1 Determinação da velocidade do som no ar
|
|
|
- Brian Sabala Prado
- 9 Há anos
- Visualizações:
Transcrição
1 FEUP - Departamento de Engenharia Física Aulas de Laboratório: Introdução teórica e breve descrição das experiências. Trabalho prático: Ondas sonoras no ar. Microondas estacionárias. Ondas estacionárias numa corda vertical. Efeito de Doppler Objectivos: Determinação experimental da velocidade do som no ar. Determinação experimental da velocidade da luz usando microondas. Determinação experimental da velocidade de um objecto usando o efeito de Doppler. Estudo de ondas estacionárias numa corda vertical. Recomendações: Devem preparar com antecedência o trabalho prático. Devem trazer máquina de calcular. Devem deixar a bancada de trabalho arrumada. 1 Determinação da velocidade do som no ar Uma onda progressiva harmónica, que se propaga no sentido positivo do eixo dos xx, pode ser descrita pela seguinte função y(x,t) = y 0 sin(kx ωt). (1) onde y 0 é a amplitude da onda, ω = 2π f = 2π T é a frequência angular, com f a frequência e T o período da onda k = 2π λ o número de onda, com λ o comprimento de onda. λ A λ v f frequencia T periodo 1
2 A velocidade de propagação da onda, também designada por velocidade de fase, é dada por (velocidade = espaço/tempo) v = λ f = ω k. (2) A distância entre dois pontos que oscilam em fase igual é a um número inteiro de comprimentos de onda. Este facto é a base do método que usaremos para determinar a velocidade de propagação do som no ar. Breve descrição do procedimento experimental O gerador de ondas sonoras usado neste trabalho produz ondas com uma frequência, de cerca de 40 khz (ultra-sons). gerador emissor de ultra sons microfone 1 microfone 2 osciloscopio regua Um microfone, que funciona como emissor, está ligado ao gerador. Outros dois microfones, que funcionam como receptores, estão ligados ao osciloscópio. Um dos microfones receptores, o microfone 1 da figura, mantém-se sempre na mesma posição e o microfone 2 vai ser deslocado. A seguinte figura ilustra o que se vê no osciloscópio, à medida que se desloca o microfone 2. Ondas desfasadas Ondas em fase Quando as duas ondas estão em fase a distância entre os dois microfones corresponde a um número inteiro de comprimentos de onda. Para calcular o comprimento de onda escolhe-se uma distância entre os microfones para a qual as duas ondas coincidem. Em seguida, um dos microfones é deslocado de forma a que sejam contadas 10 coincidências das ondas. À décima coincidência mede-se novamente a distância entre os microfones. As diferença entre as duas distância registadas permite determinar o comprimento de onda. Sabendo a frequência emitida, (que se lê no osciloscópio) calcula-se a velocidade do som no ar através da expressão v = λ f. 2 Determinação da velocidade da luz Quando uma onda harmónica de amplitude y 0, frequência f e comprimento de onda λ incide perpendicularmente a uma fronteira rígida e é totalmente reflectida, gera-se uma onda estacionária, descrita por 2
3 y(x,t) = 2y 0 sin(kx)cos(ωt). Existem pontos do espaço para os quais a amplitude das ondas estacionárias é nula e outros para os quais a amplitude é máxima e igual a 2y 0, em qualquer instante. Os primeiros pontos desigam-se por nodos e os segundos por anti-nodos ou ventres. A distância entre 2 nodos consecutivos é igual a λ/2. Este facto é a base do método que usaremos para determinar a velocidade da luz no ar, usando microondas estacionárias Breve descrição do procedimento experimental As microondas correspondem a radiação electromagnética com frequências compreendidas entre 1 GHz e 300 GHz. O correspondente intervalo de comprimentos de onda é de 0.3 m a 1 mm. Microondas de frequência 9.35 GHz são geradas por um oscilador de Gunn e emitidas por uma antena em forma de corneta, como ilustra a figura oscilador de Gunn Amplificador DC Voltimetro antena Alvo reflector sensor de E x Um alvo reflector é colocado à frente da antena de tal forma que entre o alvo e a antena se produzem ondas estacionárias. Um sensor do campo eléctrico, E, é colocado entre os dois, e a diferença de potencial correspondente, U, é amplificada e medida com um voltímetro. Escolhe-se uma posição para o alvo, e coloca-se o sensor o mais próximo possivel do alvo. Regista-se a posição x do sensor em relação ao alvo que corresponde a um mínimo de U. Em 3
4 seguida, afasta-se o sensor do alvo, deslocando-o em pequenos passos e vão-se registando as posições correspondentes aos sucessivos mínimos de U, até pelo menos 5 mínimos. A distância assim obtida entre o primeiro mínimo e o de ordem m é dada por d m = (m 1) λ 2, o que permite determinar o comprimento de ondas λ, e consequentemente a velocidade da luz, c. 3 Determinação da velocidade das ondas numa corda Numa corda esticada, de comprimento L, fixa em ambas as extremidades que é posta a oscilar numa das extremidades, produzem-se ondas estacionárias com comprimentos de onda λ = 2L n, e frequências f n = v λ = n v 2L. Breve descrição do procedimento experimental Uma corda elástica está esticada na vertical e é posta a oscilar na extremidade inferior, por uma alavanca oscilante, que se encontra ligada a um motor, como indica a figura. osciloscopio transformador corda elastica gerador Usando um gerador de funções, é possivel fazer variar a frequência de oscilação. O outro extremo da corda passa por uma roldana e tem pendurada uma massa de 100 g, fixando assim a tensão na corda. Para determinar com precisão a frequência, f, do gerador usa-se um osciloscópio, onde as ondas sinusoidais se podem observar, permitindo medir o período das ondas. Variando a frequência vão-se detectando os diferentes modos próprios de oscilação da corda. Pretende-se determinar com precisão as frequências dos primeiros 5 modos. As frequências f n dos sucessivos modos de oscilação n, estão relacionadas com a velocidade das 4
5 ondas na corda através da expressão f n = n v 2L = an Para determinar v, representa-se f n em função de n e o determina-se o declive, a, da recta obtida. O resultado assim obtido para v compara-se com v = T /µ. 4 Determinação da velocidade de um carro usando o efeito de Doppler O efeito de Doppler consiste na alteração da frequência registada por um observador em relação à frequência emitida por uma dada fonte de ondas, quando fonte e observador estão em movimento relativo. Consideremos uma fonte sonora em repouso em relação a um observador em repouso. Este regista ondas com frequência f s e velocidade v som. No caso das ondas sonoras a propagarem-se no ar em condições normais de pressão e temperatura, v som = 340 m/s. Se agora a fonte se move com velocidade u s em relação ao meio, aproximando-se em linha recta do observador parado, este regista uma frequência, f o, com f o > f s. Se a fonte se afastar do observador, f o < f s. Doppler deduziu a seguinte relação entre f o e f s, no caso da fonte em movimento e observador parado f o = v som v som u s f s, onde o sinal se usa no caso da fonte se aproximar do observador e o sinal + se usa no caso da fonte se afastar do observador. Neste trabalho pretendemos determinar a velocidade da fonte emissora, u s, medindo as frequências f s e f o tanto para o caso em que a fonte se aproxima, como para o caso em que a fonte se afasta do observador. Breve descrição do procedimento experimental Nesta experiência, um emissor de ultra-sons está colocado sobre um carrinho que se desloca sobre uma calha, como ilustrado na figura. emissor de ultra sons cronometro barreira optica receptor de ultra sons gerador anteparo carrinho carril com regua amplificador frequencimetro Um microfone é colocado numa extremidade da calha, alinhado com o carrinho, de forma a registar o sinal emitido pelo emissor. Ligado ao microfone está um contador digital, que 5
6 funciona como frequencímetro e que regista as frequências do sinal emitido. Primeiro regista-se a frequência do sinal emitido quando o carrinho está parado. Depois regista-se a frequência quando o carrinho se aproxima da fonte e em seguida regista-se a frequência quando o carrinho de afasta da fonte. Este processo é repetido para diferentes valores da velocidade do carrinho. É importante que velocidade do carro seja o mais uniforme possivel. Sabendo f s, f o e a velocidade do som no ar, v som = 340 m/s, é possivel determinar a velocidade v do carrinho, através da expressão u s = ± f o f s f o v som. O sinal + usa-se no caso do carro se aproximar do receptor e o sinal no caso do carro se afastar do receptor. Simultaneamente, e para confirmar os resultados obtidos com este método, determina-se a velocidade do carrinho, medindo o intervalo de tempo que ele demora a percorrer uma certa distância. O carro tem um anteparo de largura s que durante o movimento do carro no carril, ao passar por uma barreira óptica, interrompe um feixe de infravermelhos. Essa barreira óptica está ligada a um cronómetro que regista o tempo de interrupção do feixe, t, o que permite calcular u s, usando u s = s t. 6
7 Preparação da actividade laboratorial MIEC - Física Grupo: Turma: Data: Nome: Nome: Nome: Este questionário é para ser respondido em grupo e entregue no início da aula de laboratório! Devem justificar todas as respostas Determinação da velocidade do som no ar 1. Se a temperatura média da sala de laboratório durante a realização da experiência for de cerca de T = 22 C, que valor para o comprimento de onda prevê medir? (Use os seguintes dados: constante adiabática do ar γ = 1.4, massa molar do ar M = 0, kg/mol e constante dos gases ideais, R = 8.314J mol 1 K 1 ). 2. Suponhamos que as ondas estão em fase (são coincidentes) para uma distância entre os microfones de 2 cm. Um dos microfones é afastado do outro de tal forma que se observam no osciloscópio 10 coincidências das ondas. Qual a diferença de fase entre as duas ondas observadas no osciloscópio na décima coincidência? Qual é agora a distância entre os microfones? Use o valor do comprimento de onda que previu na alínea anterior. 1
8 Determinação da velocidade da luz 1. Qual o comprimento de onda das microondas que prevê medir nesta experiência? 2. Suponha que regista a posição do sensor correspondente a um mínimo do campo eléctrico. Qual a distância entre essa posição e a posição do sensor correspondente ao quinto mínimo sucessivo detectado? Determinação da velocidade das ondas numa corda 1. Determine a velocidade de propagação das ondas numa corda com 1 m de comprimento, 10 g de massa e sujeita a uma tensão de 0,98 N. 2. Suponha que fixa a corda entre dois pontos a uma distância de 80 cm. Indique os valores das frequências dos cinco primeiros harmónicos. 3. Explique como pode determinar a velocidade de propagação das ondas na corda, através do gráfico (n, f n )? Sugestão: faça um esboço do gráfico. 2
9 Determinação da velocidade de um carro usando o efeito de Doppler 1. Suponha que o anteparo no carrinho tem uma largura de 3 cm e que o cronómetro ligado à barreira óptica regista 240 ms. Qual a velocidade do carro? 2. Suponhamos que a frequência registada quando o emissor está parado é de Hz. Qual será a frequência registada quando o carro se aproxima do observador com a velocidade que calculou na alínea anterior? 3
Problemas de Mecânica e Ondas 8
Problemas de Mecânica e Ondas 8 P 8.1. ( Introdução à Física, J. Dias de Deus et. al. ) a) A figura representa uma onda aproximadamente sinusoidal no mar e uma boia para prender um barco, que efectua 10
Perturbação que se transmite de um ponto para o outro (que se propaga no espaço), transportando energia.
ONDAS O que é uma onda? Perturbação que se transmite de um ponto para o outro (que se propaga no espaço), transportando energia. Ondas ONDAS Electromagnéticas mecânicas Ondas Mecânicas Produzidas por perturbação
Tópicos de Física Moderna Engenharia Informática
EXAME - ÉPOCA NORMAL 7 de Junho de 007 1. Indique, de entre as afirmações seguintes, as que são verdadeiras e as que são falsas. a) A grandeza T na expressão cinética mv T = é o período de oscilações.
COMUNICAÇÃO DE INFORMAÇÃO A CURTAS DISTÂNCIAS
LOGO FQA COMUNICAÇÃO DE INFORMAÇÃO A CURTAS DISTÂNCIAS Propagação de um sinal Energia e velocidade de propagação (modelo ondulatório) Transmissão de sinais Sinal - é qualquer espécie de perturbação que
defi departamento de física www.defi.isep.ipp.pt
defi departamento de física Laboratórios de Física www.defi.isep.ipp.pt Propagação de ondas em líquidos Instituto Superior de Engenharia do Porto Departamento de Física Rua Dr. António Bernardino de Almeida,
1ª Ficha de Avaliação Física e Química do 8ºAno Avaliação:
1ª Ficha de Avaliação Física e Química do 8ºAno Avaliação: Ano Letivo:2013/2014 Data: 7/11/2013 Prof: Paula Silva Nome: Nº. Turma: 8ºH Professor: E. Educação: 1. Observa a banda desenhada ao lado e comenta-a
Escola Secundária de Casquilhos Teste Sumativo 2- Física e Química A 11º ANO 10/12/2013 90 minutos
Escola Secundária de Casquilhos Teste Sumativo 2- Física e Química A 11º ANO 10/12/2013 90 minutos NOME Nº Turma Informação Professor Enc. de Educação TABELA DE CONSTANTES Velocidade de propagação da luz
FIGURAS DE LISSAJOUS
FIGURAS DE LISSAJOUS OBJETIVOS: a) medir a diferença de fase entre dois sinais alternados e senoidais b) observar experimentalmente, as figuras de Lissajous c) comparar a frequência entre dois sinais alternados
VELOCIDADE E FREQUÊNCIA DE ONDAS
VELOCIDADE E FREQUÊNCIA DE ONDAS 1. Na escuridão, morcegos navegam e procuram suas presas emitindo ondas de ultrasom e depois detectando as suas reflexões. Estas são ondas sonoras com frequências maiores
Universidade Federal do Pampa UNIPAMPA. Ondas Sonoras. Prof. Luis Gomez
Universidade Federal do Pampa UNIPAMPA Ondas Sonoras Prof. Luis Gomez SUMÁRIO Introdução Ondas sonoras. Características de som Velocidade do som Ondas sonoras em propagação Interferência Potencia, intensidade
Suponha que a velocidade de propagação v de uma onda sonora dependa somente da pressão P e da massa específica do meio µ, de acordo com a expressão:
PROVA DE FÍSICA DO VESTIBULAR 96/97 DO INSTITUTO MILITAR DE ENGENHARIA (03/12/96) 1 a Questão: Valor : 1,0 Suponha que a velocidade de propagação v de uma onda sonora dependa somente da pressão P e da
ESTUDO DE UM CIRCUITO RC COMO FILTRO
Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T6 Física Experimental I - 2007/08 ESTUDO DE UM CIRCUITO RC COMO FILTRO 1. Objectivo Estudo do funcionamento, em regime estacionário,
Eletrônica Analógica
Eletrônica Analógica Experiência 01 - Bancada de Teste e uso dos equipamento de geração e medição de sinais ( Osciloscópio, multímetro, Gerador de Funções e Fonte de Alimentação. 1 - Objetivo Nesta experiência,
SOM PRODUÇÃO E PROPAGAÇÃO DE UM SINAL SONORO
SOM Os sons são ondas mecânicas, vulgarmente utilizadas na comunicação. Podem ser produzidas de diversas maneiras, como, por exemplo, a fala, que resulta da vibração das cordas vocais, ou a música produzida
ELECTRÓNICA I. APARELHOS DE MEDIDA Guia de Montagem do Trabalho Prático
Escola de Engenharia Dep. Electrónica Industrial 1/8 APARELHOS DE MEDIDA Guia de do Trabalho Prático 1. O OSCILOSCÓPIO OBJECTIVO Familiarização com os instrumentos a usar nos trabalhos práticos posteriores
v = velocidade média, m/s; a = aceleração média do corpo, m/s 2 ;
1. Cinemática Universidade Estadual do Norte Fluminense Darcy Ribeiro Centro de Ciências e Tecnologias Agropecuárias - Laboratório de Engenharia Agrícola EAG 0304 Mecânica Aplicada Prof. Ricardo Ferreira
Apostila 1 Física. Capítulo 3. A Natureza das Ondas. Página 302. Gnomo
Apostila 1 Física Capítulo 3 Página 302 A Natureza das Ondas Classificação quanto a natureza Ondas Mecânicas São ondas relacionadas à oscilação das partículas do meio. Portanto, exige a presença de meio
1ª Ficha de Laboratório Turma: 11ºA. Física e Química A - 11ºAno
1ª Ficha de Laboratório Turma: 11ºA Física e Química A - 11ºAno Professora Paula Melo Silva Data: 10 de janeiro 2017 Ano Letivo: 2016/2017 90 min 1. Para investigar se o módulo da aceleração da gravidade
Fibras Ópticas Modulação de um díodo emissor de luz (LED)
Fibras Ópticas Modulação de um díodo emissor de luz (LED) Equipamento: * Fonte de alimentação * Gerador de sinal * Osciloscópio * Multímetro digital de bancada * LED SFH750V * 2N3904 NPN Transístor * 2N2222A
5ª Ficha de Avaliação de Conhecimentos Turma: 11ºA. Física e Química A - 11ºAno
5ª Ficha de Avaliação de Conhecimentos Turma: 11ºA Física e Química A - 11ºAno Professora Paula Melo Silva Data: 29 de janeiro 2016 Ano Letivo: 2015/2016 135 + 15 min 1. A palavra radar é o acrónimo de
1) O deslocamento de uma onda progressiva em uma corda esticada é (em unidades do SI)
1) O deslocamento de uma onda progressiva em uma corda esticada é (em unidades do SI) a) Quais são a velocidade e a direção de deslocamento da onda? b) Qual é o deslocamento vertical da corda em t=0, x=0,100
5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 14
Ondas 5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Introdução: elementos básicos sobre ondas De maneira geral, uma onda é qualquer sinal que se transmite de um ponto a outro
Introdução à ondulatória.
Ondulatórios - Exercícios Introdução à ondulatória. 1- Classifique as ondas a seguir de acordo com sua natureza e modo de propagação Ondas FM Ondas em uma mola comprimida e depois liberada Raios-X Som
A Equação de Onda em Uma Dimensão (continuação)
A Equação de Onda em Uma Dimensão (continuação) Energia em uma onda mecânica Consideremos novamente o problema da onda transversal propagando-se em uma corda vibrante em uma dimensão (lembrese, a corda
Lista de fundamentos em ondulatória Prof. Flávio
1. (Ufmg 1997) Um menino, balançando em uma corda dependurada em uma árvore, faz 20 oscilações em um minuto. Pode-se afirmar que seu movimento tem a) um período de 3,0 segundos. b) um período de 60 segundos.
LISTA COMPLEMENTAR DE DAC E ADC DO LIVRO DO TOCCI
LISTA COMPLEMENTAR DE DAC E ADC DO LIVRO DO TOCCI 10.2 Um DAC = 08bits Para o número = (100) 10 = 2V. Pede-se : (+179) 10 Para Saída Analógica = Entrada digital x passo = 179. 20mV = 3,58V F.S. = 5V e
Capítulo 5. Sensores Digitais
Sensores Centro de Formação Profissional Orlando Chiarini - CFP / OC Pouso Alegre MG Inst.: Anderson Capítulo 5 Sensores Digitais Capítulo 5 Codificador Incremental de Posição Capítulo 5 Codificador Incremental
E-II. Difração em ondas de tensão superficial da água
Página 1 de 7 Difração em ondas de tensão superficial da água Introdução A formação e a propagação de ondas numa superfície líquida é um fenómeno bastante importante e bem estudado. A força de restauro
ESCOLA BÁSICA E SECUNDÁRIA ARTUR GONÇALVES. FICHA DE TRABALHO DE FÍSICA E QUÍMICA A 11º Ano
Agrupamento de Escolas AR T U R G O N Ç AL V E S ESCOLA BÁSICA E SECUNDÁRIA ARTUR GONÇALVES FICHA DE TRABALHO DE FÍSICA E QUÍMICA A 11º Ano Assunto: Viagens com GPS 1. Classifica cada uma das afirmações
MOVIMENTO CIRCULAR UNIFORME Força centrípeta
Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T1 FÍSICA EXPERIMENTAL I - 2007/2008 MOVIMENTO CIRCULAR UNIFORME Força centrípeta 1. Objectivos Verificar a relação entre a força
Professor (a): Pedro Paulo S. Arrais Aluno (a): Série: 1ª Data: / / 2016. LISTA DE FÍSICA I
Ensino Médio Unid. São Judas Tadeu Professor (a): Pedro Paulo S. Arrais Aluno (a): Série: 1ª Data: / / 2016. LISTA DE FÍSICA I Orientações: - A lista deverá ser respondida na própria folha impressa ou
30 s Volume 5 Física
0 s Volume 5 Física www.cursomentor.com 26 de novembro de 2014 Q1. São dadas as massas da Terra, da Lua e do Sol: M T = 5, 97 10 27 g, M L = 7, 40 10 25 g e M S = 1, 97 10 g, respectivamente. Exprima estas
Mecânica e Ondas. Trabalho de Laboratório. Conservação da Energia Mecânica da Roda de Maxwell
Mecânica e Ondas Trabalho de Laboratório Conservação da Energia Mecânica da Roda de Maxwell Objectivo Determinação do momento de inércia da roda de Maxwell. Estudo da transferência de energia potencial
Calor Específico. 1. Introdução
Calor Específico 1. Introdução Nesta experiência, serão estudados os efeitos do calor sobre os corpos, e a relação entre quantidade de calor, variação da temperatura e calor específico. Vamos supor que
Efeito fotoeléctrico Determinação da constante de Planck
Efeito fotoeléctrico Determinação da constante de Planck Objectivos: - Verificação experimental do efeito fotoeléctrico - Determinação da energia cinética dos fotoelectrões em função da frequência da luz
Capítulo TRABALHO E ENERGIA
Capítulo 6 TRABALHO E ENERGIA A B C DISCIPLINA DE FÍSICA CAPÍTULO 6 - TRABALHO E ENERGIA 6.1 Um bloco, com 20kg de massa, sobe uma rampa com 15º de inclinação e percorre 55,375 metros até parar. Os coeficientes
ACONDICIONAMENTO DE SINAL
º SEMESTRE DE 001/00 ACONDICIONAMENTO DE SINAL COMPARAÇÃO EXPERIMENTAL ENTRE INTEGRAÇÃO NUMÉRICA E ANALÓGICA FÍSICA EXPERIMENTAL VII OBJECTIVO O objectivo deste trabalho é a comparação qualitativa e quantitativa
Simulado Ondulatória
Simulado Ondulatória 1-) (ITA/87) Considere os seguintes fenômenos ondulatórios: I-) Luz II-) Som III-) Perturbação propagando-se numa mola helicoidal esticada. Podemos afirmar que: a-) I, II e III necessitam
Capítulo 4 - Medição de rotação, torque e potência
Capítulo 5 - Medição de rotação, torque e potência 5.1 - Medição de rotação Os instrumentos usados para medir a velocidade angular de eixos rotativos são chamados tacômetros. Existem basicamente três tipos
Medição de comprimentos, massas e tempos
José Mariano Departamento de Física, FCT Universidade do Algarve [email protected] 1 Objectivo Pretende-se com este trabalho prático realizar medidas de diferentes grandezas físicas, nomeadamente diâmetros,
Prof. Neckel FÍSICA 1 PROVA 1 TEMA 2 PARTE 1 PROF. NECKEL POSIÇÃO. Sistema de Coordenadas Nome do sistema Unidade do sistema 22/02/2016.
FÍSICA 1 PROVA 1 TEMA 2 PARTE 1 PROF. NECKEL Cinemática 1D POSIÇÃO Sistema de Coordenadas Nome do sistema Unidade do sistema Reta numérica real com origem Crescimento para direita, decrescimento para esquerda
Atividade experimental - Tema: Luz
1 Problema: As plantas precisam de luz? 1. Nesta experiência desafiamos-te a observar uma planta aquática a produzir bolhinhas de oxigénio graças à luz que nelas incide. Observa a instalação e regista
Produção e identificação de sons puros
Produção e identificação de sons puros Introdução Teórica O diapasão é um dispositivo muito utilizado em experiências de acústica e também para afinar instrumentos musicais. Tem a forma de U, ligado a
Aula 6 Propagação de erros
Aula 6 Propagação de erros Conteúdo da aula: Como estimar incertezas de uma medida indireta Como realizar propagação de erros? Exemplo: medimos A e B e suas incertezas. Com calcular a incerteza de C, se
Movimento uniformemente variado. Capítulo 4 (MUV)
Movimento uniformemente variado Capítulo 4 (MUV) Movimento uniformemente variado MUV aceleração escalar (α) é constante e não nula. O quociente α = v t é constante e não nulo. Função horária da velocidade
Pontifícia Universidade Católica do RS Faculdade de Engenharia
Pontifícia Universidade Católica do RS Faculdade de Engenharia LABORATÓRIO DE ELETRÔNICA DE POTÊNCIA Experiência nº 9 Retificador Trifásico de Três pulsos a Tiristor OBJETIVO: Verificar o comportamento
Capacitor em corrente contínua
Capacitor em corrente contínua OBJETIVOS: a) estudar o processo de carga e descarga de um capacitor em regime de corrente contínua; b) verificar experimentalmente o significado da constante de tempo (τ)
5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f
5 Derivada O conceito de derivada está intimamente relacionado à taa de variação instantânea de uma função, o qual está presente no cotidiano das pessoas, através, por eemplo, da determinação da taa de
Aparelhos de Laboratório de Electrónica
Aparelhos de Laboratório de Electrónica Este texto pretende fazer uma introdução sucinta às características fundamentais dos aparelhos utilizados no laboratório. As funcionalidades descritas são as existentes
Prof. Renato. SESI Carrão. Física 2ª. Série 2011. Aula 25. O som
Aula 25 1. Estudo do som Acústica estudo físico do som 2. Produtores de som Levantamento de 15 objetos/itens que produzam som de maneiras distintas. (Instrumentos de sopro, percussão, cordas, voz, animais,
Lista de Exercícios (Profº Ito) Componentes da Resultante
1. Um balão de ar quente está sujeito às forças representadas na figura a seguir. Qual é a intensidade, a direção e o sentido da resultante dessas forças? c) qual o valor do módulo das tensões nas cordas
FICHA DE PREPARAÇÃO PARA O TESTE Nº4
FICHA DE PREPARAÇÃO PARA O TESTE Nº4 8ºANO Ficha 1A Som 1. O Bruno está a ouvir uma orquestra. Qual das afirmações é falsa? (A) O meio de propagação do som entre a fonte sonora e o recetor é o ar. (B)
LISTA DE EXERCÍCIOS - ONDAS
UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA - DEPARTAMENTO DE FÍSICA GERAL DISCIPLINA: FIS 1 - FÍSICA GERAL E EXPERIMENTAL II-E www.fis.ufba.br/~fis1 LISTA DE EXERCÍCIOS - ONDAS 013.1 1. Considere
Erros e Incertezas. Rafael Alves Batista Instituto de Física Gleb Wataghin Universidade Estadual de Campinas (Dated: 10 de Julho de 2011.
Rafael Alves Batista Instituto de Física Gleb Wataghin Universidade Estadual de Campinas (Dated: 10 de Julho de 2011.) I. INTRODUÇÃO Quando se faz um experimento, deseja-se comparar o resultado obtido
Componente de Física
Componente de Física Unidade 2 Comunicações O som propaga-se através de ondas sonoras ou acústicas, ondas essas que necessitam de um suporte material para se propagarem, ao contrário do que acontece com
Segunda Etapa SEGUNDO DIA 2ª ETAPA FÍSICA COMISSÃO DE PROCESSOS SELETIVOS E TREINAMENTOS
Segunda tapa SGUNDO DIA ª TAPA FÍSICA COMISSÃO D PROCSSOS SLTIVOS TRINAMNTOS FÍSICA Dados: Aceleração da gravidade: 1 m/s Velocidade da luz no vácuo: 3 x 1 8 m/s. Constante de Planck: 6,63 x 1-34 J.s k
ONDAS. é solução da equação de propagação de onda
ONDAS 1. Uma estação de rádio emite a uma frequência de 760 khz. A velocidade das ondas de rádio é igual a 3 10 8 m/s. Determine o respectivo comprimento de onda (c.d.o.). 2. Um diapasão oscila com a frequência
1331 Velocidade do som em líquidos Velocidade de fase e de grupo
1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Osvaldo Guimarães PUC-SP Tópicos Relacionados Ondas longitudinais, velocidade do som em líquidos, comprimento de onda, freqüência,
16 N. Verifica-se que a menor distância entre duas cristas da onda é igual a 4,0 m. Calcule a freqüência desta onda, em Hz.
1. Considere o gráfico adiante, que representa a grandeza A em função do tempo t (em unidades de 10 s). a) Se a grandeza A representar a amplitude de uma onda sonora, determine sua freqüência. b) Se a
Mecânica e Ondas. Ondas estacionárias em cordas vibrantes
Mecânica e Ondas Ondas estacionárias em cordas vibrantes Objectivo Estudo das ondas estacionárias em cordas vibrantes. Estudo da variação da frequência de ressonância da onda com a tensão e o comprimento
Exercícios sobre ondulatória
Exercícios sobre ondulatória 1. Vulcões submarinos são fontes de ondas acústicas que se propagam no mar com frequências baixas, da ordem de 7,0 Hz, e comprimentos de onda da ordem de 220 m. Utilizando
Ficha Prática Componente Física 2ºPeríodo Turma: 11ºA. Física e Química A - 11ºAno
Ficha Prática Componente Física 2ºPeríodo Turma: 11ºA Física e Química A - 11ºAno Professora Paula Melo Silva Data: 11 de março 2016 Ano Letivo: 2015/2016 90 min 1. Para investigar se o módulo da aceleração
MOVIMENTO ONDULATÓRIO. 10.1 Introdução
Movimento ondulatório 1 MOVIMENTO ONDULATÓRIO 195 1.1 Introdução O movimento ondulatório é bastante importante devido ao fato de que a maior parte do intercâmbio de informações ou energia entre sistemas
COLÉGIO XIX DE MARÇO Educação do jeito que deve ser 3ª PROVA PARCIAL DE FÍSICA QUESTÕES FECHADAS
COLÉGIO XIX DE MARÇO Educação do jeito que deve ser 2016 3ª PROVA PARCIAL DE FÍSICA QUESTÕES FECHADAS Aluno(a): Nº Ano: 2º Turma: Data: 24/11/2016 Nota: Professor(a): Pâmella Duarte Valor da Prova: 20
Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009
Universidade de São Paulo nstituto de Física FEP11 - FÍSCA para o nstituto Oceanográfico 1º Semestre de 009 Segunda Lista de Exercícios Oscilações 1) Verifique quais funções, entre as seguintes, podem
Roteiro para movimento uniforme e uniformemente variado
Roteiro para movimento uniforme e uniformemente variado Nesta aula você terá duas tarefas relativamente simples, no entanto, bem trabalhosas. A primeira experiência será a montagem de um experimento sobre
A.L. 0.1 RENDIMENTO NO AQUECIMENTO
A.L. 0.1 RENDIMENTO NO AQUECIMENTO FÍSICA 10.ºANO QUESTÃO-PROBLEMA Como poderemos aumentar o rendimento no aquecimento, quando cozinhamos? Esta actividade laboratorial está integrada no módulo inicial
Vestibular Nacional Unicamp 1998. 2 ª Fase - 13 de Janeiro de 1998. Física
Vestibular Nacional Unicamp 1998 2 ª Fase - 13 de Janeiro de 1998 Física 1 FÍSICA Atenção: Escreva a resolução COMPLETA de cada questão nos espaços reservados para as mesmas. Adote a aceleração da gravidade
PRINCIPAIS CARACTERÍSTICAS DO MOVIMENTO ONDULATÓRIO. META Introduzir aos alunos conceitos básicos do movimento ondulatório
PRINCIPAIS CARACTERÍSTICAS DO MOVIMENTO ONDULATÓRIO Aula META Introduzir aos alunos conceitos básicos do movimento ondulatório OBJETIVOS Ao final desta aula, o aluno deverá: Explicar o que é uma onda mecânica.
Escola Secundária de Casquilhos Teste Sumativo 2- Física e Química A 11º ANO 10/12/2013 90 minutos
* Escola Secundária de Casquilhos Teste Sumativo 2- Física e Química A 11º ANO 10/12/2013 90 minutos NOME Nº Turma Informação Professor Enc. de Educação TABELA DE CONSTANTES elocidade de propagação da
01. (UECE-1996) Um menino, parado em relação ao solo, vê sua imagem em um espelho plano E colocado à parede traseira de um ônibus.
Óptica Geométrica 3 o Ano - Lista exercícios sobre espelhos planos 01. (UECE-1996) Um menino, parado em relação ao solo, vê sua imagem em um espelho plano E colocado à parede traseira de um ônibus. Se
FICHA DE ATIVIDADE - FÍSICA: MRU E MRV
Alexandre Santos (Xandão) 9º FICHA DE ATIVIDADE - FÍSICA: MRU E MRV 1 Assinale na coluna I as afirmativas verdadeiras e, na coluna II as falsas. A velocidade da partícula varia de acordo com o gráfico
A unidade de freqüência é chamada hertz e simbolizada por Hz: 1 Hz = 1 / s.
Movimento Circular Uniforme Um movimento circular uniforme (MCU) pode ser associado, com boa aproximação, ao movimento de um planeta ao redor do Sol, num referencial fixo no Sol, ou ao movimento da Lua
PLANO DE ESTUDO TRIMESTRE:1º
C O L É G I O K E N N E D Y / R E D E P I T Á G O R A S PLANO DE ESTUDO TRIMESTRE:1º PLANO DE ESTUDO PROFESSOR:MARCÃO DATA DA AVALIAÇÃO: 30/09/16 CONTEÚDO(S) A SER(EM) COBRADO(S) NA AVALIAÇÃO: DISCIPLINA:
FGE 0357 Oscilações e Ondas 4ª Lista de exercícios 30/junho/2010.
FGE 0357 Oscilações e Ondas 4ª Lista de exercícios 30/junho/2010. 1) (Halliday) A densidade linear de uma corda vibrante é 1,3 x 10-4 kg/m. Uma onda transversal propaga-se na corda e é descrita pela equação:
defi departamento Lei de Ohm de física
defi departamento de física Laboratórios de Física www.defi.isep.ipp.pt Instituto Superior de Engenharia do Porto- Departamento de Física Rua Dr. António Bernardino de Almeida, 572 4200-072 Porto. Telm.
O Som O som é uma onda mecânica, pois necessita de um meio material para se propagar. O Som. Todos os sons resultam de uma vibração (ou oscilação).
O Som Todos os sons resultam de uma vibração (ou oscilação). O Som O som é uma onda mecânica, pois necessita de um meio material para se propagar. As ondas sonoras são longitudinais. Resultam de compressões
FÍSICA. Adote a aceleração da gravidade g = 10 m/s 2.
FÍSICA Adote a aceleração da gravidade g = 10 m/s 2. 1. As faixas de aceleração das auto-estradas devem ser longas o suficiente para permitir que um carro partindo do repouso atinja a velocidade de 100
Roteiro de aula prática Acústica
1 a PARTE: RESSONÂNCIA Roteiro de aula prática Acústica Qualquer sistema físico possui uma ou mais freqüências de vibração. A tendência de oscilar com uma freqüência específica de oscilação é denominada
(Exercícios sugeridos:64, 65, 68, 69, 70, 71, 75, 78, 83 e 87)
Ondas sonoras (Exercícios sugeridos:64, 65, 68, 69, 70, 71, 75, 78, 83 e 87) São ondas mecânicas (necessitam de um meio material para se propagar) longitudinais (a direção de vibração coincide com a direção
Prática 1: RELAÇÃO ENTRE FORÇA E ACELERAÇÃO
Prática 1: RELAÇÃO ENTRE FORÇA E ACELERAÇÃO 1.1 Objetivo: Estudar a relação entre a força, massa e aceleração. 1.2 Material Necessário: 01 Plano Inclinado com ajuste angular regulável 01 Carrinho de movimento
EXPERIMENTO 5 ÓTICA GEOMÉTRICA: LENTES DELGADAS. Determinação das distâncias focais de lentes delgadas convergentes e divergentes.
EXPERIMENTO 5 ÓTICA GEOMÉTRICA: LENTES DELGADAS 1. Objetivos Determinação das distâncias focais de lentes delgadas convergentes e divergentes. 2. Descrição da Experiência Equação dos pontos conjugados
Pulso e ondas Classificação das ondas Espectro magnéticos Espectro ondas sonoras Transporte de energia por ondas Intensidade de uma onda
Pulso e ondas Classificação das ondas Espectro magnéticos Espectro ondas sonoras Transporte de energia por ondas Intensidade de uma onda Pulso e ondas O que é uma onda? Numa corda esticada horizontalmente,
LISTA DE EXERCÍCIOS DE FÍSICA
LISTA DE EXERCÍCIOS DE FÍSICA / /2012 ALUNO: N.º TURMA 01. Em um jogo de basebol, o rebatedor aplica uma força de contato do taco com a bola. Com a tecnologia atual, é possível medir a força média aplicada
Ministério da Educação. Departamento do Ensino Secundário. Bola Saltitona. Actividade Prática no Laboratório. Programa de Física e Química A 10º Ano
Ministério da Educação Departamento do Ensino Secundário Bola Saltitona Actividade Prática no Laboratório Programa de Física e Química A 10º Ano Trabalho Realizado por: Maria Helena Ferraz Marta Vilela
BC 0208 - Fenômenos Mecânicos. Experimento 4 - Roteiro
BC 0208 - Fenômenos Mecânicos Experimento 4 - Roteiro Colisões Elásticas e Inelásticas Professor: Turma: Data: / /2015 Introdução A lei da conservação do momento linear é tão importante quanto a lei de
Reflexão e Refracção (7)ë
Arco -Íris Reflexão e Refracção (7)ë O índice de refracção do meio (por ex. água) depende ligeiramente do comprimento de onda da luz Resulta daí a separação das cores no arco-íris! 10 Arco -Íris (cont.)ë
Regras de Kirchoff dos circuitos eléctricos. Descarga de um condensador. Verificar experimentalmente as regras de Kirchoff para circuitos eléctricos.
Guião de Laboratório Física MEC FEUP DEF egras de Kirchoff dos circuitos eléctricos. Descarga de um condensador Objectivos: Uso de instrumentos de medida eléctricos. Verificar experimentalmente as regras
Matriz da Ficha de avaliação da componente laboratorial n.º 2 ESTRUTURA DA FICHA DE AVALIAÇÃO LABORATORIAL
Matriz da Ficha de avaliação da componente laboratorial n.º Parte Conteúdos: al. Características do som. al. Velocidade de propagação do som. al. Ondas: absorção, reflexão, refração e reflexão total. al.
2.7. Difração, bandas de frequência e efeito Doppler
2.7. Difração, bandas de frequência e efeito Doppler Difração de ondas A difração de uma onda é o fenómeno que ocorre quando a onda contorna um obstáculo, orifício ou fenda. Este fenómeno observa-se quando
VIII Olimpiada Iberoamericana de Física - Prova Teórica - 22 Setembro 2003
Instruções 1. A prova é individual. 2. O tempo disponível é 5 horas. 3. Utilizar somente a caneta e demais materiais fornecidos, que devem ser devolvidos dentro do envelope da prova. 4. Escrever claramente
Guias de Telecomunicações
Guias de Telecomunicações Wander Rodrigues CEFET MG 2005 Sumário Apresentação do Laboratório de Telecomunicações... 04 Circuitos ressonantes... 28 Circuitos osciladores de onda senoidal oscilador Hartley...
37 c Resolução OBJETIVO 2004
37 c Um corpo parte do repouso em movimento uniformemente acelerado. Sua posição em função do tempo é registrada em uma fita a cada segundo, a partir do primeiro ponto à esquerda, que corresponde ao instante
Comunicações. Onda Sinusoidal Onda Periódica: periodicidade no tempo e no espaço
Comunicações Onda Sinusoidal Onda Periódica: periodicidade no tempo e no espaço As vibrações das cordas de uma guitarra constituem um movimento periódico: A corda vibra de um lado para o outro da sua posição
Instituto Politécnico co de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA
Ano lectivo 1-11 Engenharia Electrotécnica e de Computadores Exercícios de Física Ficha 8 Movimento Vibratório e Ondulatório Capítulo 5 Conhecimentos e capacidades a adquirir pelo aluno Aplicação dos conceitos
