Redes Neurais (Inteligência Artificial)
|
|
|
- Jorge Oliveira Barreto
- 7 Há anos
- Visualizações:
Transcrição
1 Redes Neurais (Inteligência Artificial) Aula 13 Support Vector Machines (SVM) Edirlei Soares de Lima
2 Formas de Aprendizado Aprendizado Supervisionado Árvores de Decisão. K-Nearest Neighbor (KNN). Support Vector Machines (SVM). Redes Neurais. Aprendizado Não Supervisionado Aprendizado Por Reforço
3 Aprendizado Supervisionado Observa-se alguns pares de exemplos de entrada e saída, de forma a aprender uma função que mapeia a entrada para a saída. Damos ao sistema a resposta correta durante o processo de treinamento. É eficiente pois o sistema pode trabalhar diretamente com informações corretas.
4 Support Vector Machine Proposto em 1995 pelo russo Vladimir Vapnik. Consiste em um método de aprendizado que tenta encontrar a maior margem para separar diferentes classes de dados. Pertence à classe de algoritmos de aprendizado supervisionado. A essência do SVM é a construção de um hiperplano ótimo, de modo que ele possa separar diferentes classes de dados com a maior margem possível.
5 Support Vector Machine Como separar essas duas classes?
6 Support Vector Machine Como separar essas duas classes? Existem diversas retas que podem ser traçadas para separar os dados. Qual delas é a melhor opção?
7 Support Vector Machine Como separar essas duas classes? Existem diversas retas que podem ser traçadas para separar os dados. Qual delas é a melhor opção? Hiperplano ótimo!
8 Vetores de Suporte Servem para definir qual será o hiperplano. São encontrados durante a fase de treinamento. Os vetores de suporte são os exemplos de treinamento realmente importantes. Os outros exemplos podem ser ignorados.
9 Support Vector Machine Hiperplano: Espaço 1D = Ponto Espaço 2D = Reta Espaço 3D = Plano
10 Support Vector Machine A aplicação de um método puramente linear para classificar um conjunto de dados pode sofrer com dois problemas bastante comuns: Outliers Exemplos rotulados erroneamente Mesmo assim o SVM ainda assim pode ser aplicado através do uso do parâmetro C (soft margin - variáveis de folga)
11 Soft Margin
12 Support Vector Machine Em alguns problemas não é possível separar as classes linearmente mesmo utilizando a margem de folga. Na realidade, a grande maioria dos problemas reais não são separáveis linearmente. O que fazer?
13 SVM Não-Linear O que fazer quando os dados não são linearmente separáveis? A abordagem utilizada pelo SVM para resolver esse tipo de problema consistem em mapear os dados para um espaço de dimensão maior: x 2 x x
14 SVM Não-Linear O espaço de atributos original pode ser mapeado em um espaço de atributos de dimensão maior onde o conjunto de treinamento é linearmente separável: Φ: x φ(x)
15 SVM Não-Linear Exemplo Considerando o seguinte conjunto de exemplos de treinamento que não são linearmente separáveis: X Elevando para uma dimensão linearmente separável (R 1 R 2 ): 25 9 Kernel: φ(x) = (x, x 2 ) X
16 SVM Não-Linear Exemplo A mesma metodologia pode ser aplicada em um espaço 2D de características (R 2 R 3 ). A única diferença é a necessidade de uma nova função de kernel. Um exemplo de função de kernel aplicável nesse caso seria: 2 (x1, x2) (z1, z2, z3) (x1, 2x1x 2, x 2 2 ) z 2 z 1 z 3
17 Funções de Kernel Kernel Polinomial Gaussiano Sigmoidal Função i ( x i, x j ) ( ( x x ) k) exp( xi x j tanh( ( x j i x j 2 d ) ) k)
18 Support Vector Machine O SVM foi originalmente concebido para lidar com classificações binárias. Entretanto, a maior parte dos problemas reais requerem múltiplas classes. Para se utilizar uma SVM para classificar múltiplas classes é necessário transformar o problema multi-classe em vários problemas da classes binárias Um contra o resto. Pairwise.
19 Aplicação Antes de aplicar uma SVM para classificar um conjunto de dados é necessário responder algumas questões: Quais funções de kernel utilizar? Qual o valor do parâmetro C (Soft Margin)? Validações cruzadas (cross validations).
20 Vantagens e Desvantagens Vantagens: Consegue lidar bem com grandes conjuntos de exemplos. Trata bem dados de alta dimensão. O processo de classificação é rápido. Desvantagens: É necessário definir um bom Kernel. O tempo de treinamento pode ser bem longo dependendo do número de exemplos e dimensionalidade dos dados.
21 LIBSVM Bases de Exemplos:
22 Leitura Complementar Mitchell, T. Machine Learning, McGraw Hill Science/Engineering/Math, Duda, R., Hart, P., Stork, D., Pattern Classification, John Wiley & Sons, 2000 Cristianini, N., Shawe-Taylor, J., An Introduction to Support Vector Machines and Other Kernelbased Learning Methods, Cambridge University Press, 2000.
INF 1771 Inteligência Artificial
Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 17 Support Vector Machines (SVM) Formas de Aprendizado Aprendizado Supervisionado Árvores de decisão. K-Nearest Neighbor
INF 1771 Inteligência Artificial
INF 1771 Inteligência Artificial Aula 14 Support Vector Machines (SVM) 2016.1 Prof. Augusto Baffa Formas de Aprendizado Aprendizado Supervisionado Árvores de Decisão. K-Nearest
UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica
REDES NEURAIS ARTIFICIAIS MÁQUINA DE VETOR DE SUPORTE (SUPPORT VECTOR MACHINES) Prof. Dr. André A. P. Biscaro 1º Semestre de 2017 Introdução Poderosa metodologia para resolver problemas de aprendizagem
Thiago Zavaschi Orientador: Alessandro Koerich Programa de Pós-Graduação em Informática (PPGIa) Pontifícia Universidade
Thiago Zavaschi ([email protected]) Orientador: Alessandro Koerich Programa de Pós-Graduação em Informática (PPGIa) Pontifícia Universidade Católica do Paraná (PUC-PR) Conceitos relacionados a classificação
INF 1771 Inteligência Artificial
INF 1771 Inteligência Artificial Aula 13 K-Nearest Neighbor (KNN) 2016.1 Prof. Augusto Baffa Formas de Aprendizado Aprendizado Supervisionado Árvores de Decisão. K-Nearest Neighbor
SUPPORT VECTOR MACHINE - SVM
SUPPORT VECTOR MACHINE - SVM Definição 2 Máquinas de Vetores Suporte (Support Vector Machines - SVMs) Proposto em 79 por Vladimir Vapnik Um dos mais importantes acontecimentos na área de reconhecimento
Redes Neurais (Inteligência Artificial)
Redes Neurais (Inteligência Artificial) Aula 16 Aprendizado Não-Supervisionado Edirlei Soares de Lima Formas de Aprendizado Aprendizado Supervisionado Árvores de Decisão. K-Nearest
Inteligência Artificial
Universidade Federal de Campina Grande Departamento de Sistemas e Computação Pós-Graduação em Ciência da Computação Inteligência Artificial Aprendizagem Outras Técnicas Prof. a Joseana Macêdo Fechine Régis
Classificadores Lineares
Universidade Federal do Paraná (UFPR) Bacharelado em Informática Biomédica Classificadores Lineares David Menotti www.inf.ufpr.br/menotti/ci171-182 Hoje Funções Discriminantes Lineares Perceptron Support
Máquinas de suporte vetorial e sua aplicação na detecção de spam
e sua aplicação na detecção de spam Orientador: Paulo J. S. Silva (IME-USP) Universidade de São Paulo Instituto de Matemática e Estatística Departamento de Ciência da Computação MAC499 Trabalho de Formatura
2. Redes Neurais Artificiais
Computação Bioinspirada - 5955010-1 2. Redes Neurais Artificiais Prof. Renato Tinós Depto. de Computação e Matemática (FFCLRP/USP) 1 2.5. Support Vector Machines 2.5. Support Vector Machines (SVM) 2.5.2.
Redes Neurais (Inteligência Artificial)
Redes Neurais (Inteligência Artificial) Apresentação da Disciplina Edirlei Soares de Lima O que é Inteligência Artificial? O que é Inteligência Artificial? Área de pesquisa que tem
Aprendizado de Máquinas. Classificadores Lineares
Universidade Federal do Paraná (UFPR) Departamento de Informática Aprendizado de Máquinas Classificadores Lineares David Menotti, Ph.D. web.inf.ufpr.br/menotti Objetivos Introduzir o conceito de classificação
Aprendizagem de Máquina
Aprendizagem de Máquina Alessandro L. Koerich Programa de Pós-Graduação em Informática Pontifícia Universidade Católica do Paraná (PUCPR) Horários Aulas Sala 3 CCET [quinta-feira, 8:20 12:00] Atendimento
Aprendizagem de Máquina
Aprendizagem de Máquina Apresentação da Disciplina Alessandro L. Koerich 2008 Mestrado e Doutorado em Informática Pontifícia Universidade Católica do Paraná (PUCPR) Mestrado/Doutorado em Informática Aprendizagem
Adriana da Costa F. Chaves. Máquina de Vetor Suporte (SVM) para Classificação Binária 2
Máquina de Vetor Suporte (SVM) para Classificação Binária Adriana da Costa F. Chaves Conteúdo da Apresentação Introdução Máquinas de Vetor Suporte para Classificação binária Exemplos Conclusão Máquina
6. QUADRIMESTRE IDEAL 7. NÍVEL Graduação 8. Nº. MÁXIMO DE ALUNOS POR TURMA
Universidade Federal do ABC Rua Santa Adélia, 166 - Bairro Bangu - Santo André - SP - Brasil CEP 09.210-170 - Telefone/Fax: +55 11 4996-3166 1. CÓDIGO E NOME DA DISCIPLINA MC5004 - APRENDIZADO DE MÁQUINA
Uma Introdução a SVM Support Vector Machines. Obs: Baseada nos slides de Martin Law
Uma Introdução a SVM Support Vector Machines Obs: Baseada nos slides de Martin Law Sumário Historia das SVMs Duas classes, linearmente separáveis O que é um bom limite para a decisão? Duas classes, não
Aprendizagem de Máquina
Plano de Aula Aprendizagem de Máquina Bagging,, Support Vector Machines e Combinação de Classificadores Alessandro L. Koerich Uma visão geral de diversos tópicos relacionados à Aprendizagem de Máquina:
Implementação de Kernel Customizado Aplicado à Análise de Sentimentos em Resenhas de Filmes
Implementação de Kernel Customizado Aplicado à Análise de Sentimentos em Resenhas de Filmes Luciana Kayo e Paulo Mei Prof. Dr. Marco Dimas Gubitoso Introdução Inspiração na competição When Bag of Words
INF 1771 Inteligência Artificial
INF 1771 Inteligência Artificial Apresentação da Disciplina Edirlei Soares de Lima O que é Inteligência Artificial? O que é Inteligência Artificial? Área de pesquisa que tem como
INF 1771 Inteligência Artificial
INF 1771 Inteligência Artificial Apresentação da Disciplina Edirlei Soares de Lima O que é Inteligência Artificial? Área de pesquisa que tem como objetivo buscar métodos ou dispositivos
Aprendizado de Máquina (Machine Learning)
Ciência da Computação Aprendizado de Máquina (Machine Learning) Aula 07 Classificação com o algoritmo knn Max Pereira Classificação com o algoritmo (knn) Um algoritmo supervisionado usado para classificar
Aprendizado de Máquina (Machine Learning)
Ciência da Computação (Machine Learning) Aula 01 Motivação, áreas de aplicação e fundamentos Max Pereira Nem todo conhecimento tem o mesmo valor. O que torna determinado conhecimento mais importante que
Aprendizado de Máquina (Machine Learning)
Ciência da Computação (Machine Learning) Aula 07 Classificação com o algoritmo knn Max Pereira Classificação com o algoritmo k-nearest Neighbors (knn) Como os filmes são categorizados em gêneros? O que
Máquina de Vetores Suporte
Máquina de Vetores Suporte André Ricardo Gonçalves andreric [at] dca.fee.unicamp.br www.dca.fee.unicamp.br/~andreric Sumário 1 Máquina de Vetores Suporte p. 3 1.1 Teoria da Aprendizado Estatístico.......................
scikit-learn: Aprendizado de máquina 101 com Python
scikit-learn: Aprendizado de máquina 101 com Python Luciana Fujii Campus Party BH 2016 1 / 30 Introdução Aprendizado de máquina Aprendizado de máquina é o campo da ciência da computação que dá aos computadores
Rede RBF (Radial Basis Function)
Rede RBF (Radial Basis Function) André Tavares da Silva [email protected] Roteiro Introdução à rede neural artificial RBF Teorema de Cover da separabilidade de padrões RBF x MLP RBF Função de ativação
Informática Parte 19 Prof. Márcio Hunecke
Escriturário Informática Parte 19 Prof. Márcio Hunecke Informática NOÇÕES DE ALGORITMOS DE APRENDIZADO O aprendizado automático, aprendizado de máquina (em inglês: "machine learning") ou aprendizagem
INF 1771 Inteligência Artificial
Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 24 Aprendizado Por Reforço Formas de Aprendizado Aprendizado Supervisionado Árvores de Decisão. K-Nearest Neighbor (KNN).
Aprendizagem de Máquina
Aprendizagem de Máquina Alessandro L. Koerich Programa de Pós-Graduação em Informática Pontifícia Universidade Católica do Paraná (PUCPR) Horários Aulas Sala [quinta-feira, 7:30 12:00] Atendimento Segunda
Introdução à Mineração de Dados com Aplicações em Ciências Espaciais
Introdução à Mineração de Dados com Aplicações em Ciências Espaciais Escola de Verão do Laboratório Associado de Computação e Matemática Aplicada Rafael Santos Dia 2: 1 /59 Programa Dia 1: Apresentação
Informática. Aprendizado de Máquina. Professor Márcio Hunecke.
Informática Aprendizado de Máquina Professor Márcio Hunecke www.acasadoconcurseiro.com.br Informática Aula XX NOÇÕES DE ALGORITMOS DE APRENDIZADO O aprendizado automático, aprendizado de máquina (em inglês:
Exame de Aprendizagem Automática
Exame de Aprendizagem Automática 2 páginas com 12 perguntas e 3 folhas de resposta. Duração: 2 horas e 30 minutos DI, FCT/UNL, 12 de Janeiro de 2017 Nota: O exame está cotado para 40 valores. Os 20 valores
Mineração de Dados - II
Tópicos Especiais: INTELIGÊNCIA DE NEGÓCIOS II Mineração de Dados - II Sylvio Barbon Junior [email protected] 10 de julho de 2015 DC-UEL Sylvio Barbon Jr 1 Sumário Etapa II Algoritmos Básicos Weka: Framework
Classificação Linear. André Tavares da Silva.
Classificação Linear André Tavares da Silva [email protected] Roteiro Introduzir os o conceito de classificação linear. LDA (Linear Discriminant Analysis) Funções Discriminantes Lineares Perceptron
Aprendizado de Máquina
Aprendizado de Máquina Introdução Luiz Eduardo S. Oliveira Universidade Federal do Paraná Departamento de Informática http://lesoliveira.net Luiz S. Oliveira (UFPR) Aprendizado de Máquina 1 / 19 Introdução
Aprendizagem de Máquinas
Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Aprendizagem de Máquinas DCA0121 Inteligência Artificial Aplicada Heitor Medeiros 1 Aprendizagem de Máquinas
MCZA Processamento de Linguagem Natural Classificação de textos
MCZA017-13 Processamento de Linguagem Natural Classificação de textos Prof. Jesús P. Mena-Chalco [email protected] 1Q-2018 1 Bibliografia Daniel Jurafsky & James H. Martin. Speech and language processing:
Aprendizagem de Máquina
Aprendizagem de Máquina Alessandro L. Koerich Programa de Pós-Graduação em Engenharia Elétrica Universidade Federal do Paraná (UFPR) Redes Neurais Artificiais Plano de Aula Introdução Motivação Biológica
Aprendizagem de Máquina
Aprendizagem de Máquina Aprendizagem de Máquina Segundo semestre de 2018 Francisco Carvalho e Cleber Zanchettin Universidade Federal de Pernambuco - UFPE Centro de Informtica - CIn Objetivos da disciplina
ANÁLISE DE BIG DATA VIA MACHINE LEARNING E INTELIGÊNCIA ARTIFICIAL
CURTA DURAÇÃO ANÁLISE DE BIG DATA VIA MACHINE LEARNING E INTELIGÊNCIA ARTIFICIAL CARGA HORÁRIA: 76 horas COORDENAÇÃO: Prof.ª Dr.ª Alessandra de Ávila Montini OBJETIVOS Introduzir o conceito de Big Data,
1 o Teste de Aprendizagem Automática
o Teste de Aprendizagem Automática 3 páginas com 6 perguntas e 2 folhas de resposta. Duração: 2 horas DI, FCT/UNL, 22 de Outubro de 205 Pergunta [4 valores] As figuras abaixo mostram o erro de treino e
Introdução ao Reconhecimento. Prof. Dr. Geraldo Braz Junior
Introdução ao Reconhecimento Prof. Dr. Geraldo Braz Junior O que você vê? 2 Pergunta: Essa imagem tem um prédio? Classificação 3 Pergunta: Essa imagem possui carro(s)? Detecção de Objetos Vários 4 Pergunta:
Introdução às Redes Neurais Artificiais
Introdução às Redes Neurais Artificiais Perceptrons de Camada Única Prof. João Marcos Meirelles da Silva www.professores.uff.br/jmarcos Departamento de Engenharia de Telecomunicações Escola de Engenharia
Aplicação de Histograma de Gradientes Orientados para detecção de hidrômetros em imagens de fundo complexo
Aplicação de Histograma de Gradientes Orientados para detecção de hidrômetros em imagens de fundo complexo Juliana Patrícia Detroz Professor: André Tavares da Silva Universidade do Estado de Santa Catarina
Laboratório Como usar algoritmos de aprendizado de máquina de regressão em Weka
Laboratório Como usar algoritmos de aprendizado de máquina de regressão em Weka Faça o download do dataset housing.arff*, e execute as seguintes tarefas: *disponível em: www.inf.ufpr.br/menotti/am-182/data.zip
Identificação de Produtos por Imagem Utilizando o Algoritmo SURF
Identificação de Produtos por Imagem Utilizando o Algoritmo SURF Um Comparativo Entre Redes Perceptron Multicamadas e Máquinas de Vetor de Suporte Guilherme Defreitas Juraszek, Alexandre Gonçalves Silva
3 Técnicas de agrupamento
3 Técnicas de agrupamento Com o advento da internet a quantidade de informação disponível aumentou consideravelmente e com isso, tornou-se necessário uma forma automática de organizar e classificar esta
Aplicação de Ensembles de Classificadores na Detecção de Patologias na Coluna Vertebral
Aplicação de Ensembles de Classificadores na Detecção de Patologias na Coluna Vertebral Hedenir M. Pinheiro Instituto de Informática Universidade Federal de Goiás (UFG) Caixa Postal 131 74001-970 Goiânia
Aprendizagem de Máquina - 2. Prof. Júlio Cesar Nievola PPGIa - PUCPR
Aprendizagem de Máquina - 2 Prof. Júlio Cesar Nievola PPGIa - PUCPR Inteligência versus Aprendizado Aprendizado é a chave da superioridade da Inteligência Humana Para que uma máquina tenha Comportamento
4 Construção dos Classificadores
4 Construção dos Classificadores 4.1. Modelagem O aprendizado supervisionado contém a etapa de modelagem, nessa etapa definimos quais serão as características encaminhadas ao classificador para o treinamento.
MCZA Processamento de Linguagem Natural Laboratório: Classificação de textos
MCZA017-13 Processamento de Linguagem Natural Laboratório: Classificação de textos Prof. Jesús P. Mena-Chalco [email protected] 1Q-2018 1 Bibliografia Daniel Jurafsky & James H. Martin. Speech and
PERCEPTRON. Características Básicas Modelo de Neurônio Estrutura da Rede Algoritmo de Aprendizado
PERCEPTRON Características Básicas Modelo de Neurônio Estrutura da Rede Algoritmo de Aprendizado CARACTERISTICAS BASICAS - Regra de propagação net - Função de ativação: Degrau = x w + - Topologia: uma
Máquinas de Vetores Suporte. Prof. Dr. Geraldo Braz Junior
Máquinas de Vetores Suporte Prof. Dr. Geraldo Braz Junior Introdução Máquinas de Vetores de Suporte (MVS) Criada por (VAPNIK, 1998) é um método de aprendizagem supervisionado usado para estimar uma função
Classificação de Padrões. Abordagem prática com Redes Neurais Artificiais
Classificação de Padrões Abordagem prática com Redes Neurais Artificiais Agenda Parte I - Introdução ao aprendizado de máquina Parte II - Teoria RNA Parte III - Prática RNA Parte IV - Lições aprendidas
Aprendizado de Máquina
Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCENS UFES Departamento de Computação Aprendizado de Máquina Inteligência Artificial Site: http://jeiks.net E-mail: [email protected]
Aprendizado de Máquina
Aprendizado de Máquina A necessidade de inserir aprendizado nas máquinas surgiu após a construção dos Sistemas Especialistas (SEs). Os primeiros SEs não possuíam mecanismo de aprendizado e tornavam-se
Rede Perceptron. Capítulo 3
Rede Perceptron Capítulo 3 Rede Perceptron É a forma mais simples de configuração de uma RNA (idealizada por Rosenblatt, 1958) Constituída de apenas uma camada, tendo-se ainda somente um neurônio nesta
2. Redes Neurais Artificiais
Computação Bioinspirada - 5955010-1 2. Redes Neurais Artificiais Prof. Renato Tinós Depto. de Computação e Matemática (FFCLRP/USP) 1 2.2. Perceptron 2.2.1. Introdução 2.2.2. Funcionamento do perceptron
