Aprendizagem de Máquina
|
|
|
- Stefany Álvares
- 6 Há anos
- Visualizações:
Transcrição
1 Aprendizagem de Máquina Alessandro L. Koerich Programa de Pós-Graduação em Informática Pontifícia Universidade Católica do Paraná (PUCPR)
2 Horários Aulas Sala 3 CCET [quinta-feira, 8:20 12:00] Atendimento Terças-feiras e quartas-feiras pela manhã. Recomenda se marcar um horário com antecedência. Contato [email protected]
3 Apresentação da Disciplina Aprendizagem de Máquina Sendo uma área de Sistemas Inteligentes, aprendizagem de máquina (ou machine learning) trata do desenvolvimento de algoritmos e técnicas que permitem computadores aprender.
4 Apresentação da Disciplina Os métodos de aprendizagem de máquina tem sido empregados em problemas como: Processamento de linguagem natural Ferramentas de busca Diagnóstico médico Bioinformática Detecção de fraude em cartões de crédito Análise do mercado de ações Previsões financeiras Classificação de sequência de DNA Reconhecimento de voz e escritura Reconhecimento de objetos em visão computacional Jogos de entretenimento Mineração de dados em grandes bases de dados. Sistemas biométricos
5 Apresentação da Disciplina O objetivo desta disciplina é: estudar os principais paradigmas para a aprendizagem de máquina, incluindo uma variedade de algoritmos e técnicas
6 Programa da Disciplina 1. Introdução a Aprendizagem de Máquina 2. Extração e Seleção de Características 3. Árvores de Decisão 4. Aprendizagem Bayesiana 5. Baseada em Instâncias 6. Redes Neurais Artificiais 7. Máquinas de Vetor de Suporte 1. Extração de Características 2. C Naïve Bayes 4. Vizinhos mais Próximos 5. Máq. de Vetor de Suporte 6. Redes Neurais MLP Prática Teórica
7 Programa Introdução: Por que a Aprendizagem Computacional é Difícil? Problemas de Aprendizagem. Projetando um Sistema de Aprendizagem de Máquina. Exemplos. Tipos de Aprendizagem. Aplicações. Estudo de Casos. Extração de Características: Importância. Redução de Dimensionalidade. Características Discriminantes. Geração de Características Usando Transformadas Lineares. Características para a Análise de Imagens. Seleção de Características.
8 Programa Árvores de Decisão: Representação de Árvores de Decisão. Algoritmo de Aprendizagem ID3. Entropia e Ganho de Informação. Exemplos. Aprendizagem Baseadas em Instâncias: Espaço Euclidiano. Aprendizagem Baseada em Instâncias (ou Modelos Baseados em Distância). Regra k-nn (k vizinhos mais próximos). Exemplos. Estudo de Casos. Aprendizagem Bayesiana: Teorema de Bayes e Aprendizagem Conceitual. Classificador Ótimo de Bayes. Classificador Naïve Bayes. Exemplos.
9 Programa Redes Neurais Artificiais: Motivação Biológica. Perceptron. Superfície de Decisão. Descida do Gradiente. Redes Multicamadas (Multilayer). Retropropagação (Backpropagation). Generalização e Sobreajuste. Exemplos. Máquinas de Vetor de Suporte: Classificação com máxima margem. Kernels e otimização. Tópicos Avançados: Bagging e Boosting. Combinação de Classificadores. Rejeição.
10 Bibliografia T. M. Mitchell. Machine Learning. McGraw Hill Science/Engineering/Math, 432 pages, ISBN R. O. Duda, P E. Hart, D. G. Stork. Pattern Classification. Wiley Interscience, S. Theodoridis, K. Koutroumbas. Pattern Recognition. Academic Press. 625 páginas, ISBN
11 Bibliografia Complementar Periódicos: IEEE Transactions on Neural Networks IEEE Transactions on PAMI Pattern Recognition Pattern Recognition Letters Conferências: ICPR: International Conference on Pattern Recognition CVPR: International Conference on Computer Vision and Pattern Recognition NIPS: Neural Information Processing Systems ICML: International Conference on Machine Learning Livros: Bishop, C. Neural Networks for Pattern Recognition, Vapnik, V. The Nature of Statistical Learning Theory, 1995.
12 Avaliação Prova escrita: Parte 1: Sem consulta contendo questões de múltipla escolha e dissertativas. Parte 2: Questões práticas com consulta. Data: 3 de Maio de 2012.
Aprendizagem de Máquina
Aprendizagem de Máquina Apresentação da Disciplina Alessandro L. Koerich 2008 Mestrado e Doutorado em Informática Pontifícia Universidade Católica do Paraná (PUCPR) Mestrado/Doutorado em Informática Aprendizagem
Aprendizagem de Máquina
Aprendizagem de Máquina Alessandro L. Koerich Programa de Pós-Graduação em Informática Pontifícia Universidade Católica do Paraná (PUCPR) Horários Aulas Sala [quinta-feira, 7:30 12:00] Atendimento Segunda
INF 1771 Inteligência Artificial
INF 1771 Inteligência Artificial Aula 14 Support Vector Machines (SVM) 2016.1 Prof. Augusto Baffa Formas de Aprendizado Aprendizado Supervisionado Árvores de Decisão. K-Nearest
Aprendizagem de Máquina
Aprendizagem de Máquina Alessandro L. Koerich Programa de Pós-Graduação em Engenharia Elétrica Universidade Federal do Paraná (UFPR) Redes Neurais Artificiais Plano de Aula Introdução Motivação Biológica
Aprendizagem de Máquina
Plano de Aula Aprendizagem de Máquina Bagging,, Support Vector Machines e Combinação de Classificadores Alessandro L. Koerich Uma visão geral de diversos tópicos relacionados à Aprendizagem de Máquina:
Redes Neurais (Inteligência Artificial)
Redes Neurais (Inteligência Artificial) Aula 13 Support Vector Machines (SVM) Edirlei Soares de Lima Formas de Aprendizado Aprendizado Supervisionado Árvores de Decisão. K-Nearest
INF 1771 Inteligência Artificial
INF 1771 Inteligência Artificial Aula 13 K-Nearest Neighbor (KNN) 2016.1 Prof. Augusto Baffa Formas de Aprendizado Aprendizado Supervisionado Árvores de Decisão. K-Nearest Neighbor
Classificação Automática de Gêneros Musicais
Introdução Método Experimentos Conclusões Utilizando Métodos de Bagging e Boosting Carlos N. Silla Jr. Celso Kaestner Alessandro Koerich Pontifícia Universidade Católica do Paraná Programa de Pós-Graduação
Aprendizado de Máquina. Combinando Classificadores
Universidade Federal do Paraná (UFPR) Departamento de Informática (DInf) Aprendizado de Máquina Combinando Classificadores David Menotti, Ph.D. web.inf.ufpr.br/menotti Introdução O uso de vários classificadores
Thiago Zavaschi Orientador: Alessandro Koerich Programa de Pós-Graduação em Informática (PPGIa) Pontifícia Universidade
Thiago Zavaschi ([email protected]) Orientador: Alessandro Koerich Programa de Pós-Graduação em Informática (PPGIa) Pontifícia Universidade Católica do Paraná (PUC-PR) Conceitos relacionados a classificação
Minicurso: Inteligência Artificial Aplicada a Sistemas Elétricos
Minicurso: Inteligência Artificial Aplicada a Sistemas Elétricos Introdução a Machine Learning: Teoria, Aplicações e IA na Arquitetura Intel Vitor Hugo Ferreira, DSc - UFF Flávio Mello, DSc UFRJ e Ai2Biz
6. QUADRIMESTRE IDEAL 7. NÍVEL Graduação 8. Nº. MÁXIMO DE ALUNOS POR TURMA
Universidade Federal do ABC Rua Santa Adélia, 166 - Bairro Bangu - Santo André - SP - Brasil CEP 09.210-170 - Telefone/Fax: +55 11 4996-3166 1. CÓDIGO E NOME DA DISCIPLINA MC5004 - APRENDIZADO DE MÁQUINA
Aprendizado de Máquina (Machine Learning)
Ciência da Computação (Machine Learning) Aula 01 Motivação, áreas de aplicação e fundamentos Max Pereira Nem todo conhecimento tem o mesmo valor. O que torna determinado conhecimento mais importante que
Aprendizagem de Máquina
Aprendizagem de Máquina Aprendizagem de Máquina Segundo semestre de 2018 Francisco Carvalho e Cleber Zanchettin Universidade Federal de Pernambuco - UFPE Centro de Informtica - CIn Objetivos da disciplina
Reconhecimento de Padrões aplicado à Bioinformática
Reconhecimento de Padrões aplicado à Bioinformática Dr. Leandro Carrijo Cintra CNPTIA Embrapa Informática Agropecuária Curso de Verão 2010 Bioinformática USP CNPTIA - Centro Nacional de Pesquisas Tecnológicas
SEMINÁRIO DOS ARTIGOS:
SEMINÁRIO DOS ARTIGOS: Text Detection and Character Recognition in Scene Images with Unsupervised Feature Learning End-to-End Text Recognition with Convolutional Neural Networks Fernanda Maria Sirlene
Inteligência Artificial
Universidade Federal de Campina Grande Departamento de Sistemas e Computação Pós-Graduação em Ciência da Computação Inteligência Artificial Aprendizagem Outras Técnicas Prof. a Joseana Macêdo Fechine Régis
IN Redes Neurais
IN0997 - Redes Neurais Aluizio Fausto Ribeiro Araújo Universidade Federal de Pernambuco Centro de Informática - CIn Departamento de Sistemas da Computação [email protected] Conteúdo Objetivos Quem usa
Introdução a Sistemas Inteligentes
Introdução a Sistemas Inteligentes Conceituação Prof. Ricardo J. G. B. Campello ICMC / USP Créditos Parte do material a seguir consiste de adaptações e extensões dos originais gentilmente cedidos pelo
Classificadores Lineares
Universidade Federal do Paraná (UFPR) Bacharelado em Informática Biomédica Classificadores Lineares David Menotti www.inf.ufpr.br/menotti/ci171-182 Hoje Funções Discriminantes Lineares Perceptron Support
UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica
REDES NEURAIS ARTIFICIAIS MÁQUINA DE VETOR DE SUPORTE (SUPPORT VECTOR MACHINES) Prof. Dr. André A. P. Biscaro 1º Semestre de 2017 Introdução Poderosa metodologia para resolver problemas de aprendizagem
2. Redes Neurais Artificiais
Computação Bioinspirada - 5955010-1 2. Redes Neurais Artificiais Prof. Renato Tinós Depto. de Computação e Matemática (FFCLRP/USP) 1 2.5. Support Vector Machines 2.5. Support Vector Machines (SVM) 2.5.2.
Reconhecimento Ótico de Caracteres em Placas Veiculares
Universidade Federal De Pernambuco Centro De Informática Graduação Em Engenharia Da Computação 2012.2 Reconhecimento Ótico de Caracteres em Placas Veiculares Proposta de Trabalho de Graduação Aluno Pedro
Aprendizado de Máquina
Aprendizado de Máquina Introdução Luiz Eduardo S. Oliveira Universidade Federal do Paraná Departamento de Informática http://lesoliveira.net Luiz S. Oliveira (UFPR) Aprendizado de Máquina 1 / 19 Introdução
Lista 2 Sistemas Inteligentes (INE5633) 2014s2
Lista 2 () 2014s2 Sistemas de Informação Universidade Federal de Santa Catarina 1. (Baseado em questão do POSCOMP 2009) Considere a árvore minimax abaixo representando um jogo, onde queremos maximizar
Aprendizagem de Máquina
Aprendizagem de Máquina Avaliação de Paradigmas Alessandro L. Koerich Mestrado/Doutorado em Informática Pontifícia Universidade Católica do Paraná (PUCPR) Mestrado/Doutorado em Informática Aprendizagem
Inteligência Computacional
Inteligência Computacional CP78D Apresentação do Plano de Ensino Aula 1 Prof. Daniel Cavalcanti Jeronymo Universidade Tecnológica Federal do Paraná (UTFPR) Engenharia Eletrônica 9º Período 1/14 Professor
Aprendizagem de Máquina
Aprendizagem de Máquina Alessandro L. Koerich Programa de Pós-Graduação em Informática Pontifícia Universidade Católica do Paraná (PUCPR) ÁRVORES DE DECISÃO Plano de Aula Introdução Representação de Árvores
Informática Parte 19 Prof. Márcio Hunecke
Escriturário Informática Parte 19 Prof. Márcio Hunecke Informática NOÇÕES DE ALGORITMOS DE APRENDIZADO O aprendizado automático, aprendizado de máquina (em inglês: "machine learning") ou aprendizagem
Redes Neurais (Inteligência Artificial)
Redes Neurais (Inteligência Artificial) Aula 16 Aprendizado Não-Supervisionado Edirlei Soares de Lima Formas de Aprendizado Aprendizado Supervisionado Árvores de Decisão. K-Nearest
Aprendizado de Máquinas. Multi-Layer Perceptron (MLP)
Universidade Federal do Paraná (UFPR) Departamento de Informática (DInf) Aprendizado de Máquinas Multi-Layer Perceptron (MLP) David Menotti, Ph.D. web.inf.ufpr.br/menotti Redes Neuronais Cérebro humano.
Redes Neurais (Inteligência Artificial)
Redes Neurais (Inteligência Artificial) Apresentação da Disciplina Edirlei Soares de Lima O que é Inteligência Artificial? O que é Inteligência Artificial? Área de pesquisa que tem
Projeto da Disciplina
Projeto da Disciplina Germano C. Vasconcelos Centro de Informática - UFPE Germano C.Vasconcelos 1 Objetivo Realizar um estudo experimental sobre a aplicação de modelos de redes neurais em um problema do
Aprendizagem de Máquina
Aprendizagem de Máquina Alessandro L. Koerich Programa de Pós-Graduação em Engenharia Elétrica Universidade Federal do Paraná (UFPR) ÁRVORES DE DECISÃO Plano de Aula Introdução Representação de Árvores
Aprendizado de Máquina (Machine Learning)
Ciência da Computação Aprendizado de Máquina (Machine Learning) Aula 09 Árvores de Decisão Max Pereira Classificação É a tarefa de organizar objetos em uma entre diversas categorias pré-definidas. Exemplos
Informática. Aprendizado de Máquina. Professor Márcio Hunecke.
Informática Aprendizado de Máquina Professor Márcio Hunecke www.acasadoconcurseiro.com.br Informática Aula XX NOÇÕES DE ALGORITMOS DE APRENDIZADO O aprendizado automático, aprendizado de máquina (em inglês:
Máquinas de suporte vetorial e sua aplicação na detecção de spam
e sua aplicação na detecção de spam Orientador: Paulo J. S. Silva (IME-USP) Universidade de São Paulo Instituto de Matemática e Estatística Departamento de Ciência da Computação MAC499 Trabalho de Formatura
Tecnologias da Informação Motivações e Avanços
Tecnologias da Informação Motivações e Avanços Aula #1.2. EBS 211 POO e UML Prof. Luiz Fernando S. Coletta [email protected] Campus de Tupã Roteiro Dados x Informação; Computadores, Processamento de
CRÉDITOS DO CURSO. Carga Horária Créditos IN1030 Seminários 30 2
UNIVERSIDADE FEDERAL DE PERNAMBUCO PRÓ-REITORIA PARA ASSUNTOS DE PESQUISA E PÓS-GRADUAÇÃO ESTRUTURA CURRICULAR STRICTO SENSU (baseada na Res. 10/2008 do CCEPE) NOME DO CURSO: Pós-Graduação em Ciência da
Classificação Hierárquica Multirrótulo Utilizando Redes Neurais Artificiais
Classificação Hierárquica Multirrótulo Utilizando Redes Neurais Artificiais Ricardo Cerri Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo [email protected] Roteiro Introdução
INF 1771 Inteligência Artificial
INF 1771 Inteligência Artificial Apresentação da Disciplina Edirlei Soares de Lima O que é Inteligência Artificial? Área de pesquisa que tem como objetivo buscar métodos ou dispositivos
Descritores de Imagens
Descritores de Imagens André Tavares da Silva PPGCA/UDESC Outubro de 2017 André Tavares da Silva (PPGCA/UDESC) Descritores de Imagens Outubro de 2017 1 / 18 Descritores Locais e Frameworks SIFT SURF Viola-Jones
Redes Neurais Artificiais
Redes Neurais Artificiais Fabrício Olivetti de França Universidade Federal do ABC Tópicos 1. Redes Neurais Biológicas 2. Neurônio Artificial 3. Rede Neural Artificial 4. Keras 1 Redes Neurais Biológicas
Por que Redes Neurais?
Redes Neurais Profa. Jaqueline Brigladori Pugliesi Por que Redes Neurais? Utilizar máquinas efetivamente para resolver problemas simples (humanos) Exemplo: distinguir padrões visuais previsão do valor
SUPPORT VECTOR MACHINE - SVM
SUPPORT VECTOR MACHINE - SVM Definição 2 Máquinas de Vetores Suporte (Support Vector Machines - SVMs) Proposto em 79 por Vladimir Vapnik Um dos mais importantes acontecimentos na área de reconhecimento
Aprendizado de Máquina Supervisionado e Não- Supervisionado. Profa. Flavia Cristina Bernardini
Aprendizado de Máquina Supervisionado e Não- Supervisionado Profa. Flavia Cristina Bernardini Aprendizado Supervisionado Modelos Preditivos Modelos Preditivos Um modelo preditivo é uma função que, dado
Introdução à Redes Neurais. Prof. Matheus Giovanni Pires EXA 868 Inteligência Artificial Não-Simbólica B Universidade Estadual de Feira de Santana
Introdução à Redes Neurais Artificiais Prof. Matheus Giovanni Pires EXA 868 Inteligência Artificial Não-Simbólica B Universidade Estadual de Feira de Santana 2 Introdução Redes Neurais Artificiais (RNAs)
Profs.: Eduardo Vargas Ferreira Walmes Marques Zeviani
Universidade Federal do Paraná Laboratório de Estatística e Geoinformação - LEG Introdução Profs.: Eduardo Vargas Ferreira Walmes Marques Zeviani O que é Machine Learning? Estatística Machine Learning
Reconhecimento de Faces Utilizando Redes Neurais MLP
Reconhecimento de Faces Utilizando Redes Neurais MLP Autor: Adilmar Coelho Dantas 1, Orientador: Márcia Aparecida Fernandes 1 1 Programa de Pós-Graduação em Ciência da Computação Universidade Federal do
Introdução ao Reconhecimento de Padrões e aplicações em problemas de Bioinformática
ao Reconhecimento de Padrões e aplicações em problemas de Bioinformática [email protected] UTFPR-CP Grupo de Pesquisa em Bioinformática e Reconhecimento de Padrões [email protected] Curso de
Rede RBF (Radial Basis Function)
Rede RBF (Radial Basis Function) André Tavares da Silva [email protected] Roteiro Introdução à rede neural artificial RBF Teorema de Cover da separabilidade de padrões RBF x MLP RBF Função de ativação
INF 1771 Inteligência Artificial
INF 1771 Inteligência Artificial Apresentação da Disciplina Edirlei Soares de Lima O que é Inteligência Artificial? O que é Inteligência Artificial? Área de pesquisa que tem como
Agregação de Algoritmos de Aprendizado de Máquina (AM) Professor: Eduardo R. Hruschka Estagiário PAE: Luiz F. S. Coletta
Agregação de Algoritmos de Aprendizado de Máquina (AM) Professor: Eduardo R. Hruschka Estagiário PAE: Luiz F. S. Coletta ([email protected]) Sumário 1. Motivação 2. Bagging 3. Random Forest 4. Boosting
Aprendizado de Máquina
Aprendizado de Máquina Aula #8.1 EBS 564 IA Prof. Luiz Fernando S. Coletta [email protected] Campus de Tupã Conhecimento: abstração (modelo) das relações existentes entre as informações contidas nos
Inteligência nos Negócios (Business Inteligente)
Inteligência nos Negócios (Business Inteligente) Sistemas de Informação Sistemas de Apoio a Decisão Aran Bey Tcholakian Morales, Dr. Eng. (Apostila 6) Fundamentação da disciplina Analise de dados Decisões
Pontifícia Universidade Católica de São Paulo Programa de TIDD
Disciplina: 2854 - Sistemas Inteligentes e Ambientes Virtuais Turma A Área de Concentração: Processos Cognitivos e Ambientes Digitais Linha de Pesquisa: Inteligência Coletiva e Ambientes Interativos Professor:
Aplicação de Histograma de Gradientes Orientados para detecção de hidrômetros em imagens de fundo complexo
Aplicação de Histograma de Gradientes Orientados para detecção de hidrômetros em imagens de fundo complexo Juliana Patrícia Detroz Professor: André Tavares da Silva Universidade do Estado de Santa Catarina
Classificação de Padrões. Abordagem prática com Redes Neurais Artificiais
Classificação de Padrões Abordagem prática com Redes Neurais Artificiais Agenda Parte I - Introdução ao aprendizado de máquina Parte II - Teoria RNA Parte III - Prática RNA Parte IV - Lições aprendidas
