Aprendizagem de Máquina
|
|
|
- Débora Fraga Aquino
- 9 Há anos
- Visualizações:
Transcrição
1 Aprendizagem de Máquina Avaliação de Paradigmas Alessandro L. Koerich Mestrado/Doutorado em Informática Pontifícia Universidade Católica do Paraná (PUCPR)
2 Mestrado/Doutorado em Informática Aprendizagem de Máquina 2 Introdução Vimos anteriormente muitos algoritmos de aprendizagem A pergunta que sempre se faz é: Qual deles é o melhor? Pode existir uma preferência por aqueles de menor complexidade computacional, ou que levam em conta algum conhecimento a priori da forma dos dados, etc.
3 Mestrado/Doutorado em Informática Aprendizagem de Máquina 3 Introdução Entretanto, quando isso não importa... Existem razões para escolher um algoritmo em relação a outros?
4 Mestrado/Doutorado em Informática Aprendizagem de Máquina 4 Introdução Quando temos dois algoritmos que possuem a mesmo desempenho sobre um conjunto de exemplos de treinamento: Escolhemos sempre o mais simples, pois ele deve apresentar um desempenho melhor sobre um conjunto de exemplos de teste!
5 Mestrado/Doutorado em Informática Aprendizagem de Máquina 5 Introdução Entretanto, a maneira utilizada para avaliar o desempenho de algoritmos de aprendizagem é: Avaliar o erro (ou acerto) em exemplos fora do conjunto de exemplo de treinamento! Ou seja, sobre um Conjunto de Exemplos de Testes.
6 Mestrado/Doutorado em Informática Aprendizagem de Máquina 6 Avaliação de Desempenho Para que avaliar desempenho (generalização)? 1. Para verificar se o algoritmo possui um desempenho bom o suficiente para ser útil 2. Para comparar seu desempenho com o de outros algoritmos
7 Mestrado/Doutorado em Informática Aprendizagem de Máquina 7 Instabilidade Um algoritmo de aprendizagem pode ser considera instável se: uma pequena alteração nos dados de treinamento levar a classificadores significativamente diferentes e mudanças relativamente grandes na precisão
8 Mestrado/Doutorado em Informática Aprendizagem de Máquina 8 Método da Validação Cruzada Particionar aleatoriamente o conjunto de dados em três partes Passo 1: Define pelo menos três conjuntos disjuntos: 1. Conjunto de exemplos de treinamento 2. Conjunto de exemplos de validação 3. Conjunto de exemplos de teste Passo 2: Utiliza o Conjunto de Treinamento para fazer a aprendizagem do algoritmo. Utiliza o Conjunto de Validação para verificar a generalização do algoritmo (ajustar os parâmetros).
9 Mestrado/Doutorado em Informática Aprendizagem de Máquina 9 Método da Validação Cruzada Passo 3: Depois do algoritmo treinado, avalia sua generalização sobre o Conjunto de Testes. OBS 1: O Conjunto de Testes não pode ser utilizado para ajustar parâmetros! OBS 2: Cuidar com a distribuição de exemplos por classe que compõem os conjuntos. Probabilidades a priori diferentes! OBS 3: Método melhor adaptado a grandes conjuntos de dados.
10 Mestrado/Doutorado em Informática Aprendizagem de Máquina 10 Método da Validação Cruzada Como calcular o desempenho? 1. Taxa de acerto (%): Num. Exemplos Classif. Corretamente Num Total de Exemplos 2. Taxa de erro (%): Num. Exemplos Classif. Incorretamente Num Total de Exemplos
11 Mestrado/Doutorado em Informática Aprendizagem de Máquina 11 Método da Validação Cruzada Como calcular o desempenho médio e variância? 1. Treinar n vezes o algoritmo (diferentes parâmetros) 2. Avaliar os n algoritmos treinados (taxa de acerto) 3. Calcular a taxa de acerto média 4. Calcular a variância
12 Mestrado/Doutorado em Informática Aprendizagem de Máquina 12 Método Validação Cruzada n-fold Chamado de n-fold cross validation É uma generalização do método validação cruzada Passo 1: O conjunto de dados de tamanho n (n exemplos) é dividido em m conjuntos disjuntos de tamanho n/m Passo 2: O algoritmo é treinado m vezes, cada vez com um conjunto diferente sendo deixado de fora para fazer a validação.
13 Mestrado/Doutorado em Informática Aprendizagem de Máquina 13 Método Validação Cruzada n-fold Passo 3: O desempenho é estimado como sendo o erro médio ou taxa de acerto média sobre estes m conjuntos de validação. Também chamado de Leave-one-out
Avaliando Hipóteses. George Darmiton da Cunha Cavalcanti Tsang Ing Ren CIn/UFPE
Avaliando Hipóteses George Darmiton da Cunha Cavalcanti Tsang Ing Ren CIn/UFPE Pontos importantes Erro da Amostra e Erro Real Como Calcular Intervalo de Confiança Erros de hipóteses Estimadores Comparando
DCBD. Avaliação de modelos. Métricas para avaliação de desempenho. Avaliação de modelos. Métricas para avaliação de desempenho...
DCBD Métricas para avaliação de desempenho Como avaliar o desempenho de um modelo? Métodos para avaliação de desempenho Como obter estimativas confiáveis? Métodos para comparação de modelos Como comparar
Reconhecimento de Padrões
Reconhecimento de Padrões André Tavares da Silva [email protected] Kuncheva pg. 8 a 25 (seções 1.3 e 1.4) Roteiro da aula Cálculo do erro de um classificador Técnicas de treinamento, avaliação e teste
Aprendizagem de Máquina
Plano de Aula Aprendizagem de Máquina Bagging,, Support Vector Machines e Combinação de Classificadores Alessandro L. Koerich Uma visão geral de diversos tópicos relacionados à Aprendizagem de Máquina:
Mineração de Dados em Biologia Molecular
Mineração de Dados em Biologia Molecular André C.. L. F. de Carvalho Monitor: Valéria Carvalho lanejamento e Análise de Experimentos rincipais tópicos Estimativa do erro artição dos dados Reamostragem
SCC Capítulo 10 Métodos de Amostragem e Avaliação de Algoritmos
Métodos de Amostragem e Avaliação de Algoritmos SCC-630 - Capítulo 10 Métodos de Amostragem e Avaliação de Algoritmos João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências
Classificação Automática de Gêneros Musicais
Introdução Método Experimentos Conclusões Utilizando Métodos de Bagging e Boosting Carlos N. Silla Jr. Celso Kaestner Alessandro Koerich Pontifícia Universidade Católica do Paraná Programa de Pós-Graduação
Métodos de Amostragem. Métodos de Amostragem e Avaliação de Algoritmos. Métodos de Amostragem. Métodos de Amostragem. Métodos de Amostragem
e Avaliação de s José Augusto Baranauskas Departamento de Física e Matemática FFCLRP-USP AM é uma ferramenta poderosa, mas não existe um único algoritmo que apresente o melhor desempenho para todos os
Modelagem da Rede Neural. Modelagem da Rede Neural. Back Propagation. Modelagem da Rede Neural. Modelagem da Rede Neural. Seleção de Variáveis:
Back Propagation Fatores importantes para a modelagem da Rede Neural: Seleção de variáveis; veis; Limpeza dos dados; Representação das variáveis veis de entrada e saída; Normalização; Buscando melhor Generalização
Roteiro. PCC142 / BCC444 - Mineração de Dados Avaliação de Classicadores. Estimativa da Acurácia. Introdução. Estimativa da Acurácia
Roteiro PCC142 / BCC444 - Mineração de Dados Avaliação de Classicadores Introdução Luiz Henrique de Campos Merschmann Departamento de Computação Universidade Federal de Ouro Preto [email protected]
Descoberta de Conhecimento em Bancos de Dados - KDD
Descoberta de Conhecimento em Bancos de Dados - KDD Professor: Rosalvo Ferreira de Oliveira Neto Disciplina: Inteligência Artificial Tópicos 1. Definições 2. Fases do processo 3. Exemplo do DMC 4. Avaliação
Tutorial básico de classificação em RapidMiner
Tutorial básico de classificação em RapidMiner Mineração de dados biológicos Ciências físicas e biomoleculares Neste tutorial, aprenderemos a utilizar as funcionalidades básicas para classificação em Rapidminer.
Aprendizagem de Máquina
Aprendizagem de Máquina Apresentação da Disciplina Alessandro L. Koerich 2008 Mestrado e Doutorado em Informática Pontifícia Universidade Católica do Paraná (PUCPR) Mestrado/Doutorado em Informática Aprendizagem
CLASSIFICADORES ELEMENTARES
CLASSIFICADORES ELEMENTARES Classificação 2 Consiste em tentar discriminar em diferentes classes um conjunto de objetos com características mensuráveis Exemplo: classificação de frutas Forma, cor, sabor,
Aprendizado de Máquina. Combinando Classificadores
Universidade Federal do Paraná (UFPR) Departamento de Informática (DInf) Aprendizado de Máquina Combinando Classificadores David Menotti, Ph.D. web.inf.ufpr.br/menotti Introdução O uso de vários classificadores
Redes Perceptron e Multilayer Perceptron aplicadas a base de dados IRIS
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Redes Perceptron e Multilayer Perceptron aplicadas a base de dados IRIS Aluno: Fabricio Aparecido Breve Prof.: Dr. André Ponce
Aprendizado de Máquina
Aprendizado de Máquina Introdução ao WEKA Luiz Eduardo S. Oliveira Universidade Federal do Paraná Departamento de Informática http://web.inf.ufpr.br/luizoliveira Luiz S. Oliveira (UFPR) Aprendizado de
Aprendizagem de Máquina
Aprendizagem de Máquina Alessandro L. Koerich Programa de Pós-Graduação em Informática Pontifícia Universidade Católica do Paraná (PUCPR) Horários Aulas Sala 3 CCET [quinta-feira, 8:20 12:00] Atendimento
Uso de Algoritmo Genético para a otimização do ponto de corte da probabilidade de sucesso estimada do modelo de Regressão Logística
Uso de Algoritmo Genético para a otimização do ponto de corte da probabilidade de sucesso estimada do modelo de Regressão Logística José Edson Rodrigues Guedes Gondim 1 Joab de Oliveira Lima 2 1 Introdução
Aprendizagem de Máquina - 2. Prof. Júlio Cesar Nievola PPGIa - PUCPR
Aprendizagem de Máquina - 2 Prof. Júlio Cesar Nievola PPGIa - PUCPR Inteligência versus Aprendizado Aprendizado é a chave da superioridade da Inteligência Humana Para que uma máquina tenha Comportamento
Thiago Zavaschi Orientador: Alessandro Koerich Programa de Pós-Graduação em Informática (PPGIa) Pontifícia Universidade
Thiago Zavaschi ([email protected]) Orientador: Alessandro Koerich Programa de Pós-Graduação em Informática (PPGIa) Pontifícia Universidade Católica do Paraná (PUC-PR) Conceitos relacionados a classificação
Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 21 Projeto de RNA
Inteligência Artificial Prof. Tiago A. E. Ferreira Aula 21 Projeto de RNA Projeto de Redes Neurais Projeto de Redes Neurais Baseado apenas em dados Exemplos para treinar uma rede devem ser compostos por
Aprendizado de Máquina
Aprendizado de Máquina Introdução Luiz Eduardo S. Oliveira Universidade Federal do Paraná Departamento de Informática http://lesoliveira.net Luiz S. Oliveira (UFPR) Aprendizado de Máquina 1 / 19 Introdução
Projeto da Disciplina
Projeto da Disciplina Germano C. Vasconcelos Centro de Informática - UFPE Germano C.Vasconcelos 1 Objetivo Realizar um estudo experimental sobre a aplicação de modelos de redes neurais em um problema do
Aprendizado de Máquinas. Seleção de Características
Universidade Federal do Paraná (UFPR) Departamento de Informática (DInf) Seleção de Características David Menotti, Ph.D. web.inf.ufpr.br/menotti Introdução Um dos principais aspectos na construção de um
θ depende de um parâmetro desconhecido θ.
73 Método de Máxima Verosimilhança (Maximum Likelihood) Seja uma variável aleatória (v. a.) cuja densidade de probabilidade depende de um parâmetro desconhecido. Admite-se conhecida a forma de Exemplo
Redes Neurais Artificiais. Everton Gago
Redes Neurais Artificiais Everton Gago Como vai ser? O que é RNA? Conglomerado de neurônios!?!? Neurônio: Neurônio: Entradas: X0 = 0 X1 = 1 X2 = 1 Neurônio: Entradas: X0 = 0 X1 = 1 X2 = 1 Pesos: W0 = 0.3
Classificação: 1R e Naïve Bayes. Eduardo Raul Hruschka
Classificação: 1R e Naïve Bayes Eduardo Raul Hruschka Agenda: Conceitos de Classificação Técnicas de Classificação One Rule (1R) Naive Bayes (com seleção de atributos) Super-ajuste e validação cruzada
ANÁLISE DE ESTRATÉGIAS DE CAPACITAÇÃO DE PROFESSORES DO ENSINO SUPERIOR EM TECNOLOGIAS EDUCACIONAIS
Resumo ANÁLISE DE ESTRATÉGIAS DE CAPACITAÇÃO DE PROFESSORES DO ENSINO SUPERIOR EM TECNOLOGIAS EDUCACIONAIS Kelli Fernanda Roznowski Göttems - Bolsista, Iniciação Científica - CNPQ [email protected]
Aprendizado em IA. Prof. Carlos H. C. Ribeiro ITA Divisão de Ciência da Computação
Aprendizado em IA Prof. Carlos H. C. Ribeiro ITA Divisão de Ciência da Computação Tópicos Agentes baseados em aprendizado Aprendizado indutivo Árvores de decisão Método ID3 Aprendizado em redes neurais
Inteligência nos Negócios (Business Inteligente)
Inteligência nos Negócios (Business Inteligente) Sistemas de Informação Sistemas de Apoio a Decisão Aran Bey Tcholakian Morales, Dr. Eng. (Apostila 6) Fundamentação da disciplina Analise de dados Decisões
Aprendizado de Máquinas. Multi-Layer Perceptron (MLP)
Universidade Federal do Paraná (UFPR) Departamento de Informática (DInf) Aprendizado de Máquinas Multi-Layer Perceptron (MLP) David Menotti, Ph.D. web.inf.ufpr.br/menotti Redes Neuronais Cérebro humano.
Aprendizado de Máquina (Machine Learning)
Ciência da Computação Aprendizado de Máquina (Machine Learning) Aula 07 Classificação com o algoritmo knn Max Pereira Classificação com o algoritmo (knn) Um algoritmo supervisionado usado para classificar
Aprendizado de Máquina (Machine Learning)
Ciência da Computação Aprendizado de Máquina (Machine Learning) Aula 09 Árvores de Decisão Max Pereira Classificação É a tarefa de organizar objetos em uma entre diversas categorias pré-definidas. Exemplos
Inteligência Artificial. Raimundo Osvaldo Vieira [DComp IFMA Campus Monte Castelo]
Inteligência Artificial Raimundo Osvaldo Vieira [DComp IFMA Campus Monte Castelo] Aprendizagem de Máquina Área da Inteligência Artificial cujo objetivo é o desenvolvimento de técnicas computacionais sobre
Rede RBF (Radial Basis Function)
Rede RBF (Radial Basis Function) André Tavares da Silva [email protected] Roteiro Introdução à rede neural artificial RBF Teorema de Cover da separabilidade de padrões RBF x MLP RBF Função de ativação
PREDIÇÃO À EVASÃO ESCOLAR: Estudo de caso aplicado no IFSULDEMINAS Campus Passos RESUMO
PREDIÇÃO À EVASÃO ESCOLAR: Estudo de caso aplicado no IFSULDEMINAS Campus Passos Carla Fernandes da SILVA 1 ; Clayton Silva MENDES 2. RESUMO A evasão escolar é um dos principais desafios a ser superado
Redes Neurais MLP: Exemplos e Características
Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Redes Neurais MLP: Exemplos e Características DCA0121 Inteligência Artificial Aplicada Heitor Medeiros 1
5 Experimentos Conjunto de Dados
Experimentos 48 5 Experimentos Este capítulo apresenta o ambiente experimental utilizado para validar o método de predição do CTR proposto neste trabalho. Na seção 5.1, descrevemos a geração do conjunto
Aula 3: Random Forests
Aula 3: Random Forests Paulo C. Marques F. Aula ministrada no Insper 26 de Fevereiro de 2016 Insper Random Forests 26 de Fevereiro de 2016 1 / 18 Árvores de classificação Estamos no mesmo contexto de aprendizagem
Classificação e Predição de Dados - Profits Consulting - Consultoria Empresarial - Serviços SAP- CRM Si
Classificação e Predição de Dados - Profits Consulting - Consultoria Empresarial - Serviços SAP- CRM Si Classificação de Dados Os modelos de classificação de dados são preditivos, pois desempenham inferências
Aprendizado de Máquina Introdução às Redes Neurais Artificiais
Aprendizado de Máquina Introdução às Redes Neurais Artificiais Marcos Oliveira Prates (Agradecimento Marcelo Azevedo Costa) Departamento de Estatística Universidade Federal de Minas Gerais Inteligência
Curso de Data Mining
Curso de Data Mining Sandra de Amo Curvas Roc Uma curva ROC (Receiver Operating Characteristic) é um enfoque gráfico que permite visualizar os trade-offs entre as taxas de positivos verdadeiros e positivos
Aprendizagem Bayesiana
Universidade Federal do Paraná (UFPR) Bacharelado em Informática Biomédica Aprendizagem Bayesiana David Menotti www.inf.ufpr.br/menotti/ci171-182 Aprendizagem Bayesiana Agenda Introdução Teorema de Bayes
JAI 6 - Deep Learning Teoria e Prática
JAI 6 - Deep Learning Teoria e Prática Esteban Clua e Cristina Nader Vasconcelos Universidade Federal Fluminense Fundamentos Computação baseada em modelos [email protected] 2 Computação baseada em aprendizado
Aprendizado de Máquina (Machine Learning)
Ciência da Computação (Machine Learning) Aula 07 Classificação com o algoritmo knn Max Pereira Classificação com o algoritmo k-nearest Neighbors (knn) Como os filmes são categorizados em gêneros? O que
Redes Neurais Artificial. Prática. Inteligência Artificial
Redes Neurais Artificial Prática Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Introdução a MLP 2. Base de dados e Pré-Processamento 3. Prática MLP - Introdução Redes
Aprendizagem de Máquina
Aprendizagem de Máquina Alessandro L. Koerich Programa de Pós-Graduação em Engenharia Elétrica Universidade Federal do Paraná (UFPR) Redes Neurais Artificiais Plano de Aula Introdução Motivação Biológica
Avaliação do desempenho das ConvNets na detecção de ovos de esquistossomose PROPOSTA DE TRABALHO DE GRADUAÇÃO
UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE INFORMÁTICA GRADUAÇÃO EM ENGENHARIA DA COMPUTAÇÃO Avaliação do desempenho das ConvNets na detecção de ovos de esquistossomose PROPOSTA DE TRABALHO DE GRADUAÇÃO
Regressão Linear. Fabrício Olivetti de França. Universidade Federal do ABC
Regressão Linear Fabrício Olivetti de França Universidade Federal do ABC Tópicos 1. Overfitting 2. Treino e Validação 3. Baseline dos modelos 1 Overfitting Overfit Em muitos casos, a amostra de dados coletada
