Equipe de Matemática. Matemática. Divisibilidade

Tamanho: px
Começar a partir da página:

Download "Equipe de Matemática. Matemática. Divisibilidade"

Transcrição

1 Aluno (a): Série: 3ª Turma: TUTORIAL 1B Ensino Médio Equipe de Matemática Data: Matemática Divisibilidade Divisores de um número natural são todos os números naturais que ao dividirem tal número, resultarão em uma divisão exata, isto é, com resto igual a zero. Antes de começar a fazer os exercícios, vamos fazer uma pequena revisão dos critérios de divisibilidade: 1. Um número é divisível por 2 quando ele é par, isto é, termina em 0, 2, 4, 6 ou 8. Exemplo: 24, 542, Um número é divisível por 3 quando a soma dos valores absolutos de seus algarismos é divisível por 3. Exemplo: 72 é divisível por 3 pois = 9, que é divisível por Um número é divisível por 4 quando terminar em 00 ou seus dois últimos algarismos formarem um número divisível por 4. Exemplo: 1500 é divisível por 4 pois termina em 00 : 2624 também é divisível por 4 pois 24 é divisível por Um número é divisível por 5 quando o algarismo das unidades for 0 ou 5. Exemplo: 125 é divisível por 5 pois termina em 5 ; 120 é divisível por 5 pois termina em Um número é divisível por 6 quando for divisível simultaneamente por 2 e por 3. Exemplo: 420 é divisível por 6, pois é divisível por 2 e por Um número é divisível por 8 quando terminar em 000 ou seus 3 últimos algarismos formarem um número divisível por 8. Exemplo: 2000 é divisível por 8 pois termina em 000 ; 3184 também é divisível por 8, pois 184 é divisível por Um número é divisível por 9 quando a soma dos valores absolutos de seus algarismos é divisível por 9. Exemplo: 423 é divisível por 9, pois = 9, que é divisível por Um número é divisível por 10 quando termina em 0. Colégio A. LIESSIN Scholem Aleichem NANDA/MARÇO/

2 Exemplo: 10, 100, 1000, 150, 200 são números divisíveis por 10 pois terminam em zero. Números Primos Os números que admitem apenas dois divisores (ele próprio e 1 ) são chamados de números primos. Exemplos : a) 2 é um número primo, pois D(2) = { 1,2} b) 3 é um número primo, pois D(3) = { 1,3} c) 5 é um número primo, pois D(5) = { 1,5} d) 7 é um número primo, pois D(7) = { 1,7} e) 11 é um número primo, pois D(11) = { 1, 11} Obs. : O conjunto dos números primos é infinito. P = { 2,3,5,7,11,13,17,19,...} Como reconhecer se um número é primo? O matemático e astrônomo grego Eratóstenes, que viveu há cerca de anos, inventou um método que permite obter os números primos naturais. Esse método é conhecido, hoje como Crivo de Eratóstenes. Dispomos os números numa tabela e eliminamos os números que não são primos : inicialmente eliminamos o 1, que não é primo. 2 é primo, mas os outros múltiplos de 2 não são primos e devem ser eliminados. 3 é primo,mas os outros múltiplos de 3 não são primos por isso devem ser eliminados. seguindo-se o mesmo raciocínio para 5, 7 e 11 eliminamos os múltiplos de cada um deles. Os números que restaram e estão circulados são os primos. Modo prático de reconhecer se um número é primo a) O número é par: O único número par que é primo é o 2. Os outros não são primos. b) O número é ímpar: Dado um número ímpar, verificamos se esse número é primo dividindo-o, sucessivamente pelos números primos (3,5,7,11,17...), até o quociente seja menor ou igual ao divisor. Colégio A. LIESSIN Scholem Aleichem NANDA/MARÇO/

3 Exemplo: Verificar se o número 43 é primo: 43: 3 = 14 resto 1 (14 é maior que 3) 43 : 5 = 8 resto 3 ( 8 é maior que 5) 43 : 7 = 6 resto 1 ( 6 é menor que 7) - nenhuma das divisões é exata ; - o quociente 6 é menor que o divisor 7 ; - logo, 43 é primo. Números Compostos Os números que têm mais de dois divisores são chamados números compostos. Exemplos : a) 4 é um número composto, pois D(4) = { 1,2,4} b) 6 é um número composto, pois D(6) = { 1,2,3,6} c) 8 é um número composto, pois D(8) = { 1,2,4,8} DECOMPOSIÇÃO DE UM NÚMERO EM FATORES PRIMOS Um número composto pode ser indicado como um produto de fatores primos, ou melhor, um número pode ser fatorado Exemplo : 140 I I I I Procedimentos Escrevemos o número à esquerda de uma barra vertical. Dividimos o número (140) pelo menor número primo possível. Neste caso, é o 2. Voltamos a dividir o quociente, que é 70, pelo menor número primo possível, sendo novamente 2. O processo é repetindo até que o quociente seja 1. Outros exemplos : a) decompor em fatores primos o número I 2 36 I 2 18 I 2 09 I 3 03 I 3 01 Colégio A. LIESSIN Scholem Aleichem NANDA/MARÇO/

4 b) Decompor em fatores primos o número I I I I Quantidade de Divisores de um Número Natural O conjunto formado por todos os divisores de um número natural é finito. Veremos agora como calcular a quantidade de divisores. Primeiramente, iremos fatorar o número. Usaremos, como exemplo, o número 72, cuja fatoração foi feita acima e quantidade de divisores iremos calcular. Vimos que 72 = Assim, 72 será dividido por potências de base 2 e por potências de base 3. As potências de base 2 que o dividem são 2 0, 2 1, 2 2 e 2 3. Portanto, 72 pode ser dividido por 4 potências de base 2. As potências de base 3 que o dividem são 3 0, 3 1 e 3 2. Portanto, 72 pode ser dividido por 3 potências de base 2. Então, seu número de divisores será igual a 4 x 3, ou seja, 72 possui 12 divisores. Os divisores de 72 são : D(72) = {1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72}. Regra Prática: Fatora-se o número cuja quantidade de divisores se deseja calcular. Adiciona-se 1 ao valor do expoente de cada fator primo e multiplica-se. Exercícios 1. Dados os números 39, 140, 245, 384, 720 e 2600, assinale a FALSA : a) 140, 384, 720 e 2600 são divisíveis por 4. b) 39, 384 e 720 são divisíveis por 3. c) 140, 245, 720 e 2600 são divisíveis por 5. d) 245 e 720 são divisíveis por 9. e) 384, 720 e 2600 são divisíveis por Qual é o maior número de dois algarismos divisível por 5? a) 90 b) 95 c) 995 d) 85 e) Qual é o menor número de três algarismos divisível por 3? a) 123 b) 101 c) 102 d) 111 e) 321 Colégio A. LIESSIN Scholem Aleichem NANDA/MARÇO/

5 4. Um número é composto de três algarismos. O algarismo das unidades é 2 e o das centenas é 5. Determine os possíveis valores do algarismo das dezenas para que esse número seja divisível por 3. a) 0 e 3 b) 2, 5 e 8 c) Apenas o algarismo 8 d) 3, 6 e 9 e) 2, 3 e 9 5. Este é um jogo de números cruzados, parecido com as palavras cruzadas. Você deverá substituir os espaços por um algarismo, de modo que os números formados estejam de acordo com as seguintes instruções : Horizontais : A Um número em que cada algarismo é o sucessor do algarismo anterior. B O maior número de três algarismos que seja divisível por 2. C Um número menor que 300. Verticais : A Um número que não é divisível por 2. B Um número divisível por 3, mas não por 2. C Um número de três algarismos iguais. A B C A B C Após preencher totalmente o jogo das cruzadinhas, verifica-se que o algarismo que mais aparece nas quadrículas é o a) 9 b) 8 c) 7 d) 5 e) 1 6. Verifique as afirmativas abaixo : a) O número 127 é primo. b) O número 143 é primo. c) O número 5124 é primo. d) O número 161 é divisível por 7. Colégio A. LIESSIN Scholem Aleichem NANDA/MARÇO/

6 São verdadeiras : a) As afirmativas a e d b) Apenas a afirmativa d c) Apenas a afirmativa a d) Todas as afirmativas e) As afirmativas b e d 7. Pedro mora no prédio de número 2168, tem 61 anos e 315 reais em sua conta bancária. Ele mora no apartamento 203 e sua sogra mora no mesmo prédio, no apartamento 103. Ele tem 427 amigos virtuais e sua meta é chegar a Casou-se no ano de 2001 com o grande amor de sua vida. Dos números que aparecem no texto acima, podemos afirmar que são primos a) os números 61, 203 e b) os números 61 e 203. c) os números 61, 315 e d) os números 1111, 203 e 427. e) os números 203, 2001 e Quatro amigos, após conversarem a respeito de suas idades, chegaram à conclusão de que as mesmas eram representadas por números inteiros compostos. Assim, a opção que pode representar as idades dos quatro será: a) 20, 21, 22 e 23 anos b) 16, 18, 19 e 22 anos c) 15, 16, 21 e 27 anos d) 18, 22, 24 e 29 anos e) 15, 21, 27 e 31 anos 9. Quantos divisores naturais possui o número 200? a) 9 b) 10 c) 11 d) 12 e) Ao calcularmos a quantidade de divisores naturais de cada um dos seguintes números : 12, 120, 150 e , verificaremos que (A) o número de divisores naturais de 120 é 10 vezes o número de divisores naturais de 12 (B) a soma da quantidade de divisores naturais de 12, 120 e 150 será maior do que a quantidade de divisores naturais de (C) dos quatro números, quem tem mais divisores naturais é o 150 (D) o número de divisores naturais de 150 é o dobro do número de divisores naturais de 12 (E) o número possui mais de 50 divisores naturais a) 12 b) 150 c) d) 120 Colégio A. LIESSIN Scholem Aleichem NANDA/MARÇO/

7 Respostas: 1) (D) Observe : Divisíveis por 2 : 140, 384, 720 e : 39, 384 e : 140, 384, 720 e : 140, 245, 720 e : 384 e : 384, 720 e : : 140, 720 e ) (B)95 ; 3) (C)102 ; 4) 2, 5 e 8, que formariam os respectivos números 522, 552 e ) (B) 8 A B C A B C ) (A) a) O número 127 é primo? (R: sim) b) O número 143 é primo? (R: não) c) O número 5124 é primo (R: não) (é par) d) O número 161 é divisível por 7 (R: sim) 7) (B) Os números que são primos: 61 e 103 8) (C) 15, 16, 21 e 27 anos 9) (D)12 divisores. 10) (D) 12 possui 6 divisores ; 150 possui 12 ; tem 49 ; 120 tem 16 divisores. Colégio A. LIESSIN Scholem Aleichem NANDA/MARÇO/

Divisibilidade Múltiplos de um número Critérios de divisibilidade 5367

Divisibilidade Múltiplos de um número Critérios de divisibilidade 5367 Divisibilidade Um número é divisível por outro quando sua divisão por esse número for exata. Por exemplo: 20 : 5 = 4 logo 20 é divisível por 5. Múltiplos de um número Um número tem um conjunto infinito

Leia mais

Números Primos, Fatores Primos, MDC e MMC

Números Primos, Fatores Primos, MDC e MMC Números primos são os números naturais que têm apenas dois divisores diferentes: o 1 e ele mesmo. 1) 2 tem apenas os divisores 1 e 2, portanto 2 é um número primo. 2) 17 tem apenas os divisores 1 e 17,

Leia mais

MATEMÁTICA. Aula 4. Professor : Dêner Rocha. Monster Concursos 1

MATEMÁTICA. Aula 4. Professor : Dêner Rocha. Monster Concursos 1 MATEMÁTICA Aula 4 Professor : Dêner Rocha Monster Concursos 1 Divisibilidade Critérios de divisibilidade São critérios que nos permite verificar se um precisarmos efetuar grandes divisões. número é divisível

Leia mais

MÚLTIPLOS E DIVISORES

MÚLTIPLOS E DIVISORES MÚLTIPLOS E DIVISORES 6º ANO - Prof. Patricia Caldana Múltiplos e divisores são números que resultam da multiplicação por um número natural e que dividem um número deixando resto zero, respectivamente.

Leia mais

MATEMÁTICA. ÍNDICE Conjuntos Numéricos... 2

MATEMÁTICA. ÍNDICE Conjuntos Numéricos... 2 MATEMÁTICA ÍNDICE Conjuntos Numéricos... 2 1 1 Matemática 2 Conjuntos Numéricos 00 Introdução Os conjuntos numéricos mostram a evolução do homem no decorrer do tempo mostrando que, de acordo com suas necessidades,

Leia mais

- Dizemos que um número é divisor de outro quando o resto da divisão é igual a zero. Ex.: 5 é divisor de 30, pois 30: 5 = 6 e o resto é 0.

- Dizemos que um número é divisor de outro quando o resto da divisão é igual a zero. Ex.: 5 é divisor de 30, pois 30: 5 = 6 e o resto é 0. Noções conceituais MDC - Dizemos que um número é divisor de outro quando o resto da divisão é igual a zero. Ex.: 5 é divisor de 30, pois 30: 5 = 6 e o resto é 0. - Todo número natural é produto de dois

Leia mais

Critérios de Divisibilidade

Critérios de Divisibilidade Critérios de Divisibilidade Divisibilidade por 2: Um número natural n é divisível por 2 se, e somente se, terminar em 0, ou 2, ou 4, ou 6, ou 8. 15638748 é divisível por 2, pois termina em 8. 6749029876539871375986

Leia mais

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios

Leia mais

CAPÍTULO 1 MÚLTIPLOS E DIVISORES

CAPÍTULO 1 MÚLTIPLOS E DIVISORES 06 Matemática e Raciocínio Lógico Damares Pavione Capítulo Múltiplos e divisores CAPÍTULO MÚLTIPLOS E DIVISORES. NÚMERO PRIMO Um número será primo quando não for divisível por nenhum outro número além

Leia mais

SEAM - SOCIEDADE EDUCACIONAL DO AMANHÃ

SEAM - SOCIEDADE EDUCACIONAL DO AMANHÃ SEAM - SOCIEDADE EDUCACIONAL DO AMANHÃ MÚLTIPLOS E DIVISORES PROFª EDNALVA DOS SANTOS Um Objeto de Aprendizagem é um arquivo digital (imagem, filme, etc.) que pretende ser utilizado para fins pedagógicos

Leia mais

FATORAÇÃO, SIMPLIFICAÇÃO DE RAÍZES EXATAS E MMC

FATORAÇÃO, SIMPLIFICAÇÃO DE RAÍZES EXATAS E MMC PROJETO KALI MATEMÁTICA A AULA 0 FATORAÇÃO, SIMPLIFICAÇÃO DE RAÍZES EXATAS E MMC Introdução Hoje iniciaremos o estudo de alguns assuntos extremamente importantes para uma maior compreensão no ensino da

Leia mais

MÚLTIPLOS DE UM NÚMERO NATURAL

MÚLTIPLOS DE UM NÚMERO NATURAL PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ======================================================================== MÚLTIPLOS DE UM NÚMERO NATURAL Para

Leia mais

MATEMÁTICA MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA. Professor Matheus Secco

MATEMÁTICA MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA. Professor Matheus Secco MATEMÁTICA Professor Matheus Secco MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA 1. DIVISIBILIDADE Definição: Sejam a, b inteiros com a 0. Diz-se que a divide b (denota-se por a b) se existe c inteiro tal que

Leia mais

1. Múltiplos e divisores

1. Múltiplos e divisores Escola Básica de Santa Marinha Matemática 2009/2010 7º Ano Síntese dos conteúdos Números e operações 1 Múltiplos e divisores Múltiplo de um número é todo o número que se obtém multiplicando o número dado

Leia mais

Números Naturais Operações Fundamentais com Números Naturais *Adição; Subtração; Multiplicação e Divisão Exercícios

Números Naturais Operações Fundamentais com Números Naturais *Adição; Subtração; Multiplicação e Divisão Exercícios Curso de Elétrica... Matemática Básica Curso de Elétrica... Matemática Básica Sumário 1_Números Inteiros Números Naturais Operações Fundamentais com Números Naturais *Adição; Subtração; Multiplicação e

Leia mais

Matéria: Matemática Assunto: Teoria dos Conjuntos Prof. Dudan

Matéria: Matemática Assunto: Teoria dos Conjuntos Prof. Dudan Matéria: Matemática Assunto: Teoria dos Conjuntos Prof. Dudan Matemática NÚMEROS PRIMOS Por definição, os números primos são números pertencentes ao conjunto dos números naturais não nulos, que possuem

Leia mais

Apontamentos de Matemática 6.º ano

Apontamentos de Matemática 6.º ano Revisão (divisores de um número) Os divisores de um número são os números naturais pelos quais podemos dividir esse número de forma exata (resto zero). Exemplos: Os divisores de 4 são 1, e 4, pois se dividirmos

Leia mais

CENTRO EDUCACIONAL GIRASSOL TD de Matemática Prof.: Tiago Rodrigues

CENTRO EDUCACIONAL GIRASSOL TD de Matemática Prof.: Tiago Rodrigues CENTRO EUCACIONAL GIRASSOL T de Matemática Prof.: Tiago Rodrigues [email protected] IVISIBILIAE E RESTO. Introdução O assunto divisibilidade no Conjunto dos Inteiros ( ) é extremamente importante

Leia mais

Curso Turno Disciplina Carga Horária Licenciatura Plena em Noturno Matemática Elementar I 60h

Curso Turno Disciplina Carga Horária Licenciatura Plena em Noturno Matemática Elementar I 60h 1 Curso Turno Disciplina Carga Horária Licenciatura Plena em Noturno Matemática Elementar I 60h Matemática Aula Período Data Coordenador 3.1 1. a 06/06/2006 (terça feira) Tempo Estratégia Descrição (Arte)

Leia mais

Recredenciamento Portaria MEC 347, de DOU Identificação:

Recredenciamento Portaria MEC 347, de DOU Identificação: Identificação: Curso: Matemática, Licenciatura Disciplina: Estágio Curricular Supervisionado I Professor: Lucas Nunes Ogliari Aluno: Valdemar Winkler Atividade: Plano de Aula Aula (s) Nº: 04 e 05 Data

Leia mais

MATEMÁTICA 1 MÓDULO 2. Divisibilidade. Professor Matheus Secco

MATEMÁTICA 1 MÓDULO 2. Divisibilidade. Professor Matheus Secco MATEMÁTICA 1 Professor Matheus Secco MÓDULO 2 Divisibilidade 1. DIVISIBILIDADE 1.1 DEFINIÇÃO: Dizemos que o inteiro a é divisível pelo inteiro b (ou ainda que a é múltiplo de b) se existe um inteiro c

Leia mais

Matemática OPERAÇÕES BÁSICAS. Professor Dudan

Matemática OPERAÇÕES BÁSICAS. Professor Dudan Matemática OPERAÇÕES BÁSICAS Professor Dudan Operações Matemáticas Observe que cada operação tem nomes especiais: Adição: 3 + 4 = 7, em que os números 3 e 4 são as parcelas e o número 7 é a soma ou total.

Leia mais

2. Números Inteiros. A representação gráfica dos números Inteiros Os números podem ser representados numa reta horizontal, a reta numérica:

2. Números Inteiros. A representação gráfica dos números Inteiros Os números podem ser representados numa reta horizontal, a reta numérica: . Números Inteiros Sempre que estamos no inverno as temperaturas caem. Algumas cidades do Sul do Brasil chegam até mesmo a nevar. Quando isso acontece, a temperatura está menor do que zero. Em Urupema,

Leia mais

Roteiro da aula. MA091 Matemática básica. Simplificação por divisões sucessivas. Divisores. Aula 4 Divisores e múltiplos. MDC. Operações com frações

Roteiro da aula. MA091 Matemática básica. Simplificação por divisões sucessivas. Divisores. Aula 4 Divisores e múltiplos. MDC. Operações com frações Roteiro da aula MA091 Matemática básica Aula Divisores e múltiplos. MDC. Operações com frações 1 Francisco A. M. Gomes UNICAMP - IMECC Março de 016 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática

Leia mais

MÚLTIPLOS E DIVISORES. 8. um número natural, com exceção do zero é simultaneamente múltiplo e divisor de si mesmo.

MÚLTIPLOS E DIVISORES. 8. um número natural, com exceção do zero é simultaneamente múltiplo e divisor de si mesmo. Critérios de Divisibilidade MÚLTIPLOS E DIVISORES MÚLTIPLO Um número natural é múltiplo de um outro, quando a sua divisão por esse outro é exata. Assim, é múltiplo de e de, pois: = = Múltiplo de um número

Leia mais

o) (V) a) D (6) = 6, 3, 2, 4. a) D (220) = 220, 110, 55, 44, 22, 20, 11, 10, 5, 4, 2, 16q 1 = 18q 2 8q 1 = 9q 2 (I) 9q 1 + 9q 2 = 9 68

o) (V) a) D (6) = 6, 3, 2, 4. a) D (220) = 220, 110, 55, 44, 22, 20, 11, 10, 5, 4, 2, 16q 1 = 18q 2 8q 1 = 9q 2 (I) 9q 1 + 9q 2 = 9 68 Matemática 5 aula. DIVISIBILIDADE a) N = 0 = 8. 9. 5 =.. 5 Seja n o número de divisores positivos, n = ( + )( + )( + ) = 4 b) Se n é o número de divisores negativos, n 4. Logo, a quantidade total é 48.

Leia mais

Matemática OPERAÇÕES BÁSICAS. Professor Dudan

Matemática OPERAÇÕES BÁSICAS. Professor Dudan Matemática OPERAÇÕES BÁSICAS Professor Dudan Operações Matemáticas Observe que cada operação tem nomes especiais: Adição: 3 + 4 = 7, em que os números 3 e 4 são as parcelas e o número 7 é a soma ou total.

Leia mais

CURSO PRF 2017 MATEMÁTICA

CURSO PRF 2017 MATEMÁTICA AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem

Leia mais

NÚMEROS NATURAIS OS NÚMEROS E SEUS SIGNIFICADOS!

NÚMEROS NATURAIS OS NÚMEROS E SEUS SIGNIFICADOS! NÚMEROS NATURAIS OS NÚMEROS E SEUS SIGNIFICADOS! Você já parou para pensar como surgiram os números? Será que os números surgiram da invenção de um matemático? O número surgiu a partir do momento em que

Leia mais

Matemática. Professor Dudan.

Matemática. Professor Dudan. Matemática Professor Dudan www.acasadoconcurseiro.com.br Matemática CONJUNTOS NUMÉRICOS Números Naturais (N) Definição: N = {0, 1, 2, 3, 4,...} Subconjuntos N* = {1, 2, 3, 4,...} naturais não nulos. Números

Leia mais

BANCO. por: a) 2; b) 5; c) por 2? a) 78. b) 110. c) 65. d) 51 R.: R.: c) divisível por Responda: Por quê? R.: R.

BANCO. por: a) 2; b) 5; c) por 2? a) 78. b) 110. c) 65. d) 51 R.: R.: c) divisível por Responda: Por quê? R.: R. PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES MATEMÁTICA 6º ANO ENSINO FUNDAMENTAL = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

Leia mais

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par.

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par. Matemática Unidade I Álgebra Série - Teoria dos números 01 a) Falsa. Por exemplo, para n =, temos 3n = 3 = 6, ou seja, um número par. b) Verdadeira. Por exemplo, para n = 1, temos n = 1 =, ou seja, um

Leia mais

Raciocínio Lógico. Professor Dudan.

Raciocínio Lógico. Professor Dudan. Raciocínio Lógico Professor Dudan www.acasadoconcurseiro.com.br Matemática CONJUNTOS NUMÉRICOS Números Naturais (N) Definição: N = {0, 1, 2, 3, 4,...} Subconjuntos N* = {1, 2, 3, 4,...} naturais não nulos.

Leia mais

Resoluções das atividades

Resoluções das atividades Resoluções das atividades Capítulo Divisibilidade Testando seus conhecimentos (página ) a) I. divisível b) I. II. II. múltiplo III. III. divisor IV. fator IV. (0) Se forem bolas por caixa, precisará de

Leia mais

Escola Secundária Dr. Augusto César da Silva Ferreira Rio Maior

Escola Secundária Dr. Augusto César da Silva Ferreira Rio Maior Escola Secundária Dr. Augusto César da Silva Ferreira Rio Maior Ano Lectivo 008/009 Ficha de Exercícios/Problemas N.º 1 Critérios de Divisibilidade. Números Primos. Decomposição em Factores Primos. Raízes

Leia mais

a) 2 b) 3 c) 4 d) 5 e) 6

a) 2 b) 3 c) 4 d) 5 e) 6 Recordando operações básicas 01. Calcule as expressões abaixo: a) 2254 + 1258 = b) 300+590 = c) 210+460= d) 104+23 = e) 239 54 = f) 655-340 = g) 216-56= h) 35 x 15 = i) 50 x 210 = j) 366 x 23 = k) 355

Leia mais

D 7 C 4 U 5. MATEMÁTICA Revisão Geral Aula 1 - Parte 1. Professor Me. Álvaro Emílio Leite. Valor posicional dos números. milésimos décimos.

D 7 C 4 U 5. MATEMÁTICA Revisão Geral Aula 1 - Parte 1. Professor Me. Álvaro Emílio Leite. Valor posicional dos números. milésimos décimos. MATEMÁTICA Revisão Geral Aula 1 - Parte 1 Professor Me. Álvaro Emílio Leite O que é um algarismo? É um símbolo que utilizamos para formar e representar os números. Exemplo: Os algarismos que compõem o

Leia mais

NÚMEROS PRIMOS. Os números primos são os números naturais com exatamente dois divisores. primo? Número divisores quantidade de divisores

NÚMEROS PRIMOS. Os números primos são os números naturais com exatamente dois divisores. primo? Número divisores quantidade de divisores 5. NÚMEROS PRIMOS O conhecimento dos números primos e da decomposição dos números inteiros como produto de primos estão entre os conhecimentos mais úteis e importantes da Aritmética. K. F. Gauss Estudos

Leia mais

MATEMÁTICA ELEMENTAR MMC E MDC. Proª Joanny Fernandes

MATEMÁTICA ELEMENTAR MMC E MDC. Proª Joanny Fernandes MATEMÁTICA ELEMENTAR MMC E MDC Proª Joanny Fernandes Mínimo Múltiplo Comum - MMC Dados dois ou mais números naturais não nulos, denomina-se mínimo múltiplo comum (MMC) o menor dos seus múltiplos que é

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET MATEMÁTICA AULA DEMONSTRATIVA GRATUITA OPERAÇÕES NOS CONJUNTOS NUMÉRICOS A matemática é uma ciência em que o conhecimento é aplicado cumulativamente, ou seja, tudo o que foi aprendido será utilizado nos

Leia mais

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 2. Sexto Ano. Prof. Angelo Papa Neto

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 2. Sexto Ano. Prof. Angelo Papa Neto Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 2 Sexto Ano Prof. Angelo Papa Neto 1 Mínimo múltiplo comum Continuando nossa aula, vamos estudar o mínimo múltiplo comum de um conjunto finito

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 5R Ensino Médio Equipe de Matemática Data: MATEMÁTICA Conjunto dos números racionais O conjunto dos números racionais é uma ampliação do conjunto dos números inteiros.

Leia mais

CURSO ANUAL DE MATEMÁTICA VOLUME 1

CURSO ANUAL DE MATEMÁTICA VOLUME 1 CURSO ANUAL DE MATEMÁTICA VOLUME ) SISTEMA DE NUMERAÇÃO DECIMAL O sistema de numeração que usamos é o sistema de numeração decimal, pelo fato de contarmos os elementos em grupos de dez. Dezenas cada grupo

Leia mais

Matemática OPERAÇÕES BÁSICAS. Professor Dudan

Matemática OPERAÇÕES BÁSICAS. Professor Dudan Matemática OPERAÇÕES BÁSICAS Professor Dudan Operações Matemáticas Observe que cada operação tem nomes especiais: Adição: 3 + 4 = 7, em que os números 3 e 4 são as parcelas e o número 7 é a soma ou total.

Leia mais

Um número é divisível por 2 se ele é par, ou seja, termina em 0, 2, 4, 6 ou 8.

Um número é divisível por 2 se ele é par, ou seja, termina em 0, 2, 4, 6 ou 8. Alguns critérios de divisibilidade Divisibilidade por 2 Um número é divisível por 2 se ele é par, ou seja, termina em 0, 2, 4, 6 ou 8. Exemplos: O número 5634 é divisível por 2, pois o seu último algarismo

Leia mais

8 4 6 Dividendo Divisor Quociente 2 4 D U Resto 2 4 D U

8 4 6 Dividendo Divisor Quociente 2 4 D U Resto 2 4 D U 2.6 Divisão Ideias básicas: Repartir igualmente (nesta ideia, queremos saber quantos objetos ficam em cada conjunto quando repartimos algo em vários conjuntos); Medida ou quantas vezes uma quantidade cabe

Leia mais

AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 6.º ANO 2014/15 Ficha A1 Números Naturais

AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 6.º ANO 2014/15 Ficha A1 Números Naturais AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 6.º ANO 014/15 Ficha A1 Números Naturais NOME N.º Turma Nas questões 1 a 5, assinale com x a opção correta sem apresentar qualquer justificação. 1. A

Leia mais

Módulo Divisibilidade. Critérios de Divisibilidade. 6 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Divisibilidade. Critérios de Divisibilidade. 6 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Divisibilidade Critérios de Divisibilidade 6 ano E.F. Professores Cleber Assis e Tiago Miranda Divisibilidade Critérios de Divisibilidade 1 Exercícios Introdutórios Exercício 1. O tablete de chocolate

Leia mais

Ano: 6º Turma: 6.1 e 6.2

Ano: 6º Turma: 6.1 e 6.2 COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Paralela 2ª Etapa 2014 Disciplina: Matemática Professor (a): Flávia Lúcia Ano: 6º Turma: 6.1 e 6.2 Caro aluno, você está recebendo o conteúdo de

Leia mais

E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos

E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos A história nos mostra que desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Seja através de pedras, ossos, desenhos, dos dedos ou outra forma qualquer, em

Leia mais

AGRUPAMENTO DE ESCOLAS D. JOSÉ I 2015/16 MATEMÁTICA 5.º ANO

AGRUPAMENTO DE ESCOLAS D. JOSÉ I 2015/16 MATEMÁTICA 5.º ANO AGRUPAMENTO DE ESCOLAS D. JOSÉ I 2015/16 MATEMÁTICA 5.º ANO Nome N º Turma 1. Observe os números seguintes: 12, 14 e 15. a) Determine os divisores de 14 e de 15 Divisores de 14: Divisores de 15: b) Escreva

Leia mais

Apontamentos de Matemática 6.º ano

Apontamentos de Matemática 6.º ano Aplicação da decomposição de números em fatores primos para determinar o máximo divisor comum Exemplo: Determinar m. d. c. (60,36) 60 = 3 5 e 36 = 3 Qual é o maior número pelo qual podemos dividir 60 e

Leia mais

Máximo Divisor Comum (M.D.C.) & Mínimo Múltiplo Comum (M.M.C.)

Máximo Divisor Comum (M.D.C.) & Mínimo Múltiplo Comum (M.M.C.) UNIVERSIDADE FEDERAL DO PARANÁ Máximo Divisor Comum (M.D.C.) & Mínimo Múltiplo Comum (M.M.C.) DANIELA GUERRA HANNAH LACERDA WESLEY S. V. BATISTA WILLIAN VALVERDE Curitiba 2011 SUMÁRIO Introdução...02 1.

Leia mais

Decomposição de um número composto. Todo número composto pode ser decomposto em fatores primos Ex: = 2 2 X 3 X 5 X 7

Decomposição de um número composto. Todo número composto pode ser decomposto em fatores primos Ex: = 2 2 X 3 X 5 X 7 Decomposição de um número composto Todo número composto pode ser decomposto em fatores primos Ex: 420 2 210 2 105 3 35 5 7 7 1 420= 2 2 X 3 X 5 X 7 Determinação do número de divisores de um número natural

Leia mais

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F.

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 1 Exercícios Introdutórios Exercício 1.

Leia mais

Ciclo 3 Encontro 1 NÚMEROS PRIMOS, FATORAÇÃO ÚNICA EM PRIMOS, MDC E MMC VIA FATORAÇÃO EM PRIMOS

Ciclo 3 Encontro 1 NÚMEROS PRIMOS, FATORAÇÃO ÚNICA EM PRIMOS, MDC E MMC VIA FATORAÇÃO EM PRIMOS 1 Ciclo 3 Encontro 1 NÚMEROS PRIMOS, FATORAÇÃO ÚNICA EM PRIMOS, MDC E MMC VIA FATORAÇÃO EM PRIMOS Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr. Números primos, fatoração única em primos,

Leia mais

Expressão Numérica, Geometria Espacial, Múltiplos, Divisores, MMC, MDC. Profª Gerlaine 6º Ano

Expressão Numérica, Geometria Espacial, Múltiplos, Divisores, MMC, MDC. Profª Gerlaine 6º Ano Expressão Numérica, Geometria Espacial, Múltiplos, Divisores, MMC, MDC. Profª Gerlaine 6º Ano EXPRESSÃO NUMÉRICA Um monstro ou uma bela senhora, a forma como vemos a Matemática é produto dos nossos esforços

Leia mais

Aula 01 mtm B MATEMÁTICA BÁSICA

Aula 01 mtm B MATEMÁTICA BÁSICA Aula 01 mtm B MATEMÁTICA BÁSICA Paridade Par: x = 2n, n Z Exemplo 1: 6 6 = 2.3 n = 3 Ímpar: x = 2n+1, n Z Exemplo 2: 9 9 = 2.4 +1 n = 4 Exemplo 3: Classifique como Verdadeiro ou Falso. ( V ) 3,2 é um número

Leia mais

Em nossas aulas, estudamos sobre múltiplos e divisores. Vamos explorá-las nas questões que seguem.

Em nossas aulas, estudamos sobre múltiplos e divisores. Vamos explorá-las nas questões que seguem. PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ================================================================= Em nossas aulas, estudamos sobre múltiplos

Leia mais

Resoluções. Aula 1 NÍVEL 2. Classe

Resoluções. Aula 1 NÍVEL 2. Classe www.cursoanglo.com.br Treinamento para Olimpíadas de Matemática NÍVEL 2 Resoluções Aula 1 Classe 1. Observe que: 14 1 = 14 14 2 = 196 14 par termina em 6 e 14 ímpar termina em 4 14 3 = 2.744 14 4 = 38.416...

Leia mais

Matemática OPERAÇÕES BÁSICAS. Professor Dudan

Matemática OPERAÇÕES BÁSICAS. Professor Dudan Matemática OPERAÇÕES BÁSICAS Professor Dudan Operações Matemáticas Observe que cada operação tem nomes especiais: Adição: 3 + 4 = 7, em que os números 3 e 4 são as parcelas e o número 7 é a soma ou total.

Leia mais

MA14 - Aritmética Lista 1. Unidades 1 e 2

MA14 - Aritmética Lista 1. Unidades 1 e 2 MA14 - Aritmética Lista 1 Unidades 1 e 2 Abramo Hefez PROFMAT - SBM 05 a 11 de agosto 2013 Unidade 1 1. Mostre, por indução matemática, que, para todo n N {0}, a) 8 3 2n + 7 b) 9 10 n + 3.4 n+2 + 5 2.

Leia mais

Apontamentos de Matemática 6.º ano

Apontamentos de Matemática 6.º ano Revisão (divisores de um número) Os divisores de um número são os números naturais pelos quais podemos dividir esse número de forma exata (resto zero). Exemplos: Os divisores de 4 são 1, e 4, pois se dividirmos

Leia mais

Matemática. Operações Básicas. Professor Dudan.

Matemática. Operações Básicas. Professor Dudan. Matemática Operações Básicas Professor Dudan www.acasadoconcurseiro.com.br Matemática OPERAÇÕES BÁSICAS Operações Matemáticas Observe que cada operação tem nomes especiais: Adição: 3 + 4 = 7, em que os

Leia mais

Roteiro da segunda aula presencial - ME

Roteiro da segunda aula presencial - ME PIF Enumerabilidade Teoria dos Números Congruência Matemática Elementar Departamento de Matemática Universidade Federal da Paraíba 29 de outubro de 2014 PIF Enumerabilidade Teoria dos Números Congruência

Leia mais

1.1. Numéricos. Conjuntos MATEMÁTICA. Conjunto dos Números Naturais (N) Conjunto dos Números Inteiros (Z)

1.1. Numéricos. Conjuntos MATEMÁTICA. Conjunto dos Números Naturais (N) Conjunto dos Números Inteiros (Z) CAPÍTULO 1 Capítulo 1 1.1 Conjuntos Numéricos Conjunto dos Números Naturais (N) Os números naturais são em geral associados à ideia de contagem, e o conjunto que os representa é indicado por N. N = {0,

Leia mais

MATEMÁTICA MÓDULO 1 TEORIA DOS NÚMEROS 1. DIVISIBILIDADE 1.1. DEFINIÇÃO 1.2. CRITÉRIOS DE DIVISIBILIDADE

MATEMÁTICA MÓDULO 1 TEORIA DOS NÚMEROS 1. DIVISIBILIDADE 1.1. DEFINIÇÃO 1.2. CRITÉRIOS DE DIVISIBILIDADE TEORIA DOS NÚMEROS 1. DIVISIBILIDADE Neste momento inicial, nosso interesse será em determinar quando a divisão entre dois números inteiros é exata, ou seja, quando o resto da divisão é 0. Antes de mais

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2012 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2012 Conteúdos Habilidades Avaliação COLÉGIO LA SALLE BRASÍLIA Disciplina: Matemática Trimestre: 1º Números Naturais: - Sistema de numeração - Adição e subtração - Multiplicação e divisão - Traduzir em palavras números representados por algarismos

Leia mais

Agrupamento de Escolas Joaquim Inácio da Cruz Sobral

Agrupamento de Escolas Joaquim Inácio da Cruz Sobral Agrupamento de Escolas Joaquim Inácio da Cruz Sobral Escola Básica e Secundária de Sobral de Monte Agraço FICHA DE TRABALHO DE MATEMÁTICA 7ºAno Nome: N.º Turma: Data: Trabalho de Casa: Números Inteiros

Leia mais

Conjunto dos Números Naturais

Conjunto dos Números Naturais Conjunto dos Números Naturais N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,...} Retirando-se o zero do conjunto dos números naturais, obtemos o conjunto dos números naturais não-nulos, representado por

Leia mais

MMC, MDC, TRATAMENTO DA INFORMAÇÃO E GEOMETRIA. Profª Gerlaine Alves

MMC, MDC, TRATAMENTO DA INFORMAÇÃO E GEOMETRIA. Profª Gerlaine Alves MMC, MDC, TRATAMENTO DA INFORMAÇÃO E GEOMETRIA Profª Gerlaine Alves Múltiplos e Divisores Divisores: dizemos que um número é divisor do outro número quando a divisão for exata, ou seja, quando o resto

Leia mais

Direto do concurso. Comentário CONJUNTOS NUMÉRICOS

Direto do concurso. Comentário CONJUNTOS NUMÉRICOS CONJUNTOS NUMÉRICOS Conjuntos dos números naturais, inteiros, racionais e irracionais (propriedades e operações). Qual a importância de conhecer os CONJUNTOS NUMÉRICOS? Como existem vários tipos de conjuntos,

Leia mais

Divisibilidade e Números primos. George Darmiton da Cunha Cavalcanti CIn - UFPE

Divisibilidade e Números primos. George Darmiton da Cunha Cavalcanti CIn - UFPE Divisibilidade e Números primos George Darmiton da Cunha Cavalcanti CIn - UFPE Divisibilidade de inteiros Sejam a e b dois inteiros. Dizemos que a divide b, a é um divisor de b ou b é um múltiplo de a

Leia mais

Módulo Tópicos Adicionais. Recorrências

Módulo Tópicos Adicionais. Recorrências Módulo Tópicos Adicionais Recorrências Módulo Tópico Adicionais Recorrências 1 Exercícios Introdutórios Exercício 1 Considere a sequência definida por x 1 d e x n r + x n 1, para n > 1 Trata-se de uma

Leia mais

Encontro 13: MDC e MMC - Fatoração simultânea e resolução de exercícios.

Encontro 13: MDC e MMC - Fatoração simultânea e resolução de exercícios. Encontro 13: MDC e MMC - Fatoração simultânea e resolução de exercícios. Método da Fatoração Simultânea Primeiro escrevemos os números lado a lado, separados por vírgula. Colocamos uma reta vertical separando

Leia mais

Simulado Aula 02 CEF MATEMÁTICA. Prof. Dudan

Simulado Aula 02 CEF MATEMÁTICA. Prof. Dudan Simulado Aula 02 CEF MATEMÁTICA Prof. Dudan Matemática 1. O algarismo das unidades do número 11 1 + 11² + 11³ +... + 11 6 é maior que 5. 2. O algarismo da dezena do resultado da expressão numérica 948652919238493

Leia mais

Fazendo o Crivo de Eratóstenes descobrimos todos os primos até o último número escrito na

Fazendo o Crivo de Eratóstenes descobrimos todos os primos até o último número escrito na 3.7. Primos Nº composto é o nº que conseguimos obter por multiplicações. Exm.: 6 é um nº composto, pois o obtemos fazendo 3 2. Os n os que não obtemos por multiplicações (a não ser que seja 1 vezes o próprio

Leia mais

GABARITO DO CADERNO DE RECUPERAÇÃO 1º SEMESTRE 6º ANO MATEMÁTICA

GABARITO DO CADERNO DE RECUPERAÇÃO 1º SEMESTRE 6º ANO MATEMÁTICA GABARITO DO CADERNO DE RECUPERAÇÃO 1º SEMESTRE 6º ANO MATEMÁTICA 01) Represente cada multiplicação por meio de uma potenciação. a) 2 5 b) 10 5 c) 5 12 d) 3 6 e) a 5 f) b 7 g) 45 4 h) 68 6 i) 89 3 j) 1

Leia mais

Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSARÁ O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM Disciplina: MATEMÁTICA

Nome: N.º: Endereço: Data: Telefone:   PARA QUEM CURSARÁ O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM Disciplina: MATEMÁTICA Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSARÁ O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 08 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 6 (UFMG ADAPTADO) O produto dos algarismos

Leia mais

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! MATEMÁTICA BÁSICA

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora!  MATEMÁTICA BÁSICA MATEMÁTICA BÁSICA CONJUNTOS Conjunto é um grupo de objeto e cada objeto que forma o conjunto é chamado elemento. Ex.: Conjunto de vogais do alfabeto Elementos: a, e, i, o, u Conjunto das cores da bandeira

Leia mais

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c.

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Divisores Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Quando a é múltiplo de d dizemos também que a é divisível

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação Disciplina: Matemática Trimestre: 1º PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Fundamentais de Matemática Sistema de Numeração decimal As quatro operações fundamentais Compreender problemas Números

Leia mais

Deixando de odiar Matemática Parte 4

Deixando de odiar Matemática Parte 4 Deixando de odiar Matemática Parte 4 Fatoração 2 Quantidade de divisores de um número natural 3 Mínimo Múltiplo Comum 5 Simplificação de Frações 7 Máximo Divisor Comum 8 Método da Fatoração Simultânea

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO AULA 05 RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim

Leia mais

TÓPICOS DE REVISÃO MATEMÁTICA I MÓDULO 2 : Números, Múltiplos e Divisores 3 a Série Ensino Médio Prof. Rogério Rodrigues

TÓPICOS DE REVISÃO MATEMÁTICA I MÓDULO 2 : Números, Múltiplos e Divisores 3 a Série Ensino Médio Prof. Rogério Rodrigues 1 TÓPICOS DE REVISÃO MATEMÁTICA I MÓDULO 2 : Números, Múltiplos e Divisores 3 a Série Ensino Médio Prof. Rogério Rodrigues Nome :... Número :... Turma :... 2 II - NÚMEROS INTEIROS MÚLTIPLOS E DIVISORES

Leia mais

Aula Inaugural Curso Alcance 2017

Aula Inaugural Curso Alcance 2017 Aula Inaugural Curso Alcance 2017 Revisão de Matemática Básica Professores: Me Carlos Eurico Galvão Rosa e Me. Márcia Mikuska Universidade Federal do Paraná Campus Jandaia do Sul [email protected] 06 de

Leia mais

NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA

NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA NOTAS DE AULA: REPRESENTAÇÕES DECIMAIS A representação decimal é a forma como escrevemos um número em uma única base, e como essa

Leia mais

Exemplos: Os números 12, 18 e 30 têm conjuntos de divisores respectivamente iguais a:

Exemplos: Os números 12, 18 e 30 têm conjuntos de divisores respectivamente iguais a: Lista de atividades sobre MDC. Nesta aula, definiremos e estudaremos métodos para calcular o máximo divisor comum e o mıınimo múltiplo comum de números naturais, bem como algumas de suas propri edades.

Leia mais

Planejamento Acadêmico - Grupo 1 - PIC 2012 Encontro 2 - Módulo 1 - Aritmética

Planejamento Acadêmico - Grupo 1 - PIC 2012 Encontro 2 - Módulo 1 - Aritmética Planejamento Acadêmico - Grupo 1 - PIC 2012 Encontro 2 - Módulo 1 - Aritmética 1. Divisão Euclidiana Exemplo 1: (Banco de Questões 2012, nível 1, problema 12) A figura abaixo representa o traçado de uma

Leia mais

CONJUNTO DOS NÚMEROS INTEIROS. No conjunto dos números naturais operações do tipo

CONJUNTO DOS NÚMEROS INTEIROS. No conjunto dos números naturais operações do tipo CONJUNTO DOS NÚMEROS INTEIROS No conjunto dos números naturais operações do tipo 9-5 = 4 é possível 5 5 = 0 é possível 5 7 =? não é possível e para tornar isso possível foi criado o conjunto dos números

Leia mais

Respostas Aula 1 (POTI) = Produtos Notáveis

Respostas Aula 1 (POTI) = Produtos Notáveis Respostas Aula 1 (POTI) = Produtos Notáveis 01. CPM 010. Alternativa B. (a b) +(a+b) a (a+b) (a b) (a+b) = a ab+b +a +ab+b a b a +ab+b a +b = ab+b = b b (a+b) = b a+b 0. Ora: (x + xy + y ) = (x + y) =

Leia mais

AGRUPAMENTO DE ESCOLAS D. JOSÉ I 2015/16 MATEMÁTICA 5.º ANO

AGRUPAMENTO DE ESCOLAS D. JOSÉ I 2015/16 MATEMÁTICA 5.º ANO AGRUPAMENTO DE ESCOLAS D. JOSÉ I 2015/16 MATEMÁTICA 5.º ANO Nome N º Turma 1. A tabela seguinte apresenta três números, os seus divisores e alguns múltiplos, mas está incompleta. Número Divisores Múltiplos

Leia mais

1. Qual é a soma dos nove primeiros números naturais primos? a) 87 b) 89 c) 93 d) 100

1. Qual é a soma dos nove primeiros números naturais primos? a) 87 b) 89 c) 93 d) 100 Lista de Exercícios Divisibilidade 1. Qual é a soma dos nove primeiros números naturais primos? a) 87 b) 89 c) 93 d) 100 2. A soma dos quadrados dos três menores números primos vale a) 14. b) 38. c) 64.

Leia mais