QUESTÃO 1 ALTERNATIVA B
|
|
|
- Nelson Carneiro Fidalgo
- 9 Há anos
- Visualizações:
Transcrição
1 OBMEP 0 Nível QUESTÃO ALTERNATIVA B O comprimento da parte da corda que fica entre as polias fixas diminuirá = 0 metros depois que os homens puxarem a corda. A polia móvel imediatamente acima do piano distribui ao meio esses 0 metros; assim, o piano subirá 0 = 0 metros. QUESTÃO ALTERNATIVA B Sejam b, h e d, respectivamente, os comprimentos da base, altura e diagonal dos retângulos da malha. O perímetro da figura A é igual a d, 56 donde concluímos que d = =. O perímetro da figura B é igual a 8h+ 8d, donde concluímos que 8d = 8h+ 8d e h = = 5. O teorema de Pitágoras diz que 8 d = b + h e segue que b = 5 = =. Finalmente o perímetro da figura C é igual a 6b+ h+ d, ou seja, = cm. QUESTÃO O gráfico mais claro atinge a horizontal correspondente a 800 m antes do gráfico mais escuro. Logo o gráfico mais claro é o gráfico do vencedor da corrida, o coelho, e o gráfico mais escuro é o gráfico da tartaruga. O coelho terminou a corrida em min5s; logo a alternativa C é falsa. Quando o coelho termina a corrida, a tartaruga está entre 650m e 700m; logo a alternativa E é falsa. Entre o início da corrida e min, o gráfico do coelho está acima do gráfico da tartaruga (trecho marcado com I na figura), indicando que o coelho está na frente; logo a alternativa A é falsa. A tartaruga ficou atrás do coelho entre 0min e min e entre min5s e min0s (trecho marcado com III na figura), num total de min5s; logo a alternativa B é falsa.
2 OBMEP 0 Nível Por fim, a tartaruga ficou à frente do coelho entre min e min5s (trecho marcado com II na figura), num total de 5s; logo a alternativa D é verdadeira. QUESTÃO Cada time jogou três vezes. Com 5 pontos, o Cruzínthians só pode ter vencido uma partida e empatado duas, pois se tivesse vencido duas partidas, teria pelo menos 6 pontos e se não tivesse vencido nenhuma, teria no máximo pontos. O Greminense não venceu nenhuma partida, pois obteve apenas pontos; logo empatou duas partidas e perdeu uma. O Flameiras, em segundo lugar com pontos, não venceu nenhuma partida, pois se isso tivesse acontecido ele teria que ter perdido duas; como o Greminense não ganhou nenhuma e o Cruzínthians apenas uma, ele teria perdido para o Nauritiba. Por outro lado, o mesmo raciocínio mostra que então o Nauritiba deveria ter perdido para Flameiras, o que não é possível; logo, o Flameiras e o Nauritiba empataram suas três partidas. Segue que o número de empates foi + = 5; o aparece nessa expressão pois o empate entre Flameiras e Nauritiba deve ser contado apenas uma vez. Cruzínthians Flameiras Nauritiba Greminense Cruzínthians Flameiras Nauritiba Greminense 0 Outra solução é notar que em cada jogo disputado são distribuídos pontos, no caso de empate ou pontos, caso não ocorra empate. Como cada um dos quatro times jogou uma única vez com seus três adversários, foram disputados ao todo seis jogos, nos quais foram distribuídos = pontos. A única maneira de parcelar em seis parcelas de ou é = ; logo, cinco dos seis jogos terminaram empatados. Uma outra solução a seguinte. Observa-se, como acima, que o Cruzínthians venceu uma partida e empatou duas. Se ele tivesse vencido o Flameiras, a tabela poderia ser parcialmente preenchida como segue. Cruzínthians Flameiras Nauritiba Greminense Cruzínthians Flameiras 0 Nauritiba Greminense Segue que o Flameiras deve ter perdido mais uma partida e vencido a terceira para totalizar pontos. Nesse caso, como o Greminense empatou
3 OBMEP 0 Nível duas partidas, ele empatou uma com o Nauritiba e a tabela pode ser refinada para Cruzínthians Flameiras Nauritiba Greminense Cruzínthians Flameiras 0 Nauritiba Greminense Logo, para que o Nauritiba totalizasse pontos, ele deveria ter empatado com o Flameiras, o que não pode acontecer. De modo análogo vemos que o Cruzínthinas não pode ter empatado com o Nauritiba; logo a tabela parcialmente preenchida deve ser Cruzínthians Flameiras Nauritiba Greminense Cruzínthians Flameiras Nauritiba Greminense 0 A partir daí é imediato completar a tabela. QUESTÃO 5 O número 0 deve aparecer nos dois dados, para que seja possível formar as datas de 0 a 09, 0, 0 e 0. Os números e também devem aparecer nos dois dados, para formar as datas e. Desse modo no dado da direita aparecem os números 0,,,, 5, 6 (que também é 9) e no dado da esquerda aparecem os números 0,,,, 7 e 8. A soma das faces não visíveis do dado da esquerda é então = 0. Outra solução é a seguinte. Como acima, os números 0, e devem aparecer nos dois dados; os números, 7 e 8 também devem aparecer. Assim, a soma dos números nos dois dados deve ser (0 + + ) = 9. Os números que aparecem no dado da direita são 0,, (ocultos) e, 5, 6 (visíveis); os números 0 e estão visíveis no cubo da esquerda. Logo a soma dos números não visíveis no cubo da esquerda é 9 ( ) = 9 9 = 0.
4 OBMEP 0 Nível QUESTÃO 6 ALTERNATIVA C Seja x a largura, em centímetros, das faixas cortadas por Márcia. As dimensões do pedaço retangular que sobra após o corte das tiras são 0 x e 0 x ; sua área é então ( 0 x) ( 0 x) = 00 0x+ x. Como a área desse pedaço corresponde a 68% da área da folha original, temos 00 0x+ x = 0,68 00 = 86 ou seja x 5x+ 96 = 0 Essa equação tem as soluções x = e x = ; como = 6 supera os lados da folha original, a solução x = deve ser descartada. Logo a largura das tiras é cm. QUESTÃO 7 Sejam R e r os raios dos semicírculos maior e menor, respectivamente; o lado do quadrado tem então medida R = 6, ou seja, R = 8. Como os centros dos semicírculos e o ponto de tangência estão alinhados, o triângulo destacado na figura é um triângulo retângulo de catetos R e R r e hipotenusa R + r. O teorema de Pitágoras nos dá ( R r) R ( R r) e segue que + = +. Simplificando, obtemos r = R = 8 = cm. 6Rr = R QUESTÃO 8 Primeiro notamos que a afirmativa de Daniela é verdadeira, pois há apenas um culpado; logo a culpada não é Daniela. Se Bruno mentiu, então ele é culpado e Eduardo diz a verdade. Mas Eduardo disse que a culpada é uma menina, logo ele também estaria mentindo, o que não satisfaz o enunciado. Então Bruno diz a verdade e, portanto, Eduardo é o culpado.
5 OBMEP 0 Nível 5 QUESTÃO 9 ALTERNATIVA A Com os números,, 6 e 8 podem-se formar = números de três algarismos distintos, pois temos possibilidades para escolher a centena, depois possibilidades para escolher a dezena e por fim possibilidades para escolher a unidade. Nas unidades desses números irão aparecer seis vezes cada um dos algarismos 6,, e, pois cada um deles aparece o mesmo número de vezes entre os números e = 6 ; o mesmo irá ocorrer nas dezenas e nas centenas. Como 6 ( ) =, a soma desses números será + 0! + 00! =! = 65. QUESTÃO 0 ALTERNATIVA A As faces laterais da pirâmide são triângulos equiláteros de lado. Planificando as faces que contém como aresta comum o segmento que liga o ponto A ao vértice superior da pirâmide, obtemos um losango com a aranha (ponto C) e a formiga (ponto D) em lados opostos, conforme a figura. O trajeto mais curto que a aranha deve percorrer para chegar até a formiga corresponde ao segmento CD. Como AD = BC e lados opostos de um losango são paralelos, segue que ABCD é um paralelogramo. Logo CD = AB = m. QUESTÃO Seja x o número de meninas e y o número de meninos no grupo. Como pizzas de pedaços cada não são suficientes para que cada menino coma 7 pedaços e cada menina coma pedaços, temos 6 < x+ 7y. Por outro lado, como pizzas de pedaços cada são suficientes para que cada menino coma 8 pedaços e cada menina coma pedaços, com sobra, temos x+ 8y < 8. Como x+ 7y < x+ 8y e tanto x+ 7y < x+ 8y e x+ 7y < x+ 8y são números maiores que 6 e menores que 8, temos (x+ 8 y) (x+ 7 y) = x+ y < 8 6 =. A desigualdade x+ y < mostra que x 5. Vamos agora testar a desigualdade 6 x < 7y < 8 x para os possíveis valores de x. Quando x = temos < 7y <, que tem a solução y = 5; os valores,, e 5 para x levam, respectivamente, às inequações < 7y < 0, 0 < 7y < 6, 8 < 7y < e 6 < 7y < 8, todas sem solução inteira para y. Segue que a única solução do problema é x = 5, y = e assim a quantidade de crianças é x+ y = 5+ = 6.
6 OBMEP 0 Nível 6 QUESTÃO ALTERNATIVA C As amigas podem escolher suas blusas, sem restrição, de = 7 maneiras diferentes. Por outro lado, se elas devem escolher blusas sem repetição de cores e uma delas já escolheu a sua entre as possibilidades, uma outra terá apenas possibilidades e a última apenas, num total de = 6 possibilidades sem repetição de cores. Logo a probabilidade em questão é igual a 6 =. 7 9 QUESTÃO Como BF é perpendicular a DE e EF é perpendicular a AE, os ângulos AED! e EFB! são iguais. Logo os triângulos AED e EFB são semelhantes e temos BE = AD. Fazendo BE = x e EF AE lembrando que AD = EF =, segue que x = + x, ou seja, x solução positiva dessa equação é + 5 x =, donde + x = 0. A + 5 AE = + x =. QUESTÃO ALTERNATIVA A Seja x o comprimento em metros da pista. Quando Alberto cruzou a linha de chegada, a distância entre Bernardo em Carlos era de 0 metros, e era 6 metros quando Bernardo cruzou a linha de chegada. Vemos assim que Bernardo correu 6 metros enquanto Carlos correu 0; logo velocidade de Carlos 0 5 = =. Como Bernardo cruzou a linha de velocidade de Bernardo 6 6 chegada 6 metros à frente de Carlos, temos a equação 5 x = 6, cuja solução é x = x
7 OBMEP 0 Nível 7 QUESTÃO 5 Quando se retiram duas bolas pretas da caixa, elas não retornam; mas quando as bolas retiradas são uma preta e outra de cor distinta, a preta retorna. Isso mostra que o número de bolas pretas na caixa diminui de dois em dois. Observamos que o número de bolas na caixa diminui de um a cada retirada, de modo que eventualmente sobrarão duas bolas na caixa. Como o número inicial de bolas pretas é ímpar, sempre haverá um número ímpar de bolas pretas na caixa; desse modo, exatamente uma das duas bolas que sobrar na caixa é preta. QUESTÃO 6 Considere a decomposição do retângulo indicada na figura, e seja a a área do retângulo. As áreas B e B são iguais, pois correspondem a áreas de triângulos com mesma medida de base e altura; o mesmo ocorre com B e B. O triângulo retângulo formado por B, B e B tem como catetos um lado do retângulo e metade a a do outro lado; sua área é então e temos B + B + B = ; o mesmo ocorre com B + B + B. Logo B+ B + B = B + B + B, o que implica em B = B. a a Logo B = B = B = B e segue que B+ B+ B = B =, donde B =. Por simetria, todas essas conclusões se aplicam a CCC,, e C. Logo a a A = a 8 = = = cm. Nas figuras ao lado, apresentamos outra solução Na primeira, observamos que o quadrilátero em vermelho, é um paralelogramo, pois seus lados horizontais são paralelos e congruentes. O teorema de Tales mostra que os lados não horizontais desse paralelogramo dividem a diagonal destacada na segunda figura em três segmentos congruentes, conforme a segunda figura. Finalmente, os três triângulos destacados na terceira figura e cujas bases são esses segmentos de mesma medida, têm o terceiro vértice em comum; desse modo tem todos a mesma área, que é de metade da área do retângulo, ou seja, 7 cm. Logo a área da região cinza é cm.
8 OBMEP 0 Nível 8 QUESTÃO 7 ALTERNATIVA C No instante em que o terceiro carro saiu de Quixajuba, o segundo estava 0 0,5 = 0 km e o primeiro 50 0,5 = 5km à sua frente. Seja v a velocidade, em km/h, do terceiro carro e t o tempo, em horas, que ele levou 0 + 0t para alcançar o segundo; temos então vt = 0 + 0t, ou seja, v =. t Como o terceiro carro alcançou o primeiro,5 horas depois de alcançar o 50t + 00 segundo, temosvt +, 5v = ( t + 5, ) = 50t + 00, donde v =. t +, t 50t + 00 Logo = ; essa igualdade se reduz a t + t! = 0, cujas t t +, 5 raízes são t = e t =. Logo t = e v = = 60 km/h. QUESTÃO 8 Observamos que ao multiplicar 8 pelo divisor obtemos um número com dois algarismos. Como o divisor também tem dois algarismos e 8! = 0, as possibilidades para o divisor são 0, e. Observamos agora que ao multiplicar o algarismo das centenas do quociente pelo divisor, obtemos um número de três algarismos. A única maneira possível de multiplicar um número de apenas um algarismos por 0, ou de modo a obter um número de três algarismos é 9! = 08. Como a primeira subtração efetuada na conta armada tem como resultado 000, os três asteriscos à esquerda no dividendo correspondem a, 0 e 8, nessa ordem. Assim, o asterisco indicado em vermelho corresponde ao algarismo 0. O(a) leitor(a) pode prosseguir essa análise e mostrar que a conta armada corresponde à expressão 0897 =!
9 OBMEP 0 Nível 9 QUESTÃO 9 ALTERNATIVA B Para qualquer disposição dos algarismos, a soma dos vizinhos juntados terá sempre nove parcelas, sem repetição de algarismos nas unidades ou nas dezenas. O único algarismo que não aparece nas unidades é o primeiro e o único que não aparece nas dezenas é o último. Para que a soma seja máxima, o algarismo 0 não deve comparecer nas dezenas e, portanto, deve ser o último; além disso, o menor dos algarismos,,..., 9 não deve aparecer nas unidades e, portanto, o deve ser o primeiro. Concluímos que a soma é máxima para qualquer escolha onde é o primeiro algarismo e 0 o último. Nesse caso, a soma das unidades será = e a soma das dezenas será = 50 ; a soma máxima é então 50 + = 9. Algebricamente, podemos escrever esse argumento como segue. Seja a, a, K, a uma disposição qualquer dos algarismos de 0 0 até 9 na primeira linha. Na linha de baixo da tabela aparecerão os números aa, aa, K, aa. Usando a representação decimal, a soma desses números 9 0 pode ser escrita na forma S = aa + a a + L + a a = (0a + a ) + (0 a + a ) + + (0 a + a ) = 0 ( a + a + L + a ) + ( a + L + a + a ) = 0 ( a + a + L + a + a ) 0 a + ( a + a + L + a + a ) a = ( a + a + L + a + a ) 0a a = 5 0a a = 95 0a0 a Logo o valor de máximo de S é atingido quando a 0 = 0 e a =, como vimos. QUESTÃO 0 Antes de chegar ao centro, a aranha tem as seguintes escolhas em cada vértice de um pentágono: ir direto para o próximo nível, sem passar pelas arestas do pentágono em que se encontra; caminhar no sentido horário pelas arestas do pentágono em que se encontra por no máximo 5 segmentos, passando então para o próximo nível, e caminhar no sentido anti-horário pelas arestas do pentágono em que se encontra por no máximo 5 segmentos, passando então para o próximo nível. Assim, em cada pentágono a aranha tem escolhas para passar para o próximo nível; como são três os pentágonos, a aranha tem um total de = caminhos possíveis para chegar ao centro da teia.
, é possível encher completamente 15 copos de 130 mililitros e ainda restam 50 mililitros na jarra.
1 QUESTÃO 1 Observamos que litros equivalem a 000 mililitros. Como 00 15 130 50, é possível encher completamente 15 copos de 130 mililitros e ainda restam 50 mililitros na jarra. QUESTÃO Queremos dividir
na marca de cm. Outra maneira de proceder é calcular o ponto médio entre 6 e 20 na reta numérica, que é
1 QUESTÃO 1 Para ir da marca de 6 cm até a marca de 20 cm, a formiguinha deve andar 20 6 14 cm. Assim, para andar metade do caminho, ela deve caminhar 14 7 cm. Logo, ela parou 2 na marca de 6 7 13cm. Outra
NÍVEL 3 - Prova da 2ª fase - Soluções
NÍVEL 3 - Prova da ª fase - Soluções QUESTÃO 1 (a) Se o Dodó colocar um número x no visor e apertar, aparece o valor x 3 4 3 5 de f ( x) =. Logo, para x = 4, o valor que vai aparecer é f (4) = = =,5. x
OBMEP ª fase Soluções - Nível 1
OBMEP 009 ª fase Soluções - Nível 1 Nível 1 questão 1 a) Há apenas três maneiras de escrever 1 como soma de três números naturais: 1 = 1+ 0 + 0, 1 = 0 + 1+ 0 e 1 = 0 + 0 + 1, que nos dão as possibilidades
,12 2, = , ,12 = = (2012) 2.
1 QUESTÃO 1 Usando a comutatividade da multiplicação, podemos escrever 1000 0,1,01 100 = 1000,01 00 0,1 = 01 01 = (01). QUESTÃO Observe que para obter o primeiro retângulo foi necessário escrever quatro
OBMEP 2010 Soluções da prova da 2ª Fase Nível 2. Questão 1
Questão a) Para saber o número que deve dizer ao matemágico, Joãozinho deve fazer quatro contas: ª conta: multiplicar o número no cartão escolhido por 2; 2ª conta: somar 3 ao resultado da primeira conta;
A respeito da soma dos ângulos internos e da soma dos ângulos externos de um quadrilátero, temos os seguintes resultados:
Quadriláteros Nesta aula vamos estudar os quadriláteros e os seus elementos: lados, ângulos internos, ângulos externos, diagonais, etc. Além disso, vamos definir e observar algumas propriedades importantes
Observe o que ocorre com as multiplicações com parcelas iguais cujos algarismos são todos iguais a 1:
1 QUESTÃO 1 Ao efetuarmos a operação 111 x 111 obtemos: Logo a soma dos algarismos do resultado é 1+ 2+ 3+ 2+ 1= 9. A conta acima também pode ser feita da seguinte maneira: 111 111 = 111 (100 + 10 + 1)
QUESTÃO 1 ALTERNATIVA E
a Solução da prova da fase OBMEP 0 Nível QUESTÃO ALTERNATIVA E Como Ana contribuiu com reais e Aurora com 68 reais, os três livros juntos custaram + 68 = reais; desse modo, cada livro custou = reais, que
QUESTÃO 1 ALTERNATIVA B A quantidade de água que Daniela gastava por semana (isto é, em 7 dias) em cada atividade era: lavar roupa: = 1050
Solução da prova da a fase OMEP 009 Nível QUESTÃO ALTERNATIVA A quantidade de água que Daniela gastava por semana (isto é, em 7 dias) em cada atividade era: lavar roupa: 7 0 = 00 litros; banho de minutos:
2 = cm2. Questão 1 Solução
1 Questão 1 Solução a) Como o quadrado formado com os três retângulos recortados da primeira tira tem área 36 cm, seu lado mede 6 cm. Logo o comprimento dos retângulos é 6 cm e sua largura é um terço de
QUESTÃO 1 ALTERNATIVA B
1 QUESTÃO 1 O tabuleiro 7 7 pode ser facilmente preenchido e constata-se que na casa central deve aparecer o número 25, mas existe uma maneira melhor de fazer isto: no tabuleiro quadrado de casas, a quantidade
Soluções Simulado OBMEP 2017 Nível 2 8º e 9º anos do Ensino Fundamental
Soluções Simulado OBMEP 2017 Nível 2 8º e 9º anos do Ensino Fundamental 1. ALTERNATIVA E Como Ana contribuiu com 43 reais e Aurora com 68 reais, os três livros juntos custaram 43 + 68 = 111 reais; desse
Soluções. Nível 2 7 a e 8 a séries (8º e 9º anos) do Ensino Fundamental
1. (alternativa A) No diagrama ao lado cada quadradinho tem 1 km de lado e o ponto C indica a casa de Carlos. Representando o trajeto descrito no enunciado pelas flechas em traço fino, vemos que a escola
Solução da prova da 1 a fase OBMEP 2009 Nível 2
1 QUESTÃO 1 Na imagem que aparece no espelho do Benjamim, o ponteiro dos minutos aponta para o número, enquanto que o ponteiro das horas está entre o algarismo 6 e o traço correspondente ao algarismo 5,
Aula 01 Ciclo 03. Professora Laís Pereira EMEF Antônio Aires de Almeida Gravataí
Aula 01 Ciclo 03 Professora Laís Pereira EMEF Antônio Aires de Almeida Gravataí Área e Perímetro Área e perímetro são duas medidas distintas, onde a área é a medida de uma superfície e o perímetro é a
Solução da prova da 1 a fase OBMEP 2010 Nível 2. QUESTÃO 1 ALTERNATIVA E Basta calcular 8% de 250: 250 = 250 = 2 10 = 20. QUESTÃO 2 ALTERNATIVA E
QUESTÃO 8 2 Basta calcular 8% de 250: 250 = 250 = 2 0 = 20. 00 25 QUESTÃO 2 Fazemos a conta diretamente: + = + = + 3 =. 2 3 3 QUESTÃO 3 Vamos ler as informações contidas no gráfico: 5 alunos não compraram
Encontro 6: Áreas e perímetros - resolução de exercícios
Encontro 6: Áreas e perímetros - resolução de exercícios Recapitulando... Área de um triângulo retângulo Área de um paralelogramo Á. 2 Á. Todos os paralelogramos de mesma base e mesma altura possuem áreas
OBMEP ª fase Soluções - Nível 3
OBMEP 009 ª fase Soluções - Nível Nível questão 1 a) O número de cartões na caixa é a soma dos números inteiros de 1 a 10, isto é, 1 + + + + 9 + 10 = 55 b) Basta escolher o cartão de número 1 e depois
Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP
Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Área: conceito e áreas do quadrado
Soluções Simulado OBMEP 2017 Nível 1 6º e 7º anos do Ensino Fundamental. = 7 cm. Logo, ela parou na marca de = 13 cm.
Soluções Simulado OBMEP 2017 Nível 1 6º e 7º anos do Ensino Fundamental 1. ALTERNATIVA C Alvimar recebeu de troco 5,00 3,50 = 1,50 reais. Dividindo 1,50 por 0,25, obtemos o número de moedas de 25 centavos
Nível 8.º e 9.º anos do Ensino Fundamental 1. a Fase 6 de junho de 2017
Solução da prova da 1.ª Fase Nível 8.º e 9.º anos do Ensino Fundamental 1. a Fase 6 de junho de 2017 2 QUESTÃO 1 Para obter o maior resultado possível, devemos fazer com que os termos que contribuem positivamente
Nível Ensino Médio 1. a Fase 6 de junho de 2017
Solução da prova da 1.ª Fase Nível Ensino Médio 1. a Fase 6 de junho de 017 3 QUESTÃO 1 ALTERNATIVA B Os quatro triângulos CDE, DAF, FED e EFB são congruentes e, portanto, têm áreas iguais a ¼ da área
SOLUÇÕES N Tempo de espera na fila(minutos)
N3Q1 Solução SOLUÇÕES N3 2015 O aluno D obteve nota zero em 1 questão, nota meio em 5 questões e nota um em 4 questões. Sendo assim, a nota obtida pelo aluno D na prova foi 1 0,0+5 0,5+4 1,0= 6,5. Há sete
(A) (B) (C) (D) (E) (B) 5A e 10V (C) 5A e 25V (E) 6,25A e 15,625V. (D) 6,25A e 12,25V
1. Assinale, dentre as regiões a seguir, pintadas de cinza, aquela que é formada pelos pontos do quadrado cuja distância a qualquer um dos vértices não é maior do que o comprimento do lado do quadrado.
Soluções do Nível 3 (Ensino Médio) 1 a Fase
Soluções do Nível (Ensino Médio) a Fase. (alternativa C) Como A, B e C são pontos médios, os quatro triângulos rotulados com I na figura ao lado são congruentes, bem como os dois indicados por II. Logo
Questões Objetivas A) B) C)
Questões Objetivas 1) Wagner tem 15 moedas, algumas de 25 centavos e outras de 10 centavos, no valor total de 2 reais e 70 centavos. Se x é o número de moedas de 25 centavos que ele tem, qual das equações
Olimpíada Mineira de Matemática 2008
Questão 1) Alternativa C) Olimpíada Mineira de Matemática 008 Resolução Nível III Refletindo a imagem Após 1 hora e 0 minutos Refletindo novamente Observação: A posição original do relógio não é uma configuração
LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália
1. A idade de Paulo, em anos, é um número inteiro par que satisfaz a desigualdade x - x + 5 < 0. O número que representa a idade de Paulo pertence ao conjunto a) {1, 1, 14}. b) {15, 16, 17}. c) {18, 19,
Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP
Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Áreas - capítulo 2 da apostila
OBMEP NA ESCOLA Soluções
OBMEP NA ESCOLA 016 - Soluções Q1 Solução item a) A área total do polígono da Figura 1 é 9. A região inferior à reta PB é um trapézio de área 3. Isso pode ser constatado utilizando a fórmula da área de
Conceitos básicos de Geometria:
Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente
b) Quando o visor mostrava, girou-se um dos discos C ou U de uma unidade e o número de controle não se alterou. Qual passou a ser o número do visor?
1 1. Na figura um aparelho com três discos C (centenas), D (dezenas) e U (unidades), nos quais aparecem, em ordem, os algarismos de 0 a 9. O seu visor mostra um número CDU, a partir do qual é calculado
Colégio Naval 2008/2009 (PROVA VERDE)
Colégio Naval 008/009 (PROVA VERDE) 01) Um triângulo retângulo, de lados expressos por números inteiros consecutivos, está inscrito em um triângulo eqüilátero T de lado x. Se o maior cateto é paralelo
Apresente suas soluções de forma clara, indicando, em cada caso, o raciocínio que conduziu à resposta. Exercício 1. Exercício 2. Exercício 3.
OBMEP na Escola 2017 Polo CPII Campus Niterói Professor Fábio Vinícius Lista de Exercícios do Encontro 1 da 2ª semana do Ciclo 3 Nível 3 Geometria Conteúdo: Ângulo, triângulo, quadrilátero (paralelogramos
Lista de Exercícios OBMEP NA ESCOLA N2 ciclo 3 ENUNCIADOS: três questões para serem resolvidas em casa com discussão posterior
ENUNCIADOS: três questões para serem resolvidas em casa com discussão posterior Tarefa de casa 1 (Prova OBMEP 2006 2 a Fase N2 Questão 4) Na figura, os triângulos ABC e DEF são equiláteros de lados 14
3min Solução da prova da 1 a fase OBMEP 2014 Nível 3
OBMEP Nível 3 QUESTÃO ALTERNATIVA C Seja x o número de caras consecutivas obtidas após os primeiros lançamentos. Então, de acordo com o enunciado do problema, x deverá satisfazer a igualdade + x 997 +
Portanto, o percentual de meninas na turma deste ano será:
PROFMAT EXAME NACIONAL DE ACESSO 2018 (21/10/2017) [01] No ano passado uma turma tinha 31 estudantes. Neste ano o número de meninas aumentou em 20% e o de meninos diminuiu em 25%. Como resultado, a turma
a) A seguir vemos o que acontece quando começamos com 3 no visor e apertamos as teclas na ordem BBAB:
OBMEP 00 Soluções da prova da ª Fase Questão a) A seguir vemos o que acontece quando começamos com 3 no visor e apertamos as teclas na ordem BBAB: B B A B 3 3+ 3 = 6 6+ 3 = 9 9 = 8 8+ 3 = 8. Logo o número
2ª. Lista de Revisão Geometria Plana Prof. Kátia Curso SER - Poliedro
ª. Lista de Revisão Geometria Plana Prof. Kátia Curso SER - Poliedro 1. (G1 - cps 016) A erosão é o processo de desgaste, transporte e sedimentação das rochas e, principalmente, dos solos. Ela pode ocorrer
XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução da prova 1 a fase Nível de agosto de 2017
UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA PET MATEMÁTICA XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução da prova 1 a fase
2ª. Lista de Revisão Geometria Plana Prof. Kátia Curso SER - Poliedro
ª. Lista de Revisão Geometria Plana Prof. Kátia Curso SER - Poliedro 1. (G1 - cps 016) A erosão é o processo de desgaste, transporte e sedimentação das rochas e, principalmente, dos solos. Ela pode ocorrer
37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO
37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 2 1) C 6) C 11) A 16) D 21) D 2) B 7) A 12) B 17) A 22) E 3) B 8) C 13) D 18) C
Teorema de Pitágoras
Teorema de Pitágoras Luan Arjuna 1 Introdução Uma das maiores preocupações dos matemáticos da antiguidade era a determinação de comprimentos: desde a altura de um edifício até a distância entre duas cidades,
Módulo Áreas de Figuras Planas. Exercícios da OBMEP. 9 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Áreas de Figuras Planas Exercícios da OBMEP 9 ano E.F. Professores Cleber Assis e Tiago Miranda Áreas de Figuras Planas Exercícios da OBMEP 1 Exercícios Introdutórios Exercício 1. A figura representa
Gabarito comentado da Prova Proposta para alunos da 8º Ano do Ensino Fundamental
OLIMPÍADA DE MATEMÁTICA DO COLÉGIO SANTO INÁCIO RJ. Gabarito comentado da Prova Proposta para alunos da 8º Ano do Ensino Fundamental ª Questão: A figura mostra parte de um polígono regular de 20 lados
C D U controle Posição inicial C gira para C gira para U gira para U gira para
OBMEP 013 a Fase 1 N3Q1 a) Quando o visor mostra 804, o número de controle é 10 + 8 0 + 4 =. b) Quando o visor mostra 690, o número de controle é 10 + 6 9 + 0 = 7. Mostramos na tabela abaixo todas as possibilidades
OBMEP 2010 Soluções da prova da 2ª Fase Nível 1. Questão 1
1 Questão 1 a) O número-parada de 93 é 4, pois 93 9 3 = 27 2 7 = 14 1 4 = 4. b) Escrevendo 3 2 = 6 vemos que 32 3 2 = 6. Como 32 = 4 2 2 2, temos 4222 4 2 2 2 = 32 3 2 = 6 e assim o número-parada de 4222
Solução do Simulado PROFMAT/UESC 2012
Solução do Simulado PROFMAT/UESC 01 (1) Encontre uma fração equivalente a 9/5 cuja soma dos termos é igual a 196: (A) 96/100 (B) 106/90 (C) 116/80 (D) 16/70 (E) 136/60 9 5 = 9 5 14 14 = 16 70 () Um grupo
Gabarito comentado da Prova Proposta para alunos da 2ª série do Ensino Médio.
OLIMPÍADA DE MATEMÁTICA DO COLÉGIO SANTO INÁCIO RJ. Gabarito comentado da Prova Proposta para alunos da 2ª série do Ensino Médio. ª Questão: De AD AB temos que 2 BD AB, mas BE BD e, portanto BE 2 AB. De
EXAME NACIONAL DE ACESSO 2018 (21/10/2017)
EXAME NACIONAL DE ACESSO 08 (/0/07) [0] Para colorir os quatro triângulos, indicados na figura abaixo por A, B, C e D, pode-se usar uma mesma cor mais de uma vez, desde que dois triângulos com um lado
EXAME NACIONAL DE ACESSO 2018 (21/10/2017) 1 x 3. [01] O conjunto solução, nos reais, da inequação (A) (1, 2) (B) (, 2) (C) (, 2) (3, + ) (D) (2, 3)
EXAME NACIONAL DE ACESSO 08 (/0/07) [0] O conjunto solução, nos reais, da inequação (A) (, ) (B) (, ) (C) (, ) (, + ) (D) (, ) (E) x >, é: x [0] Na figura, os triângulos ABC, CDE, EFG e GH I são equiláteros,
Canguru Matemático sem Fronteiras 2017
Destinatários: alunos do 9. o ano de escolaridade Duração: 1h 30min Nome: Turma: Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões estão agrupadas em três níveis:
XXVII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO
XXVII OLIPÍADA BRASILEIRA DE ATEÁTICA PRIEIRA FASE NÍVEL 3 (Ensino édio) GABARITO GABARITO NÍVEL 3 1) D 6) C 11) C 16) D 1) C ) C 7) B 1) C 17) C ) Anulada 3) Anulada 8) D 13) B 18) A 3) B ) B 9) B 1)
GABARITO DO CADERNO DE QUESTÕES
OLÍMPIADAS DE MATEMÁTICA DO OESTE CATARINENSE GABARITO DO CADERNO DE QUESTÕES NÍVEL 3 Ensino Médio Universidade Federal da Fronteira Sul Campus Chapecó 017 OLIMPÍADA REGIONAL DE MATEMÁTICA GABARITO: 1.
OBMEP ª Fase Nível 3
1 1. Após lançar vezes uma moeda, Antônio contou caras. Continuando a lançar a moeda, quantas caras seguidas ele deverá obter para que o número de caras fique igual à metade do número total de lançamentos?
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - o ciclo 2009-2 a Chamada Proposta de resolução 1. 1.1. Considerando que não queremos que o automóvel preto seja atribuído à mãe, e selecionando, ao acaso, um elemento da família,
Polígonos PROFESSOR RANILDO LOPES 11.1
Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono
Nível 6.º e 7.º anos do Ensino Fundamental 1. a Fase 6 de junho de 2017
Nível 6.º e 7.º anos do Ensino Fundamental 1. a Fase 6 de junho de 2017 1 QUESTÃO 1 ALTERNATIVA A Observamos na primeira balança que o objeto tem o mesmo peso que a soma dos pesos de e. Consequentemente,
Gabarito Prova da Primeira Fase - Nível Alfa
. Gabarito Prova da Primeira Fase - Nível Alfa Questão 1 (0 pontos) A corrida de São Silvestre tem 15 km de percurso, sendo km de subida, 8 km de descida e 5 km de terreno plano. O ganhador da corrida
a) Temos da tabela C 3, A 1, B 2, I 9, D 4 e E 5. O número da palavra CABIDE é então = 1080
1 NQ1 a) Temos da tabela C 3, A 1, B, I 9, D 4 e E 5. O número da palavra CABIDE é então 3 1 9 4 5 = 1080. b) A decomposição de 455 em fatores primos é 455 = 5 7 13 ; as letras correspondentes a 5, 7 e
Exercício 2. Na figura abaixo, determine as medidas de x e y,
OBMEP na Escola 2017 Polo CPII Campus Niterói Professor Fábio Vinícius Lista de Exercícios do Encontro 1 da 2ª semana do Ciclo 5 Nível 3 Geometria Conteúdo: Teorema de Tales, Semelhança de triângulos,
( )( ) valor do perímetro do painel, temos então que há 2( 8 + 9)
OBMEP 0 a Fase N3Q Solução a) O valor da área de cada painel é igual ao total de lâmpadas vermelhas que o mesmo usa. Logo, em um painel de 5 metros por 8 metros há 5 8 = 40 lâmpadas vermelhas. b) Um painel
1) C 2) A 3) D 4) E 5) A 6) A 7) D 8) C 9) B 10) E 11) 1 dia, 2h e 1 min. 12) ) 6 14) 24 15) a) R$ 1,20 e b) R$ 2,70
OLIMPÍADA DE MATEMÁTICA 2015 GABARITO 5º E 6º ANOS Questão Resposta 1) C 2) A 3) D 4) E 5) A 6) A 7) D 8) C 9) B 10) E 11) 1 dia, 2h e 1 min. 12) 450 13) 6 14) 24 15) a) R$ 1,20 e b) R$ 2,70 OLIMPÍADA
OBMEP ª FASE - Soluções Nível 1
QUESTÃO 1 a) A figura é composta de 1 triângulos iguais. Como 3 4 de 1 é 3 1 9 4 =, devemos marcar 9 triângulos quaisquer, como ao lado (por exemplo). b) A figura é composta de 4 triângulos iguais. Como
Questão 01. Calcule o número de alunos que visitaram os dois museus. Questão 02
Questão 01 Um grupo de alunos de uma escola deveria visitar o Museu de Ciência e o Museu de História da cidade. Quarenta e oito alunos foram visitar pelo menos um desses museus. 20% dos que foram ao de
Nome: nº Data: / / Professor Gustavo - Ensino Fundamental II - 8º ano FICHA DE ESTUDO
Nome: nº Data: / / Professor Gustavo - Ensino Fundamental II - 8º ano FICHA DE ESTUDO 1) Na figura abaixo, C é ponto médio do segmento AB, e B é ponto médio do segmento CD. Se AB mede 12 cm, quanto mede
QUESTÃO 3 (ALTERNATIVA A) Como já foram colocados 1500 baldes na caixa, faltam 500 baldes para enchê-la. O enunciado diz que 2000
1 QUESTÃO 1 Como Mário correu 8 = 1 6 + 2 km em sentido horário e a pista tem 6 km, então ele deu 1 volta completa e ficou a 2 km do ponto de partida no sentido horário. Do mesmo modo, João correu 15 =
QUESTÃO 16 (OBM-ADAPTADO) Quais dos números abaixo são maiores que 10? 3 11, 4 7, 5 5, 6 3, 7 2
Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 08 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 6 (OBM-ADAPTADO) Quais dos números abaixo são maiores
Gabarito: 1 3r 4r 5r 6 r. 2. 3r 4r ,5 m. 45 EG m, constituem uma. AA' AP 8km. Resposta da questão 1: [C]
Gabarito: Resposta da questão 1: [C] Sejam x, x r e x r as medidas, em metros, dos lados do triângulo, com x, r 0. Aplicando o Teorema de Pitágoras, encontramos x r. Logo, os lados do triângulo medem r,
MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho
MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta
CDA AD CD. 2cos 2sen 2 2cos sen 2sen 2 2 A A A A
Preparar o Eame 01 016 Matemática A Página 19 88. 88.1. O ângulo CDA está inscrito na circunferência, portanto CDA. Assim: AD CD A ABCD A CDA AD CD AD Tem-se que, cos AD cos CD e sen CD sen. Portanto,
XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA Segunda Fase Nível 2 (7 a. ou 8 a. séries)
PROBLEMA No desenho ao lado, o quadrado ABCD tem área de 30 cm e o quadrado FHIJ tem área de 0 cm. Os vértices A, D, E, H e I dos três quadrados pertencem a uma mesma reta. Calcule a área do quadrado BEFG.
SOLUÇÕES NÍVEL 1 2ª. FASE 2017
SOLUÇÕES NÍVEL 1 2ª. FASE 2017 N1Q1 Solução item a) Como a casa pintada está na linha 3, Ana sorteou o número 3 e, como ela também está na coluna 4, concluímos que Pedro sorteou o número 1, pois 4 3 =
NOME: ANO: 3º Nº: PROFESSOR(A):
NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles
b) O quadriculado medimágico abaixo tem os números 7, 9 e 20 nas posições indicadas. Qual é o valor de x?
Preparação para a 2ª fase da OBMEP 2018 Nível 3 Conteúdo: Aritmética elementar, Geometria básica, Geometria espacial, Perímetro e área, Funções polinomiais, Contagem e Probabilidade Aluno(s):... N o(s)
01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?
EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 013 - a Chamada Proposta de resolução 1. 1.1. Como se escolhe um aluno do primeiro turno, ou seja, um aluno com um número ímpar, existem 1 escolhas possíveis (1, 3,
QUESTÕES TRIÂNGULO RETÂNGULO
QUESTÕES TRIÂNGULO RETÂNGULO 1. (Ita 015) Seja ABCD um trapézio isósceles com base maior AB medindo 15, o lado AD medindo 9 e o ângulo ADB ˆ reto. A distância entre o lado AB e o ponto E em que as diagonais
38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO
38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 2 1) C 6) B 11) B 16) D 21) A 2) C 7) C 12) C 17) D 22) A 3) D 8) E 13) D 18) C
Teorema de Tales. MA13 - Unidade 8. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria.
Teorema de Tales MA13 - Unidade 8 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Proporcionalidade 1. Dizemos que o segmento x é a quarta proporcional
TIPO-A. Matemática. 03. Considere os números naturais a = 25, b = 2, c = 3, d = 4 e analise as afirmações seguintes:
2 Matemática 01. Recorde que uma função f: R R diz-se par quando f( x) = f(x) para todo x real, e que f diz-se ímpar quando f( x) = f(x) para todo x real. Com base nessas definições, analise a veracidade
MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0
MATEMÁTICA CADERNO CURSO E ) I) + 0 II) 7 + + 0 FRENTE Álgebra n Módulo Módulo de um Número Real ) 6 + < não tem solução, pois a 0, a ) A igualdade +, com + 0, é verificada para: ọ ) + 0 ou ọ ) + + + +
Canguru de Matemática Brasil 2016 Nível S - Soluções
Problemas de pontos Canguru de Matemática Brasil 06 Nível S - Soluções. A soma das idades de Tom e João é, a soma das idades de João e Ale é 4 e a soma das idades de Tom e Ale é 5. Qual é a idade do mais
ENQ Gabarito e Pauta de Correção
ENQ014.1 - Gabarito e Pauta de Correção Questão 1 [ 1,0 pt ] O máximo divisor comum de dois inteiros positivos é 0. Para se chegar a esse resultado pelo processo das divisões sucessivas, os quocientes
Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a.
GABARITO MA1 Geometria I - Avaliação 2-201/2 Questão 1. (pontuação: 2) As retas r, s e t são paralelas, como mostra a figura abaixo. A distância entre r e s é igual a e a distância entre s e t é igual
MATEMÁTICA. Capítulo 5 LIVRO 1. Teorema de Pitágoras Relações Métricas nos Triângulos. Páginas: 190 à201
MATEMÁTICA LIVRO 1 Capítulo 5 Teorema de Pitágoras Relações Métricas nos Triângulos Páginas: 190 à201 Teorema de Pitágoras: II b² b III IV a c c² II a² I I IV III "A área do quadrado formado com o lado
UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios
UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios 1. Um triângulo isósceles tem base medindo 8cm e lados iguais com medidas de 5cm. Qual é a área do triângulo? 2. Em um triângulo retângulo,
3a Olimpı ada Vic osense de Matema tica
3a Olimpı ada Vic osense de Matema tica Gabarito do Banco de Questo es a OLIMPÍADA LIM IMPÍADA VIÇ VIÇOSENSE SE DE MAT MA MATEMÁTICA TE Nı vel III - Fase. Soluc a o: Por hipo tese, existe um nu mero q
OBMEP ª FASE - Soluções Nível 2
OBMEP 008 - ª FASE - Soluções Nível QUESTÃO a) a solução: A figura ao lado mostra como decompor a região ACDE em um quadrado CDEH e um triângulo AGE. Como CD = DE = 0 e AC = 0, segue que AG = 0. Logo a
(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4
TEOREMA DE TALES 1. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 10 cm a medida, em cm, de XZ é: (A) 0 (B) 10
Solução da prova da 2.ª Fase
Solução da prova da.ª Fase Nível 8.º e 9.º anos do Ensino Fundamental. a Fase de setembro de 08 QUESTÃO a) As páginas pares do álbum têm os números,,,..., 0 num total de 0 = 0 páginas e as páginas ímpares
João esqueceu-se do seu código, mas lembra-se que é divisível por 9. Quantos códigos existem nessas condições?
2/09/16 Duração: 4 horas e 0 minutos 1 Para desbloquear o seu celular, João desliza o dedo horizontalmente ou verticalmente por um quadro numérico, semelhante ao representado na figura, descrevendo um
Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3
01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular
Exercícios Obrigatórios
Exercícios Obrigatórios 1) (UFRGS) Na figura 1, BC é paralelo a DE e, na figura 2, GH é paralelo a IJ. x E y J a C H a (a) ab e a/b (b) ab e b/a (c) a/b e ab (d) b/a e ab (e) a/b e 1/b Então x e y valem,
Canguru de Matemática Brasil 2016 Nível B Soluções
Problemas de 3 pontos Canguru de Matemática Brasil 016 Nível B Soluções 1. Marcos corta uma pizza em quatro partes iguais. Em seguida, corta cada um desses pedaços em três pedaços iguais. Cada um desses
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 017-1 a Fase Proposta de resolução Caderno 1 1. Como 9 =,5 e 5,, temos que 5 < 9 indicados na definição do conjunto, vem que: e assim, representando na reta real os
Módulo Elementos Básicos de Geometria - Parte 3. Quadriláteros. Professores: Cleber Assis e Tiago Miranda
Módulo Elementos Básicos de Geometria - Parte 3 Quadriláteros. 8 ano/e.f. Professores: Cleber Assis e Tiago Miranda Elementos Básicos de Geometria - Parte 3. Quadriláteros. 1 Exercícios Introdutórios Exercício
