Aprendizagem de Máquina

Tamanho: px
Começar a partir da página:

Download "Aprendizagem de Máquina"

Transcrição

1 Aprendizagem de Máquina Avaliação de Paradigmas Alessandro L. Koerich Mestrado/Doutorado em Informática Pontifícia Universidade Católica do Paraná (PUCPR)

2 Mestrado/Doutorado em Informática Aprendizagem de Máquina 2 Introdução Vimos anteriormente muitos algoritmos de aprendizagem A pergunta que sempre se faz é: Qual deles é o melhor? Pode existir uma preferência por aqueles de menor complexidade computacional, ou que levam em conta algum conhecimento a priori da forma dos dados, etc.

3 Mestrado/Doutorado em Informática Aprendizagem de Máquina 3 Introdução Entretanto, quando isso não importa... Existem razões para escolher um algoritmo em relação a outros?

4 Mestrado/Doutorado em Informática Aprendizagem de Máquina 4 Introdução Quando temos dois algoritmos que possuem a mesmo desempenho sobre um conjunto de exemplos de treinamento: Escolhemos sempre o mais simples, pois ele deve apresentar um desempenho melhor sobre um conjunto de exemplos de teste!

5 Mestrado/Doutorado em Informática Aprendizagem de Máquina 5 Introdução Entretanto, a maneira utilizada para avaliar o desempenho de algoritmos de aprendizagem é: Avaliar o erro (ou acerto) em exemplos fora do conjunto de exemplo de treinamento! Ou seja, sobre um Conjunto de Exemplos de Testes.

6 Mestrado/Doutorado em Informática Aprendizagem de Máquina 6 Avaliação de Desempenho Para que avaliar desempenho (generalização)? 1. Para verificar se o algoritmo possui um desempenho bom o suficiente para ser útil 2. Para comparar seu desempenho com o de outros algoritmos

7 Mestrado/Doutorado em Informática Aprendizagem de Máquina 7 Instabilidade Um algoritmo de aprendizagem pode ser considera instável se: uma pequena alteração nos dados de treinamento levar a classificadores significativamente diferentes e mudanças relativamente grandes na precisão

8 Mestrado/Doutorado em Informática Aprendizagem de Máquina 8 Método da Validação Cruzada Particionar aleatoriamente o conjunto de dados em três partes Passo 1: Define pelo menos três conjuntos disjuntos: 1. Conjunto de exemplos de treinamento 2. Conjunto de exemplos de validação 3. Conjunto de exemplos de teste Passo 2: Utiliza o Conjunto de Treinamento para fazer a aprendizagem do algoritmo. Utiliza o Conjunto de Validação para verificar a generalização do algoritmo (ajustar os parâmetros).

9 Mestrado/Doutorado em Informática Aprendizagem de Máquina 9 Método da Validação Cruzada Passo 3: Depois do algoritmo treinado, avalia sua generalização sobre o Conjunto de Testes. OBS 1: O Conjunto de Testes não pode ser utilizado para ajustar parâmetros! OBS 2: Cuidar com a distribuição de exemplos por classe que compõem os conjuntos. Probabilidades a priori diferentes! OBS 3: Método melhor adaptado a grandes conjuntos de dados.

10 Mestrado/Doutorado em Informática Aprendizagem de Máquina 10 Método da Validação Cruzada Como calcular o desempenho? 1. Taxa de acerto (%): Num. Exemplos Classif. Corretamente Num Total de Exemplos 2. Taxa de erro (%): Num. Exemplos Classif. Incorretamente Num Total de Exemplos

11 Mestrado/Doutorado em Informática Aprendizagem de Máquina 11 Método da Validação Cruzada Como calcular o desempenho médio e variância? 1. Treinar n vezes o algoritmo (diferentes parâmetros) 2. Avaliar os n algoritmos treinados (taxa de acerto) 3. Calcular a taxa de acerto média 4. Calcular a variância

12 Mestrado/Doutorado em Informática Aprendizagem de Máquina 12 Método Validação Cruzada n-fold Chamado de n-fold cross validation É uma generalização do método validação cruzada Passo 1: O conjunto de dados de tamanho n (n exemplos) é dividido em m conjuntos disjuntos de tamanho n/m Passo 2: O algoritmo é treinado m vezes, cada vez com um conjunto diferente sendo deixado de fora para fazer a validação.

13 Mestrado/Doutorado em Informática Aprendizagem de Máquina 13 Método Validação Cruzada n-fold Passo 3: O desempenho é estimado como sendo o erro médio ou taxa de acerto média sobre estes m conjuntos de validação. Também chamado de Leave-one-out

Avaliando Hipóteses. George Darmiton da Cunha Cavalcanti Tsang Ing Ren CIn/UFPE

Avaliando Hipóteses. George Darmiton da Cunha Cavalcanti Tsang Ing Ren CIn/UFPE Avaliando Hipóteses George Darmiton da Cunha Cavalcanti Tsang Ing Ren CIn/UFPE Pontos importantes Erro da Amostra e Erro Real Como Calcular Intervalo de Confiança Erros de hipóteses Estimadores Comparando

Leia mais

DCBD. Avaliação de modelos. Métricas para avaliação de desempenho. Avaliação de modelos. Métricas para avaliação de desempenho...

DCBD. Avaliação de modelos. Métricas para avaliação de desempenho. Avaliação de modelos. Métricas para avaliação de desempenho... DCBD Métricas para avaliação de desempenho Como avaliar o desempenho de um modelo? Métodos para avaliação de desempenho Como obter estimativas confiáveis? Métodos para comparação de modelos Como comparar

Leia mais

Reconhecimento de Padrões

Reconhecimento de Padrões Reconhecimento de Padrões André Tavares da Silva [email protected] Kuncheva pg. 8 a 25 (seções 1.3 e 1.4) Roteiro da aula Cálculo do erro de um classificador Técnicas de treinamento, avaliação e teste

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Plano de Aula Aprendizagem de Máquina Bagging,, Support Vector Machines e Combinação de Classificadores Alessandro L. Koerich Uma visão geral de diversos tópicos relacionados à Aprendizagem de Máquina:

Leia mais

Mineração de Dados em Biologia Molecular

Mineração de Dados em Biologia Molecular Mineração de Dados em Biologia Molecular André C.. L. F. de Carvalho Monitor: Valéria Carvalho lanejamento e Análise de Experimentos rincipais tópicos Estimativa do erro artição dos dados Reamostragem

Leia mais

SCC Capítulo 10 Métodos de Amostragem e Avaliação de Algoritmos

SCC Capítulo 10 Métodos de Amostragem e Avaliação de Algoritmos Métodos de Amostragem e Avaliação de Algoritmos SCC-630 - Capítulo 10 Métodos de Amostragem e Avaliação de Algoritmos João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências

Leia mais

Classificação Automática de Gêneros Musicais

Classificação Automática de Gêneros Musicais Introdução Método Experimentos Conclusões Utilizando Métodos de Bagging e Boosting Carlos N. Silla Jr. Celso Kaestner Alessandro Koerich Pontifícia Universidade Católica do Paraná Programa de Pós-Graduação

Leia mais

Métodos de Amostragem. Métodos de Amostragem e Avaliação de Algoritmos. Métodos de Amostragem. Métodos de Amostragem. Métodos de Amostragem

Métodos de Amostragem. Métodos de Amostragem e Avaliação de Algoritmos. Métodos de Amostragem. Métodos de Amostragem. Métodos de Amostragem e Avaliação de s José Augusto Baranauskas Departamento de Física e Matemática FFCLRP-USP AM é uma ferramenta poderosa, mas não existe um único algoritmo que apresente o melhor desempenho para todos os

Leia mais

Modelagem da Rede Neural. Modelagem da Rede Neural. Back Propagation. Modelagem da Rede Neural. Modelagem da Rede Neural. Seleção de Variáveis:

Modelagem da Rede Neural. Modelagem da Rede Neural. Back Propagation. Modelagem da Rede Neural. Modelagem da Rede Neural. Seleção de Variáveis: Back Propagation Fatores importantes para a modelagem da Rede Neural: Seleção de variáveis; veis; Limpeza dos dados; Representação das variáveis veis de entrada e saída; Normalização; Buscando melhor Generalização

Leia mais

Roteiro. PCC142 / BCC444 - Mineração de Dados Avaliação de Classicadores. Estimativa da Acurácia. Introdução. Estimativa da Acurácia

Roteiro. PCC142 / BCC444 - Mineração de Dados Avaliação de Classicadores. Estimativa da Acurácia. Introdução. Estimativa da Acurácia Roteiro PCC142 / BCC444 - Mineração de Dados Avaliação de Classicadores Introdução Luiz Henrique de Campos Merschmann Departamento de Computação Universidade Federal de Ouro Preto [email protected]

Leia mais

Descoberta de Conhecimento em Bancos de Dados - KDD

Descoberta de Conhecimento em Bancos de Dados - KDD Descoberta de Conhecimento em Bancos de Dados - KDD Professor: Rosalvo Ferreira de Oliveira Neto Disciplina: Inteligência Artificial Tópicos 1. Definições 2. Fases do processo 3. Exemplo do DMC 4. Avaliação

Leia mais

Tutorial básico de classificação em RapidMiner

Tutorial básico de classificação em RapidMiner Tutorial básico de classificação em RapidMiner Mineração de dados biológicos Ciências físicas e biomoleculares Neste tutorial, aprenderemos a utilizar as funcionalidades básicas para classificação em Rapidminer.

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Apresentação da Disciplina Alessandro L. Koerich 2008 Mestrado e Doutorado em Informática Pontifícia Universidade Católica do Paraná (PUCPR) Mestrado/Doutorado em Informática Aprendizagem

Leia mais

CLASSIFICADORES ELEMENTARES

CLASSIFICADORES ELEMENTARES CLASSIFICADORES ELEMENTARES Classificação 2 Consiste em tentar discriminar em diferentes classes um conjunto de objetos com características mensuráveis Exemplo: classificação de frutas Forma, cor, sabor,

Leia mais

Aprendizado de Máquina. Combinando Classificadores

Aprendizado de Máquina. Combinando Classificadores Universidade Federal do Paraná (UFPR) Departamento de Informática (DInf) Aprendizado de Máquina Combinando Classificadores David Menotti, Ph.D. web.inf.ufpr.br/menotti Introdução O uso de vários classificadores

Leia mais

Redes Perceptron e Multilayer Perceptron aplicadas a base de dados IRIS

Redes Perceptron e Multilayer Perceptron aplicadas a base de dados IRIS Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Redes Perceptron e Multilayer Perceptron aplicadas a base de dados IRIS Aluno: Fabricio Aparecido Breve Prof.: Dr. André Ponce

Leia mais

Aprendizado de Máquina

Aprendizado de Máquina Aprendizado de Máquina Introdução ao WEKA Luiz Eduardo S. Oliveira Universidade Federal do Paraná Departamento de Informática http://web.inf.ufpr.br/luizoliveira Luiz S. Oliveira (UFPR) Aprendizado de

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Alessandro L. Koerich Programa de Pós-Graduação em Informática Pontifícia Universidade Católica do Paraná (PUCPR) Horários Aulas Sala 3 CCET [quinta-feira, 8:20 12:00] Atendimento

Leia mais

Uso de Algoritmo Genético para a otimização do ponto de corte da probabilidade de sucesso estimada do modelo de Regressão Logística

Uso de Algoritmo Genético para a otimização do ponto de corte da probabilidade de sucesso estimada do modelo de Regressão Logística Uso de Algoritmo Genético para a otimização do ponto de corte da probabilidade de sucesso estimada do modelo de Regressão Logística José Edson Rodrigues Guedes Gondim 1 Joab de Oliveira Lima 2 1 Introdução

Leia mais

Aprendizagem de Máquina - 2. Prof. Júlio Cesar Nievola PPGIa - PUCPR

Aprendizagem de Máquina - 2. Prof. Júlio Cesar Nievola PPGIa - PUCPR Aprendizagem de Máquina - 2 Prof. Júlio Cesar Nievola PPGIa - PUCPR Inteligência versus Aprendizado Aprendizado é a chave da superioridade da Inteligência Humana Para que uma máquina tenha Comportamento

Leia mais

Thiago Zavaschi Orientador: Alessandro Koerich Programa de Pós-Graduação em Informática (PPGIa) Pontifícia Universidade

Thiago Zavaschi Orientador: Alessandro Koerich Programa de Pós-Graduação em Informática (PPGIa) Pontifícia Universidade Thiago Zavaschi ([email protected]) Orientador: Alessandro Koerich Programa de Pós-Graduação em Informática (PPGIa) Pontifícia Universidade Católica do Paraná (PUC-PR) Conceitos relacionados a classificação

Leia mais

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 21 Projeto de RNA

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 21 Projeto de RNA Inteligência Artificial Prof. Tiago A. E. Ferreira Aula 21 Projeto de RNA Projeto de Redes Neurais Projeto de Redes Neurais Baseado apenas em dados Exemplos para treinar uma rede devem ser compostos por

Leia mais

Aprendizado de Máquina

Aprendizado de Máquina Aprendizado de Máquina Introdução Luiz Eduardo S. Oliveira Universidade Federal do Paraná Departamento de Informática http://lesoliveira.net Luiz S. Oliveira (UFPR) Aprendizado de Máquina 1 / 19 Introdução

Leia mais

Projeto da Disciplina

Projeto da Disciplina Projeto da Disciplina Germano C. Vasconcelos Centro de Informática - UFPE Germano C.Vasconcelos 1 Objetivo Realizar um estudo experimental sobre a aplicação de modelos de redes neurais em um problema do

Leia mais

Aprendizado de Máquinas. Seleção de Características

Aprendizado de Máquinas. Seleção de Características Universidade Federal do Paraná (UFPR) Departamento de Informática (DInf) Seleção de Características David Menotti, Ph.D. web.inf.ufpr.br/menotti Introdução Um dos principais aspectos na construção de um

Leia mais

θ depende de um parâmetro desconhecido θ.

θ depende de um parâmetro desconhecido θ. 73 Método de Máxima Verosimilhança (Maximum Likelihood) Seja uma variável aleatória (v. a.) cuja densidade de probabilidade depende de um parâmetro desconhecido. Admite-se conhecida a forma de Exemplo

Leia mais

Redes Neurais Artificiais. Everton Gago

Redes Neurais Artificiais. Everton Gago Redes Neurais Artificiais Everton Gago Como vai ser? O que é RNA? Conglomerado de neurônios!?!? Neurônio: Neurônio: Entradas: X0 = 0 X1 = 1 X2 = 1 Neurônio: Entradas: X0 = 0 X1 = 1 X2 = 1 Pesos: W0 = 0.3

Leia mais

Classificação: 1R e Naïve Bayes. Eduardo Raul Hruschka

Classificação: 1R e Naïve Bayes. Eduardo Raul Hruschka Classificação: 1R e Naïve Bayes Eduardo Raul Hruschka Agenda: Conceitos de Classificação Técnicas de Classificação One Rule (1R) Naive Bayes (com seleção de atributos) Super-ajuste e validação cruzada

Leia mais

ANÁLISE DE ESTRATÉGIAS DE CAPACITAÇÃO DE PROFESSORES DO ENSINO SUPERIOR EM TECNOLOGIAS EDUCACIONAIS

ANÁLISE DE ESTRATÉGIAS DE CAPACITAÇÃO DE PROFESSORES DO ENSINO SUPERIOR EM TECNOLOGIAS EDUCACIONAIS Resumo ANÁLISE DE ESTRATÉGIAS DE CAPACITAÇÃO DE PROFESSORES DO ENSINO SUPERIOR EM TECNOLOGIAS EDUCACIONAIS Kelli Fernanda Roznowski Göttems - Bolsista, Iniciação Científica - CNPQ [email protected]

Leia mais

Aprendizado em IA. Prof. Carlos H. C. Ribeiro ITA Divisão de Ciência da Computação

Aprendizado em IA. Prof. Carlos H. C. Ribeiro ITA Divisão de Ciência da Computação Aprendizado em IA Prof. Carlos H. C. Ribeiro ITA Divisão de Ciência da Computação Tópicos Agentes baseados em aprendizado Aprendizado indutivo Árvores de decisão Método ID3 Aprendizado em redes neurais

Leia mais

Inteligência nos Negócios (Business Inteligente)

Inteligência nos Negócios (Business Inteligente) Inteligência nos Negócios (Business Inteligente) Sistemas de Informação Sistemas de Apoio a Decisão Aran Bey Tcholakian Morales, Dr. Eng. (Apostila 6) Fundamentação da disciplina Analise de dados Decisões

Leia mais

Aprendizado de Máquinas. Multi-Layer Perceptron (MLP)

Aprendizado de Máquinas. Multi-Layer Perceptron (MLP) Universidade Federal do Paraná (UFPR) Departamento de Informática (DInf) Aprendizado de Máquinas Multi-Layer Perceptron (MLP) David Menotti, Ph.D. web.inf.ufpr.br/menotti Redes Neuronais Cérebro humano.

Leia mais

Aprendizado de Máquina (Machine Learning)

Aprendizado de Máquina (Machine Learning) Ciência da Computação Aprendizado de Máquina (Machine Learning) Aula 07 Classificação com o algoritmo knn Max Pereira Classificação com o algoritmo (knn) Um algoritmo supervisionado usado para classificar

Leia mais

Aprendizado de Máquina (Machine Learning)

Aprendizado de Máquina (Machine Learning) Ciência da Computação Aprendizado de Máquina (Machine Learning) Aula 09 Árvores de Decisão Max Pereira Classificação É a tarefa de organizar objetos em uma entre diversas categorias pré-definidas. Exemplos

Leia mais

Inteligência Artificial. Raimundo Osvaldo Vieira [DComp IFMA Campus Monte Castelo]

Inteligência Artificial. Raimundo Osvaldo Vieira [DComp IFMA Campus Monte Castelo] Inteligência Artificial Raimundo Osvaldo Vieira [DComp IFMA Campus Monte Castelo] Aprendizagem de Máquina Área da Inteligência Artificial cujo objetivo é o desenvolvimento de técnicas computacionais sobre

Leia mais

Rede RBF (Radial Basis Function)

Rede RBF (Radial Basis Function) Rede RBF (Radial Basis Function) André Tavares da Silva [email protected] Roteiro Introdução à rede neural artificial RBF Teorema de Cover da separabilidade de padrões RBF x MLP RBF Função de ativação

Leia mais

PREDIÇÃO À EVASÃO ESCOLAR: Estudo de caso aplicado no IFSULDEMINAS Campus Passos RESUMO

PREDIÇÃO À EVASÃO ESCOLAR: Estudo de caso aplicado no IFSULDEMINAS Campus Passos RESUMO PREDIÇÃO À EVASÃO ESCOLAR: Estudo de caso aplicado no IFSULDEMINAS Campus Passos Carla Fernandes da SILVA 1 ; Clayton Silva MENDES 2. RESUMO A evasão escolar é um dos principais desafios a ser superado

Leia mais

Redes Neurais MLP: Exemplos e Características

Redes Neurais MLP: Exemplos e Características Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Redes Neurais MLP: Exemplos e Características DCA0121 Inteligência Artificial Aplicada Heitor Medeiros 1

Leia mais

5 Experimentos Conjunto de Dados

5 Experimentos Conjunto de Dados Experimentos 48 5 Experimentos Este capítulo apresenta o ambiente experimental utilizado para validar o método de predição do CTR proposto neste trabalho. Na seção 5.1, descrevemos a geração do conjunto

Leia mais

Aula 3: Random Forests

Aula 3: Random Forests Aula 3: Random Forests Paulo C. Marques F. Aula ministrada no Insper 26 de Fevereiro de 2016 Insper Random Forests 26 de Fevereiro de 2016 1 / 18 Árvores de classificação Estamos no mesmo contexto de aprendizagem

Leia mais

Classificação e Predição de Dados - Profits Consulting - Consultoria Empresarial - Serviços SAP- CRM Si

Classificação e Predição de Dados - Profits Consulting - Consultoria Empresarial - Serviços SAP- CRM Si Classificação e Predição de Dados - Profits Consulting - Consultoria Empresarial - Serviços SAP- CRM Si Classificação de Dados Os modelos de classificação de dados são preditivos, pois desempenham inferências

Leia mais

Aprendizado de Máquina Introdução às Redes Neurais Artificiais

Aprendizado de Máquina Introdução às Redes Neurais Artificiais Aprendizado de Máquina Introdução às Redes Neurais Artificiais Marcos Oliveira Prates (Agradecimento Marcelo Azevedo Costa) Departamento de Estatística Universidade Federal de Minas Gerais Inteligência

Leia mais

Curso de Data Mining

Curso de Data Mining Curso de Data Mining Sandra de Amo Curvas Roc Uma curva ROC (Receiver Operating Characteristic) é um enfoque gráfico que permite visualizar os trade-offs entre as taxas de positivos verdadeiros e positivos

Leia mais

Aprendizagem Bayesiana

Aprendizagem Bayesiana Universidade Federal do Paraná (UFPR) Bacharelado em Informática Biomédica Aprendizagem Bayesiana David Menotti www.inf.ufpr.br/menotti/ci171-182 Aprendizagem Bayesiana Agenda Introdução Teorema de Bayes

Leia mais

JAI 6 - Deep Learning Teoria e Prática

JAI 6 - Deep Learning Teoria e Prática JAI 6 - Deep Learning Teoria e Prática Esteban Clua e Cristina Nader Vasconcelos Universidade Federal Fluminense Fundamentos Computação baseada em modelos [email protected] 2 Computação baseada em aprendizado

Leia mais

Aprendizado de Máquina (Machine Learning)

Aprendizado de Máquina (Machine Learning) Ciência da Computação (Machine Learning) Aula 07 Classificação com o algoritmo knn Max Pereira Classificação com o algoritmo k-nearest Neighbors (knn) Como os filmes são categorizados em gêneros? O que

Leia mais

Redes Neurais Artificial. Prática. Inteligência Artificial

Redes Neurais Artificial. Prática. Inteligência Artificial Redes Neurais Artificial Prática Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Introdução a MLP 2. Base de dados e Pré-Processamento 3. Prática MLP - Introdução Redes

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Alessandro L. Koerich Programa de Pós-Graduação em Engenharia Elétrica Universidade Federal do Paraná (UFPR) Redes Neurais Artificiais Plano de Aula Introdução Motivação Biológica

Leia mais

Avaliação do desempenho das ConvNets na detecção de ovos de esquistossomose PROPOSTA DE TRABALHO DE GRADUAÇÃO

Avaliação do desempenho das ConvNets na detecção de ovos de esquistossomose PROPOSTA DE TRABALHO DE GRADUAÇÃO UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE INFORMÁTICA GRADUAÇÃO EM ENGENHARIA DA COMPUTAÇÃO Avaliação do desempenho das ConvNets na detecção de ovos de esquistossomose PROPOSTA DE TRABALHO DE GRADUAÇÃO

Leia mais

Regressão Linear. Fabrício Olivetti de França. Universidade Federal do ABC

Regressão Linear. Fabrício Olivetti de França. Universidade Federal do ABC Regressão Linear Fabrício Olivetti de França Universidade Federal do ABC Tópicos 1. Overfitting 2. Treino e Validação 3. Baseline dos modelos 1 Overfitting Overfit Em muitos casos, a amostra de dados coletada

Leia mais