAY DE 7 SEGMENTOS COM LATCH

DECODIFICADOR DE DISPLAY DE 7 SEGMENTOS COM LATCH UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ENGENHARIA ELÉTRICA DECODIFICADOR DE DISPLAY DE 7 SEGMENTOS COM LATCH Projeto para a matéria TE130 Projeto de Circuitos Integrados Digitais, ministrada pelo

Leia mais

DATA: HORÁRIO DE ENTRADA: HORÁRIO DE SAÍDA: BANCADA: NOMES DOS COMPONENTES DO GRUPO DE TRABALHO: PROJETO - CONTADORES ASSÍNCRONOS

DATA: HORÁRIO DE ENTRADA: HORÁRIO DE SAÍDA: BANCADA: NOMES DOS COMPONENTES DO GRUPO DE TRABALHO: PROJETO - CONTADORES ASSÍNCRONOS DATA: HORÁRIO DE ENTRADA: HORÁRIO DE SAÍDA: BANCADA: RGM: NOMES DOS COMPONENTES DO GRUPO DE TRABALHO: PROJETO - CONTADORES ASSÍNCRONOS O objetivo desse projeto extra é aplicar os conceitos vistos em aula

Leia mais

Arquitetura e Organização de Computadores I

Arquitetura e Organização de Computadores I Arquitetura e Organização de Computadores I Interrupções e Estrutura de Interconexão Prof. Material adaptado e traduzido de: STALLINGS, William. Arquitetura e Organização de Computadores. 5ª edição Interrupções

Leia mais

Unidade Central de Processamento (CPU) Processador. Renan Manola Introdução ao Computador 2010/01

Unidade Central de Processamento (CPU) Processador. Renan Manola Introdução ao Computador 2010/01 Unidade Central de Processamento (CPU) Processador Renan Manola Introdução ao Computador 2010/01 Componentes de um Computador (1) Computador Eletrônico Digital É um sistema composto por: Memória Principal

Leia mais

PROJETO LÓGICO DE COMPUTADORES Prof. Ricardo Rodrigues Barcelar http://www.ricardobarcelar.com.br

PROJETO LÓGICO DE COMPUTADORES Prof. Ricardo Rodrigues Barcelar http://www.ricardobarcelar.com.br - Aula 2 - O NÍVEL DA MICROARQUITETURA 1. INTRODUÇÃO Este é o nível cuja função é implementar a camada ISA (Instruction Set Architeture). O seu projeto depende da arquitetura do conjunto das instruções

Leia mais

Projeto de Máquinas de Estado

Projeto de Máquinas de Estado Projeto de Máquinas de Estado Organizado por Rodrigo Hausen. Original de Thomas L. Floyd. Versão 0: 15 de março de 2013 http://compscinet.org/circuitos Resumo Grande parte deste texto, exemplos e estrutura

Leia mais

5 Entrada e Saída de Dados:

5 Entrada e Saída de Dados: 5 Entrada e Saída de Dados: 5.1 - Arquitetura de Entrada e Saída: O sistema de entrada e saída de dados é o responsável pela ligação do sistema computacional com o mundo externo. Através de dispositivos

Leia mais

SISTEMAS DIGITAIS. Memórias. Prof. Guilherme Arroz Prof. Carlos Sêrro Alterado para lógica positiva por Guilherme Arroz.

SISTEMAS DIGITAIS. Memórias. Prof. Guilherme Arroz Prof. Carlos Sêrro Alterado para lógica positiva por Guilherme Arroz. SISTEMAS DIGITAIS Memórias Alterado para lógica positiva por Guilherme Arroz Sistemas Digitais 1 Tipos de memórias Existem vários tipos de memórias em sistemas digitais As memórias internas dos dispositivos,

Leia mais

1. CAPÍTULO COMPUTADORES

1. CAPÍTULO COMPUTADORES 1. CAPÍTULO COMPUTADORES 1.1. Computadores Denomina-se computador uma máquina capaz de executar variados tipos de tratamento automático de informações ou processamento de dados. Os primeiros eram capazes

Leia mais

CAPÍTULO 5. INTERFACES PARA PERIFÉRICOS DE ARMAZENAMENTO INTERFACES DIVERSAS: FIREWIRE, SPI e I 2 C INTERFACES COM O MUNDO ANALÓGICO

CAPÍTULO 5. INTERFACES PARA PERIFÉRICOS DE ARMAZENAMENTO INTERFACES DIVERSAS: FIREWIRE, SPI e I 2 C INTERFACES COM O MUNDO ANALÓGICO 28 CAPÍTULO 5 INTERFACES PARA PERIFÉRICOS DE ARMAZENAMENTO INTERFACES DIVERSAS: FIREWIRE, SPI e I 2 C INTERFACES COM O MUNDO ANALÓGICO Interfaces para periféricos de armazenamento: Periféricos de armazenamento,

Leia mais

Conversão Analógica Digital

Conversão Analógica Digital Slide 1 Conversão Analógica Digital Até agora, discutimos principalmente sinais contínuos (analógicos), mas, atualmente, a maioria dos cálculos e medições é realizada com sistemas digitais. Assim, precisamos

Leia mais

Aula 11. 1. Memória principal e 2. Memória de armazenagem em massa.

Aula 11. 1. Memória principal e 2. Memória de armazenagem em massa. Aula 11 Memórias Semicondutoras Introdução Em termos gerais, a memória de um computador pode ser dividida em dois tipos: 1. Memória principal e 2. Memória de armazenagem em massa. A memória principal é

Leia mais

UNIVERSIDADE DO ESTADO DE SANTA CATARINA - UDESC CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT DEPARTAMENTO DE ENGENHARIA ELÉTRICA DEE

UNIVERSIDADE DO ESTADO DE SANTA CATARINA - UDESC CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT DEPARTAMENTO DE ENGENHARIA ELÉTRICA DEE P L A N O D E E N S I N O DEPARTAMENTO: Engenharia Elétrica DISCIPLINA: Eletrônica Digital SIGLA: ELD0001 PRÉ-REQUISITOS: ALB0001 CARGA HORÁRIA TOTAL: 108 h/aula TEORIA: 72 h/aula PRÁTICA: 36 h/aula CURSO:

Leia mais

1.3 Conectando a rede de alimentação das válvulas solenóides

1.3 Conectando a rede de alimentação das válvulas solenóides 1.3 Conectando a rede de alimentação das válvulas solenóides CONTROLE DE FLUSHING AUTOMÁTICO LCF 12 Modo Periódico e Horário www.lubing.com.br (19) 3583-6929 DESCALVADO SP 1. Instalação O equipamento deve

Leia mais

O hardware é a parte física do computador, como o processador, memória, placamãe, entre outras. Figura 2.1 Sistema Computacional Hardware

O hardware é a parte física do computador, como o processador, memória, placamãe, entre outras. Figura 2.1 Sistema Computacional Hardware 1 2 Revisão de Hardware 2.1 Hardware O hardware é a parte física do computador, como o processador, memória, placamãe, entre outras. Figura 2.1 Sistema Computacional Hardware 2.1.1 Processador O Processador

Leia mais

Programação Básica em STEP 7 Operações Binárias. SITRAIN Training for Automation and Drives. Página 6-1

Programação Básica em STEP 7 Operações Binárias. SITRAIN Training for Automation and Drives. Página 6-1 Conteúdo Página Operações Lógicas Binárias: AND, OR...2 Operações Lógicas Binárias: OR Exclusivo (XOR)...3 Contatos Normalmente Abertos e Normalmente Fechados. Sensores e Símbolos... 4 Exercício...5 Resultado

Leia mais

Disciplina: Introdução à Informática Profª Érica Barcelos

Disciplina: Introdução à Informática Profª Érica Barcelos Disciplina: Introdução à Informática Profª Érica Barcelos CAPÍTULO 4 1. ARQUITETURA DO COMPUTADOR- HARDWARE Todos os componentes físicos constituídos de circuitos eletrônicos interligados são chamados

Leia mais

Instituto Tecnológico de Aeronáutica - ITA Divisão de Engenharia Eletrônica Departamento de Eletrônica Aplicada Laboratório de EEA-21

Instituto Tecnológico de Aeronáutica - ITA Divisão de Engenharia Eletrônica Departamento de Eletrônica Aplicada Laboratório de EEA-21 Instituto Tecnológico de Aeronáutica - ITA Divisão de Engenharia Eletrônica Departamento de Eletrônica Aplicada Laboratório de EEA-21 7ª Experiência Síntese de Circuitos Sequenciais Síncronos 1. Objetivos

Leia mais

Profª Danielle Casillo

Profª Danielle Casillo UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO Automação e Controle Aula 08 Linguagem Laddercont... Profª Danielle Casillo Funções Lógicas em Ladder A. Função NãoE (NAND) Consiste

Leia mais

Organização de Computadores 1

Organização de Computadores 1 Organização de Computadores 1 SISTEMA DE INTERCONEXÃO (BARRAMENTOS) Prof. Luiz Gustavo A. Martins Arquitetura de von Newmann Componentes estruturais: Memória Principal Unidade de Processamento Central

Leia mais

Controladores Lógicos Programáveis CLP (parte-3)

Controladores Lógicos Programáveis CLP (parte-3) Controladores Lógicos Programáveis CLP (parte-3) Mapeamento de memória Na CPU (Unidade Central de Processamento) de um CLP, todas a informações do processo são armazenadas na memória. Essas informações

Leia mais

Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006. PdP. Pesquisa e Desenvolvimento de Produtos

Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006. PdP. Pesquisa e Desenvolvimento de Produtos TUTORIAL Montagem da Ponte H Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006 PdP Pesquisa e Desenvolvimento de Produtos http://www.maxwellbohr.com.br contato@maxwellbohr.com.br

Leia mais

Conheça o 4017 (ART062)

Conheça o 4017 (ART062) 1 de 11 20/02/2013 18:14 Conheça o 4017 (ART062) Este artigo não é novo, mas sua atualidade se manterá por muito tempo, o que jusitifica o fato dele ser um dos mais acessados desse site. De fato, o circuito

Leia mais

Ministério da Educação Universidade Federal do Ceará Pró-Reitoria de Graduação

Ministério da Educação Universidade Federal do Ceará Pró-Reitoria de Graduação Ministério da Educação Universidade Federal do Ceará Pró-Reitoria de Graduação PROGRAMA DA DISCIPLINA 1 2 Curso: Engenharia Elétrica Código: 20 3 4 Modalidade(s): Bacharelado Currículo(s): 2005/1 5 Turno(s):

Leia mais

Circuitos de Memória: Tipos e Funcionamento. Fabrício Noveletto

Circuitos de Memória: Tipos e Funcionamento. Fabrício Noveletto Circuitos de Memória: Tipos e Funcionamento Fabrício Noveletto Memória de semicondutores São dispositivos capazes de armazenar informações digitais. A menor unidade de informação que pode ser armazenada

Leia mais

CALCULADORA SIMPLES COM ULA

CALCULADORA SIMPLES COM ULA CALCULADORA SIMPLES COM ULA Versão 2012 RESUMO 1 Esta experiência tem por objetivo a utilização de circuitos integrados de operações lógicas e aritméticas para o desenvolvimento de circuitos que executam

Leia mais

Central de Alarme de Oito Zonas

Central de Alarme de Oito Zonas Central de Alarme de Oito Zonas R02 ÍNDICE CARACTERÍSTICAS GERAIS:... 3 CARACTERÍSTICAS TÉCNICAS:... 3 CONHECENDO A CENTRAL:... 4 COMO A CENTRAL FUNCIONA:... 4 COMO APAGAR A MEMÓRIA DA CENTRAL:... 4 COMO

Leia mais

4.3. Máquina de estados: São utilizados em sistemas de complexos, é de fácil transformação para ladder desde que não haja muitas ramificações.

4.3. Máquina de estados: São utilizados em sistemas de complexos, é de fácil transformação para ladder desde que não haja muitas ramificações. Parte 4 - Técnicas de programação (Lógica simples) INTRODUÇÃO Programar em ladder é muito simples, desde que ele tenha uma estrutura sob a qual o programa deve ser desenvolvido, ou seja, se deve ter um

Leia mais

Organização e Arquitetura de Computadores I

Organização e Arquitetura de Computadores I Organização e Arquitetura de Computadores I Aritmética Computacional Slide 1 Sumário Unidade Lógica e Aritmética Representação de Números Inteiros Aritmética de Números Inteiros Representação de Números

Leia mais

DISPOSITIVOS ESPECIAIS

DISPOSITIVOS ESPECIAIS DISPOSITIVOS ESPECIAIS 1 DISPOSITIVOS ESPECIAIS BUFFERS/DRIVERS TRI-STATE PORTAS EXPANSÍVEIS/EXPANSORAS SCHMITT - TRIGGER OBJETIVOS: a) Entender o funcionamento de dispositivos lógicos especiais como:

Leia mais

BARRAMENTO DO SISTEMA

BARRAMENTO DO SISTEMA BARRAMENTO DO SISTEMA Memória Principal Processador Barramento local Memória cachê/ ponte Barramento de sistema SCSI FireWire Dispositivo gráfico Controlador de vídeo Rede Local Barramento de alta velocidade

Leia mais

A Unidade Central de Processamento é a responsável pelo processamento e execução de programas armazenados na MP.

A Unidade Central de Processamento é a responsável pelo processamento e execução de programas armazenados na MP. A ARQUITETURA DE UM COMPUTADOR A arquitetura básica de um computador moderno segue ainda de forma geral os conceitos estabelecidos pelo Professor da Universidade de Princeton, John Von Neumann (1903-1957),

Leia mais

CONSTRUÍNDO OS SISTEMAS SEQÜENCIAIS PELA ASSOCIAÇÃO DOS FLIPs/FLOPs À UMA LÓGICA COMBINACIONAL.

CONSTRUÍNDO OS SISTEMAS SEQÜENCIAIS PELA ASSOCIAÇÃO DOS FLIPs/FLOPs À UMA LÓGICA COMBINACIONAL. CAPÍTULO 3 CONSTRUÍNDO OS SISTEMAS SEQÜENCIAIS PELA ASSOCIAÇÃO DOS FLIPs/FLOPs À UMA LÓGICA COMBINACIONAL.. Introdução : O uso dos F/Fs nos permite uma série de aplicações, tais como, memórias, contadores,

Leia mais

Sistemas Computacionais II Professor Frederico Sauer

Sistemas Computacionais II Professor Frederico Sauer Sistemas Computacionais II Professor Frederico Sauer Livro-texto: Introdução à Organização de Computadores 4ª edição Mário A. Monteiro Livros Técnicos e Científicos Editora. Atenção: Este material não

Leia mais

UNIVERSIDADE CATÓLICA DE PETRÓPOLIS CENTRO DE ENGENHARIA E COMPUTAÇÃO

UNIVERSIDADE CATÓLICA DE PETRÓPOLIS CENTRO DE ENGENHARIA E COMPUTAÇÃO UNIVERSIDADE CATÓLICA DE PETRÓPOLIS CENTRO DE ENGENHARIA E COMPUTAÇÃO Amanda 5ª Atividade: Codificador e codificação de linha e seu uso em transmissão digital Petrópolis, RJ 2012 Codificador: Um codoficador

Leia mais

Monitor de Rede Elétrica Som Maior Pro. Manual do Usuário Versão 3.9f

Monitor de Rede Elétrica Som Maior Pro. Manual do Usuário Versão 3.9f Monitor de Rede Elétrica Som Maior Pro Manual do Usuário Versão 3.9f 2 ÍNDICE PÁG. 1 APRESENTAÇÃO...03 2 DESCRIÇÃO DO EQUIPAMENTO...04 2.1 ROTINA INICIAL DE AVALIAÇÃO DA REDE ELÉTRICA...04 2.2 TROCA DE

Leia mais

Memorias. Flip-Flop RS básico (Assíncrono) preencher. Tabela da verdade S R Q A S Q

Memorias. Flip-Flop RS básico (Assíncrono) preencher. Tabela da verdade S R Q A S Q Memorias Flip-Flop básico (Assíncrono) Tabela da verdade A preencher Flip-Flop básico (Assíncrono) Tabela da verdade esumindo: A = A = A = = = A X = X não permitido X não permitido Flip-Flops íncrono Com

Leia mais

Conceitos de Entrada e Saída

Conceitos de Entrada e Saída Conceitos de Entrada e Saída O processo de fornecer informações ou obtê-las dos computadores é chamado entrada/saída (E/S). Grandes mainframes utilizam uma organização de E/S consistindo de uma ou mais

Leia mais

ARQUITETURA DE COMPUTADORES

ARQUITETURA DE COMPUTADORES ARQUITETURA DE COMPUTADORES Aula 08: UCP Características dos elementos internos da UCP: registradores, unidade de controle, decodificador de instruções, relógio do sistema. Funções do processador: controle

Leia mais

SISTEMAS DIGITAIS CIRCUITOS SEQUENCIAIS BÁSICOS

SISTEMAS DIGITAIS CIRCUITOS SEQUENCIAIS BÁSICOS CICUITO EUENCIAI BÁICO CICUITO EUENCIAI BÁICO - 2 UMÁIO: ELEMENTO BÁICO DE MEMÓIA LATCHE LATCH LATCH INCONIZADO LATCH D FLIP-FLOP FLIP-FLOP MATE-LAVE FLIP-FLOP JK FLIP-FLOP EDGE-TIGGEED IMBOLOGIA CAACTEIZAÇÃO

Leia mais

Portas lógicas e circuitos digitais. Sistemas da Computação Prof. Rossano Pablo Pinto, Msc. rossano at gmail com 2 semestre 2007

Portas lógicas e circuitos digitais. Sistemas da Computação Prof. Rossano Pablo Pinto, Msc. rossano at gmail com 2 semestre 2007 Portas lógicas e circuitos digitais Sistemas da Computação Prof. Rossano Pablo Pinto, Msc. rossano at gmail com 2 semestre 2007 Tópicos Portas Circuito somador Circuito subtrator flip-flops (registradores)

Leia mais

Estrutura de um Computador

Estrutura de um Computador SEL-0415 Introdução à Organização de Computadores Estrutura de um Computador Aula 7 Prof. Dr. Marcelo Andrade da Costa Vieira MODELO DE VON NEUMANN PRINCÍPIOS A arquitetura de um computador consiste de

Leia mais

CDE4000 MANUAL 1. INTRODUÇÃO 2. SOFTWARE DE CONFIGURAÇÃO 3. COMUNICAÇÃO

CDE4000 MANUAL 1. INTRODUÇÃO 2. SOFTWARE DE CONFIGURAÇÃO 3. COMUNICAÇÃO CDE4000 MANUAL 1. INTRODUÇÃO O controlador CDE4000 é um equipamento para controle de demanda e fator de potência. Este controle é feito em sincronismo com a medição da concessionária, através dos dados

Leia mais

Tecnicas com Sistemas Digitais

Tecnicas com Sistemas Digitais Tecnicas com Sistemas Digitais Prof. Engº Luiz Antonio Vargas Pinto 1 Prof. Eng Luiz Antonio Vargas Pinto 2 Prof. Eng Luiz Antonio Vargas Pinto Índice Índice...2 Introdução...3 Ruído (Bounce)...3 Transistor

Leia mais

Controle universal para motor de passo

Controle universal para motor de passo Controle universal para motor de passo No projeto de automatismos industriais, robótica ou ainda com finalidades didáticas, um controle de motor de passo é um ponto crítico que deve ser enfrentado pelo

Leia mais

Estrutura interna de um microcontrolador

Estrutura interna de um microcontrolador Estrutura interna de um microcontrolador Um microcontrolador é composto por um conjunto de periféricos interligados a uma unidade de processamento e todo este conjunto confere a este componente uma versatilidade

Leia mais

Capacidade = 512 x 300 x 20000 x 2 x 5 = 30.720.000.000 30,72 GB

Capacidade = 512 x 300 x 20000 x 2 x 5 = 30.720.000.000 30,72 GB Calculando a capacidade de disco: Capacidade = (# bytes/setor) x (méd. # setores/trilha) x (# trilhas/superfície) x (# superfícies/prato) x (# pratos/disco) Exemplo 01: 512 bytes/setor 300 setores/trilha

Leia mais

CIÊNCIA E TECNOLOGIA DO RIO INFORMÁTICA BÁSICA AULA 03. Docente: Éberton da Silva Marinho e-mail: ebertonsm@gmail.com 25/06/2014

CIÊNCIA E TECNOLOGIA DO RIO INFORMÁTICA BÁSICA AULA 03. Docente: Éberton da Silva Marinho e-mail: ebertonsm@gmail.com 25/06/2014 INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE INFORMÁTICA BÁSICA AULA 03 Docente: Éberton da Silva Marinho e-mail: ebertonsm@gmail.com 25/06/2014 Unidades de armazenamento

Leia mais

Portas Lógicas Básicas Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 2h/60h

Portas Lógicas Básicas Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 2h/60h Portas Lógicas Básicas Prof. Rômulo Calado Pantaleão Camara Carga Horária: 2h/60h Colegiado de Engenharia da Computação CECOMP Introdução à Algebra de Boole Em lógica tradicional, uma decisão é tomada

Leia mais

DATA: HORÁRIO DE ENTRADA: HORÁRIO DE SAÍDA: BANCADA: NOMES DOS COMPONENTES DO GRUPO DE TRABALHO:

DATA: HORÁRIO DE ENTRADA: HORÁRIO DE SAÍDA: BANCADA: NOMES DOS COMPONENTES DO GRUPO DE TRABALHO: DATA: HORÁRIO DE ENTRADA: HORÁRIO DE SAÍDA: BANCADA: RGM: NOMES DOS COMPONENTES DO GRUPO DE TRABALHO: PROJETO - CONTADOR SÍNCRONO O objetivo desse projeto extra é aplicar os conceitos vistos em aula teórica

Leia mais

Tutorial de Eletrônica Aplicações com 555 v2010.05

Tutorial de Eletrônica Aplicações com 555 v2010.05 Tutorial de Eletrônica Aplicações com 555 v2010.05 Linha de Equipamentos MEC Desenvolvidos por: Maxwell Bohr Instrumentação Eletrônica Ltda. Rua Porto Alegre, 212 Londrina PR Brasil http://www.maxwellbohr.com.br

Leia mais

Capítulo 4 Livro do Mário Monteiro Introdução Hierarquia de memória Memória Principal. Memória principal

Capítulo 4 Livro do Mário Monteiro Introdução Hierarquia de memória Memória Principal. Memória principal Capítulo 4 Livro do Mário Monteiro Introdução Hierarquia de memória Memória Principal Organização Operações de leitura e escrita Capacidade http://www.ic.uff.br/~debora/fac! 1 2 Componente de um sistema

Leia mais

Placa Acessório Modem Impacta

Placa Acessório Modem Impacta manual do usuário Placa Acessório Modem Impacta Parabéns, você acaba de adquirir um produto com a qualidade e segurança Intelbras. A Placa Modem é um acessório que poderá ser utilizado em todas as centrais

Leia mais

Circuitos Digitais. Conteúdo. Introdução. Códigos. Outros Códigos BCD de 4 Bits. Código BCD 8421. Circuitos Combinacionais.

Circuitos Digitais. Conteúdo. Introdução. Códigos. Outros Códigos BCD de 4 Bits. Código BCD 8421. Circuitos Combinacionais. iência da omputação ircuitos ombinacionais Parte II Prof. Sergio Ribeiro onteúdo Introdução ódigos inários ódigo Outros ódigos ódigo Excesso de ódigo Gray ódigos de bits ódigo odificadores e ecodificadores

Leia mais

Funções de Posicionamento para Controle de Eixos

Funções de Posicionamento para Controle de Eixos Funções de Posicionamento para Controle de Eixos Resumo Atualmente muitos Controladores Programáveis (CPs) classificados como de pequeno porte possuem, integrados em um único invólucro, uma densidade significativa

Leia mais

A idéia hardware sugerida é colocar a placa entre o PC e o microcontrolador, conforme mostrado no esquema abaixo.

A idéia hardware sugerida é colocar a placa entre o PC e o microcontrolador, conforme mostrado no esquema abaixo. Circuito de gravação (AVR programmer) Introdução Nossa proposta, nesta parte do trabalho, é apresentar um circuito para gravação ISP (In-System- Programming) para microcontroladores AVR. Este circuito,

Leia mais

Arquitetura de Computadores. Tipos de Instruções

Arquitetura de Computadores. Tipos de Instruções Arquitetura de Computadores Tipos de Instruções Tipos de instruções Instruções de movimento de dados Operações diádicas Operações monádicas Instruções de comparação e desvio condicional Instruções de chamada

Leia mais

HARDWARE COMPONENTES BÁSICOS E FUNCIONAMENTO. Wagner de Oliveira

HARDWARE COMPONENTES BÁSICOS E FUNCIONAMENTO. Wagner de Oliveira HARDWARE COMPONENTES BÁSICOS E FUNCIONAMENTO Wagner de Oliveira SUMÁRIO Hardware Definição de Computador Computador Digital Componentes Básicos CPU Processador Memória Barramento Unidades de Entrada e

Leia mais

Disciplina: Laboratório de Circuitos Digitais

Disciplina: Laboratório de Circuitos Digitais Universidade Federal de São Carlos Disciplina: Laboratório de Circuitos Digitais Prof. Dr. Emerson Carlos Pedrino 3ª Prática: Rotação de uma palavra nos Displays de 7 segmentos Data: 10/04/2014 Nome: Adrián

Leia mais

SISTEMAS OPERACIONAIS CAPÍTULO 3 CONCORRÊNCIA

SISTEMAS OPERACIONAIS CAPÍTULO 3 CONCORRÊNCIA SISTEMAS OPERACIONAIS CAPÍTULO 3 CONCORRÊNCIA 1. INTRODUÇÃO O conceito de concorrência é o princípio básico para o projeto e a implementação dos sistemas operacionais multiprogramáveis. O sistemas multiprogramáveis

Leia mais

Quadro de consulta (solicitação do mestre)

Quadro de consulta (solicitação do mestre) Introdução ao protocolo MODBUS padrão RTU O Protocolo MODBUS foi criado no final dos anos 70 para comunicação entre controladores da MODICON. Por ser um dos primeiros protocolos com especificação aberta

Leia mais

Fabio Bento fbento@ifes.edu.br

Fabio Bento fbento@ifes.edu.br Fabio Bento fbento@ifes.edu.br Eletrônica Digital Sistemas de Numeração e Códigos 1. Conversões de Binário para Decimal 2. Conversões de Decimal para Binário 3. Sistema de Numeração Hexadecimal 4. Código

Leia mais

Introdução. Hardware (Parte II) Informações Adicionais. Universidade Federal de Campina Grande Departamento de Sistemas e Computação

Introdução. Hardware (Parte II) Informações Adicionais. Universidade Federal de Campina Grande Departamento de Sistemas e Computação Universidade Federal de Campina Grande Departamento de Sistemas e Computação Introdução à Computação Hardware (Parte II) Informações Adicionais Prof. a Joseana Macêdo Fechine Régis de Araújo joseana@computacao.ufcg.edu.br

Leia mais

Entrada e Saída. Prof. Leonardo Barreto Campos 1

Entrada e Saída. Prof. Leonardo Barreto Campos 1 Entrada e Saída Prof. Leonardo Barreto Campos 1 Sumário Introdução; Dispositivos Externos; E/S Programada; E/S Dirigida por Interrupção; Acesso Direto à Memória; Bibliografia. Prof. Leonardo Barreto Campos

Leia mais

LABORATÓRIO N.º 1 Uso do Módulo Digital e Iniciação a Eletrônica Digital

LABORATÓRIO N.º 1 Uso do Módulo Digital e Iniciação a Eletrônica Digital 2014.02 LABORATÓRIO N.º 1 Uso do Módulo Digital e Iniciação a Eletrônica Digital Nome do Aluno(a) I PRIMEIROS CONTATOS COM A I.1- Introdução Na primeira parte das atividades deste roteiro o aluno entrará

Leia mais