INF 1771 Inteligência Artificial
|
|
|
- Angélica Carmona Carlos
- 10 Há anos
- Visualizações:
Transcrição
1 Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 23 Redes Bayesianas
2 Vantagens e Desvantagens da Probabilidade Possui uma boa fundamentação formal. Permite encontrar probabilidades a posteriori. Pode chegar a resultados inapropriados para o presente. O futuro não é sempre similar ao passado. Nem sempre é possível realizar um conjunto suficiente de experimentos.
3 Vantagens e Desvantagens da Probabilidade A distribuição de probabilidade conjunta completa pode responder a qualquer pergunta sobre o domínio, mas pode tornar-se intratável quando o número de variáveis aumenta. A independência e as relações de independência condicional entre as variáveis podem reduzir significativamente o número de probabilidades que devem ser especificadas para definir a distribuição completa.
4 Redes Bayesianas Estrutura de dados para representar as dependências entre variáveis e fornecer uma especificação concisa de qualquer distribuição de probabilidade conjunta total. Consiste em um grafo dirigido em que cada nó possui informações quantitativas de probabilidade. É definido por: Um conjunto de nós, um para cada variável aleatória. Um conjunto de links direcionados ou setas ligando os pares de nós. Cada nó tem uma distribuição condicional P(X i Parents(X i )) que quantifica o efeito dos parents sobre o nó.
5 Redes Bayesianas - Exemplo A topologia de uma rede representa relações de independência condicional: Clima Cárie Dor_De_Dente Sonda Clima é independente de outras variáveis. Dor_De_Dente e Sonda são condicionalmente independentes dado Cárie. Informalmente, a rede representa o fato de que Cárie é uma causa direta de Dor_De_Dente e Sonda.
6 Redes Bayesianas Exemplo Você tem um novo alarme contra roubo instalado em casa. É bastante confiável na detecção de um roubo, mas dispara também na ocasião para pequenos terremotos. Você também tem dois vizinhos, João e Maria, que prometeram ligar para você no trabalho, quando ouvissem o alarme. João sempre liga quando ele ouve o alarme, mas às vezes confunde o telefone com o alarme. Maria, por outro lado, gosta de ouvir música alta e às vezes não escuta o alarme.
7 Redes Bayesianas Exemplo Variáveis: Roubo, Terremoto, Alarme, JoãoLiga, MariaLiga. A topologia da rede reflete conhecimento causal : Um roubo pode ativar o alarme. Um terremoto pode ativar o alarme. O alarme faz Maria telefonar. O alarme faz João telefonar.
8 Redes Bayesianas Exemplo Roubo P(R) Terremoto P(T) R T P(A) V V 0.95 Alarme V F 0.94 F V 0.29 F F JoãoLiga A P(J) V 0.90 MariaLiga A P(M) V 0.70 F 0.05 F 0.01
9 Exemplo Topologia da Rede Roubos e terremotos afetam diretamente a probabilidade do alarme tocar. O fato de João e Maria telefonarem só depende do alarme. Desse modo, a rede representa as suposições de que eles não percebem quaisquer roubos diretamente, não notam os terremotos e não verificam antes de ligar.
10 Exemplo Probabilidades As probabilidades resumem um conjunto potencialmente infinito de circunstâncias: Maria ouve música alta. João liga quando ouve o telefone tocar; umidade, falta de energia, etc., podem interferir no alarme; João e Maria não estão em casa, etc.
11 Tabelas de Probabilidade Condicional Cada linha em uma tabela de probabilidade condicional contém a probabilidade condicional de cada valor do nó para um caso de condicionamento. Um caso de condicionamento é uma combinação possível de valores para os nós superiores. Exemplo: R T P(A) V V 0.95 V F 0.94 F V 0.29 F F 0.001
12 Semântica das Redes Bayesianas Semântica global (ou numérica): busca entender as redes como uma representação da distribuição de probabilidade conjunta. Indica como construir uma rede. Semântica local (ou topológica): visualizálas como uma codificação de uma coleção de declarações de independência condicional. Indica como fazer inferências com uma rede.
13 Semântica Global A semântica global (ou numérica) define a distribuição de probabilidade total como o produto das distribuições condicionais locais: P (X 1,,X n ) = P (X i parents(x i )) Exemplo: P(j m a r t) = P(j a) P(m a) P(a r t) P( r) P ( t) = 0.9 x 0.7 x x x = n i 1
14 Semântica Local Semântica local (topológica): cada nó é condicionalmente independente de seus nãodescendentes dados seus pais. Um nó X é condicionalmente independente de seus não descendentes (Z ij ) dados seus pais (U i ).
15 Semântica Local e Global A distribuição conjunta pode ser reconstruída a partir das asserções sobre a independência condicional e das tabelas de probabilidade condicional. Deste modo a semântica numérica e topológica são equivalentes.
16 Construindo uma Rede Bayesiana (1) Escolhe-se o conjunto de variáveis X i que descrevem apropriadamente o domínio. (2) Seleciona-se a ordem de distribuição das variáveis (Passo importante). (3) Enquanto ainda existirem variáveis: (a) Seleciona-se uma variável X e um nó para ela. (b) Define-se Parent(X) para um conjunto mínimo de nós de forma que a independência condicional seja satisfeita. (c) Define-se a tabela de probabilidade para X.
17 Ordem para as Variáveis A ordem correta em que os nós devem ser adicionados consiste em adicionar primeiro as causas de raiz, depois as variáveis que elas influenciam e assim por diante, até chegarmos às folhas, que não tem nenhuma influência causal direta sobre as outras variáveis. Principio Minimalista: Quanto menor a rede, melhor ela é.
18 Exemplo Ordenação Errada MariaLiga JoãoLiga A rede resultante terá dois vínculos a mais que a rede original e exigirá outras probabilidades para serem especificadas. Terremoto Alarme Roubo Alguns dos vínculos apresentam relacionamentos tênues que exigem julgamentos de probabilidade difíceis e antinaturais (probabilidade de Terremoto, dados Roubo e Alarme) Em geral, é melhor pensar de causas para efeitos (modelo causal) e não do contrário (modelo de diagnóstico)
19 Inferência em Redes Bayesianas Inferência Diagnostica (de efeitos para causas): Dado que João liga, qual a probabilidade de roubo? Ex: P(R J) Inferência Casual (de causas para efeitos): Dado roubo, qual é a probabilidade de: João ligar? ex: P(J R). Maria ligar? ex: P(M R).
20 Inferência em Redes Bayesianas Inferência Intercasual (entre causas de um evento em comum): Dado terremoto e alarme, qual a probabilidade de roubo? Ex: P(R A T) Inferência Mista (algumas causas e alguns efeitos conhecidos): Dado que João liga e não existe terremoto, qual é a probabilidade de alarme? Ex: P(A J T)
21 Inferencia em Redes Bayesianas? E E? E? E? E Inferência Diagnostica Inferência Casual Inferência Intercasual Inferência Mista
22 Exemplo E Roubo P(R) Terremoto P(T) R E P(A) P(JoãoLiga Roubo) Alarme V V 0.95 V F 0.94 F V 0.29 F F 0.001? JoãoLiga A P(J) V 0.90 MariaLiga A P(M) V 0.70 F 0.05 F 0.01
23 Exemplos de Softwares Microsoft Bayesian Network Editor: Netica:
Raciocínio Probabilístico. Inteligência Artificial. Redes Bayesianas. Exemplo. Exemplo. Exemplo. Capítulo 14 Russell & Norvig Seções 14.1 a 14.
Inteligência Artificial Raciocínio Probabilístico Aula 13 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia Capítulo 14 Russell & Norvig Seções 14.1 a 14.2 Redes Bayesianas Estrutura de dados para
Inteligência Artificial
Universidade Federal de Campina Grande Unidade Acadêmica de Sistemas e Computação Curso de Pós-Graduação em Ciência da Computação Inteligência Artificial Representação do Conhecimento (Parte II) Prof.
Conhecimento Incerto Redes de Crença
Conhecimento Incerto Redes de Crença Profa. Josiane M. P. Ferreira Texto base: David Poole, Alan Mackworth e Randy Goebel - Computational Intelligence A logical approach cap 10. Stuart Russel e Peter Norving
Redes Bayesianas. Disciplina: Inteligência Artificial Prof.: Cedric Luiz de Carvalho
Redes Bayesianas Disciplina: Inteligência Artificial Prof.: Cedric Luiz de Carvalho Introdução Tópicos Especificação e topologia das Redes Bayesianas Semântica Construção Tipos de Inferência Conclusões
Grafos. Redes Sociais e Econômicas. Prof. André Vignatti
Grafos Redes Sociais e Econômicas Prof. André Vignatti Teoria dos Grafos e Redes Sociais Veremos algumas das idéias básicas da teoria dos grafos Permite formular propriedades de redes em uma linguagem
Aprendizado Bayesiano. Disciplina: Agentes Adaptativos e Cognitivos
Aprendizado Bayesiano Disciplina: Agentes Adaptativos e Cognitivos Conhecimento com Incerteza Exemplo: sistema de diagnóstico odontológico Regra de diagnóstico " p sintoma (p,dor de dente) doença (p,cárie)
Inteligência Artificial. Raimundo Osvaldo Vieira [DECOMP IFMA Campus Monte Castelo]
Inteligência Artificial Raimundo Osvaldo Vieira [DECOMP IFMA Campus Monte Castelo] Abordagem Estocástica para a Incerteza: Redes Bayesianas Usando a teoria das probabilidades, podemos determinar, frequentemente
REDES BAYESIANAS. Palavras-chave: Redes bayesianas, Grafo, Estrutura de Dados, Inteligência artificial.
REDES BAYESIANAS Gabriel Rigo da Cruz Jacobsen [email protected] Prof. Leonardo Sommariva, Estrutura de Dados RESUMO: Uma rede bayesiana é uma forma de representar o conhecimento de um domínio onde
Redes Bayesianas: o que são, para que servem, algoritmos e exemplos de aplicações. Inteligência Artificial Profa.: Inês Dutra Roberto Ligeiro
Redes Bayesianas: o que são, para que servem, algoritmos e exemplos de aplicações. Inteligência Artificial Profa.: Inês Dutra Roberto Ligeiro Resumo Introdução. Raciocinando sobre incertezas. Cálculo de
Manual para criar uma rede bayesiana utilizando a shell Netica.
Manual para criar uma rede bayesiana utilizando a shell Netica. Uma rede bayesiana tem uma arquitetura de um grafo acíclico, onde os nós representam as variáveis (de entrada e de saída) que se interrelacionam
Redes Bayesianas e Inferência Exata
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Computação e Sistemas Digitais PCS2059 Inteligência Artificial Gabriel Iseppe Porto 5174633 Raphael Petegrosso 5176451 Victor
REDES BAYESIANAS. [email protected]
REDES BAYESIANAS Karila Palma Silva Programa de Pós-Graduação em Engenharia de Automação e Sistemas (PPGEAS) Universidade Federal de Santa Catarina (UFSC) Florianópolis SC Brasil [email protected] Abstract
Independência Regra de Bayes Redes Bayesianas
Independência Regra de Bayes Redes Bayesianas Inferência Probabilística Evidência observada: dor. Qual é a probabilidade de cárie dado que foi observado dor? P cárie dor = P(cárie dor) P(dor = 0,6 Independência
Aula 11 Esperança e variância de variáveis aleatórias discretas
Aula 11 Esperança e variância de variáveis aleatórias discretas Nesta aula você estudará os conceitos de média e variância de variáveis aleatórias discretas, que são, respectivamente, medidas de posição
Análise semântica. Análise Semântica. Estrutura de um compilador. Anotação da árvore sintática. Tipos de comunicação de atributos?
Estrutura de um compilador Análise semântica Tradução orientada pela sintaxe 1 2 Análise Semântica Anotação da árvore sintática Análise semântica: Tipos (& Declarações) Escopo Checagens estáticas: Idéia:
INF 1771 Inteligência Artificial
Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 12 Aprendizado de Máquina Agentes Vistos Anteriormente Agentes baseados em busca: Busca cega Busca heurística Busca local
Eventos independentes
Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos
Universidade Federal do ABC. Sinais Aleatórios. Prof. Marcio Eisencraft
Universidade Federal do ABC Sinais Aleatórios Prof. Marcio Eisencraft São Paulo 2011 Capítulo 1 Probabilidades Neste curso, trata-se dos fenômenos que não podem ser representados de forma determinística
Observação como técnica de coleta de dados
1 Universidade Federal de Rondônia Engenharia Ambiental Professora Orientadora: Renata G. Aguiar Disciplina: Metodologia Cientifica Observação como técnica de coleta de dados 2 O que é observação? técnica
A apresentação através de fluxos lógicos consegue mostrar mal entendidos e pontos que são controversos.
Módulo 5 Análise Estruturada As dificuldades que são causadas por problemas de comunicação, mudanças de requisitos e técnicas inadequadas de avaliação, tornam a análise estruturada uma fase critica no
RICARDO ISHIBASHI MOREIRA DE ALMEIDA REDES BAYESIANAS E SUA APLICAÇÃO EM UM MODELO DE INTERFACE ADAPTATIVA PARA UMA LOJA VIRTUAL
RICARDO ISHIBASHI MOREIRA DE ALMEIDA REDES BAYESIANAS E SUA APLICAÇÃO EM UM MODELO DE INTERFACE ADAPTATIVA PARA UMA LOJA VIRTUAL PALMAS 2006 2 RICARDO ISHIBASHI MOREIRA DE ALMEIDA REDES BAYESIANAS E SUA
CAPÍTULO 2. Grafos e Redes
CAPÍTULO 2 1. Introdução Um grafo é uma representação visual de um determinado conjunto de dados e da ligação existente entre alguns dos elementos desse conjunto. Desta forma, em muitos dos problemas que
Matemática Discreta - 03
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 03 Prof. Jorge Cavalcanti [email protected] www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav
APOSTILA DE EXEMPLO. (Esta é só uma reprodução parcial do conteúdo)
APOSTILA DE EXEMPLO (Esta é só uma reprodução parcial do conteúdo) 1 Índice Aula 1 - Área de trabalho e personalizando o sistema... 3 A área de trabalho... 3 Partes da área de trabalho.... 4 O Menu Iniciar:...
FUNDAMENTOS DE MARKETING
FUNDAMENTOS DE MARKETING Há quatro ferramentas ou elementos primários no composto de marketing: produto, preço, (ponto de) distribuição e promoção. Esses elementos, chamados de 4Ps, devem ser combinados
Microsoft Access: Criar consultas para um novo banco de dados. Vitor Valerio de Souza Campos
Microsoft Access: Criar consultas para um novo banco de Vitor Valerio de Souza Campos Conteúdo do curso Visão geral: consultas são essenciais Lição: inclui sete seções Tarefas práticas sugeridas Teste.
Análise e Complexidade de Algoritmos
Análise e Complexidade de Algoritmos Uma visão de Intratabilidade, Classes P e NP - redução polinomial - NP-completos e NP-difíceis Prof. Rodrigo Rocha [email protected] http://www.bolinhabolinha.com
AULA 6 Esquemas Elétricos Básicos das Subestações Elétricas
CONSIDERAÇÕES INICIAIS AULA 6 Esquemas Elétricos Básicos das Subestações Elétricas Quando planejamos construir uma subestação, o aspecto de maior importância está na escolha (e, conseqüentemente, da definição)
Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes
Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes Para ampliar sua compreensão sobre probabilidade total e Teorema de Bayes, estude este conjunto de exercícios resolvidos sobre o tema.
Análise e Projeto Orientados por Objetos
Análise e Projeto Orientados por Objetos Aula 02 Análise e Projeto OO Edirlei Soares de Lima Análise A análise modela o problema e consiste das atividades necessárias para entender
O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2
3.2 O Espaço Nulo de A: Resolvendo Ax = 0 11 O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 Esta seção trata do espaço de soluções para Ax = 0. A matriz A pode ser quadrada ou retangular. Uma solução imediata
1. Conceitos de sistemas. Conceitos da Teoria de Sistemas. Conceitos de sistemas extraídos do dicionário Aurélio:
1. Conceitos de sistemas Conceitos da Teoria de Sistemas OPTNER: É um conjunto de objetos com um determinado conjunto de relações entre seus objetos e seus atributos. TILLES: É um conjunto de partes inter-relacionadas.
PESQUISA SOBRE O PERFIL DE ALUNOS NA UTILIZAÇÃO DE UM SITE DOCENTE DO ENSINO SUPERIOR
PESQUISA SOBRE O PERFIL DE ALUNOS NA UTILIZAÇÃO DE UM SITE DOCENTE DO ENSINO SUPERIOR Wesley Humberto da Silva (Fundação Araucária), André Luis Andrade Menolli (Orientador) e-mail: [email protected]
3.1 Definições Uma classe é a descrição de um tipo de objeto.
Unified Modeling Language (UML) Universidade Federal do Maranhão UFMA Pós Graduação de Engenharia de Eletricidade Grupo de Computação Assunto: Diagrama de Classes Autoria:Aristófanes Corrêa Silva Adaptação:
1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3.
1 1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. Modelo de Resultados Potenciais e Aleatorização (Cap. 2 e 3
QUANTIFICADORES. Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1.
LIÇÃO 4 QUANTIFICADORES Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1. (b) x 2 2x + 1 = 0. (c) x é um país. (d) Ele e
INF1771 - INTELIGÊNCIA ARTIFICIAL TRABALHO 2 LÓGICA
INF1771 - INTELIGÊNCIA ARTIFICIAL TRABALHO 2 LÓGICA Descrição: Para tornar-se um Mestre Pokémon é necessário aventurar-se por locais desconhecidos e capturar todos os 150 pokémons que habitam o Continente
5 Considerações finais
5 Considerações finais 5.1. Conclusões A presente dissertação teve o objetivo principal de investigar a visão dos alunos que se formam em Administração sobre RSC e o seu ensino. Para alcançar esse objetivo,
Subcamada MAC. O Controle de Acesso ao Meio
Subcamada MAC O Controle de Acesso ao Meio Métodos de Acesso ao Meio As implementações mais correntes de redes locais utilizam um meio de transmissão que é compartilhado por todos os nós. Quando um nó
Topologias e abrangência das redes de computadores. Nataniel Vieira [email protected]
Topologias e abrangência das redes de computadores Nataniel Vieira [email protected] Objetivos Tornar os alunos capazes de reconhecer os tipos de topologias de redes de computadores assim como
Central de Alarme de Oito Zonas
Central de Alarme de Oito Zonas R02 ÍNDICE CARACTERÍSTICAS GERAIS:... 3 CARACTERÍSTICAS TÉCNICAS:... 3 CONHECENDO A CENTRAL:... 4 COMO A CENTRAL FUNCIONA:... 4 COMO APAGAR A MEMÓRIA DA CENTRAL:... 4 COMO
Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos
Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos Organização: Airton Kist Digitação: Guilherme Ludwig Exercício Se X b(n, p), sabendo-se que E(X ) = 12 e σ 2 = 3, determinar:
Aula 01 - Formatações prontas e condicionais. Aula 01 - Formatações prontas e condicionais. Sumário. Formatar como Tabela
Aula 01 - Formatações prontas e Sumário Formatar como Tabela Formatar como Tabela (cont.) Alterando as formatações aplicadas e adicionando novos itens Removendo a formatação de tabela aplicada Formatação
E-BOOK 15 DICAS PARA ECONOMIZAR COMBUSTÍVEL
E-BOOK 15 DICAS PARA ECONOMIZAR COMBUSTÍVEL Veja 15 dicas para economizar combustível no carro Da maneira de dirigir à escolha da gasolina, saiba o que pode trazer economia de consumo. Não existe mágica.
MÓDULO 7 Modelo OSI. 7.1 Serviços Versus Protocolos
MÓDULO 7 Modelo OSI A maioria das redes são organizadas como pilhas ou níveis de camadas, umas sobre as outras, sendo feito com o intuito de reduzir a complexidade do projeto da rede. O objetivo de cada
HTML5. Prof. Salustiano Rodrigues de Oliveira [email protected] www.profsalu.com.br
HTML5 Prof. Salustiano Rodrigues de Oliveira [email protected] www.profsalu.com.br HTML5 HTML5 é considerada a próxima geração do HTML e suas funcionalidades inovadoras o tornam uma alternativa
LINGUAGENS E PARADIGMAS DE PROGRAMAÇÃO. Ciência da Computação IFSC Lages. Prof. Wilson Castello Branco Neto
LINGUAGENS E PARADIGMAS DE PROGRAMAÇÃO Ciência da Computação IFSC Lages. Prof. Wilson Castello Branco Neto Conceitos de Linguagens de Roteiro: Apresentação do plano de ensino; Apresentação do plano de
O planejamento do projeto. Tecnologia em Gestão Pública Desenvolvimento de Projetos Aula 8 Prof. Rafael Roesler
O planejamento do projeto Tecnologia em Gestão Pública Desenvolvimento de Projetos Aula 8 Prof. Rafael Roesler 2 Introdução Processo de definição das atividades Sequenciamento de atividades Diagrama de
Banco de Dados Aula 1 Introdução a Banco de Dados Introdução Sistema Gerenciador de Banco de Dados
Banco de Dados Aula 1 Introdução a Banco de Dados Introdução Um Sistema Gerenciador de Banco de Dados (SGBD) é constituído por um conjunto de dados associados a um conjunto de programas para acesso a esses
UML & Padrões Aula 3. UML e Padrões - Profª Kelly Christine C. Silva
UML & Padrões Aula 3 UML e Padrões - Profª Kelly Christine C. Silva 1 UML & Padrões Aula 3 Diagrama de Casos de Uso Profª Kelly Christine C. Silva O que vamos tratar: Modelos de Caso de Uso Diagrama de
XP extreme Programming, uma metodologia ágil para desenvolvimento de software. Equipe WEB Cercomp [email protected]
XP extreme Programming, uma metodologia ágil para desenvolvimento de software. Equipe WEB Cercomp [email protected] Introdução Criada por Kent Baeck em 1996 durante o projeto Daimler Chrysler. O sucesso
CIÊNCIAS EXATAS PARA BIÓLOGOS: ANÁLISE DO CONHECIMENTO DA MATEMÁTICA POR ALUNOS INICIANTES E CONCLUINTES
CIÊNCIAS EXATAS PARA BIÓLOGOS: ANÁLISE DO CONHECIMENTO DA MATEMÁTICA POR ALUNOS INICIANTES E CONCLUINTES Jamylle Maria Santos de Medeiros e-mail: [email protected] Veridiana Alves da Silva e-mail:
Protegendo os seus ativos mais críticos
www.johnsoncontrols.com.br/be 0800 283 9675 Contratos de Manutenção Protegendo os seus ativos mais críticos PUBL-6657PT-BR O primeiro passo para a segurança é estar preparado. Isso não é sobre o que
Sistemas de Gerenciamento de Banco de Dados
Sistemas de Gerenciamento de Banco de Dados A U L A : C R I A Ç Ã O D E B A N C O D E D A D O S - R E Q U I S I T O S F U N C I O N A I S E O P E R A C I O N A I S P R O F. : A N D R É L U I Z M O N T
o hemofílico. Meu filho também será?
A U A UL LA Sou hemofílico. Meu filho também será? Nas aulas anteriores, você estudou alguns casos de herança genética, tanto no homem quanto em outros animais. Nesta aula, analisaremos a herança da hemofilia.
Introdução à análise de dados discretos
Exemplo 1: comparação de métodos de detecção de cárie Suponha que um pesquisador lhe apresente a seguinte tabela de contingência, resumindo os dados coletados por ele, oriundos de um determinado experimento:
Redes de Computadores. Camada de Aplicação Teoria de Redes Complexas: Conceitos Básicos em Grafos
Redes de Computadores Camada de Aplicação Teoria de Redes Complexas: Conceitos Básicos em Grafos Introdução Como as coisas estão conectadas? Redes! A network is a set of vertices or nodes provided with
Lógica e Raciocínio. Decisão sob Risco Probabilidade. Universidade da Madeira. http://dme.uma.pt/edu/ler/
Lógica e Raciocínio Universidade da Madeira http://dme.uma.pt/edu/ler/ Decisão sob Risco Probabilidade 1 Probabilidade Em decisões sob ignorância a probabilidade dos diferentes resultados e consequências
Solução de problemas por meio de busca (com Python) Luis Martí DEE/PUC-Rio http://lmarti.com
Solução de problemas por meio de busca (com Python) Luis Martí DEE/PUC-Rio http://lmarti.com Python e AI (Re)-introdução ao Python. Problemas de busca e principais abordagens. Exemplos em Python Por que
Trabalho Computacional
Universidade Federal do Espírito Santo Departamento de Informática Profª Claudia Boeres Teoria dos Grafos - 2014/2 Trabalho Computacional 1. Objetivo Estudo e implementação de algoritmos para resolução
Fundamentos de Redes de Computadores. Elementos de Redes Locais
Fundamentos de Redes de Computadores Elementos de Redes Locais Contexto Implementação física de uma rede de computadores é feita com o auxílio de equipamentos de interconexão (repetidores, hubs, pontos
TRANSMISSÃO DE DADOS Prof. Ricardo Rodrigues Barcelar http://www.ricardobarcelar.com
- Aula 3-1. A CAMADA DE REDE (Parte 1) A camada de Rede está relacionada à transferência de pacotes da origem para o destino. No entanto, chegar ao destino pode envolver vários saltos em roteadores intermediários.
INF1771 - INTELIGÊNCIA ARTIFICIAL TRABALHO 2 LÓGICA
INF1771 - INTELIGÊNCIA ARTIFICIAL TRABALHO 2 LÓGICA Descrição: Após reunir a equipe de programadores para participar do 1 Concurso Mundial de Desenvolvimento de Softwares, Barbie e seus amigos iniciaram
Árvores Binárias Balanceadas
Árvores Binárias Balanceadas Elisa Maria Pivetta Cantarelli Árvores Balanceadas Uma árvore é dita balanceada quando as suas subárvores à esquerda e à direita possuem a mesma altura. Todos os links vazios
Correlação e Regressão Linear
Correlação e Regressão Linear A medida de correlação é o tipo de medida que se usa quando se quer saber se duas variáveis possuem algum tipo de relação, de maneira que quando uma varia a outra varia também.
A Verdadeira História das Bebidas Alcoólicas. Série Prevenção: No. 5
A Verdadeira História das Bebidas Alcoólicas Série Prevenção: No. 5 A Verdadeira Historia do Álcool! Você é uma pessoa inteligente, certo? E, você quer a verdade. Mas você está realmente pronto para a
Gestão de Projetos GNG- 103
Gestão de Projetos GNG- 103 GNG-103 Gestão de Projetos Definir metas e objetivos do projeto Conciliar entregas Descobrir requisitos Determinar premissas e restrições Compilando a declaracao do escopo do
Modelo OSI. Prof. Alexandre Beletti Ferreira. Introdução
Modelo OSI Prof. Alexandre Beletti Ferreira Introdução Crescimento das redes de computadores Muitas redes distintas International Organization for Standardization (ISO) Em 1984 surge o modelo OSI Padrões
Estudo das classes de palavras Conjunções. A relação de sentido entre orações presentes em um mesmo período e o papel das
Um pouco de teoria... Observe: Estudo das classes de palavras Conjunções A relação de sentido entre orações presentes em um mesmo período e o papel das I- João saiu, Maria chegou. II- João saiu, quando
Banco de Dados I. Introdução. Fabricio Breve
Banco de Dados I Introdução Fabricio Breve Introdução SGBD (Sistema Gerenciador de Banco de Dados): coleção de dados interrelacionados e um conjunto de programas para acessar esses dados Coleção de dados
Preparando sua empresa para o forecasting:
Preparando sua empresa para o forecasting: Critérios para escolha de indicadores. Planejamento Performance Dashboard Plano de ação Relatórios Indicadores Embora o forecasting seja uma realidade, muitas
Energia Eólica. Atividade de Aprendizagem 3. Eixo(s) temático(s) Ciência e tecnologia / vida e ambiente
Energia Eólica Eixo(s) temático(s) Ciência e tecnologia / vida e ambiente Tema Eletricidade / usos da energia / uso dos recursos naturais Conteúdos Energia eólica / obtenção de energia e problemas ambientais
Prof. M. Sc. Jarbas Thaunahy Santos de Almeida 1
Prof. M. Sc. Jarbas Thaunahy Santos de Almeida 1 Aula 7 Covariância e suas aplicações Roteiro Introdução Covariância Valor esperado, Variância e Desvio-padrão da soma entre duas variáveis aleatórias Retorno
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Introdução a Probabilidade Existem dois tipos
1 INTRODUÇÃO 1.1 CONCEITO DE PARADIGMAS DE LINGUAGEM DE PROGRAMAÇÃO PARADIGMAS DE LINGUAGEM DE PROGRAMAÇÃO
1 INTRODUÇÃO 1.1 CONCEITO DE PARADIGMAS DE LINGUAGEM DE PROGRAMAÇÃO Desde o seu surgimento, o manuseio da computação é baseado em linguagens de programação. Ela permite que sejam construídos aplicativos
AULA 5 QUANTIFICADORES, PREDICADOS E VALIDADE
Disciplina: Matemática Computacional Prof. Diana de Barros Teles AULA 5 QUANTIFICADORES, PREDICADOS E VALIDADE Quantificadores: são frases do tipo para todo, ou para cada, ou para algum, isso é, frases
Microsoft Access 2010. Para conhecermos o Access, vamos construir uma BD e apresentar os conceitos necessários a cada momento
Microsoft Access 2010 Para conhecermos o Access, vamos construir uma BD e apresentar os conceitos necessários a cada momento 1 Principais objetos do Access Tabelas Guardam a informação da BD (Base de Dados)
Linguagens de Programação Aula 10
Linguagens de Programação Aula 10 Celso Olivete Júnior [email protected] Na aula passada As sentenças de controle das LP imperativas ocorrem em diversas categorias: seleção, seleção múltipla, iteração
Introdução a listas - Windows SharePoint Services - Microsoft Office Online
Page 1 of 5 Windows SharePoint Services Introdução a listas Ocultar tudo Uma lista é um conjunto de informações que você compartilha com membros da equipe. Por exemplo, você pode criar uma folha de inscrição
Cláudio Tadeu Cristino 1. Julho, 2014
Inferência Estatística Estimação Cláudio Tadeu Cristino 1 1 Universidade Federal de Pernambuco, Recife, Brasil Mestrado em Nutrição, Atividade Física e Plasticidade Fenotípica Julho, 2014 C.T.Cristino
Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é:
Função Toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça corresponder a todo elemento do primeiro conjunto um único elemento do segundo, ocorre uma função. Definição formal:
Empresa de Pesquisa Energética (EPE) 2014. Analista de Projetos da Geração de Energia
Empresa de Pesquisa Energética (EPE) 2014 Analista de Projetos da Geração de Energia Oi, pessoal! Vou resolver as quatro questões de Estatística (53 a 56) da prova elaborada pela banca Cesgranrio para
Aula 4 Conceitos Básicos de Estatística. Aula 4 Conceitos básicos de estatística
Aula 4 Conceitos Básicos de Estatística Aula 4 Conceitos básicos de estatística A Estatística é a ciência de aprendizagem a partir de dados. Trata-se de uma disciplina estratégica, que coleta, analisa
2 Fundamentação Conceitual
2 Fundamentação Conceitual 2.1 Computação Pervasiva Mark Weiser define pela primeira vez o termo Computação Ubíqua ou Computação Pervasiva (Ubiquitous Computing) em (10). O autor inicia o trabalho com
UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo
UNIVERSIDADE DE SÃO PAULO Faculdade de Arquitetura e Urbanismo DISTRIBUIÇÃO AMOSTRAL ESTIMAÇÃO AUT 516 Estatística Aplicada a Arquitetura e Urbanismo 2 DISTRIBUIÇÃO AMOSTRAL Na aula anterior analisamos
Tomada de Decisão uma arte a ser estudada Por: Arthur Diniz
Tomada de Decisão uma arte a ser estudada Por: Arthur Diniz Tomar decisões é uma atividade que praticamos diariamente, de uma forma ou de outra. Podemos até mesmo tomar a decisão de não tomar nenhuma decisão.
Probabilidade - aula I
e 27 de Fevereiro de 2015 e e Experimentos Aleatórios e Objetivos Ao final deste capítulo você deve ser capaz de: Entender e descrever espaços amostrais e eventos para experimentos aleatórios. Interpretar
a 1 x 1 +... + a n x n = b,
Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição
Regra do Evento Raro p/ Inferência Estatística:
Probabilidade 3-1 Aspectos Gerais 3-2 Fundamentos 3-3 Regra da Adição 3-4 Regra da Multiplicação: 3-5 Probabilidades por Meio de Simulações 3-6 Contagem 1 3-1 Aspectos Gerais Objetivos firmar um conhecimento
Espaços Amostrais e Eventos. Probabilidade 2.1. Capítulo 2. Espaço Amostral. Espaço Amostral 02/04/2012. Ex. Jogue um dado
Capítulo 2 Probabilidade 2.1 Espaços Amostrais e Eventos Espaço Amostral Espaço Amostral O espaço amostral de um experimento, denotado S, é o conjunto de todos os possíveis resultados de um experimento.
Probabilidade. Distribuição Exponencial
Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos
Entendendo como funciona o NAT
Entendendo como funciona o NAT Vamos inicialmente entender exatamente qual a função do NAT e em que situações ele é indicado. O NAT surgiu como uma alternativa real para o problema de falta de endereços
