Equipe de Matemática. Matemática. Divisibilidade
|
|
|
- Victor Gabriel Lacerda de Andrade
- 9 Há anos
- Visualizações:
Transcrição
1 Aluno (a): Série: 3ª Turma: TUTORIAL 1B Ensino Médio Equipe de Matemática Data: Matemática Divisibilidade Divisores de um número natural são todos os números naturais que ao dividirem tal número, resultarão em uma divisão exata, isto é, com resto igual a zero. Antes de começar a fazer os exercícios, vamos fazer uma pequena revisão dos critérios de divisibilidade: 1. Um número é divisível por 2 quando ele é par, isto é, termina em 0, 2, 4, 6 ou 8. Exemplo: 24, 542, Um número é divisível por 3 quando a soma dos valores absolutos de seus algarismos é divisível por 3. Exemplo: 72 é divisível por 3 pois = 9, que é divisível por Um número é divisível por 4 quando terminar em 00 ou seus dois últimos algarismos formarem um número divisível por 4. Exemplo: 1500 é divisível por 4 pois termina em 00 : 2624 também é divisível por 4 pois 24 é divisível por Um número é divisível por 5 quando o algarismo das unidades for 0 ou 5. Exemplo: 125 é divisível por 5 pois termina em 5 ; 120 é divisível por 5 pois termina em Um número é divisível por 6 quando for divisível simultaneamente por 2 e por 3. Exemplo: 420 é divisível por 6, pois é divisível por 2 e por Um número é divisível por 8 quando terminar em 000 ou seus 3 últimos algarismos formarem um número divisível por 8. Exemplo: 2000 é divisível por 8 pois termina em 000 ; 3184 também é divisível por 8, pois 184 é divisível por Um número é divisível por 9 quando a soma dos valores absolutos de seus algarismos é divisível por 9. Exemplo: 423 é divisível por 9, pois = 9, que é divisível por Um número é divisível por 10 quando termina em 0. Colégio A. LIESSIN Scholem Aleichem NANDA/MARÇO/
2 Exemplo: 10, 100, 1000, 150, 200 são números divisíveis por 10 pois terminam em zero. Números Primos Os números que admitem apenas dois divisores (ele próprio e 1 ) são chamados de números primos. Exemplos : a) 2 é um número primo, pois D(2) = { 1,2} b) 3 é um número primo, pois D(3) = { 1,3} c) 5 é um número primo, pois D(5) = { 1,5} d) 7 é um número primo, pois D(7) = { 1,7} e) 11 é um número primo, pois D(11) = { 1, 11} Obs. : O conjunto dos números primos é infinito. P = { 2,3,5,7,11,13,17,19,...} Como reconhecer se um número é primo? O matemático e astrônomo grego Eratóstenes, que viveu há cerca de anos, inventou um método que permite obter os números primos naturais. Esse método é conhecido, hoje como Crivo de Eratóstenes. Dispomos os números numa tabela e eliminamos os números que não são primos : inicialmente eliminamos o 1, que não é primo. 2 é primo, mas os outros múltiplos de 2 não são primos e devem ser eliminados. 3 é primo,mas os outros múltiplos de 3 não são primos por isso devem ser eliminados. seguindo-se o mesmo raciocínio para 5, 7 e 11 eliminamos os múltiplos de cada um deles. Os números que restaram e estão circulados são os primos. Modo prático de reconhecer se um número é primo a) O número é par: O único número par que é primo é o 2. Os outros não são primos. b) O número é ímpar: Dado um número ímpar, verificamos se esse número é primo dividindo-o, sucessivamente pelos números primos (3,5,7,11,17...), até o quociente seja menor ou igual ao divisor. Colégio A. LIESSIN Scholem Aleichem NANDA/MARÇO/
3 Exemplo: Verificar se o número 43 é primo: 43: 3 = 14 resto 1 (14 é maior que 3) 43 : 5 = 8 resto 3 ( 8 é maior que 5) 43 : 7 = 6 resto 1 ( 6 é menor que 7) - nenhuma das divisões é exata ; - o quociente 6 é menor que o divisor 7 ; - logo, 43 é primo. Números Compostos Os números que têm mais de dois divisores são chamados números compostos. Exemplos : a) 4 é um número composto, pois D(4) = { 1,2,4} b) 6 é um número composto, pois D(6) = { 1,2,3,6} c) 8 é um número composto, pois D(8) = { 1,2,4,8} DECOMPOSIÇÃO DE UM NÚMERO EM FATORES PRIMOS Um número composto pode ser indicado como um produto de fatores primos, ou melhor, um número pode ser fatorado Exemplo : 140 I I I I Procedimentos Escrevemos o número à esquerda de uma barra vertical. Dividimos o número (140) pelo menor número primo possível. Neste caso, é o 2. Voltamos a dividir o quociente, que é 70, pelo menor número primo possível, sendo novamente 2. O processo é repetindo até que o quociente seja 1. Outros exemplos : a) decompor em fatores primos o número I 2 36 I 2 18 I 2 09 I 3 03 I 3 01 Colégio A. LIESSIN Scholem Aleichem NANDA/MARÇO/
4 b) Decompor em fatores primos o número I I I I Quantidade de Divisores de um Número Natural O conjunto formado por todos os divisores de um número natural é finito. Veremos agora como calcular a quantidade de divisores. Primeiramente, iremos fatorar o número. Usaremos, como exemplo, o número 72, cuja fatoração foi feita acima e quantidade de divisores iremos calcular. Vimos que 72 = Assim, 72 será dividido por potências de base 2 e por potências de base 3. As potências de base 2 que o dividem são 2 0, 2 1, 2 2 e 2 3. Portanto, 72 pode ser dividido por 4 potências de base 2. As potências de base 3 que o dividem são 3 0, 3 1 e 3 2. Portanto, 72 pode ser dividido por 3 potências de base 2. Então, seu número de divisores será igual a 4 x 3, ou seja, 72 possui 12 divisores. Os divisores de 72 são : D(72) = {1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72}. Regra Prática: Fatora-se o número cuja quantidade de divisores se deseja calcular. Adiciona-se 1 ao valor do expoente de cada fator primo e multiplica-se. Exercícios 1. Dados os números 39, 140, 245, 384, 720 e 2600, assinale a FALSA : a) 140, 384, 720 e 2600 são divisíveis por 4. b) 39, 384 e 720 são divisíveis por 3. c) 140, 245, 720 e 2600 são divisíveis por 5. d) 245 e 720 são divisíveis por 9. e) 384, 720 e 2600 são divisíveis por Qual é o maior número de dois algarismos divisível por 5? a) 90 b) 95 c) 995 d) 85 e) Qual é o menor número de três algarismos divisível por 3? a) 123 b) 101 c) 102 d) 111 e) 321 Colégio A. LIESSIN Scholem Aleichem NANDA/MARÇO/
5 4. Um número é composto de três algarismos. O algarismo das unidades é 2 e o das centenas é 5. Determine os possíveis valores do algarismo das dezenas para que esse número seja divisível por 3. a) 0 e 3 b) 2, 5 e 8 c) Apenas o algarismo 8 d) 3, 6 e 9 e) 2, 3 e 9 5. Este é um jogo de números cruzados, parecido com as palavras cruzadas. Você deverá substituir os espaços por um algarismo, de modo que os números formados estejam de acordo com as seguintes instruções : Horizontais : A Um número em que cada algarismo é o sucessor do algarismo anterior. B O maior número de três algarismos que seja divisível por 2. C Um número menor que 300. Verticais : A Um número que não é divisível por 2. B Um número divisível por 3, mas não por 2. C Um número de três algarismos iguais. A B C A B C Após preencher totalmente o jogo das cruzadinhas, verifica-se que o algarismo que mais aparece nas quadrículas é o a) 9 b) 8 c) 7 d) 5 e) 1 6. Verifique as afirmativas abaixo : a) O número 127 é primo. b) O número 143 é primo. c) O número 5124 é primo. d) O número 161 é divisível por 7. Colégio A. LIESSIN Scholem Aleichem NANDA/MARÇO/
6 São verdadeiras : a) As afirmativas a e d b) Apenas a afirmativa d c) Apenas a afirmativa a d) Todas as afirmativas e) As afirmativas b e d 7. Pedro mora no prédio de número 2168, tem 61 anos e 315 reais em sua conta bancária. Ele mora no apartamento 203 e sua sogra mora no mesmo prédio, no apartamento 103. Ele tem 427 amigos virtuais e sua meta é chegar a Casou-se no ano de 2001 com o grande amor de sua vida. Dos números que aparecem no texto acima, podemos afirmar que são primos a) os números 61, 203 e b) os números 61 e 203. c) os números 61, 315 e d) os números 1111, 203 e 427. e) os números 203, 2001 e Quatro amigos, após conversarem a respeito de suas idades, chegaram à conclusão de que as mesmas eram representadas por números inteiros compostos. Assim, a opção que pode representar as idades dos quatro será: a) 20, 21, 22 e 23 anos b) 16, 18, 19 e 22 anos c) 15, 16, 21 e 27 anos d) 18, 22, 24 e 29 anos e) 15, 21, 27 e 31 anos 9. Quantos divisores naturais possui o número 200? a) 9 b) 10 c) 11 d) 12 e) Ao calcularmos a quantidade de divisores naturais de cada um dos seguintes números : 12, 120, 150 e , verificaremos que (A) o número de divisores naturais de 120 é 10 vezes o número de divisores naturais de 12 (B) a soma da quantidade de divisores naturais de 12, 120 e 150 será maior do que a quantidade de divisores naturais de (C) dos quatro números, quem tem mais divisores naturais é o 150 (D) o número de divisores naturais de 150 é o dobro do número de divisores naturais de 12 (E) o número possui mais de 50 divisores naturais a) 12 b) 150 c) d) 120 Colégio A. LIESSIN Scholem Aleichem NANDA/MARÇO/
7 Respostas: 1) (D) Observe : Divisíveis por 2 : 140, 384, 720 e : 39, 384 e : 140, 384, 720 e : 140, 245, 720 e : 384 e : 384, 720 e : : 140, 720 e ) (B)95 ; 3) (C)102 ; 4) 2, 5 e 8, que formariam os respectivos números 522, 552 e ) (B) 8 A B C A B C ) (A) a) O número 127 é primo? (R: sim) b) O número 143 é primo? (R: não) c) O número 5124 é primo (R: não) (é par) d) O número 161 é divisível por 7 (R: sim) 7) (B) Os números que são primos: 61 e 103 8) (C) 15, 16, 21 e 27 anos 9) (D)12 divisores. 10) (D) 12 possui 6 divisores ; 150 possui 12 ; tem 49 ; 120 tem 16 divisores. Colégio A. LIESSIN Scholem Aleichem NANDA/MARÇO/
Divisibilidade Múltiplos de um número Critérios de divisibilidade 5367
Divisibilidade Um número é divisível por outro quando sua divisão por esse número for exata. Por exemplo: 20 : 5 = 4 logo 20 é divisível por 5. Múltiplos de um número Um número tem um conjunto infinito
Números Primos, Fatores Primos, MDC e MMC
Números primos são os números naturais que têm apenas dois divisores diferentes: o 1 e ele mesmo. 1) 2 tem apenas os divisores 1 e 2, portanto 2 é um número primo. 2) 17 tem apenas os divisores 1 e 17,
MATEMÁTICA. Aula 4. Professor : Dêner Rocha. Monster Concursos 1
MATEMÁTICA Aula 4 Professor : Dêner Rocha Monster Concursos 1 Divisibilidade Critérios de divisibilidade São critérios que nos permite verificar se um precisarmos efetuar grandes divisões. número é divisível
MÚLTIPLOS E DIVISORES
MÚLTIPLOS E DIVISORES 6º ANO - Prof. Patricia Caldana Múltiplos e divisores são números que resultam da multiplicação por um número natural e que dividem um número deixando resto zero, respectivamente.
MATEMÁTICA. ÍNDICE Conjuntos Numéricos... 2
MATEMÁTICA ÍNDICE Conjuntos Numéricos... 2 1 1 Matemática 2 Conjuntos Numéricos 00 Introdução Os conjuntos numéricos mostram a evolução do homem no decorrer do tempo mostrando que, de acordo com suas necessidades,
- Dizemos que um número é divisor de outro quando o resto da divisão é igual a zero. Ex.: 5 é divisor de 30, pois 30: 5 = 6 e o resto é 0.
Noções conceituais MDC - Dizemos que um número é divisor de outro quando o resto da divisão é igual a zero. Ex.: 5 é divisor de 30, pois 30: 5 = 6 e o resto é 0. - Todo número natural é produto de dois
Critérios de Divisibilidade
Critérios de Divisibilidade Divisibilidade por 2: Um número natural n é divisível por 2 se, e somente se, terminar em 0, ou 2, ou 4, ou 6, ou 8. 15638748 é divisível por 2, pois termina em 8. 6749029876539871375986
Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se
Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios
CAPÍTULO 1 MÚLTIPLOS E DIVISORES
06 Matemática e Raciocínio Lógico Damares Pavione Capítulo Múltiplos e divisores CAPÍTULO MÚLTIPLOS E DIVISORES. NÚMERO PRIMO Um número será primo quando não for divisível por nenhum outro número além
SEAM - SOCIEDADE EDUCACIONAL DO AMANHÃ
SEAM - SOCIEDADE EDUCACIONAL DO AMANHÃ MÚLTIPLOS E DIVISORES PROFª EDNALVA DOS SANTOS Um Objeto de Aprendizagem é um arquivo digital (imagem, filme, etc.) que pretende ser utilizado para fins pedagógicos
FATORAÇÃO, SIMPLIFICAÇÃO DE RAÍZES EXATAS E MMC
PROJETO KALI MATEMÁTICA A AULA 0 FATORAÇÃO, SIMPLIFICAÇÃO DE RAÍZES EXATAS E MMC Introdução Hoje iniciaremos o estudo de alguns assuntos extremamente importantes para uma maior compreensão no ensino da
MÚLTIPLOS DE UM NÚMERO NATURAL
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ======================================================================== MÚLTIPLOS DE UM NÚMERO NATURAL Para
MATEMÁTICA MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA. Professor Matheus Secco
MATEMÁTICA Professor Matheus Secco MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA 1. DIVISIBILIDADE Definição: Sejam a, b inteiros com a 0. Diz-se que a divide b (denota-se por a b) se existe c inteiro tal que
1. Múltiplos e divisores
Escola Básica de Santa Marinha Matemática 2009/2010 7º Ano Síntese dos conteúdos Números e operações 1 Múltiplos e divisores Múltiplo de um número é todo o número que se obtém multiplicando o número dado
Números Naturais Operações Fundamentais com Números Naturais *Adição; Subtração; Multiplicação e Divisão Exercícios
Curso de Elétrica... Matemática Básica Curso de Elétrica... Matemática Básica Sumário 1_Números Inteiros Números Naturais Operações Fundamentais com Números Naturais *Adição; Subtração; Multiplicação e
Matéria: Matemática Assunto: Teoria dos Conjuntos Prof. Dudan
Matéria: Matemática Assunto: Teoria dos Conjuntos Prof. Dudan Matemática NÚMEROS PRIMOS Por definição, os números primos são números pertencentes ao conjunto dos números naturais não nulos, que possuem
Apontamentos de Matemática 6.º ano
Revisão (divisores de um número) Os divisores de um número são os números naturais pelos quais podemos dividir esse número de forma exata (resto zero). Exemplos: Os divisores de 4 são 1, e 4, pois se dividirmos
CENTRO EDUCACIONAL GIRASSOL TD de Matemática Prof.: Tiago Rodrigues
CENTRO EUCACIONAL GIRASSOL T de Matemática Prof.: Tiago Rodrigues [email protected] IVISIBILIAE E RESTO. Introdução O assunto divisibilidade no Conjunto dos Inteiros ( ) é extremamente importante
Curso Turno Disciplina Carga Horária Licenciatura Plena em Noturno Matemática Elementar I 60h
1 Curso Turno Disciplina Carga Horária Licenciatura Plena em Noturno Matemática Elementar I 60h Matemática Aula Período Data Coordenador 3.1 1. a 06/06/2006 (terça feira) Tempo Estratégia Descrição (Arte)
Recredenciamento Portaria MEC 347, de DOU Identificação:
Identificação: Curso: Matemática, Licenciatura Disciplina: Estágio Curricular Supervisionado I Professor: Lucas Nunes Ogliari Aluno: Valdemar Winkler Atividade: Plano de Aula Aula (s) Nº: 04 e 05 Data
MATEMÁTICA 1 MÓDULO 2. Divisibilidade. Professor Matheus Secco
MATEMÁTICA 1 Professor Matheus Secco MÓDULO 2 Divisibilidade 1. DIVISIBILIDADE 1.1 DEFINIÇÃO: Dizemos que o inteiro a é divisível pelo inteiro b (ou ainda que a é múltiplo de b) se existe um inteiro c
Matemática OPERAÇÕES BÁSICAS. Professor Dudan
Matemática OPERAÇÕES BÁSICAS Professor Dudan Operações Matemáticas Observe que cada operação tem nomes especiais: Adição: 3 + 4 = 7, em que os números 3 e 4 são as parcelas e o número 7 é a soma ou total.
2. Números Inteiros. A representação gráfica dos números Inteiros Os números podem ser representados numa reta horizontal, a reta numérica:
. Números Inteiros Sempre que estamos no inverno as temperaturas caem. Algumas cidades do Sul do Brasil chegam até mesmo a nevar. Quando isso acontece, a temperatura está menor do que zero. Em Urupema,
Roteiro da aula. MA091 Matemática básica. Simplificação por divisões sucessivas. Divisores. Aula 4 Divisores e múltiplos. MDC. Operações com frações
Roteiro da aula MA091 Matemática básica Aula Divisores e múltiplos. MDC. Operações com frações 1 Francisco A. M. Gomes UNICAMP - IMECC Março de 016 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática
MÚLTIPLOS E DIVISORES. 8. um número natural, com exceção do zero é simultaneamente múltiplo e divisor de si mesmo.
Critérios de Divisibilidade MÚLTIPLOS E DIVISORES MÚLTIPLO Um número natural é múltiplo de um outro, quando a sua divisão por esse outro é exata. Assim, é múltiplo de e de, pois: = = Múltiplo de um número
o) (V) a) D (6) = 6, 3, 2, 4. a) D (220) = 220, 110, 55, 44, 22, 20, 11, 10, 5, 4, 2, 16q 1 = 18q 2 8q 1 = 9q 2 (I) 9q 1 + 9q 2 = 9 68
Matemática 5 aula. DIVISIBILIDADE a) N = 0 = 8. 9. 5 =.. 5 Seja n o número de divisores positivos, n = ( + )( + )( + ) = 4 b) Se n é o número de divisores negativos, n 4. Logo, a quantidade total é 48.
Matemática OPERAÇÕES BÁSICAS. Professor Dudan
Matemática OPERAÇÕES BÁSICAS Professor Dudan Operações Matemáticas Observe que cada operação tem nomes especiais: Adição: 3 + 4 = 7, em que os números 3 e 4 são as parcelas e o número 7 é a soma ou total.
CURSO PRF 2017 MATEMÁTICA
AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem
NÚMEROS NATURAIS OS NÚMEROS E SEUS SIGNIFICADOS!
NÚMEROS NATURAIS OS NÚMEROS E SEUS SIGNIFICADOS! Você já parou para pensar como surgiram os números? Será que os números surgiram da invenção de um matemático? O número surgiu a partir do momento em que
Matemática. Professor Dudan.
Matemática Professor Dudan www.acasadoconcurseiro.com.br Matemática CONJUNTOS NUMÉRICOS Números Naturais (N) Definição: N = {0, 1, 2, 3, 4,...} Subconjuntos N* = {1, 2, 3, 4,...} naturais não nulos. Números
BANCO. por: a) 2; b) 5; c) por 2? a) 78. b) 110. c) 65. d) 51 R.: R.: c) divisível por Responda: Por quê? R.: R.
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES MATEMÁTICA 6º ANO ENSINO FUNDAMENTAL = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par.
Matemática Unidade I Álgebra Série - Teoria dos números 01 a) Falsa. Por exemplo, para n =, temos 3n = 3 = 6, ou seja, um número par. b) Verdadeira. Por exemplo, para n = 1, temos n = 1 =, ou seja, um
Raciocínio Lógico. Professor Dudan.
Raciocínio Lógico Professor Dudan www.acasadoconcurseiro.com.br Matemática CONJUNTOS NUMÉRICOS Números Naturais (N) Definição: N = {0, 1, 2, 3, 4,...} Subconjuntos N* = {1, 2, 3, 4,...} naturais não nulos.
Resoluções das atividades
Resoluções das atividades Capítulo Divisibilidade Testando seus conhecimentos (página ) a) I. divisível b) I. II. II. múltiplo III. III. divisor IV. fator IV. (0) Se forem bolas por caixa, precisará de
Escola Secundária Dr. Augusto César da Silva Ferreira Rio Maior
Escola Secundária Dr. Augusto César da Silva Ferreira Rio Maior Ano Lectivo 008/009 Ficha de Exercícios/Problemas N.º 1 Critérios de Divisibilidade. Números Primos. Decomposição em Factores Primos. Raízes
a) 2 b) 3 c) 4 d) 5 e) 6
Recordando operações básicas 01. Calcule as expressões abaixo: a) 2254 + 1258 = b) 300+590 = c) 210+460= d) 104+23 = e) 239 54 = f) 655-340 = g) 216-56= h) 35 x 15 = i) 50 x 210 = j) 366 x 23 = k) 355
D 7 C 4 U 5. MATEMÁTICA Revisão Geral Aula 1 - Parte 1. Professor Me. Álvaro Emílio Leite. Valor posicional dos números. milésimos décimos.
MATEMÁTICA Revisão Geral Aula 1 - Parte 1 Professor Me. Álvaro Emílio Leite O que é um algarismo? É um símbolo que utilizamos para formar e representar os números. Exemplo: Os algarismos que compõem o
NÚMEROS PRIMOS. Os números primos são os números naturais com exatamente dois divisores. primo? Número divisores quantidade de divisores
5. NÚMEROS PRIMOS O conhecimento dos números primos e da decomposição dos números inteiros como produto de primos estão entre os conhecimentos mais úteis e importantes da Aritmética. K. F. Gauss Estudos
MATEMÁTICA ELEMENTAR MMC E MDC. Proª Joanny Fernandes
MATEMÁTICA ELEMENTAR MMC E MDC Proª Joanny Fernandes Mínimo Múltiplo Comum - MMC Dados dois ou mais números naturais não nulos, denomina-se mínimo múltiplo comum (MMC) o menor dos seus múltiplos que é
Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET
MATEMÁTICA AULA DEMONSTRATIVA GRATUITA OPERAÇÕES NOS CONJUNTOS NUMÉRICOS A matemática é uma ciência em que o conhecimento é aplicado cumulativamente, ou seja, tudo o que foi aprendido será utilizado nos
Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 2. Sexto Ano. Prof. Angelo Papa Neto
Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 2 Sexto Ano Prof. Angelo Papa Neto 1 Mínimo múltiplo comum Continuando nossa aula, vamos estudar o mínimo múltiplo comum de um conjunto finito
Equipe de Matemática MATEMÁTICA
Aluno (a): Série: 3ª Turma: TUTORIAL 5R Ensino Médio Equipe de Matemática Data: MATEMÁTICA Conjunto dos números racionais O conjunto dos números racionais é uma ampliação do conjunto dos números inteiros.
CURSO ANUAL DE MATEMÁTICA VOLUME 1
CURSO ANUAL DE MATEMÁTICA VOLUME ) SISTEMA DE NUMERAÇÃO DECIMAL O sistema de numeração que usamos é o sistema de numeração decimal, pelo fato de contarmos os elementos em grupos de dez. Dezenas cada grupo
Matemática OPERAÇÕES BÁSICAS. Professor Dudan
Matemática OPERAÇÕES BÁSICAS Professor Dudan Operações Matemáticas Observe que cada operação tem nomes especiais: Adição: 3 + 4 = 7, em que os números 3 e 4 são as parcelas e o número 7 é a soma ou total.
Um número é divisível por 2 se ele é par, ou seja, termina em 0, 2, 4, 6 ou 8.
Alguns critérios de divisibilidade Divisibilidade por 2 Um número é divisível por 2 se ele é par, ou seja, termina em 0, 2, 4, 6 ou 8. Exemplos: O número 5634 é divisível por 2, pois o seu último algarismo
8 4 6 Dividendo Divisor Quociente 2 4 D U Resto 2 4 D U
2.6 Divisão Ideias básicas: Repartir igualmente (nesta ideia, queremos saber quantos objetos ficam em cada conjunto quando repartimos algo em vários conjuntos); Medida ou quantas vezes uma quantidade cabe
AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 6.º ANO 2014/15 Ficha A1 Números Naturais
AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 6.º ANO 014/15 Ficha A1 Números Naturais NOME N.º Turma Nas questões 1 a 5, assinale com x a opção correta sem apresentar qualquer justificação. 1. A
Módulo Divisibilidade. Critérios de Divisibilidade. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Divisibilidade Critérios de Divisibilidade 6 ano E.F. Professores Cleber Assis e Tiago Miranda Divisibilidade Critérios de Divisibilidade 1 Exercícios Introdutórios Exercício 1. O tablete de chocolate
Ano: 6º Turma: 6.1 e 6.2
COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Paralela 2ª Etapa 2014 Disciplina: Matemática Professor (a): Flávia Lúcia Ano: 6º Turma: 6.1 e 6.2 Caro aluno, você está recebendo o conteúdo de
E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos
A história nos mostra que desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Seja através de pedras, ossos, desenhos, dos dedos ou outra forma qualquer, em
AGRUPAMENTO DE ESCOLAS D. JOSÉ I 2015/16 MATEMÁTICA 5.º ANO
AGRUPAMENTO DE ESCOLAS D. JOSÉ I 2015/16 MATEMÁTICA 5.º ANO Nome N º Turma 1. Observe os números seguintes: 12, 14 e 15. a) Determine os divisores de 14 e de 15 Divisores de 14: Divisores de 15: b) Escreva
Apontamentos de Matemática 6.º ano
Aplicação da decomposição de números em fatores primos para determinar o máximo divisor comum Exemplo: Determinar m. d. c. (60,36) 60 = 3 5 e 36 = 3 Qual é o maior número pelo qual podemos dividir 60 e
Máximo Divisor Comum (M.D.C.) & Mínimo Múltiplo Comum (M.M.C.)
UNIVERSIDADE FEDERAL DO PARANÁ Máximo Divisor Comum (M.D.C.) & Mínimo Múltiplo Comum (M.M.C.) DANIELA GUERRA HANNAH LACERDA WESLEY S. V. BATISTA WILLIAN VALVERDE Curitiba 2011 SUMÁRIO Introdução...02 1.
Decomposição de um número composto. Todo número composto pode ser decomposto em fatores primos Ex: = 2 2 X 3 X 5 X 7
Decomposição de um número composto Todo número composto pode ser decomposto em fatores primos Ex: 420 2 210 2 105 3 35 5 7 7 1 420= 2 2 X 3 X 5 X 7 Determinação do número de divisores de um número natural
Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F.
Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 1 Exercícios Introdutórios Exercício 1.
Ciclo 3 Encontro 1 NÚMEROS PRIMOS, FATORAÇÃO ÚNICA EM PRIMOS, MDC E MMC VIA FATORAÇÃO EM PRIMOS
1 Ciclo 3 Encontro 1 NÚMEROS PRIMOS, FATORAÇÃO ÚNICA EM PRIMOS, MDC E MMC VIA FATORAÇÃO EM PRIMOS Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr. Números primos, fatoração única em primos,
Expressão Numérica, Geometria Espacial, Múltiplos, Divisores, MMC, MDC. Profª Gerlaine 6º Ano
Expressão Numérica, Geometria Espacial, Múltiplos, Divisores, MMC, MDC. Profª Gerlaine 6º Ano EXPRESSÃO NUMÉRICA Um monstro ou uma bela senhora, a forma como vemos a Matemática é produto dos nossos esforços
Aula 01 mtm B MATEMÁTICA BÁSICA
Aula 01 mtm B MATEMÁTICA BÁSICA Paridade Par: x = 2n, n Z Exemplo 1: 6 6 = 2.3 n = 3 Ímpar: x = 2n+1, n Z Exemplo 2: 9 9 = 2.4 +1 n = 4 Exemplo 3: Classifique como Verdadeiro ou Falso. ( V ) 3,2 é um número
Em nossas aulas, estudamos sobre múltiplos e divisores. Vamos explorá-las nas questões que seguem.
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ================================================================= Em nossas aulas, estudamos sobre múltiplos
Resoluções. Aula 1 NÍVEL 2. Classe
www.cursoanglo.com.br Treinamento para Olimpíadas de Matemática NÍVEL 2 Resoluções Aula 1 Classe 1. Observe que: 14 1 = 14 14 2 = 196 14 par termina em 6 e 14 ímpar termina em 4 14 3 = 2.744 14 4 = 38.416...
Matemática OPERAÇÕES BÁSICAS. Professor Dudan
Matemática OPERAÇÕES BÁSICAS Professor Dudan Operações Matemáticas Observe que cada operação tem nomes especiais: Adição: 3 + 4 = 7, em que os números 3 e 4 são as parcelas e o número 7 é a soma ou total.
MA14 - Aritmética Lista 1. Unidades 1 e 2
MA14 - Aritmética Lista 1 Unidades 1 e 2 Abramo Hefez PROFMAT - SBM 05 a 11 de agosto 2013 Unidade 1 1. Mostre, por indução matemática, que, para todo n N {0}, a) 8 3 2n + 7 b) 9 10 n + 3.4 n+2 + 5 2.
Apontamentos de Matemática 6.º ano
Revisão (divisores de um número) Os divisores de um número são os números naturais pelos quais podemos dividir esse número de forma exata (resto zero). Exemplos: Os divisores de 4 são 1, e 4, pois se dividirmos
Matemática. Operações Básicas. Professor Dudan.
Matemática Operações Básicas Professor Dudan www.acasadoconcurseiro.com.br Matemática OPERAÇÕES BÁSICAS Operações Matemáticas Observe que cada operação tem nomes especiais: Adição: 3 + 4 = 7, em que os
Roteiro da segunda aula presencial - ME
PIF Enumerabilidade Teoria dos Números Congruência Matemática Elementar Departamento de Matemática Universidade Federal da Paraíba 29 de outubro de 2014 PIF Enumerabilidade Teoria dos Números Congruência
1.1. Numéricos. Conjuntos MATEMÁTICA. Conjunto dos Números Naturais (N) Conjunto dos Números Inteiros (Z)
CAPÍTULO 1 Capítulo 1 1.1 Conjuntos Numéricos Conjunto dos Números Naturais (N) Os números naturais são em geral associados à ideia de contagem, e o conjunto que os representa é indicado por N. N = {0,
MATEMÁTICA MÓDULO 1 TEORIA DOS NÚMEROS 1. DIVISIBILIDADE 1.1. DEFINIÇÃO 1.2. CRITÉRIOS DE DIVISIBILIDADE
TEORIA DOS NÚMEROS 1. DIVISIBILIDADE Neste momento inicial, nosso interesse será em determinar quando a divisão entre dois números inteiros é exata, ou seja, quando o resto da divisão é 0. Antes de mais
PLANEJAMENTO ANUAL / TRIMESTRAL 2012 Conteúdos Habilidades Avaliação
COLÉGIO LA SALLE BRASÍLIA Disciplina: Matemática Trimestre: 1º Números Naturais: - Sistema de numeração - Adição e subtração - Multiplicação e divisão - Traduzir em palavras números representados por algarismos
Agrupamento de Escolas Joaquim Inácio da Cruz Sobral
Agrupamento de Escolas Joaquim Inácio da Cruz Sobral Escola Básica e Secundária de Sobral de Monte Agraço FICHA DE TRABALHO DE MATEMÁTICA 7ºAno Nome: N.º Turma: Data: Trabalho de Casa: Números Inteiros
Conjunto dos Números Naturais
Conjunto dos Números Naturais N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,...} Retirando-se o zero do conjunto dos números naturais, obtemos o conjunto dos números naturais não-nulos, representado por
MMC, MDC, TRATAMENTO DA INFORMAÇÃO E GEOMETRIA. Profª Gerlaine Alves
MMC, MDC, TRATAMENTO DA INFORMAÇÃO E GEOMETRIA Profª Gerlaine Alves Múltiplos e Divisores Divisores: dizemos que um número é divisor do outro número quando a divisão for exata, ou seja, quando o resto
Direto do concurso. Comentário CONJUNTOS NUMÉRICOS
CONJUNTOS NUMÉRICOS Conjuntos dos números naturais, inteiros, racionais e irracionais (propriedades e operações). Qual a importância de conhecer os CONJUNTOS NUMÉRICOS? Como existem vários tipos de conjuntos,
Divisibilidade e Números primos. George Darmiton da Cunha Cavalcanti CIn - UFPE
Divisibilidade e Números primos George Darmiton da Cunha Cavalcanti CIn - UFPE Divisibilidade de inteiros Sejam a e b dois inteiros. Dizemos que a divide b, a é um divisor de b ou b é um múltiplo de a
Módulo Tópicos Adicionais. Recorrências
Módulo Tópicos Adicionais Recorrências Módulo Tópico Adicionais Recorrências 1 Exercícios Introdutórios Exercício 1 Considere a sequência definida por x 1 d e x n r + x n 1, para n > 1 Trata-se de uma
Encontro 13: MDC e MMC - Fatoração simultânea e resolução de exercícios.
Encontro 13: MDC e MMC - Fatoração simultânea e resolução de exercícios. Método da Fatoração Simultânea Primeiro escrevemos os números lado a lado, separados por vírgula. Colocamos uma reta vertical separando
Simulado Aula 02 CEF MATEMÁTICA. Prof. Dudan
Simulado Aula 02 CEF MATEMÁTICA Prof. Dudan Matemática 1. O algarismo das unidades do número 11 1 + 11² + 11³ +... + 11 6 é maior que 5. 2. O algarismo da dezena do resultado da expressão numérica 948652919238493
Fazendo o Crivo de Eratóstenes descobrimos todos os primos até o último número escrito na
3.7. Primos Nº composto é o nº que conseguimos obter por multiplicações. Exm.: 6 é um nº composto, pois o obtemos fazendo 3 2. Os n os que não obtemos por multiplicações (a não ser que seja 1 vezes o próprio
GABARITO DO CADERNO DE RECUPERAÇÃO 1º SEMESTRE 6º ANO MATEMÁTICA
GABARITO DO CADERNO DE RECUPERAÇÃO 1º SEMESTRE 6º ANO MATEMÁTICA 01) Represente cada multiplicação por meio de uma potenciação. a) 2 5 b) 10 5 c) 5 12 d) 3 6 e) a 5 f) b 7 g) 45 4 h) 68 6 i) 89 3 j) 1
Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSARÁ O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM Disciplina: MATEMÁTICA
Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSARÁ O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 08 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 6 (UFMG ADAPTADO) O produto dos algarismos
Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! MATEMÁTICA BÁSICA
MATEMÁTICA BÁSICA CONJUNTOS Conjunto é um grupo de objeto e cada objeto que forma o conjunto é chamado elemento. Ex.: Conjunto de vogais do alfabeto Elementos: a, e, i, o, u Conjunto das cores da bandeira
Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c.
Divisores Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Quando a é múltiplo de d dizemos também que a é divisível
PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação
Disciplina: Matemática Trimestre: 1º PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Fundamentais de Matemática Sistema de Numeração decimal As quatro operações fundamentais Compreender problemas Números
Deixando de odiar Matemática Parte 4
Deixando de odiar Matemática Parte 4 Fatoração 2 Quantidade de divisores de um número natural 3 Mínimo Múltiplo Comum 5 Simplificação de Frações 7 Máximo Divisor Comum 8 Método da Fatoração Simultânea
Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05
RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim
TÓPICOS DE REVISÃO MATEMÁTICA I MÓDULO 2 : Números, Múltiplos e Divisores 3 a Série Ensino Médio Prof. Rogério Rodrigues
1 TÓPICOS DE REVISÃO MATEMÁTICA I MÓDULO 2 : Números, Múltiplos e Divisores 3 a Série Ensino Médio Prof. Rogério Rodrigues Nome :... Número :... Turma :... 2 II - NÚMEROS INTEIROS MÚLTIPLOS E DIVISORES
Aula Inaugural Curso Alcance 2017
Aula Inaugural Curso Alcance 2017 Revisão de Matemática Básica Professores: Me Carlos Eurico Galvão Rosa e Me. Márcia Mikuska Universidade Federal do Paraná Campus Jandaia do Sul [email protected] 06 de
NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA
NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA NOTAS DE AULA: REPRESENTAÇÕES DECIMAIS A representação decimal é a forma como escrevemos um número em uma única base, e como essa
Exemplos: Os números 12, 18 e 30 têm conjuntos de divisores respectivamente iguais a:
Lista de atividades sobre MDC. Nesta aula, definiremos e estudaremos métodos para calcular o máximo divisor comum e o mıınimo múltiplo comum de números naturais, bem como algumas de suas propri edades.
Planejamento Acadêmico - Grupo 1 - PIC 2012 Encontro 2 - Módulo 1 - Aritmética
Planejamento Acadêmico - Grupo 1 - PIC 2012 Encontro 2 - Módulo 1 - Aritmética 1. Divisão Euclidiana Exemplo 1: (Banco de Questões 2012, nível 1, problema 12) A figura abaixo representa o traçado de uma
CONJUNTO DOS NÚMEROS INTEIROS. No conjunto dos números naturais operações do tipo
CONJUNTO DOS NÚMEROS INTEIROS No conjunto dos números naturais operações do tipo 9-5 = 4 é possível 5 5 = 0 é possível 5 7 =? não é possível e para tornar isso possível foi criado o conjunto dos números
Respostas Aula 1 (POTI) = Produtos Notáveis
Respostas Aula 1 (POTI) = Produtos Notáveis 01. CPM 010. Alternativa B. (a b) +(a+b) a (a+b) (a b) (a+b) = a ab+b +a +ab+b a b a +ab+b a +b = ab+b = b b (a+b) = b a+b 0. Ora: (x + xy + y ) = (x + y) =
AGRUPAMENTO DE ESCOLAS D. JOSÉ I 2015/16 MATEMÁTICA 5.º ANO
AGRUPAMENTO DE ESCOLAS D. JOSÉ I 2015/16 MATEMÁTICA 5.º ANO Nome N º Turma 1. A tabela seguinte apresenta três números, os seus divisores e alguns múltiplos, mas está incompleta. Número Divisores Múltiplos
1. Qual é a soma dos nove primeiros números naturais primos? a) 87 b) 89 c) 93 d) 100
Lista de Exercícios Divisibilidade 1. Qual é a soma dos nove primeiros números naturais primos? a) 87 b) 89 c) 93 d) 100 2. A soma dos quadrados dos três menores números primos vale a) 14. b) 38. c) 64.
